JP4518262B2 - High purity electrolytic copper and its manufacturing method - Google Patents

High purity electrolytic copper and its manufacturing method Download PDF

Info

Publication number
JP4518262B2
JP4518262B2 JP2005069752A JP2005069752A JP4518262B2 JP 4518262 B2 JP4518262 B2 JP 4518262B2 JP 2005069752 A JP2005069752 A JP 2005069752A JP 2005069752 A JP2005069752 A JP 2005069752A JP 4518262 B2 JP4518262 B2 JP 4518262B2
Authority
JP
Japan
Prior art keywords
copper
slime
electrolytic
peg
pva
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005069752A
Other languages
Japanese (ja)
Other versions
JP2005307343A (en
Inventor
昌樹 宮川
正治 石渡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2005069752A priority Critical patent/JP4518262B2/en
Publication of JP2005307343A publication Critical patent/JP2005307343A/en
Application granted granted Critical
Publication of JP4518262B2 publication Critical patent/JP4518262B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Electrolytic Production Of Metals (AREA)

Description

本発明は、表面が平滑であって銀やイオウ等の不純物量が少ない高純度電気銅の製造方法に関する。
The present invention relates to a method for producing high purity electrolytic copper having a smooth surface and a small amount of impurities such as silver and sulfur.

従来、銅の電解精製において、析出銅の平滑性や緻密性を高める目的でニカワを電解浴に添加して用いている。しかし、ニカワは生物由来の原料であるために、合成添加剤に比べて品質の均一性と安定性に欠ける。また、ニカワには分子量の異なる製品や精製ニカワなどがあるが、水溶液中で熱や酸などによって徐々に分解するために、安定した特性と効果を維持することが難しい。また、ニカワは食品・製薬・写真等の用途においては粘度や平均分子量を特性の指標として利用しているが、電解精製ではニカワの上記物性は添加剤としての特性を示す指標としてあまり有効ではなく、このため従来は試行錯誤でニカワの種類と添加量を定めていた。 Conventionally, in the electrolytic purification of copper, glue is added to the electrolytic bath for the purpose of improving the smoothness and denseness of the deposited copper. However, since glue is a bio-derived raw material, it lacks uniformity and stability in quality compared to synthetic additives. In addition, there are products with different molecular weights and purified glues, etc., but it is difficult to maintain stable characteristics and effects because they are gradually decomposed by heat or acid in an aqueous solution. In addition, Nika uses viscosity and average molecular weight as characteristics indicators in food, pharmaceutical, and photography applications, but the above properties of Nika are not very effective as indicators of characteristics as additives in electrolytic purification. Therefore, in the past, the type and amount of glue were determined by trial and error.

また、ニカワは硫酸を使用して製造されているので、ニカワ精製工程で除去し切れずに残留した硫酸イオンが製品ニカワに含まれることがあり、さらにニカワを構成するアミノ酸の一種であるメチオニンがイオウを含んでいるために、一般工業製品としてのニカワにはすべてイオウが含まれており、特別な手法でメチオニンを含まないニカワを製造する場合以外はイオウを含まないニカワを入手することは困難である。 In addition, since Nika is manufactured using sulfuric acid, the product Nika may contain sulfate ions that remain without being removed in the Nika process, and methionine, which is a type of amino acid that constitutes Nika, is also included. Due to the inclusion of sulfur, all Nika as general industrial products contain sulfur, and it is difficult to obtain Nika that does not contain sulfur unless a special method is used to produce Nika that does not contain methionine. It is.

このため、銅の電解精製でニカワを使用すると、電解液中のニカワの一部が析出銅に吸着して取り込まれ、ニカワに含まれるイオウが析出銅に混入することが避けられない。このニカワに由来するイオウの混入量は微量であるために、従来はあまり問題にされなかったが、最近、銅の高純度化の要求が高まるにつれて析出銅に含まれる僅かな量のイオウも無視できなくなってきた。 For this reason, when glue is used for electrolytic refining of copper, it is inevitable that a part of glue in the electrolytic solution is adsorbed and taken in by the deposited copper and sulfur contained in the glue is mixed into the deposited copper. Since the amount of sulfur derived from this glue was very small, it was not a problem in the past. However, as the demand for high purity copper has recently increased, the small amount of sulfur contained in the deposited copper has been ignored. I can't do it.

銅電解精製におけるニカワの上記問題を回避するため、ニカワよりも安定な合成高分子、例えばポリビニルアルコール(PVA)をニカワに代えて使用する例や(特許文献1)、ニカワよりも安定で不純物の少ない合成高分子添加剤としてポリエチレングリコール(PEG)を使用する例が知られている(特許文献2)。
特開平2−22489号公報 特開昭57−16188号公報
In order to avoid the above-mentioned problems of Nika in copper electrolytic refining, examples of using synthetic polymers more stable than Nika, such as polyvinyl alcohol (PVA) instead of Nika, (Patent Document 1), more stable than Nika and impurities. An example of using polyethylene glycol (PEG) as a small amount of synthetic polymer additive is known (Patent Document 2).
JP-A-2-22489 Japanese Unexamined Patent Publication No. 57-16188

ところが、PVAを用いると表面が滑らかな析出銅を得ることができるが、不純物の銀は低減されず、電解精製効果が低い。一方、PEGを使用すると析出銅表面は平滑になるが、反りによる剥離や樹枝状突起が生じやすいと云う問題がある。 However, when PVA is used, precipitated copper having a smooth surface can be obtained, but the impurity silver is not reduced and the electrolytic purification effect is low. On the other hand, when PEG is used, the surface of the deposited copper becomes smooth, but there is a problem that peeling due to warping and dendritic protrusion are likely to occur.

本発明は、従来の銅電解精製における上記問題を解決したものであり、銅電解精製において、PVA等とPEG等を併用することによって析出銅表面の平滑性を高めると共に反りによる剥離や樹枝状突起の発生を抑制した。本発明は、さらにPEG等がスライムの発生を促し、このスライムが不純物を取り込んで析出銅の不純物量を低減することを見い出し、スライムの生成比率(スライム重量÷析出銅重量)を制御することによって析出銅表面の平滑緻密化と共に析出銅の不純物を低減した高純度化を達成した。 The present invention solves the above-mentioned problems in conventional copper electrolytic purification, and in copper electrolytic purification, by using PVA or the like together with PEG or the like, the smoothness of the deposited copper surface is enhanced and peeling due to warping or dendritic protrusions is achieved. Suppression of the occurrence of. The present invention further finds that PEG or the like promotes the generation of slime, and that this slime takes in impurities and reduces the amount of impurities in precipitated copper, and controls the slime production ratio (slime weight ÷ precipitated copper weight). As a result, the surface of the deposited copper was smoothed and densified, and the purity of the precipitated copper was reduced.

すなわち、本発明は以下の構成からなる高純度電気銅の製造方法に関する。
〔請求項1〕
銅の電解精製において、陰極で析出する銅の表面性状を改善する高分子添加剤(平滑化剤と云う)と、陽極表面で生成する銅粉を含むスライムの生成量を増加させる高分子添加剤(スライム促進剤と云う)を併用することによって析出銅の表面を平滑にすると共に析出銅の不純物量を低減する方法であって、平滑化剤としてポリビニルアルコール(PVA)を用い、スライム促進剤としてポリエチレングリコール(PEG)を用い、陽極と陰極を隔膜で隔て、PVAを陰極側に供給し、PEGを陽極側に供給し、スライム生成率(乾燥スライム重量÷析出銅重量)が10%〜50%になるように電解を行うことを特徴とする電気銅の製造方法。
〔請求項2〕
PVA:PEG=1:4〜9:1の量比でPVAとPEGを供給する上記[1]に記載する電気銅の製造方法。
〔3〕硝酸電解浴を用い、スライム生成率が10%〜50%になるように平滑化剤とスライム促進剤を併用して銅の電解精製を行うことによって、銀含有量0.5ppm以下およびイオウ含有量0.01ppm以下の表面が平滑な高純度銅を製造する上記[1]または上記[2]の何れかに記載する電気銅の製造方法。
That is, this invention relates to the manufacturing method of the high purity electrolytic copper which consists of the following structures.
[Claim 1]
In the electrolytic purification of copper, a polymer additive (referred to as a smoothing agent) that improves the surface properties of copper deposited at the cathode and a polymer additive that increases the amount of slime containing copper powder formed on the anode surface (Also referred to as a slime accelerator) is a method of smoothing the surface of precipitated copper and reducing the amount of impurities in the precipitated copper , using polyvinyl alcohol (PVA) as a smoothing agent, and as a slime accelerator. Using polyethylene glycol (PEG), the anode and cathode are separated by a diaphragm, PVA is supplied to the cathode side, PEG is supplied to the anode side, and the slime production rate (dry slime weight ÷ precipitated copper weight) is 10% to 50%. Electrolytic copper is produced so as to become a method for producing electrolytic copper.
[Claim 2]
The method for producing electrolytic copper as described in [1] above, wherein PVA and PEG are supplied in an amount ratio of PVA: PEG = 1: 4 to 9: 1 .
[3] By performing electrolytic refining of copper using a nitric acid electrolytic bath in combination with a smoothing agent and a slime accelerator so that a slime production rate is 10% to 50% , a silver content of 0.5 ppm or less and The method for producing electrolytic copper according to any one of [1] or [2] above, wherein high-purity copper having a smooth surface with a sulfur content of 0.01 ppm or less is produced.

〔具体的な説明〕
以下、本発明を具体的に説明する。
本発明は、銅の電解精製において、陰極で析出する銅の表面性状を改善する高分子添加剤(平滑化剤と云う)と、陽極表面で生成する銅粉を含むスライムの生成量を増加させる高分子添加剤(スライム促進剤と云う)を併用することによって析出銅の表面を平滑にすると共に析出銅の不純物量を低減する方法であって、平滑化剤としてポリビニルアルコール(PVA)を用い、スライム促進剤としてポリエチレングリコール(PEG)を用い、陽極と陰極を隔膜で隔て、PVAを陰極側に供給し、PEGを陽極側に供給し、スライム生成率(乾燥スライム重量÷析出銅重量)が10%〜50%になるように電解を行うことを特徴とする電気銅の製造方法である。

[Specific description]
The present invention will be specifically described below.
In the electrolytic purification of copper, the present invention increases the amount of slime containing a polymer additive (referred to as a smoothing agent) that improves the surface properties of copper deposited on the cathode and the copper powder formed on the anode surface. A method of smoothing the surface of precipitated copper by using a polymer additive (referred to as a slime accelerator) and reducing the amount of impurities in the precipitated copper , using polyvinyl alcohol (PVA) as a smoothing agent, Polyethylene glycol (PEG) is used as a slime accelerator, the anode and cathode are separated by a diaphragm, PVA is supplied to the cathode side, PEG is supplied to the anode side, and a slime production rate (dry slime weight ÷ precipitated copper weight) is 10 The electrolytic copper production method is characterized in that electrolysis is performed so as to be 50% to 50% .

なお、本発明において、析出銅表面が平滑であるとは、析出銅表面に図2に示すような樹枝状突起(デンドライド)が存在せず、図1に示すように肉眼観察上で局部的かつ極端な凹凸や剥離、亀裂などが析出銅表面に存在しない状態を云う。 In the present invention, that the surface of the deposited copper is smooth means that there are no dendrites as shown in FIG. 2 on the surface of the deposited copper, and local and visual observations as shown in FIG. This refers to a state where there is no extreme unevenness, delamination, cracks, etc. on the deposited copper surface.

析出銅の性状を改善する高分子添加剤(平滑化剤)としては、親水性の部分を比較的多く含み、スライム促進剤よりも水溶性の高い高分子化合物が適している。この理由は、析出銅表面が平滑化するのは析出銅表面での分極の大小による電着の均一化が促され、さらに親水性官能基によって銅イオンの移動が容易になり、凸部への高分子添加剤の吸着による抑制が働く一方で、凹部分に銅が容易に析出して平滑な銅になるためであると推定される。 As the polymer additive (smoothing agent) for improving the properties of the precipitated copper, a polymer compound containing a relatively large amount of a hydrophilic portion and having a higher water solubility than the slime accelerator is suitable. The reason for this is that smoothening of the surface of the deposited copper facilitates the uniform electrodeposition due to the magnitude of polarization on the surface of the deposited copper, and the movement of copper ions is facilitated by the hydrophilic functional group, so It is presumed that the suppression by the adsorption of the polymer additive works, while copper easily precipitates in the concave portion and becomes smooth copper.

このような合成高分子平滑化剤としては、PVA、ポリアクリル酸、ポリアクリルアミドなどが挙げられる。このなかで、不純物が少ない、安価で入手しやすい、品質のばらつきが少なく、また優れた効果を有するなどの点からPVAが好ましい。 Such synthetic polymer smoothing agents include PVA, polyacrylic acid, polyacrylamide and the like. Of these, PVA is preferred from the viewpoints of few impurities, low cost and availability, little variation in quality, and excellent effects.

PVAを代表例とする平滑化剤は、金属表面に対する吸着性が弱いので析出銅表面において銅イオンの移動を阻害せず、また析出銅表面近傍に水溶性の被膜を作り出すため、極めて平滑で緻密な銅を析出させることができる。平滑化剤の使用量は60〜270mg/析出銅kgが適当であり、さらに具体的には電流密度やスライム促進剤との兼ね合いにおいて定められる。 A smoothing agent such as PVA has a weak adsorptivity to the metal surface, so it does not hinder the movement of copper ions on the surface of the deposited copper, and creates a water-soluble film in the vicinity of the deposited copper surface. Copper can be deposited. The amount of the smoothing agent used is suitably 60 to 270 mg / kg of precipitated copper, and more specifically determined in consideration of the current density and the slime accelerator.

一方、PVA等は金属表面に対する吸着性が弱いので、陽極側においてはスライムの生成率が低い傾向を持つ。例えば、PVAを単独で使用した場合、非常に平滑で緻密な析出銅が得られるが、陽極スライムはほとんど発生せず、結果として析出銅に取り込まれる不純物の銀含有量が高くなり、十分な電解精製効果が得られない。 On the other hand, PVA or the like has a weak adsorptivity to the metal surface, so that the slime generation rate tends to be low on the anode side. For example, when PVA is used alone, very smooth and dense precipitated copper can be obtained, but anodic slime is hardly generated, and as a result, the silver content of impurities taken into the precipitated copper is increased, and sufficient electrolysis is achieved. The purification effect cannot be obtained.

そこで、本発明は上記平滑化剤と共にスライム促進剤を併用する。陽極表面で銅粉を含むスライムの生成を促進させると、これが電解液に溶出した銀などの不純物を取り込むので、析出銅に取り込まれる銀などの不純物量を低減することができる。このようなスライムの生成量を増加させる高分子添加剤(スライム促進剤)としては、水溶性であるが上記平滑化剤よりは疎水性の部分を多く含み、従って金属(銅)表面に対して吸着性の高い高分子化合物が適している。電解液に溶解した高分子化合物は、その疎水性の部分によって金属表面に吸着してある種の被膜を形成し、この被膜によって銅の溶出が抑制され、すでに溶出した銅イオンが金属銅(銅粉)に戻る傾向が強められ、スライムの生成が促進される。 Therefore, the present invention uses a slime accelerator together with the above smoothing agent. When the production of slime containing copper powder is promoted on the anode surface, it takes in impurities such as silver eluted in the electrolyte, so that the amount of impurities such as silver taken into the deposited copper can be reduced. As a polymer additive (slime accelerator) that increases the amount of slime produced, it is water-soluble but contains more hydrophobic parts than the above-mentioned smoothing agent. A polymer compound with high adsorptivity is suitable. The polymer compound dissolved in the electrolytic solution is adsorbed on the metal surface by the hydrophobic portion to form a certain film, and this film suppresses the elution of copper. The tendency to return to flour is strengthened, and the formation of slime is promoted.

このような合成高分子スライム促進剤としては、PEG、高分子脂肪酸、高分子アルキル化合物、芳香族アゾ化合物など挙げられる。このなかで、不純物が少ない、安価で入手しやすい、品質のばらつきの少なく、また優れた効果を有するなどの点からPEGが好ましい。 Examples of such synthetic polymer slime promoter include PEG, polymer fatty acid, polymer alkyl compound, aromatic azo compound and the like. Among these, PEG is preferable from the viewpoints of few impurities, low cost and availability, little variation in quality, and excellent effects.

PEGを代表例とするスライム促進剤は、金属表面に対する吸着性が強いので、陽極側では、陽極表面に吸着してスライム生成率を増加させる一方で、析出銅側にも吸着して析出銅の性状にも影響を与える。例えば、PEGを単独で使用した場合、PEGの分子量が大きくなるにつれて析出銅ではある種の皮膜が強固になり、電着を抑制する傾向が増大する。 Slime promoters, typically PEG, have a strong adsorptivity to the metal surface, so that on the anode side, it adsorbs to the anode surface and increases the slime production rate, while also adsorbing to the precipitated copper side. It also affects the properties. For example, when PEG is used alone, as the molecular weight of PEG increases, a certain type of film becomes stronger with precipitated copper, and the tendency to suppress electrodeposition increases.

具体的には、例えば、分子量がおよそ2000以上では、析出銅の中央部が薄くなり外周に異常な盛上りが出来て析出銅が湾曲したり、析出銅母板から剥れたり、樹枝状の異常析出が起こり、正常な電解が継続できない事態が発生する。一方、分子量がおよそ1000以下の場合には、樹枝状析出が起こり難く、ほぼ平滑な析出銅が得られるが、表面にミクロンレベルの隙間が多数発生しており、電解液の巻き込みが発生する。このため、析出銅を水洗した後に空気中に放置しておくと、内部に取りこまれた酸(電解液)によって表面が褐色に変色する現象が見られる。従って、合成高分子スライム促進剤は分子量1000〜2000のものが好ましい。 Specifically, for example, when the molecular weight is about 2000 or more, the central portion of the precipitated copper becomes thin and abnormal bulges can be formed on the outer periphery, the precipitated copper is curved, peeled off from the precipitated copper base plate, or dendritic Abnormal precipitation occurs and normal electrolysis cannot be continued. On the other hand, when the molecular weight is about 1000 or less, dendritic precipitation is difficult to occur and substantially smooth precipitated copper is obtained, but many micron-level gaps are generated on the surface, and the electrolyte is involved. For this reason, when the deposited copper is washed with water and left in the air, a phenomenon is observed in which the surface turns brown due to the acid (electrolytic solution) taken therein. Accordingly, the synthetic polymer slime accelerator preferably has a molecular weight of 1000 to 2000.

なお、PEGの使用量が少ない場合にも析出銅の表面に樹枝状析出や緻密でない析出が起こり、正常な電解を継続できないことがある。例えば、分子量によっても異なるが、PEGの使用量が概ね20mg/l程度以下であるとこのような問題を生じる。 Even when the amount of PEG used is small, dendritic precipitation or non-dense precipitation may occur on the surface of the deposited copper, and normal electrolysis may not be continued. For example, although depending on the molecular weight, such a problem occurs when the amount of PEG used is about 20 mg / l or less.

このように、スライム促進剤として用いられるPEGを代表例とする高分子化合物を単独で使用すると、陽極でのスライム発生量を増大する傾向を持つが、析出銅の析出状態に問題を生じる懸念がある。そこで、本発明では、PVA等の平滑化剤とPEG等のスライム促進剤とを併用することによって析出銅の平滑緻密化と高純度化とを同時に達成できるようにした。 Thus, when a polymer compound typified by PEG used as a slime accelerator is used alone, there is a tendency to increase the amount of slime generated at the anode, but there is a concern of causing a problem in the deposited state of precipitated copper. is there. Therefore, in the present invention, smoothing densification and high purity of precipitated copper can be achieved simultaneously by using a smoothing agent such as PVA and a slime accelerator such as PEG in combination.

平滑化剤とスライム促進剤の好ましい量比は、組み合わされる平滑化剤の高分子化合物とスライム促進剤の高分子化合物の各特性によって異なる。一般的には、樹枝状析出を起こさずに電解を継続することができ、かつスライム促進剤となる高分子化合物の金属表面への吸着の強さを平滑化剤によって緩和する量比となるように調節する。例えば、その指標がスライム生成率である。スライム生成率は次式(I)によって定めら
れる。なお、乾燥スライム重量にはスライムと共に沈殿した銅粉の重量が含まれている。
スライム生成率=スライム重量(乾燥状態)÷析出銅重量×100 …(I)
The preferred amount ratio between the leveling agent and the slime accelerator varies depending on the properties of the polymer compound of the smoothing agent and the polymer compound of the slime accelerator to be combined. In general, the electrolysis can be continued without causing dendritic precipitation, and the amount of adsorption of the polymer compound serving as a slime accelerator on the metal surface is reduced by a smoothing agent. Adjust to. For example, the index is the slime production rate. The slime production rate is determined by the following formula (I). The dry slime weight includes the weight of copper powder precipitated together with the slime.
Slime production rate = slime weight (dry state) ÷ precipitated copper weight x 100 (I)

具体的には、代表例であるPVAとPEGの組合せの場合には、PEGの分子量が大きくなるほど金属表面への吸着が強くなる傾向があり、その場合はPVAを多くして、PEGを少なく配合する必要がある。具体的には、例えば実施例に示すように、PVA+PEG1000(分子量1000)の場合にはPVA:PEG=1:4の量比において、またPVA+PEG2000(分子量2000)の場合にはPVA:PEG=9:1の量比において、それぞれ良好な析出銅を得ている。 Specifically, in the case of a combination of PVA and PEG, which is a representative example, the adsorption to the metal surface tends to increase as the molecular weight of PEG increases. In that case, the PVA is increased and the PEG is reduced. There is a need to. Specifically, for example, as shown in the Examples, in the case of PVA + PEG1000 (molecular weight 1000), in a quantitative ratio of PVA: PEG = 1: 4, and in the case of PVA + PEG2000 (molecular weight 2000), PVA: PEG = 9: In an amount ratio of 1, good precipitated copper is obtained.

なお、スライム生成率は電流密度によっても変化し、電流密度が高くなるにつれて増加する傾向がある。また、スライム生成率は上記高分子化合物の添加量によってもある程度増減し、上記高分子化合物の添加量が多くなるとスライム生成率が多少増加する傾向がある。いずれにしても、これらの傾向を踏まえてスライム生成率を指標として、平滑化剤とスライム促進剤の好ましい配合比を定めることができる。 Note that the slime production rate also changes depending on the current density, and tends to increase as the current density increases. The slime production rate also increases or decreases to some extent depending on the addition amount of the polymer compound, and the slime production rate tends to increase somewhat as the addition amount of the polymer compound increases. In any case, a preferable blending ratio of the smoothing agent and the slime accelerator can be determined using the slime production rate as an index based on these tendencies.

また、平滑化剤とスライム促進剤の合計量は、実施例に示す量の1.5〜2倍の濃度であっても、表面が平滑で緻密な析出銅を得られることができる。ただし、これらの添加量が多くなると、析出銅に巻込まれる添加剤の量が増加するため、ガス成分のC、Oが増加し、後工程の溶解鋳造工程での手間が増えるなど不具合の原因となる。従って、添加剤は本発明の範囲内で可能な限り少ないことが望ましい。 Moreover, even if the total amount of the smoothing agent and the slime accelerator is 1.5 to 2 times the concentration shown in the Examples, it is possible to obtain dense copper having a smooth surface. However, if the amount of these additives increases, the amount of the additive entrained in the precipitated copper increases, so that C and O of the gas component increase, and troubles such as an increase in labor in the subsequent melting and casting process are caused. Become. Accordingly, it is desirable that the additive be as few as possible within the scope of the present invention.

スライム促進剤の添加量は、スライム生成率(乾燥スライム重量÷析出銅重量)が10%以上になる量が好ましい。スライムの生成率が10%未満では不純物の銀含有量を低減する効果が不十分である。概ね、スライム生成率が10%以上であれば銀含有量を1.0ppm以下に低減することができ、上記生成率が20%以上であれば銀含有量を0.5ppm以下、好ましくは0.1ppm以下に低減することができる。一方、スライム生成率が50%を上回ると、電気銅の収率(電流効率)の低下はそれほど大きくはないが、電解液中のCuイオン濃度が低下し、操業継続の支障になる。また、アノードに使用する銅に対する析出銅の収率(実収率)が低下するため経済的にも好ましくない。従って、スライム生成率は10%以上〜50%以下が適当であり、20%以上〜40%以下が好ましい。 The amount of the slime accelerator added is preferably such that the slime production rate (dry slime weight ÷ precipitated copper weight) is 10% or more. If the production rate of slime is less than 10%, the effect of reducing the silver content of impurities is insufficient. In general, if the slime production rate is 10% or more, the silver content can be reduced to 1.0 ppm or less, and if the production rate is 20% or more, the silver content is 0.5 ppm or less, preferably 0.5. It can be reduced to 1 ppm or less. On the other hand, when the slime production rate exceeds 50%, the decrease in the yield (current efficiency) of electrolytic copper is not so great, but the Cu ion concentration in the electrolytic solution decreases, which hinders the continuation of operation. Moreover, since the yield (actual yield) of the deposited copper with respect to the copper used for an anode falls, it is not economically preferable. Accordingly, the slime production rate is suitably 10% to 50%, preferably 20% to 40%.

平滑化剤とスライム促進剤とを電解液に添加する場合には、陽極と陰極を隔膜で隔て、平滑化剤を隔膜の陰極側に供給し、スライム促進剤を隔膜の陽極側に供給するのが好ましい。この隔膜としては、高分子添加剤を通す濾布状のものや、銅イオン/硝酸イオン/水分子のみを通すが高分子添加剤を通さないイオン交換膜のようなものの何れでも良い。濾布状の膜では添加剤が濾布を通過して混合するが、混合した状態を基準として調整しておけばよく、析出銅側のPVA濃度が高ければより析出銅の平滑さ・緻密さが増し、陽極側のPEG濃度が高ければより多くのスライムが生成し、溶出するAgが低減されるため、結果として経済性は多少低下しても不純物量の少ない電気銅を得ることができる。 When adding a smoothing agent and a slime accelerator to the electrolyte, the anode and cathode are separated by a diaphragm, the smoothing agent is supplied to the cathode side of the diaphragm, and the slime accelerator is supplied to the anode side of the diaphragm. Is preferred. The membrane may be a filter cloth that allows polymer additives to pass through, or an ion exchange membrane that passes only copper ions / nitrate ions / water molecules but does not allow polymer additives to pass through. In the filter cloth film, the additive passes through the filter cloth and is mixed. However, the additive should be adjusted based on the mixed state. The higher the PVA concentration on the precipitated copper side, the smoother and denser the precipitated copper. If the PEG concentration on the anode side is higher, more slime is generated and the eluted Ag is reduced. As a result, electrolytic copper with a small amount of impurities can be obtained even if the economy is somewhat reduced.

電解浴は硝酸、硫酸、塩酸、またはこれらの混酸の何れでも良いが、析出電気銅のイオウ含有量を低減するには硝酸浴が好ましい。具体的には、硝酸電解浴を用い、平滑化剤とスライム促進剤を併用し、かつスライム促進剤をスライム生成率が10%以上になる添加量にして銅の電解精製を行うことによって、イオウ含有量が0.1ppm以下、好ましくは0.01ppm以下であって、銀含有量が1.0ppm以下、好ましくは0.5ppm以下の表面が平滑な高純度銅を得ることができる。 The electrolytic bath may be nitric acid, sulfuric acid, hydrochloric acid, or a mixed acid thereof, but a nitric acid bath is preferable in order to reduce the sulfur content of the deposited electrolytic copper. Specifically, by using a nitric acid electrolytic bath, a smoothing agent and a slime accelerator are used in combination, and the copper is purified by electrolytic refining of the slime accelerator with an addition amount that results in a slime production rate of 10% or more. High-purity copper having a smooth surface with a content of 0.1 ppm or less, preferably 0.01 ppm or less and a silver content of 1.0 ppm or less, preferably 0.5 ppm or less can be obtained.

なお、本発明の製造方法において、イオン交換樹脂法、キレート法、活性炭法、セメンテーション法などの電解液の精製方法を組み合わせることによって不純物を除去し、さらに不純物の少ない高純度の電気銅を得ることができる。さらに、本発明の方法においては、平滑化剤やスライム促進剤などの高分子添加剤の他に尿素、塩素イオンなどを添加してもよい。 In the production method of the present invention, impurities are removed by combining electrolytic solution purification methods such as ion exchange resin method, chelate method, activated carbon method, and cementation method, and high-purity electrolytic copper with less impurities is obtained. be able to. Furthermore, in the method of the present invention, urea, chlorine ions, etc. may be added in addition to polymer additives such as smoothing agents and slime accelerators.

本発明の製造方法によれば、表面が平滑であって銀やイオウ等の不純物量が少ない高純度電気銅を得ることができる。具体的には、例えば、銀含有量1.0ppm以下、好ましくは0.5ppm以下、およびイオウ含有量0.1ppm以下、好ましくは0.01ppm以下であって、表面が平滑な高純度電気銅を得ることができる。 According to the production method of the present invention, high purity electrolytic copper having a smooth surface and a small amount of impurities such as silver and sulfur can be obtained. Specifically, for example, high purity electrolytic copper having a smooth surface with a silver content of 1.0 ppm or less, preferably 0.5 ppm or less, and a sulfur content of 0.1 ppm or less, preferably 0.01 ppm or less. Obtainable.

また、本発明の製造方法は、従来用いられていたニカワに代えて分子量や官能基の比率などが工業的に制御されて製造された合成高分子添加剤を使用することによって添加剤の使用法に柔軟性が増し、従来法(特開昭63−297583号)のようなニカワを使用する場合の電流密度(50〜150A/m2)よりも格段に高い電流密度(240A/m2)による電解においても不純物の上昇を招くことなく、生産性を向上させることができる。 In addition, the production method of the present invention is a method of using an additive by using a synthetic polymer additive produced by industrially controlling the molecular weight, the ratio of functional groups and the like in place of the conventionally used glue. Due to the current density (240 A / m 2 ) much higher than the current density (50 to 150 A / m 2 ) when using the glue as in the conventional method (Japanese Patent Laid-Open No. 63-297583). Even in electrolysis, productivity can be improved without increasing impurities.

以下に本発明の実施例を比較例と共に示す。 Examples of the present invention are shown below together with comparative examples.

銀含有量6ppmの銅を陽極に使用し、硝酸電解液に表1に示す添加剤を加えて銅の電解精製を行った。2種の添加剤の配合比は、各試料について初期添加時、追加時いずれも一定とし、添加剤の合計量は何れも初期添加時40mg/l、電解中は電流量から計算される析出銅1kgあたり添加剤合計量300mgになるように制御し、4時間毎に水溶液にして添加した。この電解精製の結果を表1に示した(No.11〜No.14)。各試料は何れも析出銅のイオウ含有量が0.002ppm以下であり、銀含有量は0.5ppm以下である。特に、PVA量よりもPEG量が多く、スライム生成率が20%以上の試料No.11、No.12では銀含有量が0.07ppmであり、高純度の電気銅が得られる。 Copper having a silver content of 6 ppm was used for the anode, and the additives shown in Table 1 were added to the nitric acid electrolyte to perform electrolytic purification of copper. The mixing ratio of the two additives is constant for each sample at the time of initial addition and addition, the total amount of additives is 40 mg / l at the time of initial addition, and the precipitated copper calculated from the current during electrolysis The total amount of additives was adjusted to 300 mg per kg, and an aqueous solution was added every 4 hours. The results of this electrolytic purification are shown in Table 1 (No. 11 to No. 14). In each sample, the sulfur content of the deposited copper is 0.002 ppm or less, and the silver content is 0.5 ppm or less. In particular, Samples No. 11 and No. 12 having a PEG amount larger than the PVA amount and a slime production rate of 20% or more have a silver content of 0.07 ppm, and high-purity electrolytic copper can be obtained.

表1に示す高分子添加剤を添加し、かつアノードバッグの電解液を一定量連続抜出して活性炭に通して浄化した後に電解槽に戻す他は実施例1と同様にして銅の電解精製を行った。この結果を表1の試料No.15に示した。本例はスライム生成率が10%台であるが、試料No.14よりも銀の含有量が少なく試料No.11、No.12と同等であり、不純物量が格段に少ない高純度の電気銅が得られる。 The electrolytic refining of copper was carried out in the same manner as in Example 1 except that the polymer additive shown in Table 1 was added and the electrolyte solution in the anode bag was continuously withdrawn and purified through activated carbon and then returned to the electrolytic cell. It was. The results are shown as Sample No. 15 in Table 1. In this example, the slime production rate is on the order of 10%, but the silver content is lower than that of sample No.14, which is equivalent to samples No.11 and No.12, and the amount of impurities is extremely low. Is obtained.

比較例Comparative example

表2に示す添加剤を表1の添加剤合計量と同量、同じ要領で添加して銅電解精製を行なった。この結果を表2にまとめて示した。PVAを単独に用いた試料No.21、No.22は析出銅の表面は滑らかになるがスライムが少ないために、析出銅中の銀含有量が高い。PEGを単独に用いた試料No.23〜No.25は、析出銅中の銀含有量は低いものの、反りが発生し、あるいは外周が盛上がって析出銅が母板から剥れたり、樹枝状析出が発生して電解継続が不能となった。また、ニカワを使用した試料No.26では表面が平滑で緻密な析出銅が得られるがイオウと銀の含有量が高い。 The additives shown in Table 2 were added in the same manner and in the same manner as the total amount of additives in Table 1, and copper electrolytic purification was performed. The results are summarized in Table 2. In Samples No. 21 and No. 22 using PVA alone, the surface of the precipitated copper is smooth, but there is little slime, so the silver content in the precipitated copper is high. Samples No. 23 to No. 25 using PEG alone, although the silver content in the precipitated copper is low, warping occurs, or the outer periphery rises and the precipitated copper peels off from the mother board, or dendritic Precipitation occurred and electrolysis could not be continued. In Sample No. 26 using glue, the surface is smooth and dense copper is obtained, but the contents of sulfur and silver are high.

実施例試料No.15の析出銅の表面状態を示す写真を図1に示す。また、比較例試料No.25の析出銅の表面状態を示す写真を図2に示す。本発明に係る析出電気銅は、図1に示すように、肉眼観察上で局部的かつ極端な凹凸や剥離、亀裂などが析出銅表面に存在しない。一方、比較試料の析出電気銅は、図2に示すように、樹枝状突起が析出銅の表面縁部に多数形成されており、表面の平滑性が失われている。 A photograph showing the surface state of the deposited copper of Example Sample No. 15 is shown in FIG. Moreover, the photograph which shows the surface state of the precipitation copper of comparative example sample No. 25 is shown in FIG. As shown in FIG. 1, the deposited electrolytic copper according to the present invention does not have local and extreme unevenness, peeling, cracks, or the like on the deposited copper surface on the naked eye observation. On the other hand, as shown in FIG. 2, the deposited electrolytic copper of the comparative sample has a large number of dendrite protrusions formed on the surface edge of the deposited copper, and the smoothness of the surface is lost.

試料No.15の析出銅表面の銅析出状態を示す写真Photograph showing the state of copper deposition on the surface of the deposited copper of sample No. 15 試料No.25の析出銅表面の銅析出状態を示す写真Photograph showing the state of copper deposition on the surface of sample No. 25

Claims (3)

銅の電解精製において、陰極で析出する銅の表面性状を改善する高分子添加剤(平滑化剤と云う)と、陽極表面で生成する銅粉を含むスライムの生成量を増加させる高分子添加剤(スライム促進剤と云う)を併用することによって析出銅の表面を平滑にすると共に析出銅の不純物量を低減する方法であって、平滑化剤としてポリビニルアルコール(PVA)を用い、スライム促進剤としてポリエチレングリコール(PEG)を用い、陽極と陰極を隔膜で隔て、PVAを陰極側に供給し、PEGを陽極側に供給し、スライム生成率(乾燥スライム重量÷析出銅重量)が10%〜50%になるように電解を行うことを特徴とする電気銅の製造方法。 In the electrolytic purification of copper, a polymer additive (referred to as a smoothing agent) that improves the surface properties of copper deposited at the cathode and a polymer additive that increases the amount of slime containing copper powder formed on the anode surface (Also referred to as a slime accelerator) is a method of smoothing the surface of precipitated copper and reducing the amount of impurities in the precipitated copper , using polyvinyl alcohol (PVA) as a smoothing agent, and as a slime accelerator. Using polyethylene glycol (PEG), the anode and cathode are separated by a diaphragm, PVA is supplied to the cathode side, PEG is supplied to the anode side, and the slime production rate (dry slime weight ÷ precipitated copper weight) is 10% to 50%. Electrolytic copper is produced so as to become a method for producing electrolytic copper. PVA:PEG=1:4〜9:1の量比でPVAとPEGを供給する請求項1に記載する電気銅の製造方法。 The method for producing electrolytic copper according to claim 1 , wherein PVA and PEG are supplied in an amount ratio of PVA: PEG = 1: 4 to 9: 1 . 硝酸電解浴を用い、スライム生成率が10%〜50%になるように平滑化剤とスライム促進剤を併用して銅の電解精製を行うことによって、銀含有量0.5ppm以下およびイオウ含有量0.01ppm以下の表面が平滑な高純度銅を製造する請求項1または請求項2の何れかに記載する電気銅の製造方法。 By performing electrolytic refining of copper using a nitric acid electrolytic bath in combination with a smoothing agent and a slime accelerator so that the slime production rate is 10% to 50% , a silver content of 0.5 ppm or less and a sulfur content 3. The method for producing electrolytic copper according to claim 1, wherein high purity copper having a smooth surface of 0.01 ppm or less is produced.
JP2005069752A 2004-03-23 2005-03-11 High purity electrolytic copper and its manufacturing method Expired - Fee Related JP4518262B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005069752A JP4518262B2 (en) 2004-03-23 2005-03-11 High purity electrolytic copper and its manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004085676 2004-03-23
JP2005069752A JP4518262B2 (en) 2004-03-23 2005-03-11 High purity electrolytic copper and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2005307343A JP2005307343A (en) 2005-11-04
JP4518262B2 true JP4518262B2 (en) 2010-08-04

Family

ID=35436434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005069752A Expired - Fee Related JP4518262B2 (en) 2004-03-23 2005-03-11 High purity electrolytic copper and its manufacturing method

Country Status (1)

Country Link
JP (1) JP4518262B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130140568A (en) 2012-06-14 2013-12-24 미쓰비시 마테리알 가부시키가이샤 High-purity electrolytic copper and electrolytic refining method thereof

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006097128A (en) * 2004-09-06 2006-04-13 Nippon Mining & Metals Co Ltd Method for producing sheet-form electrolytic copper
EP2330231B1 (en) 2008-09-30 2017-02-22 JX Nippon Mining & Metals Corporation Process for manufacturing a high-purity copper- or a high-purity copper alloy sputtering target
WO2010038641A1 (en) 2008-09-30 2010-04-08 日鉱金属株式会社 High-purity copper and process for electrolytically producing high-purity copper
JP5275273B2 (en) * 2010-02-23 2013-08-28 パンパシフィック・カッパー株式会社 Copper electrolytic purification apparatus and copper electrolytic purification method using the same
JP6318719B2 (en) * 2014-03-10 2018-05-09 住友金属鉱山株式会社 Sulfuric acid copper electrolyte and method for producing dendritic copper powder using this electrolyte
JP6318718B2 (en) * 2014-03-10 2018-05-09 住友金属鉱山株式会社 Sulfuric acid copper electrolyte and method for producing granular copper powder using the electrolyte
WO2016052725A1 (en) * 2014-10-04 2016-04-07 三菱マテリアル株式会社 Additive for high-purity copper electrolytic refining and method for producing high-purity copper
WO2016052727A1 (en) * 2014-10-04 2016-04-07 三菱マテリアル株式会社 Additive for high-purity copper electrolytic refining and method for producing high-purity copper
JP6548020B2 (en) * 2014-10-04 2019-07-24 三菱マテリアル株式会社 Additive for high purity copper electrolytic refining and high purity copper production method
JP6548019B2 (en) 2014-10-04 2019-07-24 三菱マテリアル株式会社 Additive for high purity copper electrolytic refining and high purity copper production method
JP6733313B2 (en) * 2015-08-29 2020-07-29 三菱マテリアル株式会社 High-purity copper electrolytic refining additive and high-purity copper manufacturing method
US10793956B2 (en) 2015-08-29 2020-10-06 Mitsubishi Materials Corporation Additive for high-purity copper electrolytic refining and method of producing high-purity copper
JP6740801B2 (en) * 2015-09-30 2020-08-19 三菱マテリアル株式会社 High-purity copper electrolytic refining additive and high-purity copper manufacturing method
TWI705159B (en) 2015-09-30 2020-09-21 日商三菱綜合材料股份有限公司 Additive for high-purity copper electrolytic refining, method of producing high-purity copper, and high-purity electrolytic copper
US11753733B2 (en) 2017-06-01 2023-09-12 Mitsubishi Materials Corporation Method for producing high-purity electrolytic copper
WO2018221734A1 (en) 2017-06-01 2018-12-06 三菱マテリアル株式会社 Method for producing high-purity electrolytic copper
CN111501065A (en) * 2020-04-27 2020-08-07 阳谷祥光铜业有限公司 Method for purifying copper electrolyte

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50124825A (en) * 1974-03-20 1975-10-01
JPS5716188A (en) * 1980-07-03 1982-01-27 Furukawa Electric Co Ltd:The Electrolytic refinery of copper
JPH01139789A (en) * 1987-11-27 1989-06-01 Nippon Mining Co Ltd Production of high purity electrolytic copper having low silver content
JP2000309892A (en) * 1999-04-21 2000-11-07 Sumitomo Metal Mining Co Ltd Electrolytic refining method for copper using insoluble anode box

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS648289A (en) * 1986-12-19 1989-01-12 Nippon Mining Co Method for electrolyzing copper
JPS644444A (en) * 1987-06-26 1989-01-09 Nippon Mining Co Copper wire for sound and its production

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50124825A (en) * 1974-03-20 1975-10-01
JPS5716188A (en) * 1980-07-03 1982-01-27 Furukawa Electric Co Ltd:The Electrolytic refinery of copper
JPH01139789A (en) * 1987-11-27 1989-06-01 Nippon Mining Co Ltd Production of high purity electrolytic copper having low silver content
JP2000309892A (en) * 1999-04-21 2000-11-07 Sumitomo Metal Mining Co Ltd Electrolytic refining method for copper using insoluble anode box

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130140568A (en) 2012-06-14 2013-12-24 미쓰비시 마테리알 가부시키가이샤 High-purity electrolytic copper and electrolytic refining method thereof
TWI568889B (en) * 2012-06-14 2017-02-01 三菱綜合材料股份有限公司 High-purity electrolytic copper and electrolytic refining method thereof
US9783904B2 (en) 2012-06-14 2017-10-10 Mitsubishi Materials Corporation High-purity electrolytic copper and electrolytic refining method thereof

Also Published As

Publication number Publication date
JP2005307343A (en) 2005-11-04

Similar Documents

Publication Publication Date Title
JP4518262B2 (en) High purity electrolytic copper and its manufacturing method
JP3332289B2 (en) Method for producing electrodeposited copper foil using electrodeposited copper foil and electrolyte solution containing chloride ion and control additive of organic additive
JP3392414B2 (en) Electrodeposited copper foil and method for producing the same using electrolyte solution having low chloride ion concentration
KR101301275B1 (en) Alkaline Electroplating Bath Having a Filtration Membrane
CN1263570A (en) Process for manufacture of high quality very low profile copper foil and copper foil produced thereby
KR101660201B1 (en) Electrolytic copper foil and method for producing same
JP2009109007A (en) Sliding element and its manufacturing method
JP3306438B2 (en) Alkoxylated dimercaptans as copper additives
KR20130065393A (en) Method for producing sn-ag alloy plating solution and the plating solution thereby
JP6733313B2 (en) High-purity copper electrolytic refining additive and high-purity copper manufacturing method
JPH07268678A (en) Electrolytic copper foil for printed circuit board and its production
EP2019154A1 (en) Electrolytic copper plating method, phosphorous copper anode for electrolytic copper plating method, and semiconductor wafer having low particle adhesion plated with said method and anode
WO2003048429A1 (en) Copper electroplating method, pure copper anode for copper electroplating, and semiconductor wafer plated thereby with little particle adhesion
JP6949095B2 (en) A method for producing a metal strip coated with a coating of chromium and chromium oxide using an electrolytic solution containing a trivalent chromium compound.
JP4232088B2 (en) Manufacturing method of high purity electrolytic copper
JP6548019B2 (en) Additive for high purity copper electrolytic refining and high purity copper production method
JP5079871B2 (en) Method for improving cathode structure
JP6740801B2 (en) High-purity copper electrolytic refining additive and high-purity copper manufacturing method
JP6548020B2 (en) Additive for high purity copper electrolytic refining and high purity copper production method
JP4607165B2 (en) Electro copper plating method
CA2360994A1 (en) Process for recovering copper from a high acid mixed metal solution
KR101173879B1 (en) Multi-functional super-saturated slurry plating solution for nickel flash plating
JPH0359995B2 (en)
WO2018066398A1 (en) Nickel plating solution and nickel plating solution production method
CN115287715B (en) Production process of double-gloss copper foil for lithium battery with medium tensile strength

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070330

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100428

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100511

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees