JP2000309892A - Electrolytic refining method for copper using insoluble anode box - Google Patents

Electrolytic refining method for copper using insoluble anode box

Info

Publication number
JP2000309892A
JP2000309892A JP11113757A JP11375799A JP2000309892A JP 2000309892 A JP2000309892 A JP 2000309892A JP 11113757 A JP11113757 A JP 11113757A JP 11375799 A JP11375799 A JP 11375799A JP 2000309892 A JP2000309892 A JP 2000309892A
Authority
JP
Japan
Prior art keywords
copper
anode
electrolytic
granular
box
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11113757A
Other languages
Japanese (ja)
Inventor
Koji Ando
孝治 安藤
Hiroshi Furumi
廣志 古味
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP11113757A priority Critical patent/JP2000309892A/en
Publication of JP2000309892A publication Critical patent/JP2000309892A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Electrolytic Production Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electrolytic refining method which prevents the fluctuation in cell voltage by the volume reduction of an anode and the decrease in an electrodeposition thickness in electrolytic refining of copper including starting plate electrolysis, suppresses the elution of the impurities into the electrolytic soln. and accelerates converting to slime. SOLUTION: In electrolytic refining of the copper, granular blister copper is loaded into an insoluble anode box having spacings at an electrode surface and bottom composed of insoluble material and electrolysis is effected by using the blister copper as the anode and the inside of the anode box is replenished with the granular blister copper by accompanying the elution of the blister copper, by which the electrolytic copper is electrodeposited on the cathode. The partial decrease in the cathode electrodeposition thickness by an energization life and the increase in the cell voltage may be prevented by using this method.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、銅などの金属の電
解精製、特に種板電解工程に関し、前記工程において、
通電ライフによる電着厚さの減少を防止するとともに、
アノードから溶出した不純物による電解液やカソード電
気銅への汚染を抑制する技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrolytic refining process for metals such as copper, and more particularly to a seed plate electrolysis process.
While preventing the electrodeposition thickness from decreasing due to the energizing life,
The present invention relates to a technique for suppressing contamination of an electrolytic solution or electrolytic copper by impurities eluted from an anode.

【0002】[0002]

【従来の技術】銅の電解精製ににおいては、種板電解工
程において繰り返し利用できるステンレス板等のカソー
ド上に1日程度の薄い電着を行い、これを剥ぎ取って得
た種板に7〜10日間程度厚く電着して製造するのが一
般である。
2. Description of the Related Art In the electrolytic refining of copper, a thin electrodeposition of about one day is performed on a cathode such as a stainless steel plate which can be repeatedly used in a seed plate electrolysis step, and the seed plate obtained by peeling off the thin electrode is subjected to 7 to 7 days. It is generally manufactured by electrodeposition for about 10 days.

【0003】この時、アノードは溶出により形状が変化
する。特に端部では電流が集中することで減少が早い。
このため、アノードに対面するカソードでは、通電前半
では端部に厚く電着し、後半では周辺部の電着が薄くな
る。この現象は、一般の電気銅では通電時間が長いた
め、それほど問題とはならないが、種板を電解する場合
には通電時間が短いため、アノードライフの影響は大き
いものがある。
At this time, the shape of the anode changes due to elution. In particular, the reduction is fast at the end portion due to the concentration of current.
For this reason, in the cathode facing the anode, the electrodeposition is thick at the end in the first half of energization, and the electrodeposition in the peripheral part is thin in the second half. This phenomenon is not so problematic in general electrolytic copper because the energizing time is long, but in the case of electrolyzing a seed plate, the effect of the anode life is large because the energizing time is short.

【0004】これを防止するために、アノードの面積を
カソードに比べて一回り以上大きくするなどして、充分
な厚さを提供しようとしてきた。しかしカソードに対す
るアノードの面積を大きくすることは、アノード周辺部
に溶け残りを生じ、生産上のロスとなるとともに、時に
は通電中に剥離して落下するなど操業上の問題を引き起
こすこともあり、最適な面積比の決定は困難であった。
In order to prevent this, an attempt has been made to provide a sufficient thickness by, for example, making the area of the anode one or more times larger than that of the cathode. However, enlarging the area of the anode with respect to the cathode may cause unresolved parts around the anode, resulting in loss of production and sometimes causing operational problems such as peeling and falling during energization. It was difficult to determine an appropriate area ratio.

【0005】また、銅の電解においては、種板電解のよ
うに毎日引揚を行う操業の場合には、アノードは溶出を
続けて薄くなるのに、カソード厚さは一定であるから、
アノードとカソードの極間距離は日ごとに広がることと
なる。このため、電槽の槽電圧は日ごとに増加し、電力
コストの点で問題となっていた。しかし、不溶性のアノ
ードを使用して電解採取することは、電圧が電解精製の
約10倍にも達し、電力コストの点で実用的ではない。
[0005] In copper electrolysis, in the case of an operation in which daily withdrawal is performed, such as in the case of seed plate electrolysis, since the anode continues to elute and becomes thin, the thickness of the cathode is constant.
The distance between the anode and the cathode will increase daily. For this reason, the battery voltage of the battery container increases every day, which has been a problem in terms of power cost. However, electrowinning using an insoluble anode requires about 10 times the voltage of electrorefining and is not practical in terms of power cost.

【0006】一方、メッキ業界などでは、チタンなど不
溶性の材質で設けたボックスの中に溶出させる金属を装
入してアノードとし、通電することがごく一般に用いら
れている。しかし、電解精製の場合には、メッキ用アノ
ードとは異なり、多くの不純物を含むことから、金属片
を装入しただけでは電気的に接触不良を生じ易くなるこ
とが予想される。
[0006] On the other hand, in the plating industry and the like, it is very commonly used to load a metal to be eluted into a box made of an insoluble material such as titanium to form an anode and to conduct electricity. However, in the case of electrolytic refining, unlike a plating anode, since it contains many impurities, it is expected that poor contact is likely to occur only by inserting a metal piece.

【0007】また、これら不純物は、スライムとして沈
殿すれば副産品として比較的容易に回収できるが、通常
は一部分しか沈殿しないため、電解液中に蓄積された不
純物は、さらに浄液工程を設けて分離し、溶錬工程に繰
り返すことが必要となっていた。この浄液工程のコスト
も無視できず、繰り返した不純物は系内を循環するだけ
なので不純物対応力上の問題ともなっていた。
[0007] These impurities can be relatively easily recovered as by-products if they precipitate as slime, but usually only partially precipitate. Therefore, the impurities accumulated in the electrolytic solution are separated by providing a further purification step. Then, it was necessary to repeat the smelting process. The cost of this liquid purification step cannot be ignored, and repeated impurities only circulate in the system, which has been a problem in the ability to deal with impurities.

【0008】[0008]

【発明が解決しようとする課題】本発明の目的は、種板
電解をはじめとする銅の電解精製において、アノードの
溶減による槽電圧の変動や電着厚さの減少を防止し、か
つ不純物の電解液への溶出を抑制しスライム化を促進さ
せる電解精製方法を提供するものである。
SUMMARY OF THE INVENTION An object of the present invention is to prevent a change in cell voltage and a decrease in electrodeposition thickness due to dissolution of an anode in electrolytic refining of copper including seed plate electrolysis, It is intended to provide an electrolytic refining method for suppressing the elution of slime into an electrolytic solution and promoting slime formation.

【0009】[0009]

【課題を解決するための手段】上記の課題を解決するた
めに、本発明では、不溶性の材質で製造したアノードボ
ックスに粒状に製造した粗銅を充填することで電解する
ことを用いた。
In order to solve the above-mentioned problems, in the present invention, electrolysis is carried out by filling a granular blister copper into an anode box made of an insoluble material.

【0010】本発明は、銅の電解精製において、不溶出
な材質で構成する電極面ならびに底部に隙間のある不溶
性アノードボックスに粒状の粗銅を装入し、これを陽極
として電解し、粗銅の溶出にともない前記アノードボッ
クス中に粒状の粗銅を補加することにより、カソードに
電気銅を電析させることを特徴とする。この方法を用い
ることによって、通電ライフによる部分的なカソード電
着厚さの減少や、槽電圧の上昇を防止することができ
る。
According to the present invention, in the electrolytic refining of copper, granular blister copper is charged into an insoluble anode box having a gap at an electrode surface and a bottom formed of an insoluble material, and electrolysis is performed using the granular blister copper as an anode. Accordingly, electrolytic copper is electrodeposited on the cathode by adding granular blister copper into the anode box. By using this method, it is possible to prevent a partial decrease in the thickness of the electrodeposited electrode due to the energizing life and an increase in the cell voltage.

【0011】また、液面に相当する部分より高い部分に
給電のための導体を設け、かつこの導体の位置より上方
まで粒状の粗銅を装入し補加していくことを特徴とす
る。
In addition, a conductor for power supply is provided at a portion higher than the portion corresponding to the liquid level, and granular blister copper is inserted and supplemented to a position above the position of the conductor.

【0012】さらに、アノードボックスの底部に導体部
分を設け、陽極として通電することによって、粗銅に含
まれる不純物の電解液への溶出を抑制し、可溶性分であ
る銅の溶出を促進する手段を有することを特徴とする不
溶性アノードボックスを使用する銅の電解精製方法であ
る。
Further, a means is provided for providing a conductor portion at the bottom of the anode box and supplying electricity as an anode, thereby suppressing the elution of impurities contained in the blister copper into the electrolytic solution and promoting the elution of soluble copper. A method for electrolytically refining copper using an insoluble anode box.

【0013】[0013]

【発明の実施の形態】アノードに不溶性のボックスと粒
状の粗銅を使用することで、通電ライフによるアノード
形状の変化が生じず、均一な厚さが維持できる。また、
アノードとカソードの極間距離が一定になることから、
槽電圧の上昇は生じないことになる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS By using an insoluble box and granular blister copper for the anode, a uniform thickness can be maintained without a change in the anode shape due to the current-carrying life. Also,
Since the distance between the anode and cathode is constant,
No rise in cell voltage will occur.

【0014】しかし、粗銅に含まれる不純物による電気
的な接触不良を防止することが必要である。そこで本発
明者らは、アノードボックス内に充填する粗銅を粒状と
することで接触面積を増加させ、接触不良を防止するこ
とができることを見出した。
However, it is necessary to prevent poor electrical contact due to impurities contained in blister copper. Therefore, the present inventors have found that the contact area can be increased and the contact failure can be prevented by granulating the blister copper filling the anode box.

【0015】粒状の粗銅は、粗銅を溶湯のまま水砕する
などして得ることができるが、その直径は数mm〜10
mm以下であることが望ましい。直径が、20〜30m
m以上など大きくなるにしたがって、電解時の充填効率
の低下や粗銅の表面から進行するスライム化により、接
触不良の発生増加などが見られ好ましくない。また粒の
形状は、必ずしも均一な球形でなくてもよい。
The granular blister copper can be obtained, for example, by granulating the blister copper in a molten state with water, but the diameter thereof is several mm to 10 mm.
mm or less. 20-30m in diameter
m or more, the filling efficiency during electrolysis decreases and slime proceeds from the surface of the blister copper. The shape of the particles does not necessarily have to be a uniform spherical shape.

【0016】このような粒銅を使用することで、粒銅は
上方から補加するだけで自重により下降する。このた
め、接触不良は粒同士の摩擦によりほとんど生じない。
また、接触不良が生じた場合でも、アノードボックスに
軽く打撃を加えるか、軽く振動を与えるだけで容易に回
復できる。
[0016] By using such granular copper, the granular copper falls by its own weight only by supplementing from above. Therefore, poor contact hardly occurs due to friction between particles.
In addition, even if a contact failure occurs, the anode box can be easily recovered only by applying a slight blow to the anode box or applying a slight vibration.

【0017】また、通常の電解槽では多数の電極を並列
に並べて装入するため、電流分布のバラツキが生じ、カ
ソード電着量のバラツキとなる。しかし、本発明によれ
ば、他より多く電流が流れたアノードボックスは、充填
した粒銅の溶解が促進され溶出量が多くなるので、上面
の沈降が他のアノードボックスより早くなることで容易
に発見できる。さらに、ボックスの上部に給電点を設け
る電極構造とすることで電極の耐食性が不要となりコス
トが削減できる上に、銅が過剰に溶出した場合には給電
が自動的に抑制されて、その分電流が他のアノードボッ
クスに流れ、その結果電流分布のバラツキが減少するこ
とになる。
Further, in a usual electrolytic cell, since a large number of electrodes are arranged in parallel, the current distribution varies and the amount of cathode electrodeposition varies. However, according to the present invention, the anode box in which a larger amount of current flows than the other anode boxes facilitates dissolution of the filled granular copper and increases the amount of elution. Can be found. Furthermore, by adopting an electrode structure in which a power supply point is provided at the top of the box, corrosion resistance of the electrode is not required and costs can be reduced. In addition, when copper is excessively eluted, power supply is automatically suppressed, and the current is reduced accordingly. Flows to the other anode boxes, and as a result, variations in current distribution are reduced.

【0018】また、液面から出た部分に給電接点を設け
る構造とし、装入した粒銅自身を導電材として利用する
ことにより、アノードボックスに非電導性の材質をも使
用することが可能となりコストの低下につなげることが
できる。
[0018] Further, by adopting a structure in which a power supply contact is provided at a portion coming out of the liquid surface and using the charged granular copper itself as a conductive material, it is possible to use a non-conductive material for the anode box. This can lead to lower costs.

【0019】さらに、アノードボックスから銅を溶出す
るとともに、同時に不純物を積極的に酸化することで、
容器内にスライム分が閉塞することを防止することがで
きることも見出した。酸化するための電極はボックスの
底にチタンなど不溶性金属で構成するか、少なくともボ
ックスの底にスライムを落下させるための隙間を残して
チタン板等の導体を置くだけでよい。
Further, by eluting copper from the anode box and simultaneously oxidizing impurities positively,
It has also been found that the slime content can be prevented from being blocked in the container. The electrode for oxidation may be made of an insoluble metal such as titanium at the bottom of the box, or only a conductor such as a titanium plate may be placed at least on the bottom of the box, leaving a gap for dropping the slime.

【0020】この底部の電極にわずかな電流が流れるこ
とにより最下端のスライムを酸化し、Cu分など可溶性
の残存成分は電解液に溶出し、他の不純物は酸化物とし
て固定され、ボックス底部の隙間から槽底へ沈降する。
この現象を利用して、浄液工程の負荷を低下させ、ひい
ては回収コストを低下させることができる。
When a slight current flows through the bottom electrode, the lowermost slime is oxidized, soluble remaining components such as Cu are eluted into the electrolytic solution, and other impurities are fixed as oxides. Settles from the gap to the tank bottom.
By utilizing this phenomenon, the load of the liquid purification step can be reduced, and the recovery cost can be reduced.

【0021】[0021]

【実施例】(実施例)アノードは、粗銅を水砕した粒銅
を使用した。粒銅は篩別し、直径5〜10mm程度のも
のを使用した。鋳造時の組成は、Cu:99.2wt%、
As:0.07wt%、Sb:0.04wt%、Bi:0.
02wt%、Pb:0.05wt%であった。この粒銅4.
4Kgを内寸19mm×幅185mm×長さ230mm
のチタン製ボックスに充填した。ボックスのカソードに
対する面はチタン製の目開き約3mmの網で構成した。
EXAMPLES (Example) As the anode, granular copper obtained by granulating blister copper was used. The granular copper was sieved and used having a diameter of about 5 to 10 mm. The composition at the time of casting was Cu: 99.2 wt%,
As: 0.07 wt%, Sb: 0.04 wt%, Bi: 0.
02 wt%, Pb: 0.05 wt%. 3. this granular copper
4Kg inside size 19mm x width 185mm x length 230mm
Into a titanium box. The surface of the box with respect to the cathode was constituted by a mesh of titanium having a mesh size of about 3 mm.

【0022】液面より上の部分のチタンボックスの内側
周囲には厚さ0.5mm、高さ20mmの銅を用いた給
電のための接点を設け、この銅板と電極全体を支えるク
ロスビームとを接続した。接点に銅など電気抵抗の小さ
い材質を用いることにより、チタンボックスに直接給電
するよりも槽電圧を低下できる。なお、本実施例では銅
板とチタンボックスとをボルトで接合したが、メッキ・
溶着・圧接などいずれの方法を使用することが可能であ
る。
A contact for power supply using copper having a thickness of 0.5 mm and a height of 20 mm is provided around the inside of the titanium box above the liquid level, and this copper plate and a cross beam for supporting the entire electrode are provided. Connected. By using a material having a low electric resistance such as copper for the contact, the cell voltage can be reduced as compared with a case where power is directly supplied to the titanium box. In this embodiment, the copper plate and the titanium box were joined by bolts.
Any method such as welding and pressure welding can be used.

【0023】カソードには、厚さ3.0mmのステンレ
ス板を電極面積が幅140mm×長さ190mmの大き
さになるよう切断して使用した。また、アノード1枚と
カソード2枚を面間距離が20mmになるように電解槽
に装入した。
As the cathode, a stainless steel plate having a thickness of 3.0 mm was cut so as to have an electrode area of 140 mm wide × 190 mm long. In addition, one anode and two cathodes were placed in the electrolytic cell so that the distance between the surfaces was 20 mm.

【0024】電解槽は幅250mm、長さ200mm、
深さ260mmのポリ塩化ビニル製のものを使用した。
この電槽の排液を容量5リットルの貯液槽につなぎ、貯
液槽の排液を定量ポンプを使用して電解液を20ml/
minで循環給液した。
The electrolytic cell has a width of 250 mm, a length of 200 mm,
A thing made of polyvinyl chloride with a depth of 260 mm was used.
The drainage of the battery tank was connected to a 5-liter capacity storage tank, and the drainage of the storage tank was discharged at 20 ml /
Min was circulated and supplied.

【0025】電解液は、Cu45g/l、硫酸190g
/lの組成とし、液温は60℃とした。添加剤は電着銅
量1Kgあたりニカワ80mg、チオ尿素60mgを水
に溶解し、定量ポンプで貯液槽に補加した。
The electrolytic solution is Cu 45 g / l, sulfuric acid 190 g
/ L and a liquid temperature of 60 ° C. The additive was prepared by dissolving 80 mg of glue and 60 mg of thiourea per 1 kg of electrodeposited copper in water, and adding the solution to the liquid storage tank with a metering pump.

【0026】通電電流を17A(電流密度320A/m
2)にして171時間通電した。24時間経過ごとに停
電し母板を引き上げ、電着板を剥ぎ取って再度装入通電
することを繰り返した。
The current supplied is 17 A (current density 320 A / m
2 ), and electricity was supplied for 171 hours. Every 24 hours, power was cut off, the mother plate was pulled up, the electrodeposited plate was peeled off, and charging and energizing were repeated again.

【0027】また、通電中、随時目視観察し、かつ毎日
2回直径3mmの塩ビ製溶接棒にてアノードボックスの
上部から突ついてボックス内に確実に粒銅が充填される
よう調整した。溶減した粒銅はボックス上部から同じ高
さになるように補加した。
In addition, during energization, visual observation is performed at any time, and daily
It was adjusted twice so as to project from the upper part of the anode box with a welding rod made of PVC having a diameter of 3 mm to reliably fill the box with granular copper. The melted grain copper was supplemented so as to be at the same height from the top of the box.

【0028】通電終了後、槽底ならびにアノードボック
ス内のスライムを採取し、水で洗浄し乾燥後分析した。
スライムの分析値を表1に示す。また、カソードの中央
部をボーリングして分析したが、SbならびにPbとも
1ppm以下で問題はなかった。平均槽電圧も、通電開
始直後は、383mVであり、通電終了直前にも389
mVとほぼ一定で推移した。 (従来例)実施例と同様の電解条件で通電した。ただ
し、アノードは電極面積140×190mm、厚さが1
9mmになるように鋳造したものを使用した。電流17
Aで171時間の通電後槽底ならびにアノード表面のス
ライムを回収して分析した。スライムの分析値を表1に
示す。カソード中央部のSb,Pb品位はともに、1p
pm以下で問題はなかったが、平均槽電圧は、通電開始
直後に370mVであったものが通電終了直前に462
mVまで上昇した。
After the completion of the current supply, the slime in the tank bottom and in the anode box was collected, washed with water, dried and analyzed.
Table 1 shows the slime analysis values. Further, the center portion of the cathode was analyzed by boring, but there was no problem in both Sb and Pb at 1 ppm or less. The average cell voltage was 383 mV immediately after the start of energization, and 389 mV immediately before the end of energization.
mV and remained almost constant. (Conventional example) Electricity was supplied under the same electrolysis conditions as in the example. However, the anode has an electrode area of 140 × 190 mm and a thickness of 1
What was cast to 9 mm was used. Current 17
After 171 hours of energization at A, slime on the tank bottom and anode surface was collected and analyzed. Table 1 shows the slime analysis values. Both Sb and Pb grades at the center of the cathode are 1p
pm or less, there was no problem, but the average cell voltage was 370 mV immediately after the start of energization.
mV.

【0029】表1に示すように、本発明による実施例の
場合は、従来例に比較して、スライムのSb品位が著し
く増加しており、電解液への溶出が抑制されていること
が確認できた。なお、本実施例では発明実施例も従来例
も種板電解として行ったが、通常の電解でも、槽電圧の
変化が少ないことを除けば同じ効果が得られることは自
明である。
As shown in Table 1, in the example according to the present invention, it was confirmed that the Sb grade of the slime was significantly increased as compared with the conventional example, and the elution into the electrolyte was suppressed. did it. In this example, both the invention example and the conventional example were used as seed plate electrolysis, but it is obvious that the same effect can be obtained by ordinary electrolysis except for a small change in cell voltage.

【0030】[0030]

【発明の効果】本発明により、厚さの均一な種板を得る
ことが出来るようになり、製品品質の向上につながっ
た。また、不純物の電解液への溶出を抑制し、浄液能力
の負荷を低下することも出来るようになった。
According to the present invention, a seed plate having a uniform thickness can be obtained, which leads to an improvement in product quality. In addition, the elution of impurities into the electrolytic solution can be suppressed, and the load on the purification capacity can be reduced.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 銅の電解精製において、不溶出な材質で
構成する網状の電極面と底部に隙間を有する不溶性アノ
ードボックスに粒状の粗銅を装入し、これを陽極として
電解し、粗銅の溶出にともない前記アノードボックス中
に粒状の粗銅を補加することにより、カソードに電気銅
を電析させることを特徴とする不溶性アノードボックス
を使用する銅の電解精製方法。
In an electrolytic refining of copper, granular blister copper is charged into an insoluble anode box having a gap between a mesh-shaped electrode surface and a bottom made of an insoluble material, and electrolysis is performed using the granular blister copper as an anode. A method for electrolytically refining copper using an insoluble anode box, wherein electrolytic copper is electrodeposited on a cathode by supplementing granular blister copper into the anode box.
【請求項2】 液面より高い部分に、給電のための導体
部をアノードボックスに設け、かつこの導体の位置より
上方まで粒状の粗銅を装入し補加していくことを特徴と
する請求項1記載の不溶性アノードボックスを使用する
銅の電解精製方法。
2. An anode box is provided with a conductor portion for supplying power at a portion higher than the liquid level, and granular blister copper is charged and supplemented above the position of the conductor. Item 6. An electrolytic purification method for copper using the insoluble anode box according to Item 1.
【請求項3】 アノードボックスの底部に導体部分を設
け、陽極として通電することを特徴とする請求項1また
は2に記載の不溶性アノードボックスを使用する銅の電
解精製方法。
3. The method for electrolytically refining copper using an insoluble anode box according to claim 1, wherein a conductor portion is provided at the bottom of the anode box, and electricity is supplied as an anode.
JP11113757A 1999-04-21 1999-04-21 Electrolytic refining method for copper using insoluble anode box Pending JP2000309892A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11113757A JP2000309892A (en) 1999-04-21 1999-04-21 Electrolytic refining method for copper using insoluble anode box

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11113757A JP2000309892A (en) 1999-04-21 1999-04-21 Electrolytic refining method for copper using insoluble anode box

Publications (1)

Publication Number Publication Date
JP2000309892A true JP2000309892A (en) 2000-11-07

Family

ID=14620379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11113757A Pending JP2000309892A (en) 1999-04-21 1999-04-21 Electrolytic refining method for copper using insoluble anode box

Country Status (1)

Country Link
JP (1) JP2000309892A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005307343A (en) * 2004-03-23 2005-11-04 Mitsubishi Materials Corp High-purity electrolytic copper and its production method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005307343A (en) * 2004-03-23 2005-11-04 Mitsubishi Materials Corp High-purity electrolytic copper and its production method
JP4518262B2 (en) * 2004-03-23 2010-08-04 三菱マテリアル株式会社 High purity electrolytic copper and its manufacturing method

Similar Documents

Publication Publication Date Title
US3974049A (en) Electrochemical process
US5635051A (en) Intense yet energy-efficient process for electrowinning of zinc in mobile particle beds
US4039403A (en) Electrowinning metals
JP3913725B2 (en) High purity electrolytic copper and manufacturing method thereof
JP2014501850A (en) Electrical recovery of gold and silver from thiosulfate solutions
Moskalyk et al. Anode effects in electrowinning
US3821097A (en) Current density redistributing anode
US4134806A (en) Metal anodes with reduced anodic surface and high current density and their use in electrowinning processes with low cathodic current density
Lupi et al. New lead alloy anodes and organic depolariser utilization in zinc electrowinning
US3721611A (en) Process for the production of metals
AU701369B2 (en) Silver electrolysis method in moebius cells
Moats et al. Mesh-on-lead anodes for copper electrowinning
CN106835196A (en) Produce the mixing electrolysis system of tough cathode
JP2000309892A (en) Electrolytic refining method for copper using insoluble anode box
US5441609A (en) Process for continuous electrochemical lead refining
JPS591691A (en) Electrolytic production of lead
JP5575020B2 (en) Electrolytic extraction of metals
JPH1192984A (en) Electrolytic refining method and electrolytic cell
JPS6133918B2 (en)
US4124460A (en) Electrowinning of copper in presence of high concentration of iron
EP0058506B1 (en) Bipolar refining of lead
JP2002327289A (en) Method for manufacturing copper fine powder
RU2553319C1 (en) Method of metal powder manufacturing by electrolysis
JP3875548B2 (en) Electrolyte purification method
FENG et al. Migration regularity and control of silver inclusions during copper electrorefining process