JP4513332B2 - Deposition equipment - Google Patents

Deposition equipment Download PDF

Info

Publication number
JP4513332B2
JP4513332B2 JP2004010190A JP2004010190A JP4513332B2 JP 4513332 B2 JP4513332 B2 JP 4513332B2 JP 2004010190 A JP2004010190 A JP 2004010190A JP 2004010190 A JP2004010190 A JP 2004010190A JP 4513332 B2 JP4513332 B2 JP 4513332B2
Authority
JP
Japan
Prior art keywords
gas introduction
film forming
gas
forming apparatus
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004010190A
Other languages
Japanese (ja)
Other versions
JP2005200733A (en
Inventor
学 辻野
敏明 掛村
浩人 鹿島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Inc filed Critical Toppan Inc
Priority to JP2004010190A priority Critical patent/JP4513332B2/en
Publication of JP2005200733A publication Critical patent/JP2005200733A/en
Application granted granted Critical
Publication of JP4513332B2 publication Critical patent/JP4513332B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Details Of Rigid Or Semi-Rigid Containers (AREA)
  • Chemical Vapour Deposition (AREA)

Description

本発明はプラスチック製中空容器、例えばプラスチックボトル、プラスチックカップ、プラスチックトレー等の内表面にプラズマ助成式CVD法により薄膜を成膜するための成膜装置に関する。   The present invention relates to a film forming apparatus for forming a thin film on the inner surface of a plastic hollow container such as a plastic bottle, a plastic cup, or a plastic tray by a plasma-assisted CVD method.

ここ最近、プラスチック容器は、その成形の容易性や軽量性、さらには低コストである点等の種々の特性から、食品分野や医薬品分野等の様々な分野において、包装容器として広く使用されている。しかしながら、プラスチック容器は、酸素や二酸化炭素、あるいは水蒸気のような低分子ガスを透過する性質や、低分子有機化合物が内部に付着してしまうという性質、さらにはアセトアルデヒドのような溶出成分があるという性質を有しており、容器として補わなければならない面があった。   Recently, plastic containers are widely used as packaging containers in various fields such as the food field and the pharmaceutical field due to various characteristics such as easy molding, light weight, and low cost. . However, plastic containers have properties that allow low-molecular gases such as oxygen, carbon dioxide, and water vapor to permeate, properties that low-molecular organic compounds adhere to the inside, and elution components such as acetaldehyde. It had properties and had to be supplemented as a container.

これらの諸問題を解決するためにいろいろな方策がとられているが、どれも様々な問題を抱えており、前記諸問題を完全に解決することが出来ていない。例えば、プラスチック容器のガス透過性を低減する方法の1つとして複数のプラスチック材料を使用して積層構成の容器としたり、種々のプラスチック材料がブレンドされたプラスチック材料により容器を作製する方法等がある。しかし、これらの方法を用いると、ある程度まではガス透過性を低減することが出来るが、より高いバリア性を求める容器が満足するレベルまでにはガス透過性を低減することができていない。また、上記方法で使用するプラスチック材料のコストも非常に高いものである。   Various measures have been taken to solve these problems, but all have various problems, and the problems cannot be completely solved. For example, as one of the methods for reducing the gas permeability of a plastic container, there are a method of forming a container having a laminated structure using a plurality of plastic materials, a method of manufacturing a container using a plastic material in which various plastic materials are blended, and the like. . However, when these methods are used, the gas permeability can be reduced to a certain extent, but the gas permeability cannot be reduced to a level that satisfies a container that requires a higher barrier property. In addition, the cost of the plastic material used in the above method is very high.

一方、近年はプラスチック容器にセラミックの薄膜をプラズマCVD法を用いてコーティングする技術が様々開発されており、これらの技術によりセラミック薄膜が形成されたプラスチック容器が広く出回っている。これらのほとんどは、単一のプラスチック材料からなるプラスチック成型品に成膜を行って、バリア性を向上させているものであり、バリア性に優れる容器を安価に得ることができる(例えば、特許文献1参照。)。   On the other hand, in recent years, various techniques for coating a plastic container with a ceramic thin film using a plasma CVD method have been developed, and plastic containers in which a ceramic thin film is formed by these techniques are widely available. Most of these films are formed by forming a film on a plastic molded product made of a single plastic material to improve the barrier property, and a container having an excellent barrier property can be obtained at a low cost (for example, patent documents) 1).

しかしながら、ボトル等のプラスチック容器にはその形状が複雑なものもあり、セラミック薄膜を容器内表面に均一かつ十分な厚みに成膜することは困難であり、薄膜を成膜した後においても、薄膜の厚さが薄くなってしまった部位でバリア性が低くなってしまうことがある。 However, some plastic containers, such as bottles, have complicated shapes, and it is difficult to form a ceramic thin film on the inner surface of the container with a uniform and sufficient thickness. sometimes at the site where the thickness of the has become thin barrier resulting in Tsu low kuna.

これに対し、薄膜が厚く成膜されにくい部位に十分な厚みの薄膜を成膜すべく成膜時間を長くしたり、印加電力を上昇させたりすることが考えられる。しかし、成膜時間を長くすると、薄膜が必要以上に厚く形成された部分では薄膜が剥離しやすくなり、さらには成膜時間の増加に伴い製造コストを上昇させることにもなる。また、印加電力を上昇させることにより容器を変形させることもある。   On the other hand, it is conceivable that the film formation time is increased or the applied power is increased to form a thin film having a sufficient thickness at a site where the thin film is thick and difficult to form. However, if the film formation time is lengthened, the thin film is easily peeled off at a portion where the thin film is formed thicker than necessary, and the manufacturing cost is increased with the increase of the film formation time. Further, the container may be deformed by increasing the applied power.

一方、このような状況に鑑み、プラズマCVD法により薄膜を成膜する際、薄膜を設けようとする容器の各部分に応じて必要な大きさの高周波電力を印加できるようにし、容器内表面に均一な厚みの薄膜を成膜するようにした技術が提案されている(例えば、特許文献2参照。)。しかしながら、容器の各部分に対応して必要な大きさの電力を印加できるようにするには、例えば、肩部電極、胴部電極、底部電極等の各電極に対して、それぞれ別個に高周波電力を印加するように複数の電源を用意するか、あるいは単一の電源の出力を複数の整合器を介してそれぞれの電極に接続するようにしなければならないため、製造装置が複雑になり、容器の製造コストを上昇させる要因にもなっていた。
実開平5−35660号公報 特開2001−31045号公報
On the other hand, in view of such a situation, when forming a thin film by the plasma CVD method, it is possible to apply a high-frequency power of a required magnitude according to each part of the container where the thin film is to be provided, and to the inner surface of the container. A technique for forming a thin film with a uniform thickness has been proposed (see, for example, Patent Document 2). However, in order to be able to apply a required amount of power corresponding to each part of the container, for example, a high-frequency power is separately applied to each electrode such as a shoulder electrode, a trunk electrode, and a bottom electrode. Multiple power supplies to apply the power, or the output of a single power supply must be connected to each electrode through multiple matchers, which complicates the manufacturing equipment and It was also a factor that increased manufacturing costs.
Japanese Utility Model Publication No. 5-35660 JP 2001-31045 A

本発明は以上のような状況を背景にしてなされたものであり、プラズマ助成式CVD法により中空容器内表面に薄膜を成膜するための装置に関するものであり、形状が様々なものであってもその内表面に均一な薄膜が成膜でき、また長時間に渡る成膜によりガス吹き出し口が徐々に小さくなって原料ガス流量が減少し始めた場合においても、カバー管を新たなものに交換するだけで所期のガス流量が確保でき、中空容器内表面に均一な薄膜が成膜でき、さらには、量産化する場合にも性能的なバラツキの少ない製品が製造でき、またメンテナンス性にも優れる成膜装置の提供を目的とする。   The present invention has been made in the background as described above, and relates to an apparatus for forming a thin film on the inner surface of a hollow container by a plasma-assisted CVD method, and has various shapes. Even if a uniform thin film can be formed on the inner surface, and the gas blowing port gradually becomes smaller due to the film formation over a long period of time, the cover gas is replaced with a new one. By simply doing this, the desired gas flow rate can be secured, a uniform thin film can be formed on the inner surface of the hollow container, and even in mass production, products with little variation in performance can be produced, and maintenance is also easy. An object is to provide an excellent film forming apparatus.

このような目的を達成するためになされ、請求項1に記載の発明は、成膜チャンバー内に配置してあるプラスチック製中空容器の内表面にプラズマ助成式CVD法により薄膜を成膜するための成膜装置であって、成膜チャンバー内に付設のガス導入管は、原料ガスを流す筒状のガス導入本管とその外側周縁を覆うように着脱可能な状態で一体的に取り付けてある筒状のカバー管との二重構造となっており、その先端の開口が原料ガスの吹き出し口となっていると共に、前記各管の側面部の同一個所のそれぞれに開口が設けてあり、この一対の開口が一体となって原料ガスの吹き出し口となっていることを特徴とする成膜装置である。 In order to achieve such an object, the invention according to claim 1 is for forming a thin film on the inner surface of a plastic hollow container arranged in a film forming chamber by a plasma-assisted CVD method. a film forming apparatus, a gas inlet tube attached to the film forming chamber is integrally attached to a detachable state, as the to tubular gas inlet main flow of raw material gas to cover the outer periphery It has a double structure with a cylindrical cover tube, the opening at the tip is a blowout port for the source gas, and an opening is provided at each of the same portions of the side surface of each tube. The film forming apparatus is characterized in that a pair of openings are integrated to form a raw material gas blowout port.

また、請求項2に記載の発明は、請求項1記載の成膜装置において、ガス導入管は、それを構成するガス導入本管とカバー管の側面部の同一個所のそれぞれに設けてある一対の開口で構成する前記吹き出し口を複数個具備していることを特徴とする。   According to a second aspect of the present invention, there is provided the film forming apparatus according to the first aspect, wherein the gas introduction pipe is provided at each of the same locations of the gas introduction main pipe and the side face of the cover pipe constituting the gas introduction pipe. A plurality of the outlets constituted by the openings are provided.

さらにまた、請求項3に記載の発明は、請求項1または請求項2記載の成膜装置において、前記複数の吹き出し口は、先端に近いものの開口径が大きくなるように設定してあることを特徴とする。   Furthermore, the invention according to claim 3 is the film forming apparatus according to claim 1 or 2, wherein the plurality of outlets are set so that an opening diameter of the one close to the tip is increased. Features.

さらにまた、請求項4に記載の発明は、請求項1乃至請求項3のいずれかに記載の成膜装置において、ガス導入管の吹き出し口の一方を構成し、ガス導入本管の側面部に設けてある開口の開口径のサイズは、該ガス導入管の吹き出し口のもう一方を構成し、カバー管の側面部設けてある開口の開口径のサイズと同じか、もしくは、大きく設定してあることを特徴とする。   Furthermore, the invention according to claim 4 is the film forming apparatus according to any one of claims 1 to 3, wherein one of the outlets of the gas introduction pipe is formed, and the gas introduction main pipe is provided on the side surface portion. The size of the opening diameter of the opening provided is the same as or larger than the size of the opening diameter of the opening provided on the side surface portion of the cover tube, constituting the other outlet of the gas introduction pipe It is characterized by that.

さらにまた、請求項に記載の発明は、請求項1乃至請求項3のいずれかに記載の成膜装置において、カバー管の側面部に設けてある開口の開口径は、0.2mm以上2.0mm以下であることを特徴とする。 Furthermore, in the film forming apparatus according to any one of the first to third aspects , the opening diameter of the opening provided in the side surface portion of the cover tube is 0.2 mm or more and 2 according to the invention described in claim 5. 0.0 mm or less.

本発明によれば、中空容器の内表面にプラズマ助成式CVD法により均一な薄膜を、容易にかつ安定的に成膜することができる。従って、この成膜装置によってその内表面に成膜が施された中空容器は、薄膜形成によってもたらされる所期の効果がどの部分においても変わることがない。例えば、本発明の成膜装置により中空容器の内表面に酸化珪素の薄膜を成膜した場合には、薄膜の膜厚がどの部分でも均一となるので、中空容器全体に渡って安定したバリア性を発現させることが可能となる。   According to the present invention, a uniform thin film can be easily and stably formed on the inner surface of a hollow container by a plasma-assisted CVD method. Therefore, in the hollow container in which the film is formed on the inner surface by this film forming apparatus, the expected effect brought about by the thin film formation does not change in any part. For example, when a thin film of silicon oxide is formed on the inner surface of a hollow container with the film forming apparatus of the present invention, the thickness of the thin film is uniform in any part, so that the stable barrier property over the entire hollow container Can be expressed.

以下、本発明の成膜装置を図面を参照にして説明する。   The film forming apparatus of the present invention will be described below with reference to the drawings.

図1は、本発明に係る成膜装置の主要部分の概略の構成を示す説明図である。図中、10は本発明の成膜装置を構成する成膜チャンバーを示している。この成膜チャンバー10は、図面からも分かるように、内部に中空容器1が収容できるだけの円筒状のスペースを持つ外部電極2と、その外部電極2の一端に設置さている天蓋3と、もう一方の端に設置され、その一部に排気口4を持つ底蓋5よりなっており、排気口4には減圧状態を維持するための真空ポンプ(図示せず)が接続されている。一方、この成膜チャンバー10にはガス導入管6が付設されている。そして、原料ガスはマスフローコントローラー(図示せず)によりあらかじめ決められた流量でガス導入管6を通して成膜チャンバー10にセットした中空容器1内に供給されるようになっている。   FIG. 1 is an explanatory diagram showing a schematic configuration of a main part of a film forming apparatus according to the present invention. In the figure, reference numeral 10 denotes a film forming chamber constituting the film forming apparatus of the present invention. As can be seen from the drawing, the film forming chamber 10 includes an external electrode 2 having a cylindrical space within which the hollow container 1 can be accommodated, a canopy 3 installed at one end of the external electrode 2, and the other And a bottom cover 5 having an exhaust port 4 at a part thereof. A vacuum pump (not shown) for maintaining a reduced pressure state is connected to the exhaust port 4. On the other hand, a gas introduction pipe 6 is attached to the film forming chamber 10. The source gas is supplied into the hollow container 1 set in the film forming chamber 10 through the gas introduction pipe 6 at a predetermined flow rate by a mass flow controller (not shown).

図示の成膜装置により成膜を行う場合には、まず、中空容器1が外部電極2の中に収容された状態で中空容器1の内部を含めた外部電極2内全体を真空引きする。次にガス導入管6を通して原料ガスを中空容器1の内部に供給し、続いて外部電極2に一定時間高周波を印加して原料ガスがプラズマ化することにより中空容器1内部に薄膜を形成する。   When film formation is performed using the illustrated film formation apparatus, first, the entire inside of the external electrode 2 including the inside of the hollow container 1 is evacuated while the hollow container 1 is accommodated in the external electrode 2. Next, a raw material gas is supplied into the hollow container 1 through the gas introduction pipe 6, and then a high frequency is applied to the external electrode 2 for a certain period of time to turn the raw material gas into a plasma, thereby forming a thin film inside the hollow container 1.

この成膜装置の一番の特徴は、ガス導入管6の構造にある。このガス導入管6は、図2にも示すように、原料ガスの吹き出し口がその先端に1つあるだけでなく、さらに先端に至る側面部にも少なくとも1つ設けられている。   The most characteristic feature of this film forming apparatus is the structure of the gas introduction pipe 6. As shown in FIG. 2, the gas introduction pipe 6 has not only one source gas outlet at its tip, but also at least one at the side surface leading to the tip.

ガス導入管6の先端に設けられた吹き出し口8は、薄膜を成膜しようとする中空容器の底部が胴部や肩部に比べるとセラミック薄膜等の薄膜が十分な厚みに成膜されにくいため、この底部に十分な厚みの薄膜を成膜するために必要とされるものである。   The air outlet 8 provided at the tip of the gas introduction pipe 6 is such that a thin film such as a ceramic thin film is not easily formed to a sufficient thickness at the bottom of the hollow container on which a thin film is to be formed, compared to the body or shoulder. This is necessary to form a thin film having a sufficient thickness on the bottom.

しかし、吹き出し口を先端の1ヶ所のみに設けたガス導入管を具備する成膜装置(図4参照)にて金属酸化物の薄膜を成膜した場合、この吹き出し口付近の中空容器内表面には薄膜を厚く形成することができるため、この部分では十分なバリア性を発現することができる。しかし、その他の部分ではバリア性を発現するのに十分な厚さの薄膜が形成されにくくなり、中空容器内表面は部位によって薄膜の厚さが異なってしまい、成膜された中空容器のバリア性が部位によって異なってしまう。   However, when a metal oxide thin film is formed by a film forming apparatus (see FIG. 4) having a gas inlet tube provided with only one outlet at the tip, the inner surface of the hollow container near the outlet is formed. Since a thin film can be formed thickly, a sufficient barrier property can be expressed in this portion. However, in other parts, it is difficult to form a thin film having a sufficient thickness to exhibit barrier properties, and the thickness of the thin film varies depending on the part of the inner surface of the hollow container. Will vary depending on the site.

また一般的には、生産性を考慮すると成膜工程をより短い時間で行うことが望ましく、この短時間成膜を可能にするため、容器が変形しない程度の高電力を印加した成膜が行われている。しかしながら、このように高電力を印加した場合、ガス導入管の吹き出し口付近の容器内表面には薄膜が厚く形成されるが、その他の部分では形成される薄膜が薄くなってしまうことになり、バリア性不均一の傾向はより顕著になってしまう。   In general, considering the productivity, it is desirable to perform the film forming process in a shorter time. In order to enable the film formation for a short time, the film formation is performed by applying a high power that does not deform the container. It has been broken. However, when high power is applied in this way, a thin film is formed on the inner surface of the container near the outlet of the gas inlet tube, but the thin film formed in other parts will be thin, The tendency of non-uniform barrier properties becomes more prominent.

これに対し、原料ガスの吹き出し口をガス導入管の先端のみならず、先端に至る管の側面部にも少なくとも1つ設けることで、バリア性を発現するのに十分な厚さの薄膜が均一に成膜できるようになり、所期のバリア性が容器全体で発現できるようになる。ガス導入管の先端に至る側面部に設ける吹き出し口の数、位置さらに開口径は特に限定しないが、容器の大きさ、形状、成膜時間、印加電力、ガス導入管の長さ等を十分考慮したうえで決める必要がある。図1と図2には側面部の対峙する部分に吹き出し口9を計2個設けたガス導入管の例が示してある。   On the other hand, by providing at least one source gas outlet not only at the tip of the gas introduction tube but also at the side surface of the tube leading to the tip, a thin film having a sufficient thickness to exhibit a barrier property is uniform. The desired barrier property can be expressed in the entire container. The number, position, and opening diameter of the air outlets on the side surface leading to the tip of the gas introduction pipe are not particularly limited, but the size, shape, film formation time, applied power, length of the gas introduction pipe, etc. are fully considered It is necessary to decide after that. FIG. 1 and FIG. 2 show an example of a gas introduction pipe in which a total of two outlets 9 are provided at the opposing portions of the side surfaces.

一方、長時間の成膜を行う場合にはガス導入管の表面にも成膜された薄膜を定期的に除去する必要がある。それに対処すべく、本発明の成膜装置におけガス導入管においては、図2にも示すように、原料ガスを流す筒状のガス導入本管11とその外側周縁を覆うように着脱可能な状態で一体的に取り付けてある筒状のカバー管12との二重構造としている。従って、長時間の成膜によってその表面に薄膜が分厚く付着してしまったカバー管12をあらかじめ用意しておいた新しいものと交換するだけで、短時間で安定した成膜を再開することができるようになっている。 On the other hand, when film formation is performed for a long time, it is necessary to periodically remove the thin film formed on the surface of the gas introduction tube. In order to deal with it, in the gas introducing pipe that put the film forming apparatus of the present invention, as shown in FIG. 2, removable covering tubular gas main inlet pipe 11 to flow a raw material gas and the outer periphery In this state, it has a double structure with a cylindrical cover tube 12 that is integrally attached. Therefore, stable film formation can be resumed in a short time by simply replacing the cover tube 12 on which the thin film has adhered to the surface due to long-time film formation with a new one prepared in advance. It is like that.

しかし、ガス導入管の構造を上述の如くにした場合においても、長時間の成膜を行うとガス導入管6の先端に至る側面部に設けられた吹き出し口9の開口部分は次第に小さくなり、やがては塞がってしまうことになるため、この吹き出し口9の開口径は直径0.2mm以上にすることが好ましい。また、この吹き出し口9の開口径を大きくし過ぎると、ガス導入管6先端の吹き出し口8から吹き出す原料ガスの流量が減少し、中空容器1の底部に十分な厚みの薄膜が形成されないため、吹き出し口9の開口径は直径2.0mm以下にすることが望ましい。さらに、ガス導入管本体11の開口15の開口径は、長時間の成膜工程によりそこが塞がってしまうことを防ぐため、カバー管12の開口16の開口径と同じ、もしくは、それより大きくすることが望ましい。   However, even in the case where the structure of the gas introduction pipe is as described above, when film formation is performed for a long time, the opening portion of the blowout opening 9 provided in the side surface reaching the tip of the gas introduction pipe 6 becomes gradually smaller. Since it will eventually be blocked, it is preferable that the diameter of the outlet 9 is 0.2 mm or more. If the opening diameter of the outlet 9 is too large, the flow rate of the raw material gas blown out from the outlet 8 at the tip of the gas introduction pipe 6 decreases, and a thin film having a sufficient thickness is not formed at the bottom of the hollow container 1. The opening diameter of the outlet 9 is desirably 2.0 mm or less. Further, the opening diameter of the opening 15 of the gas introduction pipe main body 11 is the same as or larger than the opening diameter of the opening 16 of the cover pipe 12 in order to prevent the opening 15 from being blocked by a long film forming process. It is desirable.

また、図3に示したように、ガス導入管36の先端に至る側面部の吹き出し口をガス導入管36の長さ方向の異なる位置に2つ以上設けた場合は、その吹き出し口の開口径のサイズを全て同じにしてもよいが、成膜を施そうとする容器の大きさ、形状、成膜時間、印加電力、ガス導入管の長さ等を十分考慮した上で異なる開口径となるようにしても構わない。しかし、例えば、図3に示すように形状がそれ程複雑でない中空容器1に薄膜を成膜する場合でも、ガス導入管36の長さ方向の異なる位置に吹き出し口33、34、35を
それぞれ設、かつそれぞれの吹き出し口の開口径の大きさと数を同じにすると、先端に近くなるに従って原料ガスの流量が減少するようになり、膜厚が不均一となってしまうことがある。これを防ぐためには、複数の吹き出し口の開口径を異なるように選択することが好ましい。図3に示したガス導入管6においては、吹き出し口の開口径のサイズを(吹き出し口35)≦(吹き出し口34)≦(吹き出し口33)となるように設定することが好ましい。
In addition, as shown in FIG. 3, when two or more outlets on the side surface reaching the tip of the gas introduction pipe 36 are provided at different positions in the length direction of the gas introduction pipe 36, the opening diameter of the outlet However, the opening diameters may differ depending on the size, shape, deposition time, applied power, length of the gas introduction pipe, etc. It doesn't matter if you do. However, for example, is not too complicated shape as shown in FIG. 3 even when forming a thin film on the hollow container 1, a gas introduction pipe 36 longitudinally of mouth 33, 34, 35 out can blow in different positions, respectively If the size and the number of the opening diameters of the respective outlets are the same, the flow rate of the source gas decreases as it approaches the tip, and the film thickness may become non-uniform. In order to prevent this, it is preferable to select different opening diameters for the plurality of outlets. In the gas introduction pipe 6 shown in FIG. 3, it is preferable to set the size of the opening diameter of the outlet so that (outlet 35) ≦ (outlet 34) ≦ (outlet 33).

以上、本発明の成膜装置ならびにそれを用いた成膜方法を外部電極に高周波電力を印加する例で説明したが、本発明においては成膜工程中に印加する電力はこの高周波電力に限定されるものではなく、マイクロ波電力であってもよい。この場合には、例えば、成膜チャンバー内に導波管を通してマイクロ波を導入し、中空容器内の原料ガスをプラズマ化せしめ、その内表面に薄膜を形成するような構成となる。   As described above, the film forming apparatus of the present invention and the film forming method using the same have been described using the example in which high frequency power is applied to the external electrode. However, in the present invention, the power applied during the film forming process is limited to this high frequency power. It may not be a thing, but microwave power may be sufficient. In this case, for example, the microwave is introduced into the film forming chamber through the waveguide, the raw material gas in the hollow container is turned into plasma, and a thin film is formed on the inner surface thereof.

以下、本発明のバリア性プラスチック容器を具体的な実施例を挙げてさらに説明する。   Hereinafter, the barrier plastic container of the present invention will be further described with specific examples.

図1と図2に示すように、原料ガスを流す筒状のガス導入本管11とその外側周縁を覆うように着脱可能な状態で一体的に取り付けてあるカバー管12との二重構造となっており、さらにその先端の開口が原料ガスの吹き出し口8となっていると共に、ガス導入本管11とカバー管12の側面部の同一個所のそれぞれに一対の開口15、16が設けてあり、この一対の開口15、16が一体となって原料ガスの吹き出し口9となっているガス導入管6を具備する成膜装置を使用し、下記のようにして容量が500mlのポリエチレンテレフタレート(PET)製中空容器1の内表面に酸化珪素薄膜の成膜を行った。   As shown in FIG. 1 and FIG. 2, a dual structure of a cylindrical gas introduction main pipe 11 through which a raw material gas flows and a cover pipe 12 that is integrally attached so as to be detachable so as to cover the outer peripheral edge thereof, Further, the opening at the tip thereof is a raw material gas outlet 8, and a pair of openings 15 and 16 are provided at the same portions of the side surfaces of the gas introduction main pipe 11 and the cover pipe 12, respectively. The film forming apparatus including the gas introduction pipe 6 in which the pair of openings 15 and 16 are integrated to form the raw material gas blowing port 9 is used, and the capacity is 500 ml of polyethylene terephthalate (PET) as follows. ) A silicon oxide thin film was formed on the inner surface of the hollow container 1.

用いた原料ガスはヘキサメチルジシロキサンと酸素の混合ガスであり、それぞれの流量は10cc/minと500cc/minであった。また、ガス導入管6の吹き出し口8から吹き出し口9までの距離と、吹き出し口9から中空容器1の口元までの距離は一定とし、さらに、吹き出し口9の開口径は直径0.4mmとし、吹き出し口8の開口径は直径4.35mmとした。   The raw material gas used was a mixed gas of hexamethyldisiloxane and oxygen, and the respective flow rates were 10 cc / min and 500 cc / min. The distance from the outlet 8 to the outlet 9 of the gas introduction pipe 6 and the distance from the outlet 9 to the mouth of the hollow container 1 are constant, and the opening diameter of the outlet 9 is 0.4 mm in diameter, The opening diameter of the outlet 8 was 4.35 mm.

成膜に際してはまず、排気口4を介して成膜チャンバー10内の気体を排気して減圧した後、上記混合ガスをガス導入管6を通して中空容器1内に供給した。次に、成膜時圧力を0.5torrに維持しながら高周波電力を400wattで5秒間印加し、原料ガスをプラズマ化せしめ、PET製中空容器1の内表面に酸化珪素薄膜の成膜を行った。   In the film formation, first, the gas in the film forming chamber 10 was exhausted through the exhaust port 4 to reduce the pressure, and then the mixed gas was supplied into the hollow container 1 through the gas introduction pipe 6. Next, high-frequency power was applied at 400 watts for 5 seconds while maintaining the pressure at the time of film formation at 0.5 torr, the raw material gas was turned into plasma, and a silicon oxide thin film was formed on the inner surface of the PET hollow container 1. .

続いて、酸化珪素薄膜が成膜された中空容器の酸素バリア性をMOCON社製OXTRANにより測定した。酸素バリア性のデータを表1に示す。また、酸化珪素薄膜の肩部、胴部、底部の3部位における膜厚のデータも表1に示す。なお、この膜厚はEPMA分析から得られた酸化珪素薄膜中のシリコン元素含有量から算出したものである。   Subsequently, the oxygen barrier property of the hollow container on which the silicon oxide thin film was formed was measured by OXTRAN manufactured by MOCON. Table 1 shows the oxygen barrier property data. Table 1 also shows data of film thicknesses at three portions of the shoulder, body and bottom of the silicon oxide thin film. This film thickness was calculated from the silicon element content in the silicon oxide thin film obtained from the EPMA analysis.

図3に示したような構成で、先端に原料ガスの吹き出し口32が1つ、さらに先端に至る側面部には吹き出し口33、34、35が各2つずつ設けられたガス導入管36を使用した以外は実施例1と同様の条件で成膜を行った。なお、ガス導入管36の吹き出し口32から吹き出し口33までの距離、吹き出し口33から吹き出し口34までの距離、吹き出し口34から吹き出し口35までの距離、吹き出し口35から中空容器1の口元までの距離は全て一定であり、さらに、吹き出し口33、34、35の穴の開口径は全て直径0.2mmであった。続いて、薄膜を成膜した中空容器に対して、実施例1と同様の条件にて酸素バリア性と酸化珪素薄膜の膜厚の測定を行った。得られた測定データを表1に示す。   In the configuration as shown in FIG. 3, a gas introduction pipe 36 having one source gas outlet 32 at the tip and two outlets 33, 34, and 35 at the side surface reaching the tip is provided. A film was formed under the same conditions as in Example 1 except that they were used. The distance from the outlet 32 to the outlet 33 of the gas introduction pipe 36, the distance from the outlet 33 to the outlet 34, the distance from the outlet 34 to the outlet 35, and from the outlet 35 to the mouth of the hollow container 1 Are all constant, and the diameters of the holes of the outlets 33, 34, and 35 are all 0.2 mm. Subsequently, the oxygen barrier property and the film thickness of the silicon oxide thin film were measured on the hollow container on which the thin film was formed under the same conditions as in Example 1. The obtained measurement data is shown in Table 1.

図3に示したような構成で、開口径が全て直径0.6mmの吹き出し口が側面部に設けられたガス導入管を用いた以外は実施例2と同様の条件で成膜を行った。そして、薄膜を形成した中空容器に対して、実施例1と同様の条件にて酸素バリア性と酸化珪素薄膜の膜厚の測定を行った。得られた測定データを表1に示す。   Film formation was performed under the same conditions as in Example 2 except that a gas introduction pipe having a configuration as shown in FIG. And the oxygen barrier property and the film thickness of the silicon oxide thin film were measured on the conditions similar to Example 1 with respect to the hollow container in which the thin film was formed. The obtained measurement data is shown in Table 1.

図3に示したような構成で、開口径(直径)が先端に近い側からそれぞれ直径0.6mm、0.4mm、0.2mmの吹き出し口が側面部に設けられたガス導入管を用いた以外は実施例2と同様の条件で成膜を行った。そして、薄膜を成膜した中空容器に対して、実施例1と同様の条件にて酸素バリア性と酸化珪素薄膜の膜厚の測定を行った。得られた測定データを表1に示す。   In the configuration as shown in FIG. 3, a gas introduction pipe having opening diameters (diameters) of 0.6 mm, 0.4 mm, and 0.2 mm in diameter on the side surface from the side close to the tip was used. Except for the above, film formation was performed under the same conditions as in Example 2. And the oxygen barrier property and the film thickness of the silicon oxide thin film were measured on the conditions similar to Example 1 with respect to the hollow container which formed the thin film. The obtained measurement data is shown in Table 1.

上記各実施例に係る、内表面に薄膜が成膜された中空容器は、表からも分かるように、何れも十分なガスバリア性を示すものであった。   As can be seen from the table, all of the hollow containers having the thin film formed on the inner surface according to each of the above examples exhibited sufficient gas barrier properties.

図3に示したような構成で、開口径が全て直径3.0mmの吹き出し口が側面部に設けられたガス導入管を用いた以外は実施例2と同様の条件で成膜を行った。そして、薄膜を形成した中空容器に対して、実施例1と同様の条件にて酸素バリア性と酸化珪素薄膜の膜厚の測定を行った。薄膜成膜の際に用いたガス導入管はその側面に設けられた吹き出し口の開口径が全て直径3.0mmと大きい仕様であったため、中空容器の底部に十分な厚みの薄膜が形成されず、十分なバリア性が得られなかった。測定データを表1に示す。
<比較例>
Film formation was performed under the same conditions as in Example 2 except that a gas introduction tube having a configuration as shown in FIG. And the oxygen barrier property and the film thickness of the silicon oxide thin film were measured on the conditions similar to Example 1 with respect to the hollow container in which the thin film was formed. The gas inlet tube used for thin film deposition was designed to have a large diameter of 3.0 mm at the outlet provided on the side surface, so that a thin film with sufficient thickness was not formed at the bottom of the hollow container. A sufficient barrier property was not obtained. Table 1 shows the measurement data.
<Comparative example>

原料ガスの吹き出し口48がその先端にのみ設けられたガス導入管46を具備する、主要部の構成が図4に示すような成膜装置を用いたこと以外は実施例1と同様の条件で成膜を行った。そして、薄膜を成膜した中空容器41に対して、実施例1と同様の条件にて酸素バリア性と酸化珪素薄膜の膜厚の測定を行った。薄膜成膜の際に用いたガス導入管はそ
の吹き出し口が先端1ケ所のみに設けられている仕様のため、薄膜が形成されず、十分なバリア性が得られなかった。測定データを表1に示す。
The material gas outlet 48 is provided with a gas introduction pipe 46 provided only at the tip thereof, and the main part is configured under the same conditions as in Example 1 except that a film forming apparatus as shown in FIG. 4 is used. Film formation was performed. And the oxygen barrier property and the film thickness of the silicon oxide thin film were measured on the hollow container 41 on which the thin film was formed under the same conditions as in Example 1. Since the gas inlet tube used for forming the thin film has a specification in which the blowout port is provided only at one tip, a thin film is not formed and sufficient barrier properties cannot be obtained. Table 1 shows the measurement data.

Figure 0004513332
Figure 0004513332

本発明の成膜装置の主要部分の構成を示す説明図である。Is a view to explaining the configuration of a main part of the film forming apparatus of the present invention. 本発明の成膜装置におけるガス導入管の構成を示す概略図である。It is the schematic which shows the structure of the gas introduction pipe | tube in the film-forming apparatus of this invention. 本発明の成膜装置におけるガス導入管の他の構成を示す概略図である。It is the schematic which shows the other structure of the gas introduction pipe | tube in the film-forming apparatus of this invention. 従来の成膜装置の主要部分の構成を示す説明図である。Is a view to explaining the configuration of a main part of a conventional deposition apparatus.

符号の説明Explanation of symbols

1、31、41・・・中空容器
2、42・・・外部電極
3、43・・・天蓋
4、44・・・排気口
5、45・・・底蓋
6、46・・・ガス導入管
7、8、9・・・吹き出し口
32、33、34、35・・・吹き出し口
48・・・吹き出し口
10、40・・・成膜チャンバー
11・・ガス導入本管
12・・カバー管
DESCRIPTION OF SYMBOLS 1, 31, 41 ... Hollow container 2, 42 ... External electrode 3, 43 ... Canopy 4, 44 ... Exhaust port 5, 45 ... Bottom lid 6, 46 ... Gas introduction pipe 7, 8, 9: Blowing ports 32, 33, 34, 35 ... Blowing ports 48 ... Blowing ports 10, 40 ... Deposition chamber 11 ... Gas introduction main 12 ... Cover tube

Claims (5)

成膜チャンバー内に配置してある中空容器の内表面にプラズマ助成式CVD法により薄膜を成膜するための成膜装置であって、成膜チャンバー内に付設のガス導入管は、原料ガスを流す筒状のガス導入本管とその外側周縁を覆うように着脱可能な状態で一体的に取り付けてある筒状のカバー管との二重構造となっており、その先端の開口が原料ガスの吹き出し口となっていると共に、前記各の側面部の同一箇所のそれぞれに開口が設けてあり、この一対の開口が一体となって原料ガスの吹き出し口となっていることを特徴とする成膜装置。 A film forming apparatus for forming a thin film on the inner surface of a hollow container arranged in a film forming chamber by a plasma-assisted CVD method, wherein a gas introduction tube attached to the film forming chamber is provided with a source gas It has a double structure consisting of a cylindrical gas introduction main pipe that flows and a cylindrical cover pipe that is integrally attached so as to cover the outer periphery of the main gas introduction pipe. An opening is provided in each of the same portions of the side surface portion of each of the tubes , and the pair of openings are integrated to form a raw material gas outlet. Membrane device. ガス導入管は、それを構成するガス導入本管とカバー管の側面部の同一個所のそれぞれに設けてある一対の開口で構成する前記吹き出し口を複数個具備していることを特徴とする請求項1記載の成膜装置。   The gas introduction pipe is provided with a plurality of the outlets constituted by a pair of openings provided at the same location of the side surface of the gas introduction main pipe and the cover pipe constituting the gas introduction pipe. Item 2. The film forming apparatus according to Item 1. 前記複数の吹き出し口は、先端に近いものの開口径が大きくなるように設定してあることを特徴とする請求項1または請求項2記載の成膜装置。   The film forming apparatus according to claim 1, wherein the plurality of outlets are set so that an opening diameter of the one near the tip is increased. ガス導入管の吹き出し口の一方を構成し、ガス導入本管の側面部に設けてある開口の開口径のサイズは、該ガス導入管の吹き出し口のもう一方を構成し、カバー管の側面部に設けてある開口の開口径のサイズと同じか、もしくは、大きく設定してあることを特徴とする請求項1乃至請求項3のいずれかに記載の成膜装置。   The size of the opening diameter of the opening provided on the side surface of the gas introduction main pipe constitutes the other side of the gas inlet pipe outlet and constitutes the other side of the gas inlet pipe. The film forming apparatus according to claim 1, wherein the film forming apparatus is set to be equal to or larger than a size of an opening diameter of the opening provided in the apparatus. カバー管の側面部に設けてある開口の開口径は、0.2mm以上2.0mm以下であることを特徴とする請求項1乃至請求項4のいずれかに記載の成膜装置。 The film forming apparatus according to any one of claims 1 to 4, wherein an opening diameter of the opening provided on the side surface portion of the cover tube is 0.2 mm or more and 2.0 mm or less.
JP2004010190A 2004-01-19 2004-01-19 Deposition equipment Expired - Fee Related JP4513332B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004010190A JP4513332B2 (en) 2004-01-19 2004-01-19 Deposition equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004010190A JP4513332B2 (en) 2004-01-19 2004-01-19 Deposition equipment

Publications (2)

Publication Number Publication Date
JP2005200733A JP2005200733A (en) 2005-07-28
JP4513332B2 true JP4513332B2 (en) 2010-07-28

Family

ID=34822990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004010190A Expired - Fee Related JP4513332B2 (en) 2004-01-19 2004-01-19 Deposition equipment

Country Status (1)

Country Link
JP (1) JP4513332B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5098708B2 (en) * 2008-03-10 2012-12-12 凸版印刷株式会社 Gas supply pipe unit for plasma processing
JP5912987B2 (en) * 2012-08-09 2016-04-27 麒麟麦酒株式会社 Thin film forming equipment
CN103556116A (en) * 2013-11-05 2014-02-05 苏州市江南精细化工有限公司 Method and device for preparing parylene coating in special gas cylinder
CN105755452B (en) * 2016-04-18 2019-01-15 北京大学 One kind is for spraying TiO in lumen wall2The device of nano coating
JP7223611B2 (en) * 2019-03-25 2023-02-16 三菱ケミカル株式会社 Gas barrier container and method for producing gas barrier container

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000256859A (en) * 1999-03-04 2000-09-19 Toppan Printing Co Ltd Film forming device for plastic vessel
JP2003247070A (en) * 2002-02-25 2003-09-05 Mitsubishi Heavy Ind Ltd Apparatus for depositing carbon film on inside surface of plastic vessel, and method for manufacturing plastic vessel with inside surface covered by carbon film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000256859A (en) * 1999-03-04 2000-09-19 Toppan Printing Co Ltd Film forming device for plastic vessel
JP2003247070A (en) * 2002-02-25 2003-09-05 Mitsubishi Heavy Ind Ltd Apparatus for depositing carbon film on inside surface of plastic vessel, and method for manufacturing plastic vessel with inside surface covered by carbon film

Also Published As

Publication number Publication date
JP2005200733A (en) 2005-07-28

Similar Documents

Publication Publication Date Title
JP5260050B2 (en) Gas barrier plastic container manufacturing apparatus and method for manufacturing the container
JP4513332B2 (en) Deposition equipment
JP4372833B1 (en) Method for producing gas barrier thin film coated plastic container
JP4132982B2 (en) DLC film coated plastic container manufacturing equipment
JP4519808B2 (en) Thin film deposition method and thin film deposition apparatus
JP2006160269A (en) Plasma cvd film forming apparatus and method for manufacturing plastic container with gas barrier property
JP4593357B2 (en) Method for producing gas-barrier plastic container with reduced mouth coloring and the container
WO2005035825A1 (en) Cvd film-forming device and method of manufacturing cvd film coating plastic container
JP4325328B2 (en) Deposition equipment
JP5610345B2 (en) Manufacturing method of plastic container having gas barrier property, adapter for small container and thin film deposition apparatus
JP4244667B2 (en) Deposition method
JP6657766B2 (en) Plastic container and manufacturing method thereof
JP4871674B2 (en) Method for depositing amorphous carbon film on synthetic resin bottle
JP4932386B2 (en) Plastic bottle
JP4089203B2 (en) Thin film deposition method for plastic containers
JP4945398B2 (en) Manufacturing method of ultra-thin carbon film coated plastic container
KR100976104B1 (en) Device for manufacturing dlc film-coated plastic container
JP2009221490A (en) Film-forming apparatus for hollow container
JP4595487B2 (en) Deposition method of gas barrier silicon oxide thin film by CVD method
JP2006069587A (en) Gas barrier packaging material
JP2004352915A (en) Method for producing hollow vessel provided with ceramic thin film
JP2001146529A (en) Process for forming thin film on plastic vessel
JP2009270187A (en) Gas supply tube

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100420

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100503

R150 Certificate of patent or registration of utility model

Ref document number: 4513332

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140521

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees