JP4512863B2 - Hydrogen separation permeable membrane, its production method and hydrogen generation and separation device - Google Patents

Hydrogen separation permeable membrane, its production method and hydrogen generation and separation device Download PDF

Info

Publication number
JP4512863B2
JP4512863B2 JP2003082264A JP2003082264A JP4512863B2 JP 4512863 B2 JP4512863 B2 JP 4512863B2 JP 2003082264 A JP2003082264 A JP 2003082264A JP 2003082264 A JP2003082264 A JP 2003082264A JP 4512863 B2 JP4512863 B2 JP 4512863B2
Authority
JP
Japan
Prior art keywords
hydrogen
layer
separation
thickness
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003082264A
Other languages
Japanese (ja)
Other versions
JP2004202479A (en
Inventor
正昭 田中
仁 尾崎
潮美 ▲菊▼池
淳哉 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2003082264A priority Critical patent/JP4512863B2/en
Publication of JP2004202479A publication Critical patent/JP2004202479A/en
Application granted granted Critical
Publication of JP4512863B2 publication Critical patent/JP4512863B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、メタンガスなどの炭化水素ガスと水蒸気の混合ガスから、水素ガスを分離して、高純度の水素ガスを生成するために用いる水素分離透過膜と、その製造方法に関するものである。
【0002】
【従来の技術】
近年、燃焼時に有害な物質を作り出さない水素が、環境に優しい無公害のクリーンなエネルギー源として注目されており、水素分離透過膜を使って、メタンガスと水蒸気の混合ガスから、高純度の水素を効率よく得る技術が開発されている。
【0003】
Pd合金膜は、原子同士の隙間を利用して水素のみを取り出すことのできる水素分離透過膜として知られていて、高純度の水素の製造に使われているが、Pdは、価格が1gあたり2000円前後と金や白金をも凌ぐ極めて高価な金属であるため、Pd合金に代わる安価な水素分離透過膜が求められていた。
【0004】
従来のPd合金に代わる安価な水素分離透過膜としては、価格が1gあたり70〜90円であるTaを箔状にしたTa箔を2枚のPd箔の間に配置して、真空中でホットプレスすることにより拡散接合した後、所定の厚みに圧延したものがある(例えば特許文献1参照)。
【0005】
この水素分離透過膜は、水素透過性能の高いTa箔の両面に、Ta箔が空気中に露出して酸化被膜がTa箔表面に形成されることを防止し、水素分子が二つの水素原子となってTa箔中を拡散する様に水素分子を解離する活性を賦与するPdを被覆したものである。
【0006】
【特許文献1】
特開平11−276866号公報
【0007】
【発明が解決しようとする課題】
上記従来の水素分離透過膜は、1枚のTa箔を2枚のPd箔の間に配置して拡散接合した後、圧延したものであるため、製造時にTa箔にピットが生成することがしばしばあり、ピット生成によりピンホールが膜を貫通して、水素以外の気体が水素分離透過膜を通過する可能性があった。
【0008】
本発明は、膜を貫通するピンホールにより水素以外の気体が水素分離透過膜を通過する可能性を少なくできる水素分離透過膜とその製造方法を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明の請求項1に記載の発明の水素生成分離装置は、Ta、Nb、V、Ta合金、Nb合金、V合金のいずれかの金属からなり複数積層された金属層の両面にPd層またはPd合金層を設けた多層構造の水素分離透過膜により、炭化水素ガスと水蒸気とを300℃以上且つ1550℃以下の高温で反応させて水素ガスを生成させる反応室と、前記反応室で生成され前記水素分離透過膜を透過した高純度の水素ガスが流出する分離室とに区画し、前記水素分離透過膜における前記反応室に露出する側のPd層もしくはPd合金層の厚さを前記分離室に露出する側のPd層もしくはPd合金層の厚さより厚くしたのである。
【0010】
請求項1に記載の発明は、水素分離透過膜内部の金属層を2層以上に増やしたので、仮に隣接する2つの金属層にピンホールがあったとしても、その隣接する2つの金属層の接合面において、対向する金属層のピンホール同士が連通する可能性は僅かであるので、膜を貫通するピンホールにより水素以外の気体が水素分離透過膜を通過する可能性を少なくすることができるという作用を有する。
【0011】
また、水素分離透過膜内部の金属層を2層以上に増やすことにより、微細構造組織となり、内部の金属層が1層の水素分離透過膜よりも、水素分離透過膜の強度が向上するという作用を有する。また、水素分離透過膜の強度が向上すれば、内部の金属層が1層の水素分離透過膜よりも、水素分離透過膜の膜厚を薄くできるので、水素分離透過膜の材料費を低減できるという作用を有する。また、Pd層またはPd合金層と金属層との固溶が促進される高温側にさらされる部分のPd層またはPd合金層を厚くすることで、Pd層またはPd合金層単体の作用及び金属層単体の作用を維持できる。また、さらに、線膨張率による差が大きくなる高温側にさらされる部分のPd層またはPd合金層を厚くすることで、PdまたはPd合金の破損による水素ガス以外のガス透過を低減できる。
【0012】
また、Pdは金属層に一般に用いる金属より高価で水素の拡散速度が遅いため、Pd層またはPd合金層が多層構造の膜の最外層にのみ存在する多層構造にすることにより、Pd層またはPd合金層と金属層とが交互に繰り返す多層構造にした場合よりも、水素分離透過膜の材料費を低減でき、水素透過性能を向上させることができるという作用を有する。
【0013】
また、Ta、Nb、Vは、水素透過性能が高い、体心立方構造を有する高融点の遷移金属であるため、Ta、Nb、V、Ta合金、Nb合金、V合金は水素分離透過膜の中心部分の材料として適しているという作用を有する。また、Ta、Nb、V、Ta合金、Nb合金、V合金は、Pdに比べて引っ張り強度が大きく、圧延性が良好であるため、圧延により金属層を薄くし易いという作用を有する。
【0014】
また、この水素分離透過膜を、メタンガスなどの炭化水素ガスと水蒸気の混合ガスから、水素ガスを分離して、高純度の水素ガスを生成するために用いる場合は、500℃前後の高温反応炉中に水素分離透過膜が配置されるため、水素透過性能が高い金属として高融点の金属を用いることは耐熱性の点で有利であるという作用を有する。
【0015】
また、Pd箔またはPd合金箔と水素透過性能が高い金属の金属箔とを、拡散接合した後、圧延することにより、容易に水素分離透過膜を製造することができるという作用を有する。
【0016】
また、請求項2に記載の発明の水素生成分離装置は、請求項1に記載の発明の水素分離透過膜の膜の厚みが1〜200μmであるものであり、水素分離透過膜の膜の厚みを1〜200μmにすることにより、強度と水素透過性能とのバランスのとれた水素分離透過膜を容易に製造することができるという作用を有する。
【0017】
また、請求項3に記載の発明の水素生成分離装置は、請求項1または2に記載の発明の水素分離透過膜における前記Pd層またはPd合金層の厚みが0.1〜10μmであるものである。
【0018】
ところで、Pdは、高価で水素の拡散速度が金属層に一般に用いる金属より遅いので、Pd層またはPd合金層はできるだけ薄い方がよいが、水素解離活性を有しない非Pd系金属膜に水素解離活性を賦与するためにPd層またはPd合金層が必要であり、特に金属層にTaのような酸化され易い金属を用いた場合は、Pd層またはPd合金層が薄すぎると金属層表面における空気に触れた部分に酸化皮膜が形成されて水素透過性能が劣化する。
【0019】
そこで、特に金属層にTaのような酸化され易い金属を用いる場合には、Pd層またはPd合金層の厚みを0.1〜10μmにすると、水素透過性能と水素分離透過膜の材料コスト削減をバランス良く両立できるという作用を有する。
【0020】
また、請求項4に記載の発明の水素生成分離装置は、請求項1から3のいずれか一項に記載の発明の水素分離透過膜における前記複数積層された金属層の合計の厚みが、前記Pd層またはPd合金層の厚みの0.5倍以上且つ1000倍以下であるものであり、複数積層された金属層の合計の厚みは、Pd層またはPd合金層の厚みの0.5倍以上且つ1000倍以下にすることができる。
【0021】
また、請求項5に記載の発明の水素生成分離装置は、請求項1から3のいずれか一項に記載の発明の水素分離透過膜における前記複数積層された金属層の合計の厚みが、前記Pd層またはPd合金層の厚みの2倍以上且つ200倍以下であるものであり、複数積層された金属層の合計の厚みは、Pd層またはPd合金層の厚みの2倍以上且つ200倍以下にすることが好ましい。
【0022】
また、請求項6に記載の発明の水素生成分離装置は、請求項1から3のいずれか一項に記載の発明の水素分離透過膜における前記複数積層された金属層の合計の厚みが、前記Pd層またはPd合金層の厚みの10倍以上且つ100倍以下であるものであり、複数積層された金属層の合計の厚みは、Pd層またはPd合金層の厚みの10倍以上且つ100倍以下が実用的である。
【0023】
また、請求項7に記載の発明の水素生成分離装置は、請求項1から6のいずれか一項に記載の発明の水素分離透過膜において、前記金属層を3層以上有するものであり、金属層を3層以上にすることにより、金属層が2層のものよりも、膜を貫通するピンホールにより水素以外の気体が水素分離透過膜を通過する可能性を少なくすることができると共に、水素分離透過膜の強度が向上するという作用を有する。また、水素分離透過膜の強度が向上すれば、内部の金属層が2層の水素分離透過膜よりも、水素分離透過膜の膜厚を薄くできるので、水素分離透過膜の材料費を低減できるという作用を有する。
【0024】
なお、請求項1から請求項7に記載の発明において、Pd合金層を構成するPd合金として、PdとAgとの合金は用いないものとする。
【0025】
金属層を構成する金属が体心立方構造を有する高融点の遷移金属(例えばTa)であり、Pd合金層を構成するPd合金がPdとAgとの合金である場合は、Agが膜の表面に析出して、Pdの触媒機能を低下させることと水素の透過性能を低下させることが確認されている。
【0026】
【発明の実施の形態】
以下、本発明の一実施の形態について図面を参照しながら説明する。
【0027】
図1は本発明の一実施の形態の水素生成分離装置の概略構成図である。
【0028】
本実施の形態の水素生成分離装置は、水素分離透過膜1により、炭化水素ガスと水蒸気とを300℃以上且つ1550℃以下の高温で反応させて水素ガスを生成させる反応室2と、反応室2で生成され水素分離透過膜1を透過した高純度の水素ガスが流出する分離室3とに区画したものであり、上から順に、分離室3、水素分離透過膜1、反応室2となるように配置されている。
【0029】
水素分離透過膜1は、水素透過性能が高く体心立方構造を有する高融点の遷移金属であるTaからなり2層積層されたTa層4と、この複数層積層されたTa層の両面に設けられたPd層5a,5bとからなる多層構造の膜であり、Pd層5a,5bは、多層構造の膜の最外層にのみ存在する。Pd層5a,5bとTa層4とは拡散接合され、この拡散接合された多層構造の膜は圧延されている。
【0030】
本実施の形態では、水素透過性能が高く体心立方構造を有する高融点の遷移金属としてTaを採用しているが、Taの代わりに、Nb、V、Ta合金、Nb合金、V合金のいずれかを採用しても構わない。また、Ta層の両面に(多層構造の膜の最外層に)Pd層5a,5bを設けているが、Pd層の代わりに、Pd合金層を設けても構わない。また、Ta層4は2層積層しているが、3層以上積層しても構わない。
【0031】
水素分離透過膜1は厚さが1〜200μmのものを製造可能であるが、水素生成分離装置に使用する場合は、10〜100μmの厚み、好ましくは、50μm〜100μmの厚みの水素分離透過膜1を使用する。水素分離透過膜1が薄い場合は、多孔質のステンレス板を補強板に使用して、水素生成分離装置の反応室2と分離室3との圧力差に耐えられるようにする。Pd層5a,5bの厚みは0.1〜10μmが好ましい。
【0032】
複数積層されたTa層4の合計の厚みは、Pd層5a,5bの厚みの0.5倍以上且つ1000倍以下とすることができるが、Pd層5a,5bの厚みの2倍以上且つ200倍以下が好ましく、10倍以上且つ100倍以下が実用的である。
【0033】
水素分離透過膜1における反応室2に露出する側のPd層5aの厚さは、分離室3に露出する側のPd層5bの厚さより厚くしてある。
【0034】
反応室2は、側面に水素生成分離装置の外部と連通する排出口6と、供給口7を有している。排出口6と供給口7とは対向しており、排出口6と供給口7とは、できるだけ離れるように配置され、排出口6と供給口7との間に水素分離透過膜1のPd層5aと対向する空間が位置している。分離室3は、水素分離透過膜1のPd層5bと対向する上面の略中央部に水素生成分離装置の外部と連通する水素吐出口8を有している。
【0035】
水素分離透過膜1の下面(Pd層5a側の面)の外周部と反応室2の内壁面とは、耐熱性の金属シール材9によりシールされており、水素分離透過膜1の下面(Pd層5b側の面)の外周部と分離室3の内壁面とは、耐熱性の金属シール材10によりシールされている。
【0036】
また、反応室2の外側の底面には反応室2を加熱する加熱体11を備えている。反応室2は分離室3より圧力が高くなるように、例えば、図示していないが排出口6下流に圧力調整弁等を設置して設定されている。
【0037】
以上のように構成された水素生成分離装置について、以下にその動作を説明する。
【0038】
反応室2が加熱体11の作動により800℃に加熱されると、水素分離透過膜1は反応室2側の面のPd層5aが800℃となり、分離室3側になるに従い温度は低下し、分離室3に面するPd層5bが最も低温となる。反応室2に面したPd層5aは、最も高温であると同時にTaより線膨張率の大きいため、分離室3に面したPd層5bに比べ反り及び応力が大きい状態で設置される。更に、反応室2側のPd層5aとTa層4は分離室3側に比べて高温となるため固溶の度合が大きくなる。
【0039】
この状態で水素生成分離装置の反応室2に供給口7より炭化水素のメタンと水蒸気を供給すると、メタンは水蒸気により酸化され、水蒸気は還元される反応による水素と二酸化炭素の生成に加えて、水素分離透過膜1のPd層5aとの接触による触媒作用により反応が促進され水素が生成され、生成された水素は水素分離透過膜1を通じて分離室3に流入し、その他のガスは下流に流れて同様の反応により水素ガスを生成して同様に分離室3に流入する。
【0040】
つまり、供給口7から排出口6へ流れる時に下流になっても流通ガスの水素ガス濃度が平衡状態に達しないため水素ガス化の反応は円滑に行われ、排出口6近傍では流通ガスの大部分が二酸化炭素となり排出される。通常ならば下流になるに従い流通ガスの水素割合が増加して平衡状態に達し、それ以上に反応しなくなる。
【0041】
このように、水素分離透過膜1は反応室2側の面のPd層5aが800℃となり、分離室3側になるに従い温度は低下し、分離室3に面するPd層5bが最も低温となることで、反応室2に面したPd層5aは最も高温であると同時にTaより線膨張率の大きいため、分離室3に面したPd層5bに比べ反り及び応力が大きい状態で設置される。
【0042】
更に、反応室2側のPd層5aとTa層4は分離室3側に比べて高温となるため固溶の度合が大きくなることから、反応室2側のPd層5aは分離室3側のPd層5bより厚くする、つまり、水素分離透過膜1にて一面のPd面と他面のPd面との間に温度勾配が発生しやすい場合は高温側のPd層5aを低温側のPd層5bより厚くすることで、反り及び応力の大きいPd層5aの破損を低減できると共に、Pd単体及びTa単体の性能低下を低減できるので、水素分離及び透過の性能低下を低減できる。
【0043】
更に、反応室2での水素生成反応の平衡を防止することで反応を維持して水素を円滑に生成可能である。
【0044】
次に、本実施の形態の水素分離透過膜の製造方法について説明する。
【0045】
本実施の形態の水素分離透過膜の製造方法では、厚さ9〜20μmの2枚のPd箔と厚さ50〜500μmの2枚のTa箔とを、2枚のPd箔の間に2枚のTa箔が位置するように重ね合わせ、約900℃において真空(約6Pa)中で3時間、アルミナ板を介して加圧する(ホットプレスする)ことにより、拡散接合させ、その後、圧延によって厚さ25μm、35μm、50μm、100μmの水素分離透過膜を作製した。
【0046】
本実施の形態では、厚さ25μm、35μm、50μm、100μmの水素分離透過膜を作製しているが、本実施の形態の水素分離透過膜の製造方法では、圧延により1〜200μmの厚さの膜にすることができる。このとき、Pd層が0.1〜10μmの厚さになるように圧延することが好ましい。
【0047】
2枚重ね合わせたTa箔の合計の厚みは、Pd箔の厚みの約50倍であり、水素分離透過膜の複数積層されたTa層の合計の厚みは、Pd層の厚みの約50倍であった。
【0048】
これらの水素分離透過膜を500℃において水素透過試験を行ったところ、膜厚が薄くなるほど水素透過性能が良好であったが、各水素分離透過膜とも良好な水素透過性能が確認できた。
【0049】
本実施の形態の厚さ50μmの水素分離透過膜は、厚さ50μmのPdAg(23wt%alloy)と比較して、約2倍の水素透過性能を有していた。
【0050】
本実施の形態では、2枚のTa箔を使って2層のTa層を形成しているが、3層以上のTa層を形成する場合は、Ta箔を3枚以上重ね合わせる。
【0051】
以上のように本実施の形態では、水素分離透過膜1内部のTa層(金属層)4を2層以上に増やしたので、仮に隣接する2つのTa層4にピンホールがあったとしても、その隣接する2つのTa層の接合面において、対向するTa層のピンホール同士が連通する可能性は僅かであるので、膜を貫通するピンホールにより水素以外の気体が水素分離透過膜1を通過する可能性を少なくすることができる。
【0052】
また、水素分離透過膜1内部のTa層4を2層以上に増やすことにより、微細構造組織となり、内部のTa層4が1層の水素分離透過膜よりも、水素分離透過膜1の強度が向上する。また、水素分離透過膜1の強度が向上すれば、内部のTa層4が1層の水素分離透過膜よりも、水素分離透過膜1の膜厚を薄くできるので、水素分離透過膜1の材料費を低減できる。
【0053】
水素分離透過膜1の積層数を増加させる場合は、Pd層またはPd合金層が多層構造の膜の最外層に位置するように、Pd層またはPd合金層とTaなどの水素透過性能の高い金属層とが交互に繰り返すパターンも考えられるが、Pdは水素透過性能の高い金属層に一般に用いる金属(例えば、Ta、Nb、V、Ta合金、Nb合金、V合金)より高価で水素の拡散速度が遅いため、Pd層またはPd合金層が多層構造の膜の最外層にのみ存在する多層構造にすることにより、Pd層またはPd合金層と金属層とが交互に繰り返す多層構造にした場合よりも、水素分離透過膜1の材料費を低減でき、水素透過性能を向上させることができる。
【0054】
本実施の形態では、水素透過性能の高い金属層を構成する金属に、体心立方構造を有する高融点の遷移金属を用いているが、体心立方構造を有する高融点の遷移金属は、水素透過性能が高く、水素分離透過膜1の中心部分の材料として適している。また、水素分離透過膜を、メタンガスなどの炭化水素ガスと水蒸気の混合ガスから、水素ガスを分離して、高純度の水素ガスを生成するために用いる場合は、500℃前後の高温反応炉中に水素分離透過膜が配置されるため、水素透過性能が高い金属として高融点の金属を用いることは耐熱性の点で有利である。
【0055】
水素透過性能の高い金属層を構成する金属としては、Ta、Nb、V、Ta合金、Nb合金、V合金のいずれかの金属が好ましい。Ta、Nb、Vは、水素透過性能が高い、体心立方構造を有する高融点の遷移金属であり、Ta、Nb、V、Ta合金、Nb合金、V合金は、Pdに比べて引っ張り強度が大きく、圧延性が良好であるため、圧延により金属層を薄くし易い。
【0056】
本実施の形態の水素分離透過膜1は、膜の厚みを1〜200μmにすることにより、強度と水素透過性能とのバランスのとれた水素分離透過膜を容易に製造することができる。
【0057】
Pdは、高価で水素の拡散速度が金属層に一般に用いる金属より遅いので、Pd層5a,5bはできるだけ薄い方がよいが、水素解離活性を有しない非Pd系金属膜(層)に水素解離活性を賦与するためにPd層5a,5bが必要であり、特に金属層4にTaのような酸化され易い金属を用いた場合は、Pd層5a,5bが薄すぎると金属層(Ta層)4表面における空気に触れた部分に酸化皮膜が形成されて水素透過性能が劣化する。
【0058】
そこで、特に金属層4にTaのような酸化され易い金属を用いる場合には、Pd層5a,5bの厚みを0.1〜10μmにすると、より好ましくは、0.5〜5μmにすると、水素透過性能と水素分離透過膜の材料コスト削減をバランス良く両立できる。
【0059】
水素透過性能の高い金属層(Ta層)4は、(金属箔を3枚以上重ね合わせて)3層以上形成すれば、金属層(Ta層)4が2層のものよりも、膜を貫通するピンホールにより水素以外の気体が水素分離透過膜1を通過する可能性を少なくすることができると共に、水素分離透過膜1の強度が向上する。また、水素分離透過膜1の強度が向上すれば、内部の金属層(Ta層)4が2層の水素分離透過膜1よりも、水素分離透過膜1の膜厚を薄くできるので、水素分離透過膜1の材料費を低減できる。
【0060】
水素透過性能の高い金属層(Ta層)4の外側にPd層5a,5bを有する多層構造の水素分離透過膜1を製造する方法としては、スパッター法、あるいは蒸着法などの気相成長法があるが、本実施の形態のPd箔またはPd合金箔と水素透過性能の高い金属(Ta)の金属箔(Ta箔)とをPd箔が外側なるように重ね合わせて、拡散接合した後、圧延する方法は、拡散接合するための装置と圧延装置があれば製造でき、水素分離透過膜1のPd層5a,5bの厚みは、使用するPd箔の厚みと圧延で調節できるため、スパッター法、あるいは蒸着法などの気相成長法よりも、簡単な設備で安価に厚いPd層5a,5bを形成でき、必要な厚さのPd層5a,5bを有する水素分離透過膜1を容易に製造することができる。
【0061】
本実施の形態の水素分離透過膜の製造方法では、重ね合わせた箔を真空中でホットプレスするので、簡単に金属箔(層)表面の酸化皮膜の形成を抑えながら重ね合わせた箔を拡散接合することができる。
【0062】
本実施の形態の水素分離透過膜の製造方法は、水素透過性能の高い金属からなる金属箔(Ta箔)の重ね合わせる枚数を調節することにより、水素分離透過膜1の厚みを調節することができ、金属箔(Ta箔)の重ね合わせる枚数を増減することにより、無駄のない必要充分なPd層5a,5bの厚さを確保しながら水素分離透過膜1の厚みを容易に変えることができる。
【0063】
また、本実施の形態の水素分離透過膜の製造方法は、水素透過性能の高い金属からなる金属箔(Ta箔)の重ね合わせる枚数を調節することにより、水素分離透過膜1における複数積層された金属層(Ta層)4全体の厚みとPd層5a,5bの厚みとの比率を調節することができ、金属箔(Ta箔)の重ね合わせる枚数を増減し、必要に応じて圧延を調節することにより、厚みの異なる多種類の金属箔(Ta箔)を用意することなく、水素分離透過膜1における複数積層された金属層(Ta層)4全体の厚みとPd層5a,5bの厚みとの比率を容易に変えることができる。
【0064】
なお、複数枚重ね合わせる金属箔の何れか1枚以上に酸化被膜を除去する処理をした後に積層すれば、酸化被膜による水素透過障害を低減でき、酸化被膜を除去する処理を弗化水素を含む物質により行うと、酸化皮膜除去が容易に行える。
【0065】
以下、複数枚重ね合わせる金属箔の何れか1枚以上を、弗化水素を含む物質により酸化被膜を除去する処理をした後に積層する場合の一例について説明する。
【0066】
まず、Ta箔2枚を20倍希釈した弗化水素水溶液(原液36%)中に20分浸けた後にエタノールで置換する。また、Ta箔を弗化水素水溶液中に浸け始めた19分後にPd箔を6%硝酸中に20秒浸けた後にエタノールで置換する。
【0067】
次に、Ta箔及びPd箔のエタノール置換後に、素早くPd箔2枚の間にTa箔2枚を挟み込むように積層して、積層後直ちに真空引きを行い、7Paになるように維持すると共に、7Paとなった時点から積層したPd箔とTa箔を加熱可能な加熱装置を作動して900℃まで上昇させる。
【0068】
このとき、7±3Paの真空を維持できるように真空手段の動作をON/OFF制御等で制御し、加熱手段においてもON/OFF制御やPID制御により900℃±5℃となるように制御を行う。
【0069】
そして、900±5℃、7±3Paとなった時点から900±5℃、7±3Paを5時間保持して拡散接合を行う。その後、圧延によりPdとTaとが積層した水素分離透過薄膜を製造する。
【0070】
これにより、製造した水素分離透過膜は2枚の積層されたTa合金膜の間における水素透過時の酸化被膜による障害が低減して水素透過性能が向上する。
【0071】
【発明の効果】
以上説明したように請求項1に記載の発明は、水素分離透過膜内部の金属層を2層以上に増やしたので、膜を貫通するピンホールにより水素以外の気体が水素分離透過膜を通過する可能性を少なくすることができる。また、内部の金属層が1層の水素分離透過膜よりも、水素分離透過膜の強度が向上するという効果がある。また、内部の金属層が1層の水素分離透過膜よりも、水素分離透過膜の膜厚を薄くでき、その場合は、水素分離透過膜の材料費を低減できるという効果がある。
【0072】
また、Pd層またはPd合金層は、多層構造の膜の最外層にのみ存在するので、Pd層またはPd合金層と金属層とが交互に繰り返す多層構造にした場合よりも、水素分離透過膜の材料費を低減でき、水素透過性能を向上させることができるという効果がある。
【0073】
また、Ta、Nb、V、Ta合金、Nb合金、V合金のいずれかの金属は、水素透過性能が高く、耐熱性に優れ、水素分離透過膜の中心部分の材料として適しており、圧延により金属層を薄くし易いという効果がある。
【0074】
また、Pd箔またはPd合金箔と水素透過性能が高い金属の金属箔とを、拡散接合した後、圧延することにより、容易に水素分離透過膜を製造することができるという効果がある。
【0075】
また、Pd層またはPd合金層と金属層との固溶が促進される高温側にさらされる部分のPd層またはPd合金層を厚くすることで、Pd層またはPd合金層単体の作用及び金属層単体の作用を維持でき、さらに、線膨張率による差が大きくなる高温側にさらされる部分のPd層またはPd合金層を厚くすることで、PdまたはPd合金の破損による水素ガス以外のガス透過を低減できるという効果がある。
【0076】
また、請求項2に記載の発明は、強度と水素透過性能とのバランスのとれた水素分離透過膜を容易に製造することができるという効果がある。
【0077】
また、請求項3に記載の発明は、水素透過性能と水素分離透過膜の材料コスト削減をバランス良く両立できるという効果がある。
【0078】
また、請求項4に記載の発明は、複数積層された金属層の合計の厚みを、Pd層またはPd合金層の厚みの0.5倍以上且つ1000倍以下にすることができる。
【0079】
また、請求項5に記載の発明は、複数積層された金属層の合計の厚みとPd層またはPd合金層の厚みとの比率が好ましい値である水素分離透過膜を提供できるという効果がある。
【0080】
また、請求項6に記載の発明は、複数積層された金属層の合計の厚みとPd層またはPd合金層の厚みとの比率が実用的な値である水素分離透過膜を提供できるという効果がある。
【0081】
また、請求項7に記載の発明は、金属層が2層のものよりも、膜を貫通するピンホールにより水素以外の気体が水素分離透過膜を通過する可能性を少なくすることができると共に、水素分離透過膜の強度が向上するという効果がある。また、内部の金属層が2層の水素分離透過膜よりも、水素分離透過膜の膜厚を薄くでき、その場合は、水素分離透過膜の材料費を低減できるという効果がある。
【図面の簡単な説明】
【図1】本発明の一実施の形態の水素生成分離装置の概略構成図
【符号の説明】
1 水素分離透過膜
2 反応室
3 分離室
4 Ta層(金属層)
5a,5b Pd層
[0001]
BACKGROUND OF THE INVENTION
  The present invention relates to a hydrogen separation and permeable membrane used for separating hydrogen gas from a mixed gas of hydrocarbon gas such as methane gas and water vapor to produce high-purity hydrogen gas, and a method for producing the same.
[0002]
[Prior art]
  In recent years, hydrogen that does not produce harmful substances during combustion has attracted attention as an environmentally friendly and non-polluting clean energy source. Efficient technology has been developed.
[0003]
  Pd alloy membranes are known as hydrogen separation / permeation membranes that can take out only hydrogen using gaps between atoms, and are used for the production of high-purity hydrogen. Since it is an extremely expensive metal that costs about 2,000 yen and surpasses gold and platinum, an inexpensive hydrogen separation and permeable membrane that can replace Pd alloy has been demanded.
[0004]
  As an inexpensive hydrogen separation and permeable membrane to replace the conventional Pd alloy, Ta foil in the shape of Ta with a price of 70 to 90 yen per gram is placed between two Pd foils and hot in a vacuum. Some of them are diffusion-bonded by pressing and then rolled to a predetermined thickness (for example, see Patent Document 1).
[0005]
  This hydrogen separation permeable membrane prevents Ta foil from being exposed to the air and forming an oxide film on the Ta foil surface on both sides of Ta foil with high hydrogen permeation performance. Thus, it is coated with Pd which imparts the activity of dissociating hydrogen molecules so as to diffuse in the Ta foil.
[0006]
[Patent Document 1]
      JP-A-11-276866
[0007]
[Problems to be solved by the invention]
  Since the conventional hydrogen separation and permeable membrane is formed by rolling a single Ta foil between two Pd foils after diffusion bonding, pits are often generated in the Ta foil during production. There is a possibility that a pinhole penetrates the membrane due to pit generation, and a gas other than hydrogen passes through the hydrogen separation and permeable membrane.
[0008]
  An object of this invention is to provide the hydrogen separation permeable membrane which can reduce possibility that gases other than hydrogen will pass through a hydrogen separation permeable membrane by the pinhole which penetrates a membrane, and its manufacturing method.
[0009]
[Means for Solving the Problems]
  According to the first aspect of the present invention,Hydrogen generator / separatorIs a multi-layered metal layer made of one of Ta, Nb, V, Ta alloy, Nb alloy, and V alloyA reaction chamber in which a hydrocarbon gas and water vapor are reacted at a high temperature of 300 ° C. or more and 1550 ° C. or less to generate hydrogen gas by a hydrogen separation / permeation membrane having a multilayer structure in which a Pd layer or a Pd alloy layer is provided on both sides of The Pd layer or the Pd alloy layer on the side exposed to the reaction chamber in the hydrogen separation / permeation membrane is partitioned into a separation chamber from which high-purity hydrogen gas generated in the reaction chamber and permeated through the hydrogen separation / permeation membrane flows out. The thickness is made thicker than the thickness of the Pd layer or Pd alloy layer on the side exposed to the separation chamber.
[0010]
  In the first aspect of the present invention, the number of metal layers inside the hydrogen separation / permeation membrane is increased to two or more, so even if there are pinholes in two adjacent metal layers, the two adjacent metal layers Since there is little possibility that the pinholes of the opposing metal layers communicate with each other at the joint surface, the possibility of gas other than hydrogen passing through the hydrogen separation permeable membrane can be reduced by the pinhole penetrating the membrane. It has the action.
[0011]
  In addition, by increasing the number of metal layers inside the hydrogen separation / permeation membrane to two or more layers, the microstructure becomes a fine structure, and the strength of the hydrogen separation / permeation membrane is improved compared to a single hydrogen separation / permeation membrane. Have In addition, if the strength of the hydrogen separation / permeation membrane is improved, the thickness of the hydrogen separation / permeation membrane can be made thinner than that of a single hydrogen separation / permeation membrane, thereby reducing the material cost of the hydrogen separation / permeation membrane. It has the action.Further, by thickening the Pd layer or Pd alloy layer exposed to the high temperature side where solid solution of the Pd layer or Pd alloy layer and the metal layer is promoted, the action of the Pd layer or Pd alloy layer alone and the metal layer A single function can be maintained. Further, by increasing the thickness of the Pd layer or Pd alloy layer that is exposed to the high temperature side where the difference due to the linear expansion coefficient becomes large, gas permeation other than hydrogen gas due to damage of Pd or Pd alloy can be reduced.
[0012]
  In addition, since Pd is more expensive than a metal generally used for a metal layer and has a slower hydrogen diffusion rate, a Pd layer or Pd layer is formed by forming a Pd layer or a Pd alloy layer only in the outermost layer of the multilayer film. Compared to a multilayer structure in which alloy layers and metal layers are alternately repeated, the material cost of the hydrogen separation and permeable membrane can be reduced, and the hydrogen permeation performance can be improved.
[0013]
  Ta, Nb, and V are high melting point transition metals having a body-centered cubic structure with high hydrogen permeation performance. Therefore, Ta, Nb, V, Ta alloy, Nb alloy, and V alloy are hydrogen separation / permeation membranes. It has the effect of being suitable as a material for the central portion. Further, Ta, Nb, V, Ta alloy, Nb alloy, and V alloy have an effect that the metal layer can be easily thinned by rolling because the tensile strength is higher than that of Pd and the rollability is good.
[0014]
  When this hydrogen separation and permeable membrane is used to separate hydrogen gas from a mixed gas of hydrocarbon gas such as methane gas and water vapor to produce high purity hydrogen gas, a high temperature reactor of about 500 ° C. Since the hydrogen separation permeable membrane is disposed therein, it is advantageous in terms of heat resistance to use a high melting point metal as a metal having high hydrogen permeation performance.
[0015]
  Moreover, it has the effect | action that a hydrogen separation permeable membrane can be manufactured easily by carrying out the diffusion bonding of Pd foil or Pd alloy foil, and metal metal foil with high hydrogen permeation performance, and rolling.
[0016]
  The invention of claim 2 is also provided.Hydrogen generator / separatorThe membrane of the hydrogen separation / permeation membrane according to the first aspect of the present invention has a thickness of 1 to 200 μm, and the hydrogen separation / permeation membrane has a thickness of 1 to 200 μm. The hydrogen separation and permeable membrane can be easily manufactured in a balanced manner.
[0017]
  The invention of claim 3 is also provided.Hydrogen generator / separatorIs the one in which the thickness of the Pd layer or the Pd alloy layer in the hydrogen separation and permeable membrane of the invention according to claim 1 or 2 is 0.1 to 10 μm.
[0018]
  By the way, Pd is expensive and has a slower hydrogen diffusion rate than the metal generally used for the metal layer. Therefore, the Pd layer or the Pd alloy layer should be as thin as possible, but the hydrogen dissociation into a non-Pd-based metal film having no hydrogen dissociation activity. In order to impart activity, a Pd layer or a Pd alloy layer is necessary. Particularly when a metal that is easily oxidized such as Ta is used for the metal layer, if the Pd layer or the Pd alloy layer is too thin, the air on the surface of the metal layer As a result, an oxide film is formed on the part touching the surface, and the hydrogen permeation performance deteriorates.
[0019]
  Therefore, particularly when using a metal that is easily oxidized, such as Ta, for the metal layer, if the thickness of the Pd layer or Pd alloy layer is 0.1 to 10 μm, the hydrogen permeation performance and the material cost reduction of the hydrogen separation permeable membrane can be reduced. It has the effect of being able to achieve a balance.
[0020]
  The invention of claim 4 is also provided.Hydrogen generator / separatorThe total thickness of the plurality of laminated metal layers in the hydrogen separation and permeable membrane according to any one of claims 1 to 3 is 0.5 times or more the thickness of the Pd layer or the Pd alloy layer. In addition, the total thickness of the plurality of stacked metal layers can be 0.5 times or more and 1000 times or less the thickness of the Pd layer or the Pd alloy layer.
[0021]
  Further, the invention according to claim 5 is provided.Hydrogen generator / separatorThe total thickness of the plurality of stacked metal layers in the hydrogen separation / permeation membrane according to any one of claims 1 to 3 is 200 times or more the thickness of the Pd layer or the Pd alloy layer. It is preferable that the total thickness of the stacked metal layers is not less than twice and not more than 200 times the thickness of the Pd layer or Pd alloy layer.
[0022]
  Further, the invention according to claim 6 is provided.Hydrogen generator / separatorThe total thickness of the plurality of laminated metal layers in the hydrogen separation and permeable membrane according to any one of claims 1 to 3 is 10 times or more the thickness of the Pd layer or the Pd alloy layer and 100 The total thickness of the laminated metal layers is practically 10 times or more and 100 times or less the thickness of the Pd layer or Pd alloy layer.
[0023]
  The invention according to claim 7 is also provided.Hydrogen generator / separatorIs a hydrogen separation / permeation membrane according to any one of claims 1 to 6, wherein the metal separation layer has three or more metal layers. Compared with the layered one, the possibility of gas other than hydrogen passing through the hydrogen separation / permeation membrane can be reduced by the pinhole penetrating the membrane, and the strength of the hydrogen separation / permeation membrane is improved. In addition, if the strength of the hydrogen separation / permeation membrane is improved, the thickness of the hydrogen separation / permeation membrane can be made thinner than that of a hydrogen separation / permeation membrane with two internal metal layers, so the material cost of the hydrogen separation / permeation membrane can be reduced It has the action.
[0024]
  In the inventions according to claims 1 to 7, an alloy of Pd and Ag is not used as the Pd alloy constituting the Pd alloy layer.
[0025]
  When the metal constituting the metal layer is a high melting point transition metal (for example, Ta) having a body-centered cubic structure and the Pd alloy constituting the Pd alloy layer is an alloy of Pd and Ag, Ag is the surface of the film. It has been confirmed that it deteriorates the catalytic function of Pd and the permeation performance of hydrogen.
[0026]
DETAILED DESCRIPTION OF THE INVENTION
  Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
[0027]
  FIG. 1 is a schematic configuration diagram of a hydrogen generation and separation apparatus according to an embodiment of the present invention.
[0028]
  The hydrogen generation / separation apparatus of the present embodiment includes a reaction chamber 2 that generates hydrogen gas by reacting a hydrocarbon gas and water vapor at a high temperature of 300 ° C. or more and 1550 ° C. or less by a hydrogen separation and permeable membrane 1, and a reaction chamber. 2 is divided into a separation chamber 3 from which high-purity hydrogen gas that has permeated through the hydrogen separation and permeable membrane 1 flows out. The separation chamber 3, the hydrogen separation permeable membrane 1, and the reaction chamber 2 are formed in this order from the top. Are arranged as follows.
[0029]
  The hydrogen separation permeable membrane 1 is provided on both sides of a Ta layer 4 which is made of Ta, which is a high melting point transition metal having a high hydrogen permeation performance and a body-centered cubic structure, and this Ta layer which is laminated in a plurality of layers. The Pd layers 5a and 5b are multi-layered films, and the Pd layers 5a and 5b exist only in the outermost layer of the multi-layered film. The Pd layers 5a and 5b and the Ta layer 4 are diffusion-bonded, and the diffusion-bonded multilayer structure film is rolled.
[0030]
  In this embodiment, Ta is adopted as a high melting point transition metal having a high hydrogen permeation performance and a body-centered cubic structure. Instead of Ta, any of Nb, V, Ta alloy, Nb alloy, and V alloy is used. May be adopted. In addition, although the Pd layers 5a and 5b are provided on both surfaces of the Ta layer (outermost layer of the multilayer film), a Pd alloy layer may be provided instead of the Pd layer. Further, although two Ta layers 4 are laminated, three or more layers may be laminated.
[0031]
  The hydrogen separation permeable membrane 1 can be manufactured with a thickness of 1 to 200 μm, but when used in a hydrogen generation and separation apparatus, the hydrogen separation permeable membrane has a thickness of 10 to 100 μm, preferably a thickness of 50 μm to 100 μm. 1 is used. When the hydrogen separation permeable membrane 1 is thin, a porous stainless steel plate is used as a reinforcing plate so that it can withstand the pressure difference between the reaction chamber 2 and the separation chamber 3 of the hydrogen generation separation device. The thickness of the Pd layers 5a and 5b is preferably 0.1 to 10 μm.
[0032]
  The total thickness of the plurality of Ta layers 4 stacked can be 0.5 times or more and 1000 times or less the thickness of the Pd layers 5a and 5b, but more than twice the thickness of the Pd layers 5a and 5b and 200 times. Is preferably 10 times or more and 100 times or less.
[0033]
  The thickness of the Pd layer 5 a on the side exposed to the reaction chamber 2 in the hydrogen separation permeable membrane 1 is thicker than the thickness of the Pd layer 5 b on the side exposed to the separation chamber 3.
[0034]
  The reaction chamber 2 has a discharge port 6 and a supply port 7 that communicate with the outside of the hydrogen generator / separator on the side surface. The discharge port 6 and the supply port 7 are opposed to each other, the discharge port 6 and the supply port 7 are arranged as far as possible from each other, and the Pd layer of the hydrogen separation permeable membrane 1 is disposed between the discharge port 6 and the supply port 7. A space facing 5a is located. The separation chamber 3 has a hydrogen discharge port 8 communicating with the outside of the hydrogen generation / separation device at a substantially central portion of the upper surface of the hydrogen separation permeable membrane 1 facing the Pd layer 5b.
[0035]
  The outer peripheral portion of the lower surface of the hydrogen separation permeable membrane 1 (the surface on the Pd layer 5a side) and the inner wall surface of the reaction chamber 2 are sealed with a heat-resistant metal sealing material 9, and the lower surface of the hydrogen separation permeable membrane 1 (Pd The outer peripheral portion of the surface on the layer 5b side and the inner wall surface of the separation chamber 3 are sealed with a heat-resistant metal sealing material 10.
[0036]
  A heating body 11 for heating the reaction chamber 2 is provided on the bottom surface outside the reaction chamber 2. For example, although not shown, the reaction chamber 2 is set with a pressure regulating valve or the like downstream of the discharge port 6 so that the pressure is higher than that of the separation chamber 3.
[0037]
  The operation of the hydrogen generator / separator configured as described above will be described below.
[0038]
  When the reaction chamber 2 is heated to 800 ° C. by the operation of the heating body 11, the Pd layer 5 a on the surface of the hydrogen separation permeable membrane 1 on the reaction chamber 2 side becomes 800 ° C., and the temperature decreases as it becomes the separation chamber 3 side. The Pd layer 5b facing the separation chamber 3 has the lowest temperature. Since the Pd layer 5a facing the reaction chamber 2 is at the highest temperature and has a higher linear expansion coefficient than Ta, the Pd layer 5a is installed in a state where warpage and stress are larger than those of the Pd layer 5b facing the separation chamber 3. Furthermore, since the Pd layer 5a and the Ta layer 4 on the reaction chamber 2 side have a higher temperature than the separation chamber 3 side, the degree of solid solution increases.
[0039]
  In this state, when hydrocarbon methane and water vapor are supplied from the supply port 7 to the reaction chamber 2 of the hydrogen generator / separator, methane is oxidized by water vapor, and in addition to the production of hydrogen and carbon dioxide by the reaction in which the water vapor is reduced, The reaction is promoted by the catalytic action of the hydrogen separation permeable membrane 1 in contact with the Pd layer 5a to generate hydrogen, the generated hydrogen flows into the separation chamber 3 through the hydrogen separation permeable membrane 1, and the other gases flow downstream. Then, hydrogen gas is generated by the same reaction and flows into the separation chamber 3 in the same manner.
[0040]
  In other words, the hydrogen gas concentration of the flow gas does not reach an equilibrium state even when it flows downstream from the supply port 7 to the discharge port 6, so that the reaction of hydrogen gasification is performed smoothly. The part becomes carbon dioxide and is discharged. Normally, the hydrogen ratio of the flowing gas increases as it goes downstream, reaches an equilibrium state, and does not react any more.
[0041]
  As described above, in the hydrogen separation permeable membrane 1, the temperature of the Pd layer 5a on the reaction chamber 2 side becomes 800 ° C., the temperature decreases as it becomes the separation chamber 3 side, and the Pd layer 5b facing the separation chamber 3 has the lowest temperature. Thus, since the Pd layer 5a facing the reaction chamber 2 is at the highest temperature and has a higher linear expansion coefficient than Ta, it is installed in a state where warpage and stress are larger than those of the Pd layer 5b facing the separation chamber 3. .
[0042]
  Furthermore, since the Pd layer 5a and the Ta layer 4 on the reaction chamber 2 side are at a higher temperature than the separation chamber 3 side and the degree of solid solution is increased, the Pd layer 5a on the reaction chamber 2 side is on the separation chamber 3 side. If the Pd layer 5b is thicker, that is, if a temperature gradient is likely to occur between one Pd surface and the other Pd surface in the hydrogen separation permeable membrane 1, the high temperature side Pd layer 5a is replaced with the low temperature side Pd layer. By making it thicker than 5b, damage to the Pd layer 5a with large warpage and stress can be reduced, and the performance degradation of the Pd single substance and Ta simple substance can be reduced, so that the performance degradation of hydrogen separation and permeation can be reduced.
[0043]
  Furthermore, by preventing the equilibrium of the hydrogen generation reaction in the reaction chamber 2, the reaction can be maintained and hydrogen can be generated smoothly.
[0044]
  Next, the manufacturing method of the hydrogen separation permeable membrane of this Embodiment is demonstrated.
[0045]
  In the method for manufacturing a hydrogen separation permeable membrane according to the present embodiment, two Pd foils having a thickness of 9 to 20 μm and two Ta foils having a thickness of 50 to 500 μm are interposed between two Pd foils. The Ta foil is laminated so as to be positioned, and is subjected to diffusion bonding by pressing (hot pressing) through an alumina plate in a vacuum (about 6 Pa) at about 900 ° C. for 3 hours, and then the thickness is reduced by rolling. Hydrogen separation / permeation membranes of 25 μm, 35 μm, 50 μm, and 100 μm were prepared.
[0046]
  In this embodiment, hydrogen separation / permeation membranes having a thickness of 25 μm, 35 μm, 50 μm, and 100 μm are produced. However, in the method for producing a hydrogen separation / permeation membrane of this embodiment, a thickness of 1 to 200 μm is obtained by rolling. Can be a membrane. At this time, it is preferable to perform rolling so that the Pd layer has a thickness of 0.1 to 10 μm.
[0047]
  The total thickness of the two Ta foils stacked is about 50 times the thickness of the Pd foil, and the total thickness of a plurality of stacked Ta layers of the hydrogen separation permeable membrane is about 50 times the thickness of the Pd layer. there were.
[0048]
  When hydrogen permeation tests were conducted on these hydrogen separation permeable membranes at 500 ° C., the hydrogen permeation performance was better as the film thickness became thinner, but good hydrogen permeation performance was confirmed for each hydrogen separation permeation membrane.
[0049]
  The hydrogen separation / permeation membrane having a thickness of 50 μm according to the present embodiment had a hydrogen permeation performance approximately twice that of PdAg (23 wt% alloy) having a thickness of 50 μm.
[0050]
  In the present embodiment, two Ta layers are formed using two Ta foils. However, when three or more Ta layers are formed, three or more Ta foils are overlapped.
[0051]
  As described above, in the present embodiment, since the Ta layer (metal layer) 4 inside the hydrogen separation permeable membrane 1 is increased to two or more layers, even if there are pinholes in two adjacent Ta layers 4, Since there is little possibility that the pin holes of the opposing Ta layers communicate with each other at the joint surface between the two adjacent Ta layers, gases other than hydrogen pass through the hydrogen separation and permeable membrane 1 by the pin holes penetrating the membrane. The possibility of doing so can be reduced.
[0052]
  Further, by increasing the number of Ta layers 4 in the hydrogen separation / permeation membrane 1 to two or more layers, a microstructure is obtained, and the strength of the hydrogen separation / permeation membrane 1 is higher than that of the single hydrogen separation / permeation membrane. improves. Further, if the strength of the hydrogen separation / permeation membrane 1 is improved, the internal Ta layer 4 can make the film thickness of the hydrogen separation / permeation membrane 1 thinner than that of a single hydrogen separation / permeation membrane. Cost can be reduced.
[0053]
  When increasing the number of stacked hydrogen separation / permeation membranes 1, a metal having a high hydrogen permeation performance, such as a Pd layer or a Pd alloy layer and Ta, so that the Pd layer or the Pd alloy layer is located at the outermost layer of the multi-layered membrane. Pd is more expensive than metals generally used for metal layers with high hydrogen permeation performance (for example, Ta, Nb, V, Ta alloy, Nb alloy, V alloy), and the diffusion rate of hydrogen Since the Pd layer or the Pd alloy layer exists only in the outermost layer of the multilayer structure film, the Pd layer or the Pd alloy layer and the metal layer are alternately repeated in a multilayer structure. The material cost of the hydrogen separation permeable membrane 1 can be reduced, and the hydrogen permeation performance can be improved.
[0054]
  In this embodiment, a high melting point transition metal having a body-centered cubic structure is used as the metal constituting the metal layer having a high hydrogen permeation performance. It has high permeation performance and is suitable as a material for the central portion of the hydrogen separation permeable membrane 1. In the case where the hydrogen separation and permeable membrane is used for separating hydrogen gas from a mixed gas of hydrocarbon gas such as methane gas and water vapor to produce high purity hydrogen gas, in a high temperature reactor of about 500 ° C. Therefore, it is advantageous in terms of heat resistance to use a metal having a high melting point as a metal having high hydrogen permeation performance.
[0055]
  As the metal constituting the metal layer having high hydrogen permeation performance, any of Ta, Nb, V, Ta alloy, Nb alloy, and V alloy is preferable. Ta, Nb, and V are high melting point transition metals having a body-centered cubic structure with high hydrogen permeation performance. Ta, Nb, V, Ta alloy, Nb alloy, and V alloy have higher tensile strength than Pd. Since it is large and rollability is good, it is easy to make the metal layer thin by rolling.
[0056]
  The hydrogen separation / permeation membrane 1 of the present embodiment can easily produce a hydrogen separation / permeation membrane in which strength and hydrogen permeation performance are balanced by setting the thickness of the membrane to 1 to 200 μm.
[0057]
  Since Pd is expensive and has a slower hydrogen diffusion rate than the metal generally used for the metal layer, the Pd layers 5a and 5b should be as thin as possible. In order to impart activity, the Pd layers 5a and 5b are necessary. Particularly when a metal that is easily oxidized such as Ta is used for the metal layer 4, if the Pd layers 5a and 5b are too thin, the metal layer (Ta layer) 4 An oxide film is formed on the surface of the surface exposed to air, and the hydrogen permeation performance deteriorates.
[0058]
  Therefore, particularly when a metal that is easily oxidized, such as Ta, is used for the metal layer 4, the thickness of the Pd layers 5a and 5b is set to 0.1 to 10 μm, more preferably 0.5 to 5 μm. It is possible to achieve a balance between permeation performance and material cost reduction of the hydrogen separation permeable membrane.
[0059]
  If the metal layer (Ta layer) 4 with high hydrogen permeation performance is formed with three or more layers (overlaid with three or more metal foils), the metal layer (Ta layer) 4 penetrates the film more than the two layers. As a result of the pinhole, the possibility that gas other than hydrogen will pass through the hydrogen separation permeable membrane 1 can be reduced, and the strength of the hydrogen separation permeable membrane 1 is improved. Further, if the strength of the hydrogen separation / permeation membrane 1 is improved, the thickness of the hydrogen separation / permeation membrane 1 can be made thinner than that of the two hydrogen separation / permeation membranes 1 in the internal metal layer (Ta layer) 4. The material cost of the permeable membrane 1 can be reduced.
[0060]
  As a method for manufacturing the hydrogen separation / permeable membrane 1 having a multilayer structure having the Pd layers 5a and 5b outside the metal layer (Ta layer) 4 having a high hydrogen permeation performance, a vapor phase growth method such as a sputtering method or a vapor deposition method can be used. However, the Pd foil or Pd alloy foil of the present embodiment and the metal foil (Ta foil) of metal (Ta) with high hydrogen permeation performance are overlapped so that the Pd foil is on the outside, and after diffusion bonding, rolling Can be manufactured if there is an apparatus for diffusion bonding and a rolling apparatus, and the thickness of the Pd layers 5a and 5b of the hydrogen separation permeable membrane 1 can be adjusted by the thickness and rolling of the Pd foil to be used. Alternatively, it is possible to form the thick Pd layers 5a and 5b at a lower cost with simple equipment than the vapor phase growth method such as the vapor deposition method, and to easily manufacture the hydrogen separation and permeable membrane 1 having the Pd layers 5a and 5b having a necessary thickness. be able to.
[0061]
  In the method for manufacturing a hydrogen separation permeable membrane according to the present embodiment, the overlapped foils are hot-pressed in a vacuum, so that the overlapped foils are easily diffusion bonded while suppressing the formation of an oxide film on the surface of the metal foil (layer). can do.
[0062]
  The manufacturing method of the hydrogen separation permeable membrane of the present embodiment can adjust the thickness of the hydrogen separation permeable membrane 1 by adjusting the number of metal foils (Ta foils) made of a metal having high hydrogen permeability performance. In addition, by increasing or decreasing the number of metal foils (Ta foils) to be stacked, the thickness of the hydrogen separation permeable membrane 1 can be easily changed while ensuring the necessary and sufficient thickness of the Pd layers 5a and 5b. .
[0063]
  Further, in the method for manufacturing the hydrogen separation / permeation membrane of the present embodiment, a plurality of layers in the hydrogen separation / permeation membrane 1 are laminated by adjusting the number of metal foils (Ta foils) made of a metal having high hydrogen permeation performance. The ratio between the thickness of the entire metal layer (Ta layer) 4 and the thickness of the Pd layers 5a and 5b can be adjusted, the number of metal foils (Ta foils) to be superimposed is increased and decreased, and rolling is adjusted as necessary. Thus, without preparing various types of metal foils (Ta foils) having different thicknesses, the thickness of the plurality of stacked metal layers (Ta layers) 4 in the hydrogen separation permeable membrane 1 and the thicknesses of the Pd layers 5a and 5b The ratio of can be easily changed.
[0064]
  In addition, if the lamination is performed after removing the oxide film on any one or more of the metal foils to be stacked, the hydrogen permeation hindrance due to the oxide film can be reduced, and the treatment for removing the oxide film includes hydrogen fluoride. When using a substance, the oxide film can be easily removed.
[0065]
  Hereinafter, an example will be described in which any one or more metal foils to be stacked are stacked after the oxide film is removed with a substance containing hydrogen fluoride.
[0066]
  First, two Ta foils are immersed in a 20-fold diluted hydrogen fluoride aqueous solution (36% stock solution) for 20 minutes and then replaced with ethanol. Further, 19 minutes after the Ta foil begins to be immersed in the aqueous hydrogen fluoride solution, the Pd foil is immersed in 6% nitric acid for 20 seconds and then replaced with ethanol.
[0067]
  Next, after replacing the Ta foil and the Pd foil with ethanol, the two Ta foils were quickly laminated so as to sandwich the two Ta foils, and after the lamination, vacuuming was performed immediately and maintained at 7 Pa, The heating device capable of heating the laminated Pd foil and Ta foil is operated from the time when the pressure reaches 7 Pa, and the temperature is raised to 900 ° C.
[0068]
  At this time, the operation of the vacuum means is controlled by ON / OFF control or the like so that a vacuum of 7 ± 3 Pa can be maintained, and the heating means is also controlled to be 900 ° C. ± 5 ° C. by ON / OFF control or PID control. Do.
[0069]
  Then, diffusion bonding is performed by maintaining 900 ± 5 ° C. and 7 ± 3 Pa for 5 hours from the time when the temperature reaches 900 ± 5 ° C. and 7 ± 3 Pa. Thereafter, a hydrogen separation / permeation thin film in which Pd and Ta are laminated is manufactured by rolling.
[0070]
  As a result, the manufactured hydrogen separation / permeation membrane is improved in hydrogen permeation performance by reducing obstacles caused by an oxide film during hydrogen permeation between two laminated Ta alloy membranes.
[0071]
【The invention's effect】
  As described above, according to the first aspect of the present invention, the number of metal layers inside the hydrogen separation / permeation membrane is increased to two or more, so that gases other than hydrogen pass through the hydrogen separation / permeation membrane by the pinholes penetrating the membrane. The possibility can be reduced. Moreover, there is an effect that the strength of the hydrogen separation / permeation membrane is improved as compared with a hydrogen separation / permeation membrane having a single internal metal layer. In addition, the thickness of the hydrogen separation / permeation membrane can be made thinner than that of a hydrogen separation / permeation membrane having a single metal layer, and in this case, the material cost of the hydrogen separation / permeation membrane can be reduced.
[0072]
  In addition, since the Pd layer or the Pd alloy layer is present only in the outermost layer of the multilayer film, the hydrogen separation permeable membrane is more than in the case of the multilayer structure in which the Pd layer or the Pd alloy layer and the metal layer are alternately repeated. The material cost can be reduced, and the hydrogen permeation performance can be improved.
[0073]
  Moreover, any metal of Ta, Nb, V, Ta alloy, Nb alloy, and V alloy has high hydrogen permeation performance, excellent heat resistance, and is suitable as a material for the central portion of the hydrogen separation permeable membrane. There is an effect that the metal layer can be easily thinned.
[0074]
  In addition, there is an effect that a hydrogen separation and permeable membrane can be easily manufactured by rolling and bonding a Pd foil or a Pd alloy foil and a metal foil having a high hydrogen permeation performance after diffusion bonding.
[0075]
  Further, by thickening the Pd layer or Pd alloy layer exposed to the high temperature side where solid solution of the Pd layer or Pd alloy layer and the metal layer is promoted, the action of the Pd layer or Pd alloy layer alone and the metal layer It can maintain the function of a single substance, and by increasing the thickness of the Pd layer or Pd alloy layer that is exposed to the high temperature side where the difference due to the coefficient of linear expansion increases, gas permeation other than hydrogen gas due to Pd or Pd alloy damage There is an effect that it can be reduced.
[0076]
  Further, the invention described in claim 2 has an effect that a hydrogen separation / permeation membrane having a good balance between strength and hydrogen permeation performance can be easily produced.
[0077]
  In addition, the invention described in claim 3 has an effect that the hydrogen permeation performance and the material cost reduction of the hydrogen separation permeable membrane can be both balanced.
[0078]
  In the invention according to claim 4, the total thickness of the laminated metal layers can be 0.5 to 1000 times the thickness of the Pd layer or Pd alloy layer.
[0079]
  In addition, the invention according to claim 5 is effective in providing a hydrogen separation / permeation membrane in which the ratio of the total thickness of the metal layers laminated to the thickness of the Pd layer or the Pd alloy layer is a preferable value.
[0080]
  Further, the invention according to claim 6 has an effect that it can provide a hydrogen separation and permeable membrane in which the ratio of the total thickness of the laminated metal layers and the thickness of the Pd layer or the Pd alloy layer is a practical value. is there.
[0081]
  In addition, the invention according to claim 7 can reduce the possibility that a gas other than hydrogen will pass through the hydrogen separation and permeation membrane by a pinhole penetrating the membrane, rather than a metal layer having two layers. There is an effect that the strength of the hydrogen separation permeable membrane is improved. Moreover, the thickness of the hydrogen separation / permeation membrane can be made thinner than that of the hydrogen separation / permeation membrane having two internal metal layers, and in this case, the material cost of the hydrogen separation / permeation membrane can be reduced.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of a hydrogen generation and separation apparatus according to an embodiment of the present invention.
[Explanation of symbols]
1 Hydrogen separation permeable membrane
2 reaction chamber
3 Separation chamber
4 Ta layer (metal layer)
5a, 5b Pd layer

Claims (7)

Ta、Nb、V、Ta合金、Nb合金、V合金のいずれかの金属からなり複数積層された金属層の両面にPd層またはPd合金層を設けた多層構造の水素分離透過膜により、炭化水素ガスと水蒸気とを300℃以上且つ1550℃以下の高温で反応させて水素ガスを生成させる反応室と、前記反応室で生成され前記水素分離透過膜を透過した高純度の水素ガスが流出する分離室とに区画し、前記水素分離透過膜における前記反応室に露出する側のPd層もしくはPd合金層の厚さを前記分離室に露出する側のPd層もしくはPd合金層の厚さより厚くした水素生成分離装置。 The hydrogen separation and permeation membrane with a multilayer structure in which a Pd layer or a Pd alloy layer is provided on both surfaces of a metal layer made of a metal of Ta, Nb, V, Ta alloy, Nb alloy, or V alloy , and the hydrocarbons A reaction chamber for generating hydrogen gas by reacting gas and water vapor at a high temperature of 300 ° C. or higher and 1550 ° C. or lower, and separation in which high-purity hydrogen gas generated in the reaction chamber and permeated through the hydrogen separation / permeation membrane flows out The hydrogen is separated into chambers, and the thickness of the Pd layer or Pd alloy layer on the hydrogen separation / permeation membrane exposed to the reaction chamber is larger than the thickness of the Pd layer or Pd alloy layer on the side exposed to the separation chamber Production separation device. 膜の厚みは1〜200μmである請求項1に記載の水素生成分離装置The hydrogen generation and separation apparatus according to claim 1, wherein the membrane has a thickness of 1 to 200 µm. 前記Pd層またはPd合金層の厚みは0.1〜10μmである請求項1または2に記載の水素生成分離装置The hydrogen generation and separation apparatus according to claim 1 or 2, wherein the Pd layer or the Pd alloy layer has a thickness of 0.1 to 10 µm. 前記複数積層された金属層の合計の厚みは、前記Pd層またはPd合金層の厚みの0.5倍以上且つ1000倍以下である請求項1から3のいずれか一項に記載の水素生成分離装置4. The hydrogen generation separation according to claim 1, wherein a total thickness of the plurality of stacked metal layers is 0.5 to 1000 times the thickness of the Pd layer or the Pd alloy layer. 5. Equipment . 前記複数積層された金属層の合計の厚みは、前記Pd層またはPd合金層の厚みの2倍以上且つ200倍以下である請求項1から3のいずれか一項に記載の水素生成分離装置4. The hydrogen generation and separation device according to claim 1, wherein a total thickness of the plurality of stacked metal layers is not less than twice and not more than 200 times the thickness of the Pd layer or the Pd alloy layer. 前記複数積層された金属層の合計の厚みは、前記Pd層またはPd合金層の厚みの10倍以上且つ100倍以下である請求項1から3のいずれか一項に記載の水素生成分離装置4. The hydrogen generation / separation device according to claim 1, wherein a total thickness of the plurality of stacked metal layers is not less than 10 times and not more than 100 times the thickness of the Pd layer or the Pd alloy layer. 5. 前記金属層を3層以上有する請求項1から6のいずれか一項に記載の水素生成分離装置The hydrogen generation / separation device according to any one of claims 1 to 6, comprising three or more metal layers.
JP2003082264A 2002-10-31 2003-03-25 Hydrogen separation permeable membrane, its production method and hydrogen generation and separation device Expired - Lifetime JP4512863B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003082264A JP4512863B2 (en) 2002-10-31 2003-03-25 Hydrogen separation permeable membrane, its production method and hydrogen generation and separation device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002318035 2002-10-31
JP2003082264A JP4512863B2 (en) 2002-10-31 2003-03-25 Hydrogen separation permeable membrane, its production method and hydrogen generation and separation device

Publications (2)

Publication Number Publication Date
JP2004202479A JP2004202479A (en) 2004-07-22
JP4512863B2 true JP4512863B2 (en) 2010-07-28

Family

ID=32828278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003082264A Expired - Lifetime JP4512863B2 (en) 2002-10-31 2003-03-25 Hydrogen separation permeable membrane, its production method and hydrogen generation and separation device

Country Status (1)

Country Link
JP (1) JP4512863B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4826123B2 (en) * 2005-04-15 2011-11-30 株式会社日立製作所 Hydrogen supply apparatus and hydrogen supply method
JP4661444B2 (en) * 2005-08-08 2011-03-30 トヨタ自動車株式会社 Hydrogen permeable membrane and method for producing hydrogen permeable membrane
JP4665656B2 (en) * 2005-08-10 2011-04-06 トヨタ自動車株式会社 Hydrogen permeable membrane and method for producing hydrogen permeable membrane
JP4747737B2 (en) * 2005-08-26 2011-08-17 住友金属鉱山株式会社 Hydrogen permeable alloy membrane and method for producing the same
JP2007111642A (en) * 2005-10-21 2007-05-10 Mitsubishi Heavy Ind Ltd Hydrogen separation membrane, method for producing hydrogen separation membrane, and hydrogen separation apparatus
JP5434075B2 (en) * 2007-12-26 2014-03-05 日産自動車株式会社 Membrane reactor
JP5526387B2 (en) 2010-03-29 2014-06-18 独立行政法人産業技術総合研究所 Defect-free hydrogen separation membrane, method for producing defect-free hydrogen separation membrane, and hydrogen separation method
EP2596851B1 (en) * 2011-11-24 2017-08-16 Samsung Electronics Co., Ltd Separation membrane, and apparatus including the separation membrane
KR101904212B1 (en) 2011-11-24 2018-10-04 삼성전자주식회사 Separation membrane, hydrogen separation membrane including separation membrane and device including hydrogen separation membrane

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05217451A (en) * 1992-02-05 1993-08-27 Furukawa Electric Co Ltd:The Sealed contact material
JPH0684528A (en) * 1992-09-02 1994-03-25 Fuji Electric Co Ltd Solid high polymer electrolyte type fuel cell
JPH11267477A (en) * 1998-03-25 1999-10-05 Tokyo Gas Co Ltd Hydrogen permeable membrane and its production
JPH11276866A (en) * 1998-03-31 1999-10-12 Tokyo Gas Co Ltd Hydrogen-permeable membrane and its manufacture
JP2000040641A (en) * 1998-07-24 2000-02-08 Asahi Glass Co Ltd Electric dual layer capacitor
JP2002128505A (en) * 2000-10-17 2002-05-09 Toyota Motor Corp Hydrogen extraction apparatus
JP3867539B2 (en) * 2001-10-02 2007-01-10 トヨタ自動車株式会社 Hydrogen permeable membrane and method for producing the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05217451A (en) * 1992-02-05 1993-08-27 Furukawa Electric Co Ltd:The Sealed contact material
JPH0684528A (en) * 1992-09-02 1994-03-25 Fuji Electric Co Ltd Solid high polymer electrolyte type fuel cell
JPH11267477A (en) * 1998-03-25 1999-10-05 Tokyo Gas Co Ltd Hydrogen permeable membrane and its production
JPH11276866A (en) * 1998-03-31 1999-10-12 Tokyo Gas Co Ltd Hydrogen-permeable membrane and its manufacture
JP2000040641A (en) * 1998-07-24 2000-02-08 Asahi Glass Co Ltd Electric dual layer capacitor
JP2002128505A (en) * 2000-10-17 2002-05-09 Toyota Motor Corp Hydrogen extraction apparatus
JP3867539B2 (en) * 2001-10-02 2007-01-10 トヨタ自動車株式会社 Hydrogen permeable membrane and method for producing the same

Also Published As

Publication number Publication date
JP2004202479A (en) 2004-07-22

Similar Documents

Publication Publication Date Title
US5393325A (en) Composite hydrogen separation metal membrane
KR100542551B1 (en) Hydrogen-selective metal membrane modules and method of forming the same
US6660069B2 (en) Hydrogen extraction unit
US7018446B2 (en) Metal gas separation membrane
JP4512863B2 (en) Hydrogen separation permeable membrane, its production method and hydrogen generation and separation device
JPH09248416A (en) Composite hydrogen-separating element and module
JPH08276112A (en) Module for separating oxygen from mixed gas containing oxygen
JP2007007565A (en) Reinforcing structure for hydrogen-permeable film, and its manufacturing method
JPH11276866A (en) Hydrogen-permeable membrane and its manufacture
JP2006272420A (en) Diffusion welding method for metallic foil
EP1663512B1 (en) Method for providing thin hydrogen separation membranes
US20020028345A1 (en) Process for preparing a composite metal membrane, the composite metal membrane prepared therewith and its use
JP5594017B2 (en) Hydrogen separation method and apparatus
TW201231145A (en) Hydrogen separation apparatus
US8226750B2 (en) Hydrogen purifier module with membrane support
JP2008080234A (en) Hydrogen permeable membrane of composite multi-layer structure and its manufacturing method
JP2007245123A (en) Hydrogen permeable membrane of composite multi-layer structure and its manufacturing method
JPH11276867A (en) Joining of hydrogen-permeable membrane
JP2009022946A (en) Hydrogen separation apparatus and process for manufacturing the same
JP4904651B2 (en) Hydrogen separator
JP5803928B2 (en) Hydrogen separation membrane
JP4682403B2 (en) CO removing device and fuel cell power generator using the same
JP2004148138A (en) Hydrogen separation membrane and hydrogen production apparatus using the same
JP2003334418A (en) Manufacturing method for hydrogen separator
JP2007245122A (en) Hydrogen permeable membrane of composite multi-layer structure and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060317

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060512

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071130

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090901

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091026

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20091023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100323

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100421

R151 Written notification of patent or utility model registration

Ref document number: 4512863

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term