JP4505952B2 - Manufacturing method of high purity ferric chloride aqueous solution - Google Patents

Manufacturing method of high purity ferric chloride aqueous solution Download PDF

Info

Publication number
JP4505952B2
JP4505952B2 JP2000172465A JP2000172465A JP4505952B2 JP 4505952 B2 JP4505952 B2 JP 4505952B2 JP 2000172465 A JP2000172465 A JP 2000172465A JP 2000172465 A JP2000172465 A JP 2000172465A JP 4505952 B2 JP4505952 B2 JP 4505952B2
Authority
JP
Japan
Prior art keywords
aqueous solution
ferric chloride
chloride aqueous
impurities
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000172465A
Other languages
Japanese (ja)
Other versions
JP2001354427A (en
Inventor
仲男 伝田
桂三 林
昭博 坂田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toagosei Co Ltd
Original Assignee
Toagosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toagosei Co Ltd filed Critical Toagosei Co Ltd
Priority to JP2000172465A priority Critical patent/JP4505952B2/en
Publication of JP2001354427A publication Critical patent/JP2001354427A/en
Application granted granted Critical
Publication of JP4505952B2 publication Critical patent/JP4505952B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は高純度塩化第二鉄水溶液の製造方法に関し、より詳しくは上水処理等における凝集剤としての用途等に適した、不純物を著しく低減化した高純度塩化第二鉄水溶液の製造方法に関する。
【0002】
【従来の技術】
上水処理に使用される凝集剤としては、ポリ塩化アルミニウム水溶液(PAC)や、硫酸アルミニウム水溶液(硫酸バンド)等が使用されているが、近年、アルミニウムがアルツハイマー病の原因物質と考えられるようになり、上水におけるかかる凝集剤の使用も問題視されてきている。一方、塩化第二鉄水溶液はポリ塩化アルミニウム水溶液や、硫酸アルミニウム水溶液と並び無機系凝集剤で有名ではあるが、上水での使用実績は殆どなく、主に下水処理等に使用されている。上水での使用がない理由として、重金属等の不純物を多く含むことが挙げられる。
【0003】
塩化第二鉄水溶液の製造方法としては、鉄材を塩酸に溶解して得た塩化第一鉄水溶液に塩素ガスを吹き込む等の酸化反応をさせて得る方法が挙げられる。現在では鉄鋼の酸洗廃液に鉄(くず鉄)を投入した後、塩素を吹き込み塩化第二鉄水溶液とする等の廃棄物のリサイクルによって得ることが多い。この方法では、使用する鉄材の不純物がそのまま塩化第二鉄水溶液に混入してくる。一般的に、鉄材にはマンガン等の金属不純物を多く含んでいる。
【0004】
塩化第二鉄水溶液の主要な用途としては、各種の金属をエッチングするためのエッチャントが挙げられる。鉄材、ニッケル含有の鉄鋼、銅製プリント基板等を前記エッチャントを用いてエッチングすると、エッチングされた金属がエッチャントに溶解すると共に、溶液中の塩化第二鉄は塩化第一鉄に還元されてエッチング効果が失われる。エッチング効果がなくなった廃液は、含有する金属不純分を除去しつつ再生され塩化第二鉄水溶液として再使用される。この再生法は、溶解してくる金属不純物の種類により各種のものが提案されており、殆どが金属鉄を使用する方法である。
【0005】
例えば、特開平5−255869号は、廃液中にニッケルを含む場合の再生法を、特開平1−167235号は銅およびニッケルを含む場合の再生法を開示している。これらの方法を採用し、塩化第二鉄水溶液を再生した場合においては、塩化第二鉄水溶液は最初の量に比べて増加することとなるため、この増加分を凝集剤用途等に使用すると効率的である。しかしながら、当該再生法によって得られた塩化第二鉄水溶液は、不純物成分が含まれるため、エッチャントとして使用するためには問題がなくても、凝集剤として使用した場合には問題となり、特に上水での場合には、重金属類が極めて少ない凝集剤が望まれるため、前記再生された塩化第二鉄水溶液の使用は困難であった。
【0006】
即ち、前述のとおり、エッチャントとして使用された廃液には、被エッチング金属中に含まれる不純物が混入している。この廃液の再生に関して、従来の鉄材等を投入して不純物金属と鉄材をイオン交換して除去する方法では、イオン化傾向の大きい金属の除去には不適であると同時に鉄材に含まれる不純物が逆に液に溶け込むことになる。従って、この方法による再生には限界がある。そこで、塩化第二鉄水溶液を更に高純度化するための方法が望まれていた。
【0007】
一般的に、溶液中の不純物を低減する方法としては晶析法が使用されるが、これを塩化第二鉄水溶液に適用した場合においては次の問題がある。塩化第二鉄水溶液から塩化第二鉄結晶を析出させると通常6水塩の結晶が得られるので、この結晶を取得して溶解させれば、高純度の塩化第二鉄水溶液を得ることが理論的には可能である。しかし、濃度60質量%以上の溶液では、すべての塩化第二鉄が結晶となるために不純物の除去は不可能であり、実際55質量%以上で析出させると結晶がシャーベット状となり液との分離が難しくなる。従って、これ以下の濃度で行わなければならないが、一方で冷却費用が少なくて済む20℃での結晶析出濃度は48質量%であるから、晶析法の場合は、極めて狭い濃度範囲での操作が必要となり、また効率的ではない。また、本来的に晶析法では、濃縮のためのエネルギーコストが大きいのが欠点である。
【0008】
また、アルカリあるいは各種のアニオンを含有する溶液を投入して、金属を水酸化物等にして除去する方法がある。特開平7−165427号には、アルカリを用いて中和して水酸化物の沈殿を得て、その後塩酸にて溶解し精製塩化第二鉄水溶液を得る方法が開示されている。しかし、この方法は、すべての金属不純物に適応できるという訳ではなく、例えばアルカリで沈殿反応する金属不純物は除去できず、アルカリ中の不純物も問題となる。また、アルカリを多量に必要とすることも欠点である。
【0009】
【発明が解決しようとする課題】
本発明の課題は、従来の再生方法で得られる塩化第二鉄水溶液における不純物の問題点を解決し、上水場等で使用が可能となる不純物が極めて少ない高純度塩化第二鉄水溶液を製造する方法を提供することである。
【0010】
【課題を解決するための手段】
本発明者等はエッチングに使用され不純物を多く含有する塩化第二鉄水溶液を原料として、不純物の少ない高純度塩化第二鉄液を製造する方法に関して、鋭意検討を重ねた結果、本発明を完成するに至った。
【0011】
即ち本発明は、不純物金属を含む塩化第二鉄水溶液を、鉄材と反応させて塩化第二鉄を塩化第一鉄に還元し、同時に鉄よりもイオン化傾向の低い金属を除去後塩化第一鉄濃度を40質量%以上の濃度へ濃縮、室温まで冷却し、析出した塩化第一鉄結晶を分離し、当該分離した結晶を水に溶解した後、酸化することを特徴とする上水処理凝集剤用の高純度塩化第二鉄水溶液の製造法である。
【0012】
【発明の実施の形態】
本発明の具体的手段は次のとおりである。
例えばエッチング等に使用された不純物金属を多量に含む塩化第二鉄水溶液に、鉄材(板状、塊状および/または粉状)を投入すると、当該不純物金属の一部が除去され同時に塩化第二鉄が塩化第一鉄に還元され、塩化第一鉄水溶液を得る。
【0013】
次に、その塩化第一鉄水溶液を濃縮し冷却することにより、塩化第一鉄結晶を得る。濃縮することにより、より多くの結晶を得ることができる。次に得られた結晶をフィルタープレス、遠心分離等の手段により液より分離した後、水に溶解する。溶解した塩化第一鉄水溶液は、塩素の吹き込み等により酸化することで純度の高い塩化第二鉄水溶液を得ることができる。通常の工業的製造法による塩素には金属不純物は殆ど含まれていないので、塩素から不純物が増加することはない。
【0014】
本発明を更に詳しく説明する。
エッチングに使用された塩化第二鉄水溶液は、還元された塩化第一鉄およびエッチングした鉄鋼等を由来とする不純物を含む水溶液である。不純物としては、例えばインバー鋼(鉄:64質量%、ニッケル:36質量%)をエッチングした場合はニッケルが、銅をエッチングした場合には銅を大量に含む。これらの不純物は、鉄材(板状、塊状および/または粉状)を投入することによって、金属鉄とのイオン交換反応によって鉄表面に金属体として析出させ、濾過により除去される。この技術としては、例えば特開平5-255869号等が挙げられる。
【0015】
しかしこの方法では、鉄よりもイオン化傾向の大きい金属は除去できず、更に系内に投入した鉄材の溶解によってこれらに含まれる金属が塩化鉄水溶液に溶出することとなる。鉄材中の不純物としては、マンガン、亜鉛、鉛、アルミニウム、砒素等が挙げられるが、これらの不純物はすべて鉄よりもイオン化傾向が大きく、従ってこの工程では除去することは不可能である。これら不純分は反応を進めていくうちに徐々に貯えられて、系内での濃度が高くなっていく。
【0016】
そこで、本発明は上記の鉄材によるイオン化傾向の低い金属の除去が終わった後の塩化第一鉄水溶液から晶析によって塩化第一鉄結晶を生成させる。晶析させるためには塩化第一鉄水溶液を濃縮する。濃度としては35質量%以上にするのが好ましく、更に好ましくは40質量%以上である。40質量%以上の濃度にすれば室温まで冷却すれば簡単に結晶が析出する。濃縮は通常の加熱濃縮の他真空濃縮でも良い。
【0017】
金属不純物の殆どは液相側に存在し、固相側に蓄積することは少ない。そこで、その結晶をフィルタープレスや遠心分離等によって濾過分離すれば、金属不純物が濃縮された塩化第一鉄水溶液と、金属不純物の少ない塩化第一鉄結晶が得られる。
【0018】
分離した塩化第一鉄結晶には溶液が付着しているので、水洗することにより更に金属不純物の少ない結晶を得ることができるので好ましい。この場合、結晶の溶解も同時に起きるので、その効果とロスとの見合いで水洗の度合いを決める必要がある。
上記工程で得られた不純物の少ない塩化第一鉄結晶を、水に溶解後、塩素等による酸化により、金属不純物の少ない高純度塩化第二鉄水溶液を製造することができる。
得られた高純度塩化第二鉄水溶液は、上水処理等における凝集剤としての用途に特に適したものであるが、エッチャント等の通常の用途にも使用可能である。
【0019】
【実施例】
以下実施例により本発明を具体的に説明する。但し、本発明は実施例のみに限定されるものではない。
【0020】
実施例1
エッチング廃液である塩化鉄水溶液(塩化第二鉄、塩化第一鉄、ニッケルを主成分)を、鉄材にて処理し、脱ニッケルした後の塩化第一鉄水溶液を得た。当該塩化第一鉄水溶液(FeCl2濃度41.9質量%)3000gを20℃に冷却したところ304gの塩化第一鉄の結晶を得た(結晶取得率10.1%)。
この結晶を水に溶解し、液中の不純物を分析したところ表1の通りであった。
この水溶液を塩素で酸化することにより高純度の塩化第二鉄水溶液を得ることができた。
【0021】
実施例2
実施例1と同様の脱ニッケルした後の塩化第一鉄水溶液をFeCl2濃度45質量%に真空濃縮した。当該水溶液1400gを20℃に冷却したところ400gの塩化第一鉄の結晶を得た(結晶取得率28.6%)。
この結晶を水に溶解し、液中の不純物を分析したところ表1の通りであった。
この水溶液を塩素で酸化することにより高純度の塩化第二鉄水溶液を得ることができた。
【0022】
比較例1
実施例1および実施例2で用いた脱ニッケルした後の塩化第一鉄水溶液を室温にて結晶しない程度まで水で希釈した。当該水溶液を分析した結果を表1に示す。
【0023】
【表1】

Figure 0004505952
【0024】
なお、次の金属は、各実施例、比較例共、下記測定限界以下であった。
Cu:1ppm以下、Al:1ppm以下、Cd:0.1ppm以下、Pb:1ppm以下、Hg:0.01ppm以下
【0025】
比較例2
塩化第二鉄水溶液(FeCl3濃度44質量%)を55質量%まで濃縮した。当該水溶液794gを室温(20℃)にて冷却、放置したが、4日経過しても結晶は析出しなかった。5日以降徐々に結晶の析出をはじめ、10日後には、ほぼ完全に結晶が析出した。
【0026】
この結果からわかるように、各実施例においてはいずれの金属不純物も比較例と比べると、大幅に減少していることが分かる。
【0027】
特に注目に値するのは、有毒であるが除去が困難である非金属のヒ素や、上水での使用を考えた時に問題となるアルミニウム、マンガン等の卑金属濃度が大幅に減少するということである。従って、本発明を用いて高純度塩化第二鉄水溶液を製造することは、極めて価値があるということが理解できる。
【0028】
【発明の効果】
本発明によれば、金属不純物の少ない高純度塩化第二鉄水溶液を製造することが可能であり、当該水溶液は、上水場等の広範囲な用途が期待できるものである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a high-purity ferric chloride aqueous solution, and more particularly, to a method for producing a high-purity ferric chloride aqueous solution with significantly reduced impurities, suitable for use as a flocculant in water treatment and the like. .
[0002]
[Prior art]
As an aggregating agent used for water treatment, an aqueous solution of polyaluminum chloride (PAC), an aqueous solution of aluminum sulfate (sulfuric acid band) or the like is used, but in recent years, aluminum is considered to be a causative agent of Alzheimer's disease Thus, the use of such a flocculant in clean water has been regarded as a problem. On the other hand, ferric chloride aqueous solution is famous for inorganic flocculants as well as polyaluminum chloride aqueous solution and aluminum sulfate aqueous solution, but has almost no use record in clean water and is mainly used for sewage treatment. The reason for not using it in clean water is that it contains many impurities such as heavy metals.
[0003]
Examples of the method for producing a ferric chloride aqueous solution include a method obtained by an oxidation reaction such as blowing chlorine gas into a ferrous chloride aqueous solution obtained by dissolving an iron material in hydrochloric acid. At present, it is often obtained by recycling waste such as introducing iron (scrap iron) into the pickling waste liquid of steel and then blowing chlorine into an aqueous ferric chloride solution. In this method, impurities of the iron material to be used are directly mixed into the ferric chloride aqueous solution. Generally, iron materials contain a large amount of metal impurities such as manganese.
[0004]
The main use of the aqueous ferric chloride solution is an etchant for etching various metals. When an iron material, nickel-containing steel, copper printed circuit board, etc. are etched using the etchant, the etched metal is dissolved in the etchant, and the ferric chloride in the solution is reduced to ferrous chloride, resulting in an etching effect. Lost. The waste liquid that has lost its etching effect is regenerated while removing the metal impurities contained therein and reused as a ferric chloride aqueous solution. Various regeneration methods have been proposed depending on the type of dissolved metal impurities, and most of them are methods using metallic iron.
[0005]
For example, Japanese Patent Laid-Open No. 5-255869 discloses a regeneration method when nickel is contained in the waste liquid, and Japanese Patent Laid-Open No. 1-167235 discloses a regeneration method when copper and nickel are contained. When these methods are employed and ferric chloride aqueous solution is regenerated, the ferric chloride aqueous solution will increase compared to the initial amount. Is. However, since the ferric chloride aqueous solution obtained by the regeneration method contains an impurity component, there is no problem to use it as an etchant, but it becomes a problem when used as a flocculant. In the case of (2), it is difficult to use the regenerated aqueous ferric chloride solution because a flocculant with very few heavy metals is desired.
[0006]
That is, as described above, impurities contained in the metal to be etched are mixed in the waste liquid used as the etchant. With regard to the regeneration of this waste liquid, the conventional method of removing and exchanging impurity metals and iron materials by introducing iron materials is not suitable for removing metals with a high ionization tendency and at the same time the impurities contained in the iron materials are reversed. It will dissolve in the liquid. Therefore, the reproduction by this method has a limit. Therefore, a method for further purifying the ferric chloride aqueous solution has been desired.
[0007]
In general, a crystallization method is used as a method for reducing impurities in the solution. However, when this method is applied to a ferric chloride aqueous solution, there are the following problems. When ferric chloride crystals are precipitated from a ferric chloride aqueous solution, hexahydrate crystals are usually obtained. If this crystal is obtained and dissolved, it is theoretically possible to obtain a high-purity ferric chloride aqueous solution. Is possible. However, in a solution with a concentration of 60% by mass or more, all the ferric chloride is crystallized, so it is impossible to remove impurities. In fact, when it is precipitated at 55% by mass or more, the crystal becomes sherbet and separates from the liquid. Becomes difficult. Therefore, the concentration must be less than this, but on the other hand, the crystal precipitation concentration at 20 ° C., which requires less cooling costs, is 48% by mass. Therefore, in the case of the crystallization method, the operation is performed in a very narrow concentration range. Is required and is not efficient. In addition, the crystallization method inherently has a disadvantage that the energy cost for concentration is large.
[0008]
In addition, there is a method in which a solution containing an alkali or various anions is added to remove the metal into a hydroxide or the like. Japanese Patent Application Laid-Open No. 7-165427 discloses a method of obtaining a purified ferric chloride aqueous solution by neutralizing with alkali to obtain a hydroxide precipitate and then dissolving in hydrochloric acid. However, this method is not applicable to all metal impurities. For example, metal impurities that precipitate with alkali cannot be removed, and impurities in alkali also become a problem. In addition, it requires a large amount of alkali.
[0009]
[Problems to be solved by the invention]
The object of the present invention is to solve the problem of impurities in the ferric chloride aqueous solution obtained by the conventional regeneration method, and to produce a high-purity ferric chloride aqueous solution with very few impurities that can be used in waterworks etc. Is to provide a way to do.
[0010]
[Means for Solving the Problems]
The present inventors completed the present invention as a result of intensive studies on a method for producing a high-purity ferric chloride solution containing few impurities using a ferric chloride aqueous solution containing a large amount of impurities used for etching. It came to do.
[0011]
The present invention provides a ferric chloride aqueous solution containing impurity metals is reacted with iron to reduce the ferric chloride ferrous chloride, at the same time after the removal of the metal lower ionization tendency than iron, the first chloride concentrated iron concentration to 40 mass% or more concentration, cooled to room temperature, the precipitated ferrous crystal chloride was separated, the separated crystals were dissolved in water, clean water treatment aggregation, which comprises oxidizing It is a manufacturing method of the high purity ferric chloride aqueous solution for agents .
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Specific means of the present invention are as follows.
For example, when an iron material (plate, lump and / or powder) is added to a ferric chloride aqueous solution containing a large amount of impurity metals used for etching or the like, a part of the impurity metals is removed and at the same time ferric chloride. Is reduced to ferrous chloride to obtain an aqueous ferrous chloride solution.
[0013]
Next, the ferrous chloride crystal is obtained by concentrating and cooling the ferrous chloride aqueous solution. By concentrating, more crystals can be obtained. Next, the obtained crystal is separated from the liquid by means of a filter press, centrifugal separation or the like and then dissolved in water. The dissolved ferrous chloride aqueous solution can be oxidized by blowing chlorine or the like to obtain a high-purity ferric chloride aqueous solution. Chlorine produced by ordinary industrial production methods contains almost no metal impurities, so impurities do not increase from chlorine.
[0014]
The present invention will be described in more detail.
The aqueous ferric chloride solution used for the etching is an aqueous solution containing impurities derived from reduced ferrous chloride, etched steel, and the like. As impurities, for example, invar steel (iron: 64% by mass, nickel: 36% by mass) contains a large amount of nickel when etched, and a large amount of copper when etched. By introducing an iron material (plate, lump and / or powder), these impurities are deposited as a metal body on the iron surface by an ion exchange reaction with metallic iron, and are removed by filtration. As this technique, for example, JP-A-5-2555869 can be cited.
[0015]
However, in this method, a metal having a higher ionization tendency than iron cannot be removed, and further, the metal contained therein is eluted into the aqueous iron chloride solution by dissolution of the iron material introduced into the system. The impurities in the iron material include manganese, zinc, lead, aluminum, arsenic, etc., but these impurities all have a higher ionization tendency than iron, and therefore cannot be removed in this step. These impurities are gradually stored as the reaction proceeds, and the concentration in the system increases.
[0016]
Therefore, in the present invention, ferrous chloride crystals are generated by crystallization from the ferrous chloride aqueous solution after the removal of the metal having a low ionization tendency by the iron material is completed. To crystallize, the aqueous ferrous chloride solution is concentrated. The concentration is preferably 35% by mass or more, and more preferably 40% by mass or more. When the concentration is 40% by mass or more, crystals are easily precipitated by cooling to room temperature. Concentration may be vacuum concentration in addition to normal heating concentration.
[0017]
Most metal impurities are present on the liquid phase side and rarely accumulate on the solid phase side. Therefore, if the crystals are filtered and separated by a filter press, centrifugal separation or the like, ferrous chloride aqueous solution enriched with metal impurities and ferrous chloride crystals with few metal impurities can be obtained.
[0018]
Since the solution is attached to the separated ferrous chloride crystals, it is preferable because crystals with less metal impurities can be obtained by washing with water. In this case, since the dissolution of crystals also occurs at the same time, it is necessary to determine the degree of washing with the balance between the effect and the loss.
A high-purity ferric chloride aqueous solution with few metal impurities can be manufactured by dissolving the ferrous chloride crystal with few impurities obtained in the above step in water and then oxidizing with chlorine or the like.
The obtained high-purity ferric chloride aqueous solution is particularly suitable for use as a flocculant in water treatment or the like, but can also be used for ordinary uses such as an etchant.
[0019]
【Example】
The present invention will be specifically described below with reference to examples. However, the present invention is not limited to the examples.
[0020]
Example 1
An aqueous ferric chloride solution (mainly composed of ferric chloride, ferrous chloride, and nickel) as an etching waste liquid was treated with an iron material to obtain a ferrous chloride aqueous solution after nickel removal. When 3000 g of the ferrous chloride aqueous solution (FeCl 2 concentration 41.9% by mass) was cooled to 20 ° C., 304 g of ferrous chloride crystals were obtained (crystal acquisition rate 10.1%).
The crystals were dissolved in water and analyzed for impurities in the liquid.
By oxidizing this aqueous solution with chlorine, a highly pure ferric chloride aqueous solution could be obtained.
[0021]
Example 2
The same ferrous chloride aqueous solution after nickel removal as in Example 1 was vacuum concentrated to a FeCl 2 concentration of 45 mass%. When 1400 g of the aqueous solution was cooled to 20 ° C., 400 g of ferrous chloride crystals were obtained (crystal acquisition rate 28.6%).
The crystals were dissolved in water and analyzed for impurities in the liquid.
By oxidizing this aqueous solution with chlorine, a highly pure ferric chloride aqueous solution could be obtained.
[0022]
Comparative Example 1
The nickel-free ferrous chloride solution used in Example 1 and Example 2 was diluted with water to the extent that it did not crystallize at room temperature. The results of analyzing the aqueous solution are shown in Table 1.
[0023]
[Table 1]
Figure 0004505952
[0024]
In addition, the following metal was below the following measurement limit in each Example and the comparative example.
Cu: 1 ppm or less, Al: 1 ppm or less, Cd: 0.1 ppm or less, Pb: 1 ppm or less, Hg: 0.01 ppm or less
Comparative Example 2
A ferric chloride aqueous solution (FeCl 3 concentration 44 mass%) was concentrated to 55 mass%. 794 g of the aqueous solution was cooled and allowed to stand at room temperature (20 ° C.), but no crystals precipitated even after 4 days. Crystals began to gradually precipitate after 5 days, and almost completely after 10 days.
[0026]
As can be seen from this result, in each example, it can be seen that all the metal impurities are greatly reduced as compared with the comparative example.
[0027]
Of particular note is that the concentration of non-metallic arsenic, which is toxic but difficult to remove, and the concentration of base metals such as aluminum and manganese, which are problematic when used in clean water, are greatly reduced. . Therefore, it can be understood that it is extremely valuable to produce a high purity ferric chloride aqueous solution using the present invention.
[0028]
【The invention's effect】
According to the present invention, it is possible to produce a high-purity ferric chloride aqueous solution with few metal impurities, and the aqueous solution can be expected to be used in a wide range of applications such as water supply fields.

Claims (2)

不純物金属を含む塩化第二鉄水溶液を、鉄材と反応させて塩化第二鉄を塩化第一鉄に還元し、同時に鉄よりもイオン化傾向の低い金属を除去後塩化第一鉄濃度を40質量%以上の濃度へ濃縮、室温まで冷却し、析出した塩化第一鉄結晶を分離し、当該分離した結晶を水に溶解した後、酸化することを特徴とする上水処理凝集剤用の高純度塩化第二鉄水溶液の製造法。A ferric chloride aqueous solution containing an impurity metal is reacted with an iron material to reduce ferric chloride to ferrous chloride. At the same time, a metal having a lower ionization tendency than iron is removed , and then the ferrous chloride concentration is 40 masses. High purity for water treatment flocculant characterized by concentrating to a concentration of at least% , cooling to room temperature , separating precipitated ferrous chloride crystals, dissolving the separated crystals in water, and then oxidizing Manufacturing method of ferric chloride aqueous solution. 不純物金属を含む塩化第二鉄水溶液が、金属エッチングに使用した後の廃液であることを特徴とする上水処理凝集剤用の請求項1の高純度塩化第二鉄水溶液の製造法。Aqueous solution of ferric chloride containing impurities metals, high-purity preparation of ferric chloride aqueous solution according to claim 1 for the clean water treatment coagulant, which is a waste after being used for the metal etching.
JP2000172465A 2000-06-08 2000-06-08 Manufacturing method of high purity ferric chloride aqueous solution Expired - Fee Related JP4505952B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000172465A JP4505952B2 (en) 2000-06-08 2000-06-08 Manufacturing method of high purity ferric chloride aqueous solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000172465A JP4505952B2 (en) 2000-06-08 2000-06-08 Manufacturing method of high purity ferric chloride aqueous solution

Publications (2)

Publication Number Publication Date
JP2001354427A JP2001354427A (en) 2001-12-25
JP4505952B2 true JP4505952B2 (en) 2010-07-21

Family

ID=18674862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000172465A Expired - Fee Related JP4505952B2 (en) 2000-06-08 2000-06-08 Manufacturing method of high purity ferric chloride aqueous solution

Country Status (1)

Country Link
JP (1) JP4505952B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102006249B1 (en) * 2016-11-25 2019-08-02 (주)케이엠씨 Circulation concentrating method for producing highly concentrated iron chloride recycling waste etching solution
CN112850797A (en) * 2020-10-26 2021-05-28 斯瑞尔环境科技股份有限公司 Production method of ultrapure ferric trichloride

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04104912A (en) * 1990-08-24 1992-04-07 Daido Chem Eng Kk Method for treating and recovering etching waste liquor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3739845B2 (en) * 1995-12-11 2006-01-25 鶴見曹達株式会社 Treatment method of ferric chloride waste liquid
JP3492067B2 (en) * 1995-12-28 2004-02-03 富士化水工業株式会社 Recycling treatment of etching waste liquid

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04104912A (en) * 1990-08-24 1992-04-07 Daido Chem Eng Kk Method for treating and recovering etching waste liquor

Also Published As

Publication number Publication date
JP2001354427A (en) 2001-12-25

Similar Documents

Publication Publication Date Title
CN105293588B (en) Preparation method for battery grade ferrous sulfate heptahydrate crystal
WO2014115686A1 (en) Method for producing high-purity nickel sulfate and method for removing impurity element from solution containing nickel
JP2697778B2 (en) Treatment of cupric chloride waste liquid
JP3943583B2 (en) High purity copper sulfate and method for producing the same
JPH05132304A (en) Method for recovering sulfuric acid from waste sulfuric acid containing metal sulfate
JP4505952B2 (en) Manufacturing method of high purity ferric chloride aqueous solution
GB2171686A (en) Purification of molybdenum trioxide
JP3739845B2 (en) Treatment method of ferric chloride waste liquid
JPH01153532A (en) Purification of ferrous ion-containing solution
JP4505951B2 (en) Method for producing high purity ferric chloride aqueous solution
CN106367589B (en) A kind of low consumed high purity manganese sulfate solution manufacturing method of short route
JP2004203695A (en) Method for recovering tantalum compound and/or niobium compound from waste and/or its solution containing tantalum fluoride and/or niobium fluoride
JP3459863B2 (en) Waste hydrochloric acid treatment method
JP2994405B2 (en) Purification method of alkali hydroxide
JP4351912B2 (en) Method for purifying niobium compound and / or tantalum compound
JP3188573B2 (en) Purification method of iron chloride solution
JP4161636B2 (en) Method for removing indium from indium-containing ferrous chloride aqueous solution
JP2004521060A (en) Method for removing sodium sulfate from nickel hydroxide waste stream
US4814148A (en) Method for removing arsenic from ammonium dimolybdate
TWI269781B (en) Purification method for producing high purity niobium compound and/or tantalum compound
JPH085676B2 (en) A method of recovering high-purity iron sulfate from the sulfuric acid pickling waste liquid of stainless steel
GB2400368A (en) Process for purifying an aqueous solution of nickel sulphate
JP4322008B2 (en) Method for recovering tantalum compound and / or niobium compound
JP2022180230A (en) Method for increasing the purity of iron(iii) chloride
JP2022180228A (en) Method for increasing the purity of iron(ii) chloride

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090526

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090701

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100406

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100419

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090701

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140514

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees