JP4504836B2 - Screw rotor manufacturing method - Google Patents

Screw rotor manufacturing method Download PDF

Info

Publication number
JP4504836B2
JP4504836B2 JP2005047620A JP2005047620A JP4504836B2 JP 4504836 B2 JP4504836 B2 JP 4504836B2 JP 2005047620 A JP2005047620 A JP 2005047620A JP 2005047620 A JP2005047620 A JP 2005047620A JP 4504836 B2 JP4504836 B2 JP 4504836B2
Authority
JP
Japan
Prior art keywords
screw rotor
pipe
mold
shaped material
female
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005047620A
Other languages
Japanese (ja)
Other versions
JP2006233816A (en
Inventor
皇二 和田
達知 西原
優和 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Industrial Equipment Systems Co Ltd
Original Assignee
Hitachi Industrial Equipment Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Industrial Equipment Systems Co Ltd filed Critical Hitachi Industrial Equipment Systems Co Ltd
Priority to JP2005047620A priority Critical patent/JP4504836B2/en
Publication of JP2006233816A publication Critical patent/JP2006233816A/en
Application granted granted Critical
Publication of JP4504836B2 publication Critical patent/JP4504836B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Description

本発明は、スクリュー流体機械に用いられるスクリューロータに係わり、詳細には、螺旋状の歯を有する中空のスクリューロータの製造方法に関する。   The present invention relates to a screw rotor used in a screw fluid machine, and more particularly, to a method for manufacturing a hollow screw rotor having spiral teeth.

スクリュー流体機械の一例であるスクリュー圧縮機は、回転軸が平行でかつ螺旋状の歯部が噛み合うようにそれぞれ回転する雄ロータ及び雌ロータと、これら雄ロータ及び雌ロータを収納するケーシングとを備えており、雄ロータ及び雌ロータの歯溝とケーシングの内壁とで被圧縮流体を圧縮する作動室が形成されている。そして、雄ロータ及び雌ロータ(以降、これらを総称してスクリューロータと称す)等が被圧縮流体の断熱圧縮により温度上昇して熱膨張するため、スクリューロータ同士の隙間及びスクリューロータとケーシングの隙間は、熱膨張のぶんだけ余裕をみて大きくし、運転中に各部材が接触して損傷するのを防止するようになっている。このとき、スクリューロータの上昇温度及びそれに伴う熱膨張は一様または一定でなく、最大熱膨張を考慮して隙間を大きくするので、圧縮機の性能が低下する要因となっていた。また、スクリューロータが中実構造である場合は、慣性モーメントが大きいため、大きな起動トルクが必要となって起動制御が困難になり、また例えば省エネを目的とした回転数制御も困難になる。   A screw compressor, which is an example of a screw fluid machine, includes a male rotor and a female rotor that rotate in parallel so that their rotational axes are parallel and mesh with helical teeth, and a casing that houses these male and female rotors. The working chamber for compressing the fluid to be compressed is formed by the tooth grooves of the male rotor and the female rotor and the inner wall of the casing. Since the male rotor and the female rotor (hereinafter collectively referred to as a screw rotor) and the like increase in temperature due to adiabatic compression of the fluid to be compressed and thermally expand, the clearance between the screw rotors and the clearance between the screw rotor and the casing Is increased with a margin of thermal expansion to prevent contact and damage of each member during operation. At this time, the rising temperature of the screw rotor and the accompanying thermal expansion are not uniform or constant, and the gap is increased in consideration of the maximum thermal expansion, which causes the performance of the compressor to deteriorate. In addition, when the screw rotor has a solid structure, since the moment of inertia is large, a large starting torque is required, which makes starting control difficult, and for example, rotational speed control for the purpose of energy saving becomes difficult.

そこでこれに対応するため、中空部に冷却媒体を流通することが可能な中空構造のスクリューロータが提唱されている。中空構造のスクリューロータの一例としては、従来、噛み合い部及び底部を板材で一体成形した中空のロータ本体と、このロータ本体の底部の内周側に嵌入され例えばスポット溶接等で接合された中空のロータシャフトとを備えた構成が開示されている(例えば、特許文献1参照)。この従来技術におけるロータ本体の製造方法は、ロータ本体の外周側形状を持った分割金型を用い、この分割金型の内部に適度なプレス性(延性)を持ったパイプ状の素材を配置し、このパイプ状素材の内側から高圧流体で加圧し、これによってパイプ状素材を膨張させて金型に押圧し、上記噛み合い部及び底部を成形するようになっている。   Therefore, in order to cope with this, a screw rotor having a hollow structure capable of circulating a cooling medium in the hollow portion has been proposed. As an example of a screw rotor having a hollow structure, conventionally, a hollow rotor body in which a meshing portion and a bottom portion are integrally formed with a plate material, and a hollow rotor that is fitted on the inner peripheral side of the bottom portion of the rotor body and joined by, for example, spot welding or the like. The structure provided with the rotor shaft is disclosed (for example, refer patent document 1). The rotor body manufacturing method in this prior art uses a split mold having the outer peripheral shape of the rotor body, and a pipe-shaped material having an appropriate pressability (ductility) is arranged inside the split mold. The pipe-shaped material is pressurized with a high-pressure fluid from the inside, and thereby the pipe-shaped material is expanded and pressed against the mold to form the meshing portion and the bottom portion.

特開平8−284856号公報JP-A-8-284856

しかしながら、上記従来技術には以下のような課題が存在する。
すなわち、上記ロータ本体の製造方法では、パイプ状素材を内側から加圧して膨張させ金型に押圧して成形するようになっており、パイプ状素材の谷部はほとんど延びず、噛み合い部の厚み寸法が歯元から歯先に向かうに従って徐々に薄くなるように成形する。このようなパイプ状素材の塑性変形方法では、比較的強度の小さい塑性材料を用いなければ容易に行えず、言い換えれば、スクリュー流体機械等に必要とされる高強度なパイプ状素材を塑性変形することは困難であった。
However, the following problems exist in the above-described conventional technology.
That is, in the above rotor body manufacturing method, the pipe-shaped material is pressed and expanded from the inside and pressed against the mold, and the valley of the pipe-shaped material hardly extends, and the thickness of the meshing portion Molding is performed so that the dimensions gradually decrease from the tooth base toward the tooth tip. Such a plastic deformation method for a pipe-shaped material cannot be easily performed unless a plastic material having a relatively low strength is used. In other words, a high-strength pipe-shaped material required for a screw fluid machine or the like is plastically deformed. It was difficult.

本発明の目的は、高強度なパイプ状素材でも容易に塑性加工することができ、生産性を向上することができるスクリューロータの製造方法を提供することにある。   An object of the present invention is to provide a method of manufacturing a screw rotor that can be easily plastically processed even with a high-strength pipe-shaped material and can improve productivity.

(1)上記目的を達成するために、本発明は、螺旋状の歯を有する中空のスクリューロータの製造方法において、軸方向に向かって軸廻りの回転角度が徐々に大きくなるねじれ回転機構を有する雌型を用い、この雌型内に配置したパイプ状素材の内部及び軸方向縮短側に圧力を加えることにより、前記パイプ状素材を縮短しかつ前記雌型のねじれ回転機構によって前記パイプ状素材をねじれ変形させながら前記螺旋状の歯を成形する。   (1) In order to achieve the above object, the present invention has a torsional rotation mechanism in which the rotation angle about the axis gradually increases in the axial direction in the method of manufacturing a hollow screw rotor having spiral teeth. Using a female mold, pressure is applied to the inside of the pipe-shaped material arranged in the female mold and to the axially shortened side, so that the pipe-shaped material is contracted and the pipe-shaped material is reduced by the female torsion rotating mechanism. The helical teeth are formed while twisting and deforming.

本発明においては、軸方向に向かって軸廻りの回転角度が徐々に大きくなるねじれ回転機構を有する雌型を用いて、スクリューロータを製造する。詳細には、雌型内に配置したパイプ状素材の軸方向縮短側に圧力を加えると、パイプ状素材が縮短(座屈)し、また軸方向縮短側圧力の分力が回転力として働いて(さらに例えばパイプ状素材に加えた回転力により)雌型のねじれ回転機構が動作し、このねじれ回転機構によってパイプ状素材がねじれ変形する。また同時に、パイプ状素材の内部に例えば圧縮流体(高温・高圧水等)を流通すると、その内部圧力によってパイプ状素材が雌型に押圧され螺旋状の歯を成形する。このように本実施形態においては、ねじれ回転機構を有する雌型を用いることにより、パイプ状素材を縮短するとともにねじれ変形させながら螺旋状の歯を成形することができる。これにより、パイプ状素材の厚み寸法がほぼ均一となるように塑性加工することができ、高強度なパイプ状素材でも容易に塑性加工することができる。また、ニアネットシェイプに塑性加工することができるので、切削加工等の加工工数を低減し、コスト低減を図ることができる。したがって、スクリューロータの生産性を向上することができる。   In the present invention, the screw rotor is manufactured using a female die having a torsional rotation mechanism in which the rotation angle around the axis gradually increases in the axial direction. Specifically, when pressure is applied to the axially shortened side of the pipe-shaped material placed in the female mold, the pipe-shaped material is contracted (buckled), and the component force of the axially contracted side pressure acts as a rotational force. The female torsion rotating mechanism operates (for example, by a rotational force applied to the pipe-shaped material), and the pipe-shaped material is torsionally deformed by the torsion rotating mechanism. At the same time, when a compressed fluid (such as high-temperature or high-pressure water) is circulated inside the pipe-shaped material, the pipe-shaped material is pressed against the female mold by the internal pressure to form a helical tooth. As described above, in the present embodiment, by using a female die having a torsion rotating mechanism, a helical tooth can be formed while shortening and twisting the pipe-shaped material. As a result, plastic processing can be performed so that the thickness dimension of the pipe-shaped material is substantially uniform, and even a high-strength pipe-shaped material can be easily plastic-processed. In addition, since plastic processing can be performed into a near net shape, the number of processing steps such as cutting can be reduced, and the cost can be reduced. Therefore, the productivity of the screw rotor can be improved.

(2)上記目的を達成するために、また本発明は、螺旋状の歯を有する中空のスクリューロータの製造方法において、軸方向に向かって軸廻りの回転角度が徐々に大きくなるねじれ回転機構を有する雌型を用い、この雌型内に配置したパイプ状素材の内部及び軸方向縮短側に圧力を加えるとともに回転力を加えることにより、前記パイプ状素材を縮短しかつ前記雌型のねじれ回転機構によって前記パイプ状素材をねじれ変形させながら前記螺旋状の歯を成形する。   (2) In order to achieve the above object, the present invention also provides a method for producing a hollow screw rotor having spiral teeth, wherein a torsion rotating mechanism in which the rotation angle about the axis gradually increases in the axial direction. The pipe-shaped material is shortened by applying pressure to the inside and the axially shortened side of the pipe-shaped material disposed in the female mold, and torsional rotation mechanism of the female-type Thus, the helical teeth are formed while twisting and deforming the pipe-shaped material.

(3)上記(1)又は(2)において、好ましくは、前記雌型は、型容器と、この型容器内に軸方向に積層され、前記スクリューロータの歯の径方向断面と同じ形状の穴溝を有する複数の型板とを備えており、前記雌型のねじれ回転機構は、前記型容器に対する前記複数の型板の回転角度をそれぞれ制限する回転角度制限手段を設ける。   (3) In the above (1) or (2), preferably, the female die is stacked in the axial direction in the die container and in the die container, and has the same shape as the radial cross section of the teeth of the screw rotor. A plurality of mold plates having grooves, and the female torsional rotation mechanism includes rotation angle limiting means for limiting the rotation angles of the plurality of template plates with respect to the mold container.

(4)上記(3)において、好ましくは、前記回転角度制限手段は、前記型容器の内周側に軸方向に延設した突部と、この型容器の突部が遊嵌されるように前記複数の型板の外周側にそれぞれ形成した溝部とで構成する。   (4) In the above (3), preferably, the rotation angle limiting means is configured such that the protrusion extending in the axial direction on the inner peripheral side of the mold container and the protrusion of the mold container are loosely fitted. It is comprised with the groove part each formed in the outer peripheral side of the said some template.

(5)上記(3)において、また好ましくは、前記回転角度制限手段は、前記複数の型板の外周側にそれぞれ設けた突部と、これら複数の型板の突部が遊嵌されるように前記型容器の内周側に形成した溝部とで構成する。   (5) In the above (3), preferably, the rotation angle limiting means is configured such that the protrusions provided on the outer peripheral sides of the plurality of template plates and the protrusions of the plurality of template plates are loosely fitted. And a groove formed on the inner peripheral side of the mold container.

本発明によれば、パイプ状素材の厚み寸法がほぼ均一となるように塑性加工することができるため、高強度なパイプ状素材でも容易に塑性加工することができる。したがって、スクリューロータの生産性を向上することができる。   According to the present invention, since plastic processing can be performed so that the thickness dimension of the pipe-shaped material is substantially uniform, even a high-strength pipe-shaped material can be easily plastic-processed. Therefore, the productivity of the screw rotor can be improved.

以下、本発明の一実施形態を、図面を参照しつつ説明する。
図1は、本実施形態のスクリューロータの製造方法によって製造したスクリューロータの構造を表す軸方向断面図である。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is an axial cross-sectional view showing the structure of a screw rotor manufactured by the screw rotor manufacturing method of the present embodiment.

この図1において、スクリューロータ1は、スクリュー圧縮機等に用いられる雄ロータであり、外周側に形成された螺旋状の歯部2と、この歯部2に略相似形状の中空部3と、歯部2の軸方向両端側(図1中上・下側)に形成された円筒状の軸部4A,4Bとを有する。なお、軸部4A,4Bの軸方向外側には、図示しない略円筒状の軸部材がそれぞれ接合される。   In FIG. 1, a screw rotor 1 is a male rotor used in a screw compressor or the like, a helical tooth portion 2 formed on the outer peripheral side, a hollow portion 3 having a shape substantially similar to the tooth portion 2, Cylindrical shaft portions 4A and 4B formed on both ends in the axial direction of the tooth portion 2 (upper and lower sides in FIG. 1). A substantially cylindrical shaft member (not shown) is joined to the outside in the axial direction of the shaft portions 4A and 4B.

このような中空構造のスクリューロータ1は、例えば中空部2に冷却媒体を流通すると、スクリューロータ1の回転に伴って冷却媒体が螺旋状の中空部2に沿うように移動して効率よく冷却するので、スクリューロータ1の熱膨張を小さくするようになっている。その結果、スクリュー圧縮機の性能及び信頼性を向上するようになっている。また、中実構造のスクリューロータに比べ重量が低減されるので、慣性モーメントが小さくなり、起動トルクが低減して起動制御が向上するとともに回転数制御の応答性も向上するようになっている。   For example, when a cooling medium is circulated through the hollow portion 2, the screw rotor 1 having such a hollow structure moves along the spiral hollow portion 2 as the screw rotor 1 rotates, thereby efficiently cooling the hollow rotor 2. Therefore, the thermal expansion of the screw rotor 1 is reduced. As a result, the performance and reliability of the screw compressor are improved. Further, since the weight is reduced as compared with a solid structure screw rotor, the moment of inertia is reduced, the starting torque is reduced, the starting control is improved, and the responsiveness of the rotational speed control is also improved.

次に、本実施形態によるスクリューロータの製造方法について説明する。図2は、上記スクリューロータ1の製造に用いる雌型の全体構造を表す軸方向断面図で、パイプ状素材を塑性加工する前の状態を表し、図3は、雌型を構成する型板の詳細構造を表す斜視図であり、図4は、図2中矢印IV方向から見た矢視平面図である。また、図5は、雌型の全体構造を表す軸方向断面図で、パイプ状素材を塑性加工した後の状態を表し、図6は、図5中矢印VI方向から見た矢視平面図である。なお、図4及び図6においては、便宜上、パイプ状素材を図示せず、複数枚の型板のうち3枚の型板を代表して図示している。   Next, the manufacturing method of the screw rotor according to the present embodiment will be described. FIG. 2 is an axial sectional view showing the overall structure of the female die used for manufacturing the screw rotor 1, and shows a state before the pipe-shaped material is plastically processed. FIG. 3 shows a template of the female die. FIG. 4 is a perspective view showing a detailed structure, and FIG. 4 is a plan view as seen from an arrow IV direction in FIG. FIG. 5 is an axial sectional view showing the overall structure of the female mold, showing a state after plastic processing of the pipe-shaped material, and FIG. 6 is a plan view as seen from the direction of arrow VI in FIG. is there. In FIGS. 4 and 6, for convenience, the pipe-shaped material is not shown, and three of the template plates are shown as representatives.

これら図2〜図6において、例えばステンレス製のパイプ状素材5を塑性加工するための雌型6は、円筒状の型容器7と、この型容器7内に軸方向(図2及び図5中上下方向)に積層された複数の円盤状の型板8とを備えており、軸方向に向かうに従って(本実施形態では、図2及び図5中下方側に向かうに従って)型板8の軸廻りの回転角度が徐々に大きくなるねじれ回転機構9が設けられている。   2 to 6, for example, a female mold 6 for plastic processing of a pipe-shaped material 5 made of stainless steel has a cylindrical mold container 7 and an axial direction in the mold container 7 (in FIGS. 2 and 5). And a plurality of disk-shaped template plates 8 stacked in the vertical direction, and in the axial direction (in this embodiment, toward the lower side in FIGS. 2 and 5) There is provided a torsional rotation mechanism 9 in which the rotation angle gradually increases.

型容器7は、例えば円筒状の側壁7aと円盤状の底板7bとが一体形成されており、その底板7bの中心部には、パイプ状素材5を挿通可能な円形状の開口10が形成されている。また、型容器7の側壁7aの内周側には、径方向断面形状が同じで軸方向に延設した突部11が形成されている。   In the mold container 7, for example, a cylindrical side wall 7a and a disk-shaped bottom plate 7b are integrally formed, and a circular opening 10 through which the pipe-shaped material 5 can be inserted is formed at the center of the bottom plate 7b. ing. Further, a projection 11 having the same radial cross-sectional shape and extending in the axial direction is formed on the inner peripheral side of the side wall 7 a of the mold container 7.

型板8の中心部には、上記スクリューロータ1の歯部2の径方向断面外周側形状と同じ形状の穴溝12が形成されている。そして、軸方向に積層された複数の型板8の回転位置を互いにずらすことにより、それら複数の穴溝12の全体形状が上記スクリューロータ1の歯部2の外周側形状とほぼ同じにすることが可能となっている。また、型板8の板厚は、上記した複数の穴溝12の全体形状が滑らかとなるように、かつ型板8自体の強度を十分確保できるように設計した厚み寸法となっている。なお、複数の型板8の穴溝12中心と型容器7の底板7bの開口10中心は、同じ軸線上に配置されている。   A hole groove 12 having the same shape as the outer peripheral side shape of the radial section of the tooth portion 2 of the screw rotor 1 is formed in the center portion of the template 8. Then, by shifting the rotational positions of the plurality of template plates 8 laminated in the axial direction, the overall shape of the plurality of hole grooves 12 is made substantially the same as the outer peripheral side shape of the tooth portion 2 of the screw rotor 1. Is possible. Further, the thickness of the template 8 is a thickness dimension designed so that the overall shape of the plurality of hole grooves 12 described above is smooth and the strength of the template 8 itself can be sufficiently secured. The center of the hole groove 12 of the plurality of mold plates 8 and the center of the opening 10 of the bottom plate 7b of the mold container 7 are disposed on the same axis.

また、複数の型板8の外周側には、軸方向に向かうに従って周方向の溝幅寸法が徐々に大きくなる溝部13が形成されている。詳細には、図4に示すように、型板8の溝部13Aの溝幅寸法<その下側の型板8の溝部13Bの溝幅寸法<さらに下側の型板8の溝部13Cの溝幅寸法…となっている。そして、全ての型板8の溝部13に型容器7の突部11が遊嵌されており、溝部13の溝幅寸法に応じて、型板8の回転角度がそれぞれ制限されるようになっている。これにより、軸方向に向かうに従って型板8の軸廻りの回転角度が徐々に大きくなる上記ねじれ回転機構9が設けられている。   Further, on the outer peripheral side of the plurality of template 8, a groove portion 13 is formed in which the circumferential groove width dimension gradually increases in the axial direction. Specifically, as shown in FIG. 4, the groove width dimension of the groove portion 13A of the template 8 <the groove width dimension of the groove portion 13B of the lower mold plate 8 <the groove width of the groove portion 13C of the lower mold plate 8 Dimensions ... And the protrusion part 11 of the type | mold container 7 is loosely fitted by the groove part 13 of all the template 8, and according to the groove width dimension of the groove part 13, the rotation angle of the template 8 is each restrict | limited. Yes. Thus, the torsion rotating mechanism 9 is provided in which the rotational angle around the axis of the template 8 gradually increases toward the axial direction.

そして、図4に示すように、全ての型板8の溝部13(図4中13A,13B,13Cのみを図示)の周方向一方側(図4中左廻り側)側壁と型容器7の突部11の周方向一方側(図4中左廻り側)側壁が当接した状態では、全ての型板8の穴溝12(図4中12A,12B,12Cのみを図示)が揃うようになっている。また、図5に示すように、全ての型板8の溝部13(図5中13A,13B,13Cのみを図示)の周方向他方側(図5中右廻り側)側壁と型容器7の突部11の周方向他方側(図5中右廻り側)側壁が当接した状態では、溝部13の溝幅寸法に応じた回転角度で複数の型板8がそれぞれ回転しており、型板8の穴溝12(図5中12A,12B,12Cのみを図示)の全体形状が上記スクリューロータ1の歯部2の外周側形状とほぼ同じになるようになっている。   Then, as shown in FIG. 4, the circumferential side wall (on the left side in FIG. 4) of the groove 13 (only 13A, 13B and 13C are shown in FIG. In a state where the side wall in the circumferential direction of the portion 11 (the counterclockwise side in FIG. 4) is in contact, the hole grooves 12 (only 12A, 12B, and 12C are shown in FIG. 4) of all the mold plates 8 are aligned. ing. Further, as shown in FIG. 5, the side wall of the groove portion 13 (only 13A, 13B, 13C is shown in FIG. 5) of all the mold plates 8 (the clockwise side in FIG. 5) and the protrusion of the mold container 7 In a state in which the side wall on the other side in the circumferential direction of the portion 11 (clockwise side in FIG. 5) is in contact, the plurality of template plates 8 are rotated at a rotation angle corresponding to the groove width dimension of the groove portion 13. The overall shape of the hole groove 12 (only 12A, 12B, and 12C are shown in FIG. 5) is substantially the same as the outer peripheral side shape of the tooth portion 2 of the screw rotor 1.

なお、上記において、型容器7の突部11と複数の型板8の溝部13は、特許請求の範囲記載の型容器に対する複数の型板の回転角度をそれぞれ制限する回転角度制限手段を構成する。   In the above description, the protrusions 11 of the mold container 7 and the grooves 13 of the plurality of mold plates 8 constitute rotation angle limiting means for limiting the rotation angles of the plurality of template plates with respect to the mold container described in the claims. .

そして、本実施形態によるスクリューロータ1の製造方法は、まず前述の図2及び図4に示すように、型容器7内に積層された全ての型板8の穴溝12を揃えた状態で、それら型板8の穴溝12及び型容器7の開口10に例えばステンレス製のパイプ状素材5を挿通する。次に、このパイプ状素材5の軸方向一方側(図2中下側)端部を固定し、パイプ状素材5の軸方向他方側(図2中上側)端部から軸方向縮短側(図2中下側)に圧力を加えると、パイプ状素材5が縮短(座屈)し、また軸方向縮短側圧力の分力が回転力として働いて雌型6のねじれ回転機構9が動作し(詳細には、軸方向縮短側圧力を加えた側から型板8が回転可能な角度まで回転する)、このねじれ回転機構9によってパイプ状素材5がねじれ変形する。また同時に、パイプ状素材5の内部に例えば圧縮流体(高圧・高温水等)を流通すると、その内部圧力によってパイプ状素材5が型板8の穴溝12に押圧され螺旋状の歯部2を成形する(前述の図5及び図6参照)。   And the manufacturing method of the screw rotor 1 by this embodiment is the state which aligned the hole groove | channel 12 of all the template 8 laminated | stacked in the type | mold container 7, as shown in above-mentioned FIG.2 and FIG.4 first, For example, a stainless steel pipe-shaped material 5 is inserted into the hole groove 12 of the mold plate 8 and the opening 10 of the mold container 7. Next, one end (the lower side in FIG. 2) of the pipe-shaped material 5 is fixed, and the other end (the upper side in FIG. 2) of the pipe-shaped material 5 is axially shortened (the figure). When pressure is applied to the lower part of 2, the pipe-shaped material 5 contracts (buckles), and the component of the axial contraction side pressure acts as a rotational force to operate the torsional rotation mechanism 9 of the female mold 6 ( Specifically, the pipe-shaped material 5 is torsionally deformed by this torsional rotation mechanism 9, which rotates from the side to which the axially reduced pressure is applied to the angle at which the template 8 can rotate. At the same time, when a compressed fluid (high pressure, high temperature water, etc.) is circulated inside the pipe-shaped material 5, the pipe-shaped material 5 is pressed against the hole groove 12 of the template 8 by the internal pressure, and the helical teeth 2 are moved. Molding is performed (see FIGS. 5 and 6).

このように本実施形態においては、ねじれ回転機構9を有する雌型6を用いることにより、パイプ状素材5を縮短するとともにねじれ変形させながら螺旋状の歯部2を成形することができる。これにより、パイプ状素材5の厚み寸法がほぼ均一となるように塑性加工することができ、ステンレス製等の高強度なパイプ状素材5でも容易に塑性加工することができる。また、ニアネットシェイプに塑性加工することができるので、切削加工等の加工工数を低減し、コスト低減を図ることができる。したがって、スクリューロータ1の生産性を向上することができる。   As described above, in the present embodiment, by using the female die 6 having the torsion rotating mechanism 9, the helical tooth portion 2 can be formed while the pipe-shaped material 5 is shortened and twisted. As a result, plastic processing can be performed so that the thickness dimension of the pipe-shaped material 5 is substantially uniform, and even a high-strength pipe-shaped material 5 made of stainless steel can be easily plastic-processed. In addition, since plastic processing can be performed into a near net shape, the number of processing steps such as cutting can be reduced, and the cost can be reduced. Therefore, the productivity of the screw rotor 1 can be improved.

なお、上記一実施形態においては、パイプ状素材5の内部及び軸方向縮短側に圧力を加えた場合を例にとって説明したが、これに加えて、例えばパイプ状素材5(又は型板8)に回転力を加えてもよい。この場合も、上記同様の効果を得ることができる。   In the above-described embodiment, the case where pressure is applied to the inside of the pipe-shaped material 5 and the axially shortened side has been described as an example, but in addition to this, for example, the pipe-shaped material 5 (or the template 8) A rotational force may be applied. In this case, the same effect as described above can be obtained.

また、上記一実施形態においては、回転角度制限手段は、型容器7の内周側に設けられ、径方向断面形状が同じで軸方向に延設した突部11と、この型容器7の突部11が遊嵌されるように複数の型板8の外周側にそれぞれ形成され、軸方向に向かうに従って周方向の溝幅寸法が徐々に大きくなる溝部13とで構成した場合を例にとって説明したが、これに限られない。すなわち、例えば型容器7の突部11’は径方向断面形状が軸方向に向かって徐々に小さくなるように設け、複数の型板8の溝部13’は周方向の溝幅寸法が同じとなるようにそれぞれ形成してもよい。このような場合においても、上記したねじれ回転機構を設けることができ、上記一実施形態同様の効果を得ることができる。また、例えば複数の型板8の外周側にそれぞれ突部を設け、これら突部が遊嵌されるように型容器7の内周側に溝部を形成することにより、上記ねじれ回転機構を設けてもよい。このような場合も、上記一実施形態同様の効果を得ることができる。   Further, in the above-described embodiment, the rotation angle limiting means is provided on the inner peripheral side of the mold container 7, and has a projection 11 that has the same radial cross-sectional shape and extends in the axial direction, and a protrusion of the mold container 7. An example has been described in which the groove portion 13 is formed on the outer peripheral side of the plurality of template 8 so that the portion 11 is loosely fitted and the groove width dimension in the circumferential direction gradually increases toward the axial direction. However, it is not limited to this. That is, for example, the protrusion 11 ′ of the mold container 7 is provided so that the radial cross-sectional shape gradually decreases in the axial direction, and the groove portions 13 ′ of the plurality of mold plates 8 have the same groove width dimension in the circumferential direction. Each may be formed as described above. Even in such a case, the above-described torsional rotation mechanism can be provided, and the same effect as in the above-described embodiment can be obtained. Further, for example, by providing protrusions on the outer peripheral sides of the plurality of mold plates 8 and forming grooves on the inner peripheral side of the mold container 7 so that these protrusions are loosely fitted, the twist rotation mechanism is provided. Also good. Even in such a case, the same effect as the above-described embodiment can be obtained.

なお、以上においては、スクリューロータとしてスクリュー圧縮機の雄ロータを例にとって説明したが、これに限らず、例えばスクリュー圧縮機の雌ロータ、スクリューポンプのロータ、ルーツブロワのねじれロータ、ウォームギヤ等に適用してもよいことは言うまでもない。   In the above description, the male rotor of the screw compressor has been described as an example of the screw rotor. However, the present invention is not limited to this, and is applicable to, for example, a female rotor of a screw compressor, a rotor of a screw pump, a torsion rotor of a roots blower, and a worm gear. Needless to say.

本発明のスクリューロータの製造方法の一実施形態によって製造したスクリューロータの構造を表す軸方向断面図である。It is an axial direction sectional view showing the structure of the screw rotor manufactured by one embodiment of the manufacturing method of the screw rotor of the present invention. 本発明のスクリューロータの製造方法の一実施形態における雌型の全体構造を表す軸方向断面図であり、パイプ状素材を塑性加工する前の状態を表す。It is an axial sectional view showing the whole female mold structure in one embodiment of the manufacturing method of the screw rotor of the present invention, and represents the state before plastic processing of a pipe-shaped material. 本発明のスクリューロータの製造方法の一実施形態における雌型を構成する型板の詳細構造を表す斜視図である。It is a perspective view showing the detailed structure of the template which comprises the female type | mold in one Embodiment of the manufacturing method of the screw rotor of this invention. 図2中矢印IV方向から見た雌型の矢視平面図である。It is the arrow view top view of the female type seen from the arrow IV direction in FIG. 本発明のスクリューロータの製造方法の一実施形態における雌型の全体構造を表す軸方向断面図であり、パイプ状素材を塑性加工した後の状態を表す。It is an axial direction sectional view showing the whole female mold structure in one embodiment of the manufacturing method of the screw rotor of the present invention, and represents the state after plastic processing of a pipe-shaped material. 図5中矢印VI方向から見た雌型の矢視平面図である。FIG. 6 is a plan view of a female mold as seen from the direction of arrow VI in FIG. 5.

符号の説明Explanation of symbols

1 スクリューロータ
2 歯部
3 中空部
5 パイプ状素材
6 雌型
7 型容器
8 型板
9 ねじれ回転機構
11 突部
12 穴溝(回転角度制限手段)
13 溝部(回転角度制限手段)
DESCRIPTION OF SYMBOLS 1 Screw rotor 2 Tooth part 3 Hollow part 5 Pipe-shaped raw material 6 Female type | mold 7 Type | mold container 8 Template 9 Torsion rotation mechanism 11 Protrusion part 12 Groove | groove (rotation angle limiting means)
13 Groove (Rotation angle limiting means)

Claims (5)

螺旋状の歯を有する中空のスクリューロータの製造方法において、
軸方向に向かって軸廻りの回転角度が徐々に大きくなるねじれ回転機構を有する雌型を用い、この雌型内に配置したパイプ状素材の内部及び軸方向縮短側に圧力を加えることにより、前記パイプ状素材を縮短しかつ前記雌型のねじれ回転機構によって前記パイプ状素材をねじれ変形させながら前記螺旋状の歯を成形することを特徴とするスクリューロータの製造方法。
In a method for producing a hollow screw rotor having spiral teeth,
By using a female mold having a torsional rotation mechanism in which the rotation angle around the axis gradually increases in the axial direction, by applying pressure to the inside of the pipe-shaped material arranged in the female mold and the axially shortened side, A method of manufacturing a screw rotor, comprising: shortening a pipe-shaped material and forming the helical teeth while twisting and deforming the pipe-shaped material by the female torsion rotating mechanism.
螺旋状の歯を有する中空のスクリューロータの製造方法において、
軸方向に向かって軸廻りの回転角度が徐々に大きくなるねじれ回転機構を有する雌型を用い、この雌型内に配置したパイプ状素材の内部及び軸方向縮短側に圧力を加えるとともに回転力を加えることにより、前記パイプ状素材を縮短しかつ前記雌型のねじれ回転機構によって前記パイプ状素材をねじれ変形させながら前記螺旋状の歯を成形することを特徴とするスクリューロータの製造方法。
In a method for producing a hollow screw rotor having spiral teeth,
Using a female mold having a torsional rotation mechanism in which the rotation angle around the axis gradually increases in the axial direction, pressure is applied to the inside of the pipe-shaped material arranged in this female mold and the axially shortened side, and rotational force is applied. A method of manufacturing a screw rotor, wherein the helical teeth are formed while the pipe-shaped material is shortened and the pipe-shaped material is twisted and deformed by the female torsion rotating mechanism.
請求項1又は2記載のスクリューロータの製造方法において、前記雌型は、型容器と、この型容器内に軸方向に積層され、前記スクリューロータの歯の径方向断面と同じ形状の穴溝を有する複数の型板とを備えており、前記雌型のねじれ回転機構は、前記型容器に対する前記複数の型板の回転角度をそれぞれ制限する回転角度制限手段を設けたことを特徴とするスクリューロータの製造方法。   3. The screw rotor manufacturing method according to claim 1, wherein the female die is laminated in a mold container and an axial direction in the mold container, and has a hole groove having the same shape as a radial cross section of the tooth of the screw rotor. A screw rotor, wherein the female torsional rotation mechanism is provided with rotation angle limiting means for limiting the rotation angles of the plurality of mold plates with respect to the mold container. Manufacturing method. 請求項3記載のスクリューロータの製造方法において、前記回転角度制限手段は、前記型容器の内周側に軸方向に延設した突部と、この型容器の突部が遊嵌されるように前記複数の型板の外周側にそれぞれ形成した溝部とで構成したことを特徴とするスクリューロータの製造方法。   4. The screw rotor manufacturing method according to claim 3, wherein the rotation angle limiting means is configured such that the protrusion extending in the axial direction on the inner peripheral side of the mold container and the protrusion of the mold container are loosely fitted. A method for manufacturing a screw rotor, comprising: groove portions formed on the outer peripheral sides of the plurality of template plates. 請求項3記載のスクリューロータの製造方法において、前記回転角度制限手段は、前記複数の型板の外周側にそれぞれ設けた突部と、これら複数の型板の突部が遊嵌されるように前記型容器の内周側に形成した溝部とで構成したことを特徴とするスクリューロータの製造方法。   The screw rotor manufacturing method according to claim 3, wherein the rotation angle limiting means is configured such that the protrusions provided on the outer peripheral sides of the plurality of template plates and the protrusions of the plurality of template plates are loosely fitted. A method for manufacturing a screw rotor, comprising: a groove formed on an inner peripheral side of the mold container.
JP2005047620A 2005-02-23 2005-02-23 Screw rotor manufacturing method Expired - Fee Related JP4504836B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005047620A JP4504836B2 (en) 2005-02-23 2005-02-23 Screw rotor manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005047620A JP4504836B2 (en) 2005-02-23 2005-02-23 Screw rotor manufacturing method

Publications (2)

Publication Number Publication Date
JP2006233816A JP2006233816A (en) 2006-09-07
JP4504836B2 true JP4504836B2 (en) 2010-07-14

Family

ID=37041763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005047620A Expired - Fee Related JP4504836B2 (en) 2005-02-23 2005-02-23 Screw rotor manufacturing method

Country Status (1)

Country Link
JP (1) JP4504836B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7040682B1 (en) * 2020-08-19 2022-03-23 日本精工株式会社 Ball screw device, manufacturing method of machine parts, manufacturing method of machinery, vehicle manufacturing method, machine parts, machinery, vehicle, hydraulic molding method, and molding mold for hydraulic molding

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014081823A1 (en) 2012-11-20 2014-05-30 Eaton Corporation Composite supercharger rotors and methods of construction thereof
WO2014151057A2 (en) 2013-03-15 2014-09-25 Eaton Corporation Low inertia laminated rotor
EP3117102A4 (en) * 2014-03-12 2017-12-13 Eaton Corporation Methods for making a low inertia laminated rotor
CN114985681B (en) * 2022-06-21 2023-11-14 冰轮环境技术股份有限公司 Spiral rotor casting method and processing device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49110810U (en) * 1973-01-19 1974-09-21
JPS5770985A (en) * 1980-10-22 1982-05-01 Hitachi Ltd Screw rotor and its manufacturing method
JPS6263190A (en) * 1985-09-13 1987-03-19 Jidosha Kiki Co Ltd Production of screw rotor
JPH02235525A (en) * 1989-03-06 1990-09-18 Honda Motor Co Ltd Manufacture of screw rotor
JPH05195701A (en) * 1991-10-17 1993-08-03 Ebara Corp Screw rotor and its manufacturing method
JPH06101671A (en) * 1992-09-21 1994-04-12 Kobe Steel Ltd Screw rotor
JPH08284856A (en) * 1995-04-07 1996-10-29 Tochigi Fuji Ind Co Ltd Rotor and formation thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49110810U (en) * 1973-01-19 1974-09-21
JPS5770985A (en) * 1980-10-22 1982-05-01 Hitachi Ltd Screw rotor and its manufacturing method
JPS6263190A (en) * 1985-09-13 1987-03-19 Jidosha Kiki Co Ltd Production of screw rotor
JPH02235525A (en) * 1989-03-06 1990-09-18 Honda Motor Co Ltd Manufacture of screw rotor
JPH05195701A (en) * 1991-10-17 1993-08-03 Ebara Corp Screw rotor and its manufacturing method
JPH06101671A (en) * 1992-09-21 1994-04-12 Kobe Steel Ltd Screw rotor
JPH08284856A (en) * 1995-04-07 1996-10-29 Tochigi Fuji Ind Co Ltd Rotor and formation thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7040682B1 (en) * 2020-08-19 2022-03-23 日本精工株式会社 Ball screw device, manufacturing method of machine parts, manufacturing method of machinery, vehicle manufacturing method, machine parts, machinery, vehicle, hydraulic molding method, and molding mold for hydraulic molding

Also Published As

Publication number Publication date
JP2006233816A (en) 2006-09-07

Similar Documents

Publication Publication Date Title
JP4504836B2 (en) Screw rotor manufacturing method
US5832604A (en) Method of manufacturing segmented stators for helical gear pumps and motors
JP6966553B2 (en) Well tools including smart materials
US8683689B2 (en) Method for manufacturing constituents of a hollow blade by press forging
JP2018141559A (en) Tolerance ring with component engagement structures
JP2006299815A (en) Method of manufacturing for screw rotor and screw rotor
JP6536271B2 (en) Wave reducer, ball bearing, and jig
JPWO2021020234A5 (en) How to manufacture the assembly
JP6199708B2 (en) Hermetic compressor
JP6118172B2 (en) Laminated gear and laminated gear manufacturing method
JP5246898B1 (en) Crankshaft manufacturing method and crankshaft
JP4877746B2 (en) Screw rotor manufacturing method
JP6758969B2 (en) Stepped scroll compressor and its design method
US11225965B2 (en) Screw rotor and fluid machine body
JP2016017438A (en) Single screw compressor
US8197202B2 (en) Precast grooves for a stator blade assembly
JPH1182674A (en) Press forming method for turbine shell of torque converter
JP6336533B2 (en) Scroll fluid machinery
JP4360622B2 (en) Manufacturing method of scroll compressor
JP5661012B2 (en) Twisted tube heat exchanger and method of manufacturing twisted tube heat exchanger
JP2017116026A (en) Rotating shaft with slide mechanism and motor
JP2005121216A5 (en)
JP6800348B2 (en) Refrigeration cycle device equipped with a single screw compressor and its single screw compressor
JP4282084B2 (en) Method for manufacturing sintered parts
JP6325035B2 (en) Scroll fluid machinery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100420

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100423

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees