JP4501254B2 - Method for detecting and controlling solidification completion position of continuous cast slab - Google Patents

Method for detecting and controlling solidification completion position of continuous cast slab Download PDF

Info

Publication number
JP4501254B2
JP4501254B2 JP2000250728A JP2000250728A JP4501254B2 JP 4501254 B2 JP4501254 B2 JP 4501254B2 JP 2000250728 A JP2000250728 A JP 2000250728A JP 2000250728 A JP2000250728 A JP 2000250728A JP 4501254 B2 JP4501254 B2 JP 4501254B2
Authority
JP
Japan
Prior art keywords
slab
reduction
roll
completion position
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000250728A
Other languages
Japanese (ja)
Other versions
JP2002066704A (en
Inventor
正之 中田
淳 久保田
康一 堤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2000250728A priority Critical patent/JP4501254B2/en
Publication of JP2002066704A publication Critical patent/JP2002066704A/en
Application granted granted Critical
Publication of JP4501254B2 publication Critical patent/JP4501254B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Continuous Casting (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、連続鋳造機における連続鋳造鋳片の凝固完了位置を検出する方法及び凝固完了位置を制御する方法に関するものである。
【0002】
【従来の技術】
鋼の連続鋳造機においては、水冷鋳型内に注入した溶鋼を水冷鋳型内で一次冷却して鋳型内壁に凝固殻を形成させ、この凝固殻を鋳型下方に設置した多数の鋳片支持ロールにて支持しつつ下方に連続的に引き抜きながら、スプレー冷却水等により凝固殻表面を二次冷却し、鋳片中心部まで完全に凝固させた後に鋳片を所定長さに切断している。
【0003】
このような連続鋳造機の最大鋳造能力は、鋳片の凝固完了位置を連続鋳造機出口の最下流の鋳片支持ロールの位置とする引き抜き速度で鋳片を鋳造した場合に達成される。又、熱エネルギーの削減を目的として鋳造直後の連続鋳造鋳片を圧延工程に搬送して高温の状態で圧延する場合にも、鋳片温度を可能な限り高くするためには、鋳片の凝固完了位置を連続鋳造機出口の最下流の鋳片支持ロールの位置とすることが好ましい。
【0004】
しかし、鋳片の凝固完了位置は、鋳片引き抜き速度を一定にしても、二次冷却用冷却水の水温や吹き付け圧力、及び、鋳型注入時の溶鋼温度等の変化により常に変動しており、凝固完了位置を連続鋳造機の最下流側とした場合には、凝固完了位置が鋳片支持ロールの範囲を超える場合が発生する。この場合には、鋳片が溶鋼静圧によりバルジングして鋳片品質が劣化するばかりか、鋳片切断時に内部の未凝固層が流出するという設備トラブルの危険性さえもある。この危険性を回避するため、実際には、凝固完了位置を連続鋳造機出口より十分に上流側とした条件で鋳造することが一般的である。
【0005】
このような問題を解決して安定した鋳造を行うために、鋳片の凝固完了位置を検出する種々の方法が提案されている。例えば、特開平9−225611号公報(以下「先行技術1」と記す)には、鋳片支持ロールのロールチョック基端に歪みゲージを貼付してロール負荷を検出し、凝固完了前と凝固完了後との溶鋼静圧の有無に起因するロール負荷を検出して凝固完了位置を判定する方法が開示されている。又、特開平11−83814号公報(以下「先行技術2」と記す)には、鋳造中の鋳片に送信子から横波超音波を透過させ、透過した横波超音波を受信子にて受信し、横波超音波の透過強度から鋳片の凝固状態を検出する方法が開示されている。
【0006】
【発明が解決しようとする課題】
しかしながら、先行技術1及び先行技術2にも以下の問題点がある。先行技術1では、ロールチョック基端に貼付した歪みゲージによりロールの負荷を検出するが、連続鋳造設備は本来堅固で丈夫な設備であり、溶鋼静圧の有無に起因して起こるロールチョック基端の歪みは極めて少なく、又、歪みゲージが貼付される位置は高温雰囲気であり、温度によるロール歪みも発生するので、歪みゲージではロール負荷の変化を正確に捉えきれない場合が発生する。
【0007】
又、先行技術2では、前述したように鋳片引き抜き速度を一定にしても常に変動する凝固完了位置を捉えるためには、横波超音波の発信子及び受信子を各ロール間に設置する必要があり、更に、鋳片引き抜き速度を変化させた場合にも凝固完了位置を捉えようとすると、多数の送信子及び受信子を設置する必要があり、設備費が増大する。
【0008】
本発明は上記事情に鑑みなされたもので、その目的とするところは、連続鋳造鋳片の凝固完了位置を簡便な方法で正確に検出すると共に、凝固完了位置を所定の位置に制御する方法を提案することである。
【0009】
【課題を解決するための手段】
第1の発明による連続鋳造鋳片の凝固完了位置検出方法は、連続鋳造中の鋳片を、該鋳片を挟んで対向する一対のロールのうちの少なくとも一方が、ロールを鋳片の厚み方向に移動させて鋳片を圧下するための圧下圧力付与装置と連結され、内部に未凝固層を有する鋳片の短辺面側の凝固シェルを1mm以下で且つ一定量だけ圧下するために必要とする、前記ロールの設置位置での溶鋼静圧が考慮された力が鋳片に付加されるように、前記圧下圧力付与装置によって圧下圧力の設定された、一対以上のロールにて圧下すると共に、鋳片を圧下している、前記圧下圧力付与装置と連結されたロールの変位量を計測して、計測した変位量からロールによる鋳片の圧下量を求め、求めた圧下量に基づき鋳片の凝固完了位置を判定することを特徴とするものである。
【0010】
第2の発明による連続鋳造鋳片の凝固完了位置制御は、第1の発明の方法により鋳片の凝固完了位置を検出し、この検出結果に基づき鋳片引き抜き速度を変更して、凝固完了位置を所定範囲内に制御することを特徴とするものである。
【0011】
連続鋳造中に鋳片を長辺面側から圧下した場合、圧下される部分、即ち圧下抵抗となる部分は、鋳片厚み方向の中心部まで凝固が完了している部分であり、鋳片厚み方向の中心部に未凝固層が残留している部分は圧下抵抗とならない。
【0012】
従って、内部に未凝固層が残留している状態の鋳片を圧下した場合には、圧下抵抗となる部分は鋳片の短辺面側から凝固が進行した鋳片短辺側のみであり、鋳片長辺面全幅に対して圧下抵抗となる範囲の比率は小さく、この比率は、鋳片短辺長さ(「鋳片厚み」ともいう)に対する鋳片長辺長さ(「鋳片幅」ともいう)の比率が大きな鋳片ほど小さくなる。一方、凝固が完了した鋳片を圧下した場合には、鋳片長辺面全幅が圧下抵抗となる。
【0013】
そのため、鋳片を同一の圧下圧力で圧下しても、内部に未凝固層が残留する場合と完全に凝固した場合とでは、圧下抵抗が異なるために鋳片の圧下量に差が生じ、それに伴って圧下しているロールの変位量が異なってくる。即ち、未凝固層が残留する場合には、鋳片の圧下量は大きくなり、それに伴いロールの変位量も大きくなり、一方、完全凝固後には、鋳片の圧下量は小さくなり、それに伴いロールの変位量も小さくなる。尚、ロールの変位量とは、鋳片を圧下することにより基準位置に対してロールが圧下方向に移動した距離である。
【0014】
本発明では、鋳造中に鋳片を一対以上のロールで圧下しつつ、その時のロールの変位量を計測し、計測したロールの変位量からそのロール位置における鋳片の圧下量を求めているので、求めた鋳片の圧下量の大きさから、圧下位置における鋳片の未凝固層の有無を判定することができる。換言すれば凝固が完了しているか否かを判定することができる。
【0015】
そして、連続鋳造機では鋳片を支持するために鋳片支持ロールが設置されており、この鋳片支持ロールを鋳片圧下のためのロールに利用することができるので、若干の設備改造とロールの変位を検出するためのセンサーを設置するだけで本発明が適用でき、設備費を抑えることができる。
【0016】
又、検出した凝固完了位置に基づき、鋳片引き抜き速度を変更することで、凝固完了位置を所定の範囲内に制御することが可能となり、鋳片品質の低下や未凝固層の流出といった設備トラブルを発生することなく、最大の鋳造能力を確保することができる。
【0017】
【発明の実施の形態】
以下、本発明の実施の形態を添付図面を参照して説明する。図1は、本発明の実施の形態の例を示す図であって、連続鋳造中の鋳片を圧下する状態を模式的に示す縦断面図であり、図2は、図1のX−X’矢視による縦断面図である。
【0018】
連続鋳造機の水冷鋳型(図示せず)に注入された溶鋼は、水冷鋳型と接触して冷却され、鋳片1の外殻となる凝固殻2を形成し、形成した凝固殻2は、多数の鋳片支持ロールに支持されながら、内部の未凝固層3と共に鋳型の下方に連続的に引き抜かれる。この間、鋳片1は鋳型下方に設置された二次冷却帯で冷却され、凝固殻2の厚みを増大させながら引き抜かれ、やがて、厚み方向中心部まで完全に凝固する。
【0019】
図1は、このように完全に凝固する付近を示す図であり、鋳片1は鋳片支持ロール4、4aにて支持されており、鋳片支持ロール4、4aの下流側には圧下ロール5,5a、圧下ロール6,6a、及び、圧下ロール7,7aが設置されている。これらの圧下ロールでは、鋳片1に対して上面側に設置した圧下ロール5,6,7が、それぞれ油圧装置等の圧下圧力付与装置(図示せず)に連結されており、圧下圧力付与装置により鋳片1の厚み方向に移動して、鋳片1を圧下することができる。一方、鋳片1に対して下面側に設置した圧下ロール5a,6a,7aは、連続鋳造機に固定されている。
【0020】
鋳片1に対して上面側に設置した圧下ロール5,6,7には、図2に示すように、それぞれのロール軸受け8に位置検出センサー9が設置されており、各圧下ロール5,6,7の変位(L1 、L2 )が測定できるようになっている。位置検出センサー9としてはレーザー距離計や差動トランスを用いることができる。
【0021】
図1において、D0 は、圧下ロール5,5aにおける圧下前の鋳片厚み、D1 は、圧下ロール5,5aにおける圧下後の鋳片厚みであり、圧下ロール6,6aにおける圧下前の鋳片厚み、D2 は、圧下ロール6,6aにおける圧下後の鋳片厚みであり、圧下ロール7,7aにおける圧下前の鋳片厚み、D3 は、圧下ロール7,7aにおける圧下後の鋳片厚みである。
【0022】
尚、図1では圧下ロールを3対設置しているが、1対以上設置すれば本発明により凝固完了位置を判定することができる。但し、鋳片引き抜き速度を変更する場合にも凝固完了位置を検出するためには、鋳片引き抜き速度の変更範囲に応じて複数の圧下ロールを設置する必要がある。又、圧下圧力付与装置と連結した圧下ロールを鋳片1に対して上面側としたが、下面側としても良く更に両方としても良い。
【0023】
このような構成の連続鋳造機において、以下のようにして本発明方法を実施する。先ず、圧下ロール5,5a、圧下ロール6,6a、及び、圧下ロール7,7aにおけるそれぞれの鋳片圧下量が同程度となるように、各圧下ロールの圧下圧力を設定する。具体的には、各圧下ロールの設置位置における溶鋼静圧を考慮しつつ、内部に未凝固層3を有する鋳片1の短辺面側の凝固殻2を一定量だけ圧下するために必要な力が鋳片1に作用するように、圧下圧力を設定すれば良い。
【0024】
このようにして設定した圧下圧力で各圧下ロール5,6,7を鋳片1に押し付けつつ鋳造する。図1に示すように、圧下ロール5,5aによる鋳片圧下量は鋳片厚みD0 と鋳片厚みD1 との差で表され、同様に、圧下ロール6,6aによる鋳片圧下量は鋳片厚みD1 と鋳片厚みD2 との差で表され、圧下ロール7,7aによる鋳片圧下量は鋳片厚みD2 と鋳片厚みD3 との差で表される。
【0025】
この場合、各圧下ロールにおける鋳片圧下量は次のようにして求めることができる。圧下ロール5,6,7の変位(L1 、L2 )を計測して、各圧下ロール5,6,7の基準位置からの変位量を求めれば、圧下ロール5,5a、圧下ロール6,6a、及び、圧下ロール7,7aの各ロール間隔が分かる。求めた各圧下ロールのロール間隔は、各圧下ロールにおける圧下後の鋳片厚みに対応しているので、鋳片厚みD1 、鋳片厚みD2 、及び鋳片厚みD3 を求めることができる。そして、鋳片厚みD0 は鋳片支持ロール4、4aのロール間隔に等しいので、鋳片支持ロール4、4aのロール間隔の設定値から求めることができる。尚、ロール間隔とは、対向する一対のロールの間隙のことである。
【0026】
圧下ロール5,6,7の変位(L1 、L2 )を測定する際の基準位置は、各圧下ロールの変位量を定量化するための基準位置であり、従って任意の位置として良い。変位(L1 )から計測される変位量と、変位(L2 )から計測される変位量とが異なる場合には、両者の平均値をその圧下ロールの変位量とすれば良い。
【0027】
このようにして各圧下ロールの変位から各圧下ロールにおける鋳片圧下量を求める。求めた鋳片圧下量が小さければ、鋳片1の未凝固層3が少なくなったことを意味するので、複数個の圧下ロールを設置した場合には、鋳造方向の鋳片圧下量の分布から凝固完了位置を判定することができる。又、設置した圧下ロールが一対の場合には、鋳造方向の鋳片圧下量の分布を把握することはできないが、圧下ロールの設置位置で凝固が完了しているか否かを判定することができる。
【0028】
凝固完了位置を所定の範囲内に制御したい場合には、上記のようにして凝固完了位置を検出し、この結果に基づき鋳片引き抜き速度を変更しつつ、フィードバック制御することで、凝固完了位置を所定範囲内に制御することができる。
【0029】
尚、各圧下ロールにおける鋳片圧下量は各圧下ロールの圧下圧力を高くすれば大きくなり、凝固完了位置の判定は容易になるが、鋳片圧下量を大きくし過ぎると鋳片1に内部割れが発生して好ましくない。そのため、各圧下ロールにおける鋳片圧下量が最大1mm程度となるように、圧下圧力を調整すること、又は、各圧下ロールにおける鋳片圧下量が1mm程度になるように、圧下ロールの移動量を制限するための障害物を設置することが好ましい。
【0030】
【実施例】
[実施例1]
極低炭素アルミキルド鋼を、鋳片厚みが250mm、鋳片幅が1200mmのスラブ鋳片に鋳造する際に、メニスカスから35m下流側に設置されたピンチロールを圧下ロールとして鋳片を圧下し、鋳片圧下量と凝固完了位置との関係を調査した。各試験の二次冷却水の比水量は0.81リットル/kg.steelの一定値とし、鋳片引き抜き速度を1.6〜2.4m/minの5水準とした。圧下ロールの外形は340mmで、圧下圧力は40トンとした。
【0031】
このようにして鋳造した時のレーザー距離計により計測された鋳片圧下量を図3に示す。図3に示すように鋳片引き抜き速度が1.8m/min以下では、鋳片圧下量はほとんどゼロであったが、鋳片引き抜き速度が2.0m/min以上の範囲では、鋳片引き抜き速度の増加と共に鋳片圧下量が増加し、鋳片引き抜き速度が2.2m/minの場合には、鋳片圧下量は約1.0mmになった。
【0032】
図4は、上記の鋳造条件において、伝熱計算により求めた、鋳片引き抜き速度と凝固完了位置との関係を示す図である。図4から明らかなように、鋳片引き抜き速度を変更すると、凝固完了位置は大幅に変化する。
【0033】
そして、図3と図4とを対比すると、鋳片引き抜き速度が2.0m/minのときに凝固完了位置がメニスカスから35mの位置、即ち、圧下ロールの設置位置になることが分かる。これらから、凝固完了後の鋳片は圧下されにくく、一方、内部に未凝固層を残留する鋳片は容易に圧下されるので、一定の圧下圧力の条件で鋳片を圧下した場合、鋳片圧下量の差から凝固完了位置を判定可能であることが分かった。
【0034】
[実施例2]
極低炭素アルミキルド鋼を、鋳片厚みが250mm、鋳片幅が1200mmのスラブ鋳片に鋳造する際に、メニスカスから32m〜42mの下流側の範囲に、1m毎に設置されたピンチロールを圧下ロールとして鋳片を圧下し、鋳片圧下量の鋳造方向の分布を調査して凝固完了位置を判定した。その際に、二次冷却水の比水量は0.81リットル/kg.steelとし、鋳片引き抜き速度は2.0m/minとした。圧下ロールの外形は全て340mm、圧下圧力は全て40トンとした。
【0035】
このようにして鋳造した時のレーザー距離計により計測された鋳片圧下量を図5に示す。図5に示すように、メニスカスからの距離が36m以上になると、鋳片はほとんど圧下されず、一方、メニスカスからの距離が34m以下の範囲では約1mm程度の圧下量で圧下されることが分かった。メニスカスから35mの位置が鋳片圧下量の変位点であり、凝固完了位置はメニスカスから35m付近にあることが分かった。
【0036】
[実施例3]
極低炭素アルミキルド鋼を、鋳片厚みが250mm、鋳片幅が1200mmのスラブ鋳片に鋳造する際に、メニスカスから40m、41m、及び42m下流側に設置された、連続鋳造機出口側のピンチロールを圧下ロールとして鋳片を圧下しながら凝固完了位置を制御した。圧下ロールの外形は全て340mmで、圧下圧力は全て40トンとした。
【0037】
当初、二次冷却水の比水量を0.81リットル/kg.steel、鋳片引き抜き速度を2.4m/minの条件で鋳造しており、この場合には、レーザー距離計により計測された鋳片圧下量から、凝固完了位置はメニスカスから41m〜42mの範囲にあることが確認できた。この連続鋳造機の末端の鋳片支持ロールはメニスカスから42mの位置であるので、凝固完了位置は連続鋳造機の出口ぎりぎりに制御されていたことが分かる。
【0038】
しかし、鋳造の途中から二次冷却水の比水量を低下せざるを得なくなり、鋳造開始から64分経過時に比水量を0.61リットル/kg.steelに低下させた。比水量の低下に伴い、凝固完了位置がメニスカスから42mの位置を越え始めたので、鋳造開始から72分経過時に鋳片引き抜き速度を2.2m/minに減速させた。その結果、凝固完了位置はメニスカスから40m〜41mの範囲になり、品質異常や操業トラブルを発生することなく、安定した鋳造を継続することができた。
【0039】
図6に、このようにして鋳造した時のレーザー距離計により計測された各圧下ロールによる鋳片圧下量の推移を示す。尚、図6におけるVcは鋳片引き抜き速度であり、又、実線はメニスカスから42mの位置に設置された圧下ロールにおける鋳片圧下量を表し、破線はメニスカスから41mの位置に設置された圧下ロールにおける鋳片圧下量を表し、一点鎖線はメニスカスから40mの位置に設置された圧下ロールにおける鋳片圧下量を表している。
【0040】
【発明の効果】
本発明によれば、連続鋳造中の鋳片の凝固完了位置を簡便な方法で正確に検出することが可能となり、又、この方法を用いて凝固完了位置を制御しつつ鋳造することにより、連続鋳造機の鋳造能力を最大まで増加させることができる。
【図面の簡単な説明】
【図1】本発明の実施の形態の例を示す図である。
【図2】図1のX−X’矢視による縦断面図である。
【図3】実施例1において計測された鋳片圧下量を示す図である。
【図4】鋳片引き抜き速度と凝固完了位置との関係の計算結果を示す図である。
【図5】実施例2において計測された鋳片圧下量の鋳造方向の分布図である。
【図6】実施例3において計測された鋳片圧下量の推移を示す図である。
【符号の説明】
1 鋳片
2 凝固殻
3 未凝固層
4 鋳片支持ロール
5 圧下ロール
6 圧下ロール
7 圧下ロール
8 ロール軸受け
9 位置検出センサー
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for detecting a solidification completion position of a continuous cast slab and a method for controlling the solidification completion position in a continuous casting machine.
[0002]
[Prior art]
In a continuous casting machine for steel, the molten steel poured into the water-cooled mold is primarily cooled in the water-cooled mold to form a solidified shell on the inner wall of the mold, and this solidified shell is placed on the slab support rolls installed below the mold. The solidified shell surface is secondarily cooled with spray cooling water or the like while being continuously drawn downward while being supported, and the cast slab is cut into a predetermined length after being completely solidified to the center of the cast slab.
[0003]
Such a maximum casting capacity of the continuous casting machine is achieved when the slab is cast at a drawing speed in which the solidification completion position of the slab is the position of the slab support roll on the most downstream side of the continuous casting machine outlet. In order to reduce the heat energy, the continuous cast slab immediately after casting is transported to the rolling process and rolled at a high temperature. It is preferable that the completion position is the position of the slab support roll on the most downstream side of the continuous casting machine outlet.
[0004]
However, the solidification completion position of the slab always fluctuates due to changes in the water temperature and spraying pressure of the cooling water for secondary cooling, the molten steel temperature at the time of casting, etc., even if the slab drawing speed is constant. When the solidification completion position is the most downstream side of the continuous casting machine, the solidification completion position may exceed the range of the slab support roll. In this case, not only the slab is bulged by the molten steel static pressure and the quality of the slab is deteriorated, but also there is a risk of equipment trouble that the unsolidified layer inside flows out when the slab is cut. In order to avoid this risk, in practice, casting is generally performed under the condition that the solidification completion position is sufficiently upstream of the continuous casting machine outlet.
[0005]
In order to solve such problems and perform stable casting, various methods for detecting the solidification completion position of the slab have been proposed. For example, in Japanese Patent Application Laid-Open No. 9-225611 (hereinafter referred to as “Prior Art 1”), a strain gauge is attached to a roll chock base end of a slab support roll to detect a roll load, and before solidification is completed and after solidification is completed. And a method of determining a solidification completion position by detecting a roll load caused by the presence or absence of a molten steel static pressure. In Japanese Patent Laid-Open No. 11-83814 (hereinafter referred to as “Prior Art 2”), transverse wave ultrasonic waves are transmitted from a transmitter to a slab during casting, and the transmitted transverse wave ultrasonic waves are received by a receiver. A method for detecting the solidification state of a slab from the transmission intensity of transverse ultrasonic waves is disclosed.
[0006]
[Problems to be solved by the invention]
However, Prior Art 1 and Prior Art 2 also have the following problems. In Prior Art 1, the load of the roll is detected by a strain gauge affixed to the base end of the roll chock. However, the continuous casting equipment is inherently solid and strong, and the distortion of the roll chock base end caused by the presence or absence of molten steel static pressure. In addition, the position where the strain gauge is affixed is a high-temperature atmosphere, and roll strain due to temperature also occurs. Therefore, the strain gauge may not be able to accurately grasp changes in roll load.
[0007]
In the prior art 2, as described above, in order to grasp the solidification completion position that constantly changes even if the slab drawing speed is constant, it is necessary to install a transmitter and a receiver of the transverse wave ultrasonic wave between each roll. Furthermore, if the solidification completion position is to be captured even when the slab drawing speed is changed, it is necessary to install a large number of transmitters and receivers, which increases equipment costs.
[0008]
The present invention has been made in view of the above circumstances, and an object thereof is a method for accurately detecting a solidification completion position of a continuous cast slab by a simple method and controlling the solidification completion position to a predetermined position. It is to propose.
[0009]
[Means for Solving the Problems]
According to a first aspect of the present invention, there is provided a solidification completion position detection method for a continuous cast slab , wherein at least one of a pair of rolls facing each other with the slab sandwiched between the slabs during continuous casting is a roll in the thickness direction of the slab. It is necessary to reduce the solidified shell on the short side surface side of the slab having an unsolidified layer inside by 1 mm or less and by a certain amount. The rolling pressure is set by the rolling pressure applying device so that a force considering the molten steel static pressure at the installation position of the roll is applied to the slab, and the rolling pressure is reduced by a pair of rolls or more. The amount of displacement of the roll connected to the reduction pressure applying device that is reducing the slab is measured, and the amount of reduction of the slab by the roll is obtained from the measured amount of displacement, and the slab of the slab is calculated based on the obtained amount of reduction. It is characterized by determining the solidification completion position It is intended.
[0010]
In the solidification completion position control of the continuous cast slab according to the second invention, the solidification completion position of the slab is detected by the method of the first invention, and the slab drawing speed is changed based on this detection result, and the solidification completion position is determined. Is controlled within a predetermined range.
[0011]
When the slab is squeezed from the long side during continuous casting, the part to be squeezed, i.e., the part that becomes the squeezing resistance, is the part where the solidification has been completed up to the center in the slab thickness direction. The portion where the unsolidified layer remains in the center of the direction does not become a rolling resistance.
[0012]
Therefore, when the slab with the unsolidified layer remaining inside is squeezed, the part that becomes the rolling resistance is only the slab short side where solidification has progressed from the short side of the slab, The ratio of the range of rolling resistance to the entire width of the long side of the slab is small, and this ratio is also the length of the long side of the slab (also referred to as “thickness of the slab”). The slab with a larger ratio) becomes smaller. On the other hand, when the solidified slab is rolled down, the entire width of the slab long side surface becomes the rolling resistance.
[0013]
For this reason, even if the slab is squeezed at the same reduction pressure, there is a difference in the reduction amount of the slab because the reduction resistance is different between the case where the unsolidified layer remains inside and the case where it completely solidifies. Along with this, the amount of displacement of the roll being reduced varies. That is, when the unsolidified layer remains, the reduction amount of the slab increases, and accordingly, the displacement amount of the roll also increases. On the other hand, after the complete solidification, the reduction amount of the slab decreases, and accordingly the roll The amount of displacement becomes smaller. In addition, the displacement amount of a roll is the distance which the roll moved to the reduction direction with respect to the reference position by reducing the slab.
[0014]
In the present invention, while the slab is being squeezed with a pair of rolls during casting, the amount of displacement of the roll at that time is measured, and the amount of slab reduction at the roll position is obtained from the measured displacement of the roll. The presence or absence of an unsolidified layer of the slab at the reduction position can be determined from the size of the obtained slab reduction. In other words, it can be determined whether or not coagulation has been completed.
[0015]
In the continuous casting machine, a slab support roll is installed to support the slab, and this slab support roll can be used as a roll for reducing the slab. The present invention can be applied only by installing a sensor for detecting the displacement of the apparatus, and the equipment cost can be reduced.
[0016]
Also, by changing the slab drawing speed based on the detected solidification completion position, it becomes possible to control the solidification completion position within a predetermined range, and equipment troubles such as deterioration of slab quality and outflow of unsolidified layer. It is possible to ensure the maximum casting capacity without generating any.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the accompanying drawings. FIG. 1 is a view showing an example of an embodiment of the present invention, and is a longitudinal sectional view schematically showing a state in which a slab is being crushed during continuous casting, and FIG. 2 is an XX in FIG. It is the longitudinal cross-sectional view by the arrow.
[0018]
Molten steel poured into a water-cooled mold (not shown) of a continuous casting machine is cooled in contact with the water-cooled mold to form a solidified shell 2 that becomes an outer shell of the slab 1. While being supported by the cast slab support roll, it is continuously pulled out below the mold together with the unsolidified layer 3 inside. During this time, the slab 1 is cooled in a secondary cooling zone installed below the mold, pulled out while increasing the thickness of the solidified shell 2, and eventually solidifies completely to the center in the thickness direction.
[0019]
FIG. 1 is a view showing the vicinity of complete solidification in this way. The slab 1 is supported by the slab support rolls 4 and 4a, and a reduction roll is provided downstream of the slab support rolls 4 and 4a. 5, 5a, reduction rolls 6, 6a, and reduction rolls 7, 7a are installed. In these rolling rolls, the rolling rolls 5, 6, 7 installed on the upper surface side of the slab 1 are respectively connected to a rolling pressure application device (not shown) such as a hydraulic device. Therefore, the slab 1 can be rolled down by moving in the thickness direction of the slab 1. On the other hand, the reduction rolls 5a, 6a, and 7a installed on the lower surface side with respect to the slab 1 are fixed to a continuous casting machine.
[0020]
As shown in FIG. 2, a position detection sensor 9 is installed on each roll bearing 8 on the rolling rolls 5, 6, 7 installed on the upper surface side of the slab 1. 7 (L 1 , L 2 ) can be measured. As the position detection sensor 9, a laser distance meter or a differential transformer can be used.
[0021]
In FIG. 1, D 0 is the slab thickness before reduction in the rolling rolls 5, 5 a, D 1 is the slab thickness after reduction in the rolling rolls 5, 5 a, and the casting before reduction in the rolling rolls 6, 6 a. The piece thickness, D 2 is the thickness of the cast slab after the reduction in the rolling rolls 6, 6 a, and the thickness of the slab before the reduction in the rolling rolls 7, 7 a, D 3 is the slab after the reduction in the rolling rolls 7, 7 a It is thickness.
[0022]
In FIG. 1, three pairs of rolling rolls are installed, but if one or more pairs are installed, the solidification completion position can be determined according to the present invention. However, in order to detect the solidification completion position even when changing the slab drawing speed, it is necessary to install a plurality of reduction rolls according to the change range of the slab drawing speed. Moreover, although the reduction roll connected with the reduction pressure application apparatus was made into the upper surface side with respect to the slab 1, it may be made into a lower surface side and it is good also as both.
[0023]
In the continuous casting machine having such a configuration, the method of the present invention is carried out as follows. First, the reduction pressure of each reduction roll is set so that the slab reduction amounts of the reduction rolls 5 and 5a, the reduction rolls 6 and 6a, and the reduction rolls 7 and 7a are approximately the same. Specifically, it is necessary to reduce the solidified shell 2 on the short side surface side of the slab 1 having the unsolidified layer 3 inside by a certain amount while considering the molten steel static pressure at the installation position of each reduction roll. The rolling pressure may be set so that the force acts on the slab 1.
[0024]
The reduction rolls 5, 6, 7 are cast against the slab 1 with the reduction pressure set in this way. As shown in FIG. 1, the slab reduction amount by the slab rolls 5 and 5a is expressed by the difference between the slab thickness D 0 and the slab thickness D 1. Similarly, the slab reduction amount by the reduction rolls 6 and 6a is The slab thickness D 1 is represented by the difference between the slab thickness D 2, and the slab reduction amount by the rolling rolls 7 and 7 a is represented by the difference between the slab thickness D 2 and the slab thickness D 3 .
[0025]
In this case, the amount of slab reduction in each reduction roll can be determined as follows. If the displacements (L 1 , L 2 ) of the rolling rolls 5, 6, 7 are measured and the amount of displacement from the reference position of each rolling roll 5, 6, 7 is obtained, the rolling rolls 5, 5 a, the rolling roll 6, 6a and the roll intervals of the rolling rolls 7 and 7a are known. Since the obtained roll interval of each reduction roll corresponds to the slab thickness after reduction in each reduction roll, the slab thickness D1, slab thickness D2, and slab thickness D3 can be obtained. Since the slab thickness D 0 is equal to the roll interval of the slab support rolls 4 and 4a, it can be obtained from the set value of the roll interval of the slab support rolls 4 and 4a. The roll interval is a gap between a pair of opposed rolls.
[0026]
The reference positions for measuring the displacements (L 1 , L 2 ) of the rolling rolls 5, 6, 7 are reference positions for quantifying the amount of displacement of each rolling roll, and therefore may be arbitrary positions. When the displacement amount measured from the displacement (L 1 ) is different from the displacement amount measured from the displacement (L 2 ), the average value of both may be used as the displacement amount of the rolling roll.
[0027]
In this way, the slab reduction amount in each reduction roll is obtained from the displacement of each reduction roll. If the obtained slab reduction amount is small, it means that the unsolidified layer 3 of the slab 1 has decreased. Therefore, when a plurality of reduction rolls are installed, from the distribution of the slab reduction amount in the casting direction. The solidification completion position can be determined. In addition, when the installed rolls are a pair, it is impossible to grasp the distribution of the slab roll amount in the casting direction, but it is possible to determine whether solidification is completed at the installation position of the rolls. .
[0028]
When it is desired to control the solidification completion position within a predetermined range, the solidification completion position is detected as described above, and the solidification completion position is determined by performing feedback control while changing the slab drawing speed based on this result. It can be controlled within a predetermined range.
[0029]
Note that the amount of slab reduction in each reduction roll increases as the reduction pressure of each reduction roll increases, and the determination of the solidification completion position is facilitated. However, if the slab reduction amount is excessively increased, internal slab 1 is cracked. Is not preferable. Therefore, the reduction pressure is adjusted so that the slab reduction amount in each reduction roll is about 1 mm at the maximum, or the movement amount of the reduction roll is adjusted so that the slab reduction amount in each reduction roll is about 1 mm. It is preferable to install an obstacle for limiting.
[0030]
【Example】
[Example 1]
When casting ultra-low carbon aluminum killed steel into a slab slab having a slab thickness of 250 mm and a slab width of 1200 mm, the slab is squeezed using a pinch roll placed 35 m downstream from the meniscus as a squeeze roll. The relationship between the amount of one-side reduction and the completion position of coagulation was investigated. The specific amount of secondary cooling water in each test was set to a constant value of 0.81 liter / kg.steel, and the slab drawing speed was set to 5 levels of 1.6 to 2.4 m / min. The outer shape of the reduction roll was 340 mm, and the reduction pressure was 40 tons.
[0031]
FIG. 3 shows the amount of slab reduction measured by the laser distance meter when cast in this manner. As shown in FIG. 3, when the slab drawing speed was 1.8 m / min or less, the slab reduction amount was almost zero, but when the slab drawing speed was 2.0 m / min or more, the slab drawing speed was When the slab drawing speed was 2.2 m / min, the slab reduction amount was about 1.0 mm.
[0032]
FIG. 4 is a diagram showing the relationship between the slab drawing speed and the solidification completion position obtained by heat transfer calculation under the above casting conditions. As is apparent from FIG. 4, when the slab drawing speed is changed, the solidification completion position changes significantly.
[0033]
3 and FIG. 4 are compared, it can be seen that when the slab drawing speed is 2.0 m / min, the solidification completion position is 35 m from the meniscus, that is, the setting position of the reduction roll. From these, the slab after completion of solidification is difficult to be rolled down, while the slab with the unsolidified layer remaining therein is easily squeezed, so when the slab is squeezed under a constant rolling pressure condition, the slab It was found that the coagulation completion position can be determined from the difference in the amount of reduction.
[0034]
[Example 2]
When ultra-low carbon aluminum killed steel is cast into a slab slab having a slab thickness of 250 mm and a slab width of 1200 mm, a pinch roll installed at every 1 m is squeezed in a range of 32 m to 42 m downstream from the meniscus. The slab was rolled down as a roll, and the distribution of the slab reduction amount in the casting direction was investigated to determine the solidification completion position. At that time, the specific amount of secondary cooling water was 0.81 liter / kg.steel, and the slab drawing speed was 2.0 m / min. The outer shapes of the reduction rolls were all 340 mm, and the reduction pressures were all 40 tons.
[0035]
FIG. 5 shows the amount of slab reduction measured by the laser distance meter when cast in this manner. As shown in FIG. 5, when the distance from the meniscus is 36 m or more, the slab is hardly reduced. On the other hand, when the distance from the meniscus is 34 m or less, the slab is reduced by a reduction amount of about 1 mm. It was. It was found that the position 35 m from the meniscus is the displacement point of the slab reduction amount, and the solidification completion position is in the vicinity of 35 m from the meniscus.
[0036]
[Example 3]
A pinch on the outlet side of the continuous casting machine installed on the downstream side of 40m, 41m, and 42m from the meniscus when casting ultra low carbon aluminum killed steel to a slab slab having a slab thickness of 250mm and a slab width of 1200mm The solidification completion position was controlled while the slab was being reduced using the roll as a reduction roll. The outer shapes of the reduction rolls were all 340 mm, and the reduction pressures were all 40 tons.
[0037]
Initially, the secondary cooling water was cast at a specific water amount of 0.81 liter / kg.steel and a slab drawing speed of 2.4 m / min. In this case, the casting was measured by a laser distance meter. From the amount of one-side reduction, it was confirmed that the solidification completion position was in the range of 41 m to 42 m from the meniscus. Since the slab support roll at the end of the continuous casting machine is located at a position 42 m from the meniscus, it can be seen that the solidification completion position was controlled just at the outlet of the continuous casting machine.
[0038]
However, the specific amount of secondary cooling water had to be reduced in the middle of casting, and the specific water amount was reduced to 0.61 liter / kg.steel after 64 minutes from the start of casting. As the specific water amount decreased, the solidification completion position began to exceed the position of 42 m from the meniscus, so the slab drawing speed was reduced to 2.2 m / min after 72 minutes had elapsed since the start of casting. As a result, the solidification completion position was in the range of 40 m to 41 m from the meniscus, and stable casting could be continued without causing quality abnormalities and operational troubles.
[0039]
FIG. 6 shows the transition of the slab reduction amount by each reduction roll measured by the laser distance meter when cast in this manner. In addition, Vc in FIG. 6 is the slab drawing speed, the solid line represents the amount of slab reduction in the reduction roll installed at a position 42 m from the meniscus, and the broken line is the reduction roll installed at a position 41 m from the meniscus. The dashed line represents the amount of slab reduction in a reduction roll installed at a position 40 m from the meniscus.
[0040]
【The invention's effect】
According to the present invention, it is possible to accurately detect the solidification completion position of a slab during continuous casting by a simple method, and by performing casting while controlling the solidification completion position using this method, The casting capacity of the casting machine can be increased to the maximum.
[Brief description of the drawings]
FIG. 1 is a diagram showing an example of an embodiment of the present invention.
2 is a longitudinal sectional view taken along arrow XX ′ of FIG.
FIG. 3 is a view showing a slab reduction amount measured in Example 1. FIG.
FIG. 4 is a diagram showing a calculation result of a relationship between a slab drawing speed and a solidification completion position.
5 is a distribution diagram in the casting direction of the amount of slab reduction measured in Example 2. FIG.
6 is a graph showing a transition of a slab reduction amount measured in Example 3. FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Cast slab 2 Solidified shell 3 Unsolidified layer 4 Slab support roll 5 Roll down 6 Roll down 7 Roll down 8 Roll bearing 9 Position detection sensor

Claims (2)

連続鋳造中の鋳片を、該鋳片を挟んで対向する一対のロールのうちの少なくとも一方が、ロールを鋳片の厚み方向に移動させて鋳片を圧下するための圧下圧力付与装置と連結され、内部に未凝固層を有する鋳片の短辺面側の凝固シェルを1mm以下で且つ一定量だけ圧下するために必要とする、前記ロールの設置位置での溶鋼静圧が考慮された力が鋳片に付加されるように、前記圧下圧力付与装置によって圧下圧力の設定された、一対以上のロールにて圧下すると共に、鋳片を圧下している、前記圧下圧力付与装置と連結されたロールの変位量を計測して、計測した変位量からロールによる鋳片の圧下量を求め、求めた圧下量に基づき鋳片の凝固完了位置を判定することを特徴とする連続鋳造鋳片の凝固完了位置検出方法。At least one of a pair of rolls facing each other with the slab sandwiched between slabs during continuous casting is connected to a reduction pressure applying device for moving the roll in the thickness direction of the slab and reducing the slab. Force required to reduce the solidified shell on the short side of the slab having an unsolidified layer inside by 1 mm or less and by a certain amount, in consideration of the static pressure of the molten steel at the roll installation position The rolling pressure is set by the pair of rolling rolls set by the rolling pressure applying device, and the slab is pressed down and connected to the rolling pressure applying device so that the slab is pressed down. Solidification of a continuous cast slab characterized by measuring a roll displacement, obtaining a slab reduction amount from the measured displacement amount, and determining a solidification completion position of the slab based on the obtained reduction amount Completion position detection method. 請求項1の方法により鋳片の凝固完了位置を検出し、この検出結果に基づき鋳片引き抜き速度を変更して、凝固完了位置を所定範囲内に制御することを特徴とする連続鋳造鋳片の凝固完了位置制御方法。  The solidification completion position of the slab is detected by the method of claim 1, and the solidification completion position is controlled within a predetermined range by changing the slab drawing speed based on the detection result. Solidification completion position control method.
JP2000250728A 2000-08-22 2000-08-22 Method for detecting and controlling solidification completion position of continuous cast slab Expired - Fee Related JP4501254B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000250728A JP4501254B2 (en) 2000-08-22 2000-08-22 Method for detecting and controlling solidification completion position of continuous cast slab

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000250728A JP4501254B2 (en) 2000-08-22 2000-08-22 Method for detecting and controlling solidification completion position of continuous cast slab

Publications (2)

Publication Number Publication Date
JP2002066704A JP2002066704A (en) 2002-03-05
JP4501254B2 true JP4501254B2 (en) 2010-07-14

Family

ID=18740252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000250728A Expired - Fee Related JP4501254B2 (en) 2000-08-22 2000-08-22 Method for detecting and controlling solidification completion position of continuous cast slab

Country Status (1)

Country Link
JP (1) JP4501254B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004002783A1 (en) * 2004-01-20 2005-08-04 Sms Demag Ag Method and device for determining the position of the sump tip in the casting strand in the continuous casting of liquid metals, in particular of liquid steel materials
JP4486541B2 (en) * 2005-04-06 2010-06-23 新日本製鐵株式会社 Method and apparatus for detecting solidification end position in continuous casting machine
EP2011590A4 (en) * 2006-04-26 2009-11-11 Ihi Corp Twin-roll casting machine
JP5413284B2 (en) * 2010-04-09 2014-02-12 新日鐵住金株式会社 Method for detecting the complete solidification position of continuous cast slabs
JP5712575B2 (en) * 2010-11-26 2015-05-07 Jfeスチール株式会社 Method for detecting and controlling solidification completion position of continuous cast slab
JP5742471B2 (en) * 2011-05-26 2015-07-01 Jfeスチール株式会社 Continuous casting method
JP2014028399A (en) * 2012-07-04 2014-02-13 Jfe Steel Corp Method and apparatus for detecting solidification completed position of continuous casting cast piece, and method and apparatus for continuous casting
JP5900215B2 (en) * 2012-07-19 2016-04-06 Jfeスチール株式会社 Method and apparatus for detecting solidification completion position of continuous cast slab, continuous casting method and apparatus
JP5862595B2 (en) * 2013-04-05 2016-02-16 Jfeスチール株式会社 Method for determining solidification completion position of slab, solidification completion position determination device for slab, and method for manufacturing slab
KR101892838B1 (en) * 2014-05-14 2018-08-28 신닛테츠스미킨 카부시키카이샤 Continuous casting method for slab
CN107214312B (en) * 2017-05-17 2019-05-31 中冶京诚工程技术有限公司 Torque Control method and screwdown device when continuous casting heavy reduction
JP7021608B2 (en) * 2018-06-28 2022-02-17 日本製鉄株式会社 Method for estimating the central solid phase ratio of continuously cast slabs

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5055529A (en) * 1973-09-17 1975-05-15
JPH01271047A (en) * 1988-04-20 1989-10-30 Sumitomo Metal Ind Ltd Light rolling reduction method in continuous casting machine
JPH058003A (en) * 1991-07-05 1993-01-19 Kobe Steel Ltd Method for casting with light rolling reduction in continuous casting
JP2000015409A (en) * 1998-06-29 2000-01-18 Sumitomo Metal Ind Ltd Continuous casting method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000334552A (en) * 1999-05-25 2000-12-05 Sumitomo Metal Ind Ltd Method of continuously casting thin slab

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5055529A (en) * 1973-09-17 1975-05-15
JPH01271047A (en) * 1988-04-20 1989-10-30 Sumitomo Metal Ind Ltd Light rolling reduction method in continuous casting machine
JPH058003A (en) * 1991-07-05 1993-01-19 Kobe Steel Ltd Method for casting with light rolling reduction in continuous casting
JP2000015409A (en) * 1998-06-29 2000-01-18 Sumitomo Metal Ind Ltd Continuous casting method

Also Published As

Publication number Publication date
JP2002066704A (en) 2002-03-05

Similar Documents

Publication Publication Date Title
JP4501254B2 (en) Method for detecting and controlling solidification completion position of continuous cast slab
US6296046B1 (en) Edge dam position control method and device in twin roll strip casting process
JP5092642B2 (en) Steel continuous casting method and continuous casting machine
JP2011224583A (en) Method for determining centerline segregation of continuously cast slab
US4134440A (en) Method of continuously casting steel
JP5522324B1 (en) Steel continuous casting method
CN101130205A (en) On-line prognostication of thin strap continuous casting crackle and solidification organization, and control method thereof
JP5098594B2 (en) Manufacturing method of continuous casting slab and continuous casting machine
JP5900215B2 (en) Method and apparatus for detecting solidification completion position of continuous cast slab, continuous casting method and apparatus
JP5417892B2 (en) Continuous casting method for steel slabs
JP5712575B2 (en) Method for detecting and controlling solidification completion position of continuous cast slab
US7156153B2 (en) Method and device for commencing a casting process
JP4483187B2 (en) Manufacturing method of continuous cast slab
JP4569093B2 (en) Method for detecting solidification completion position of continuous cast slab
JP2007260693A (en) Method for controlling in-mold molten metal surface level in continuous casting machine
JP5835574B2 (en) Solidification completion position detection method and solidification completion position control method of cast slab in continuous casting
KR200302675Y1 (en) Slab bulging prevention device
JP7371821B1 (en) Continuous steel casting method
WO2024004447A1 (en) Steel continuous casting method
JPS62148065A (en) Continuous casting method
JP4708686B2 (en) Steel continuous casting method
KR20220133604A (en) Apparatus of manufacturing for continuous casting and methods of manufacturing high-quality strand
JPH0512066B2 (en)
JP2003245762A (en) Method for detecting fully solidified position in continuous casting
JP5413284B2 (en) Method for detecting the complete solidification position of continuous cast slabs

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060921

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070528

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100330

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100412

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4501254

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140430

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees