JP4497842B2 - Method for manufacturing ultra-high temperature hot forged non-tempered parts - Google Patents

Method for manufacturing ultra-high temperature hot forged non-tempered parts Download PDF

Info

Publication number
JP4497842B2
JP4497842B2 JP2003148077A JP2003148077A JP4497842B2 JP 4497842 B2 JP4497842 B2 JP 4497842B2 JP 2003148077 A JP2003148077 A JP 2003148077A JP 2003148077 A JP2003148077 A JP 2003148077A JP 4497842 B2 JP4497842 B2 JP 4497842B2
Authority
JP
Japan
Prior art keywords
forging
high temperature
temperature
ultra
temperature hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003148077A
Other languages
Japanese (ja)
Other versions
JP2004346415A (en
Inventor
正弘 戸田
修 加田
崇史 藤田
欣成 嬉野
尚仁 大野
郁秀 伊与田
昭二 岩城
一衛 野村
幸平 瀬川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Toyota Motor Corp
Aichi Steel Corp
Original Assignee
Nippon Steel Corp
Toyota Motor Corp
Aichi Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Toyota Motor Corp, Aichi Steel Corp filed Critical Nippon Steel Corp
Priority to JP2003148077A priority Critical patent/JP4497842B2/en
Publication of JP2004346415A publication Critical patent/JP2004346415A/en
Application granted granted Critical
Publication of JP4497842B2 publication Critical patent/JP4497842B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、自動車、建設機械等の部品に好適な、高強度、高靭性を有する超高温熱間鍛造非調質部品及び該部品を材料歩留まりを向上させ、鍛造後の焼入れ焼戻しを行うことなく製造する方法に関する。
【0002】
【従来の技術】
従来、自動車部品や建設機械部品の中で高強度、高靭性を必要とする熱間鍛造部品は、熱間鍛造後に調質、即ち焼入れ焼戻しを行って製造されていた。しかし、製造コストに占める調質コストが大きいことから非調質化が進められ、特許文献1に開示されているように、熱間鍛造後に放冷ままで強度及び靭性を確保できる熱間鍛造用非調質鋼が開発されてきた。最近、さらなる製造コスト低減から、熱間鍛造時の材料歩留まり向上が要望されている。また、自動車の軽量化の観点から部品の小型化が要求され、部品の剛性を確保するために複雑な形状となり、鍛造荷重の増大を招いている。
【0003】
このような問題を解決するには、熱間鍛造時の鋼材の変形抵抗を低減することが必要であり、特許文献2には、従来の熱間鍛造の温度範囲である1150〜1250℃よりも高温に鋼材を加熱して熱間鍛造する、超高温熱間鍛造方法が開示されている。この方法は、加熱温度の下限を固相線温度よりも45℃程度低くし、上限を液相線温度よりも20℃低くするものであるが、加熱温度が高いためにオーステナイト粒が粗大化し、鍛造後、非調質化すると靭性が確保できないという問題があった。
【0004】
また、成分及び製造方法の最適化によって靭性を向上させた非調質鋼として、特許文献3には析出硬化型元素の添加量を少なくした鋼が、特許文献4には炭素量を下げて高Mn化した鋼が、特許文献5には析出物の種類を制御した鋼が、特許文献6には制御冷却によって結晶粒を微細化した鋼が開示されている。しかし、これらの何れの方法によっても強度及び靭性に優れる非調質熱間鍛造部品を得ることは容易ではない。一方、特許文献7には、800〜1100℃で鍛造を行い、フェライト結晶粒の微細化によって強度、靭性を向上させる方法が開示されている。しかし、この温度域では加工温度の低下とともにフェライト分率が増加して強度が低下するという問題があった。
【0005】
さらに特許文献8には、700〜800℃の温度で鍛造することによって、フェライト及びパーライトの平均結晶粒径が10μm以下の強度、靭性が優れた非調質鍛造品及びその製造方法が提案されている。しかし、700〜800℃の温度での鍛造で複雑な形状を有する鍛造品を製造するには鍛造荷重が非常に大きく、鍛造機及び金型への負荷が大きいと考えられる。
【0006】
【特許文献1】
特開平1−198450号公報
【特許文献2】
特開平5−15935号公報
【特許文献3】
特開昭55−82750号公報
【特許文献4】
特開昭54−121225号公報
【特許文献5】
特開昭56−38448号公報
【特許文献6】
特開昭56−169723号公報
【特許文献7】
特開平10−195530号公報
【特許文献8】
特開2003−147482号公報
【0007】
【発明が解決しようとする課題】
本発明は、複雑形状の部品の製造が可能であり、製造時の材料歩留まりを向上させ得る超高温熱間鍛造において、焼入れ焼戻しを省略しても、ミクロ組織の微細化により高強度及び高靭性を有する超高温熱間鍛造非調質部品並びにその製造方法を提供するものである。
【0008】
【課題を解決するための手段】
本発明は上記の課題を鑑みてなされたものであり、その要旨は以下の通りである。
(1) 質量%において、
C :0.1〜0.6%、 Si:0.2〜2.0%、
Mn:0.5〜2.5%、 Al:0.002〜0.06%、
N :0.003〜0.02%
を含有し、更に
V:0.05〜0.5%、 Nb:0.005〜0.1%
の1種又は2種を含有し、残部がFe及び不可避不純物からなり、ミクロ組織がフェライトとパーライトからなり、フェライト粒径とパーライト粒径の平均結晶粒径が10μm未満、JIS G 0588で 規定する全脱炭層深さDM−Tが0.02〜0.06mm、引張強さが800〜1300MPa、降伏比が0.7〜0.95であることを特徴とする超高温熱間鍛造非調質部品の製造方法であって、前記成分からなる鋼材を、下限温度を固相線温度[℃]×0.94又は1250℃の何れか高い方とし、上限温度を固相線温度[℃]×0.98とする範囲に加熱し、前記範囲の温度域で超高温熱間鍛造加工した後、さらに、加工品を700〜800℃未満で、対数ひずみが0.5以上の仕上げ鍛造を加えた後、放冷することを特徴とする超高温熱間鍛造非調質部品の製造方法
(2) (1)に記載の成分に加えてさらに、質量%で、
Mg:0.0002〜0.005%、 Zr:0.0002〜0.005%
の1種又は2種以上を含有することを特徴とする(1)に記載の超高温熱間鍛造非調質部品の製造方法
(3) (1)または(2)に記載の成分に加えてさらに、質量%で、
Cr:0.1〜3%、 Ni:0.1〜3%、
Mo:0.1〜3%、 Ti:0.003〜0.05%、
B:0.0005〜0.005%
の1種又は2種以上を含有することを特徴とする(1)または(2)に記載の超高温熱間鍛造非調質部品の製造方法
(4) (1)〜(3)の何れか1項に記載の成分に加えてさらに、質量%で、
S :0.02〜0.1%、 Pb:0.03〜0.3%、
Ca:0.001〜0.05%、 Bi:0.03〜0.3%
の1種又は2種以上を含有することを特徴とする(1)〜(3)の何れか1項に記載の超高温熱間鍛造非調質部品の製造方法
) 仕上げ鍛造後、500〜Ar点[℃]の温度域を下記(1)式で示した冷却速度CR[℃/s]で冷却することを特徴とする()〜(4)の何れか1項に記載の超高温熱間鍛造非調質部品の製造方法。
【0009】
0.1≦CR≦(2.5ε+1) ・・・・・(1)
ここで、εは、仕上げ鍛造の加工率の対数ひずみである。
【0010】
【発明の実施の形態】
本発明では鍛造後、放冷ままで高強度、高靭性を得ることを目的とするが、一般的な非調質鋼を用いて超高温鍛造を行っても、必要な靭性が得られない。強度及び靭性に優れる鍛造品を得るには金属組織を微細にすれば良いが、これには、再結晶温度以上の温度域(再結晶温度域という)でオーステナイト(γという)に熱間鍛造でひずみを与えて再結晶により微細化する方法及び、再結晶温度未満の温度域(未再結晶温度域という)で鍛造して再結晶による転位の減少を抑制し、変態温度以下まで転位を残留させて、変態の核生成速度を増加させる方法がある。
【0011】
しかし、再結晶温度域での鍛造は組織の微細化に限界があり、より一層の微細化を図るために、例えば800〜1100℃で鍛造を行うと、フェライト分率が増加して強度が大きく低下し、鍛造品としての強度を確保できないことが多い。一方、未再結晶温度域で熱間鍛造するには素材の加熱温度が低く、鍛造荷重が急増するために、所定の形状に成形できないという問題がある。
【0012】
そこで、本発明者は、熱間鍛造によって所定の形状に成形する際、複数の工程で加工されることに注目し、粗成形を超高温熱間鍛造で行って、ほぼ製品形状を作り上げ、最後の仕上げ鍛造を未再結晶温度域で行って強度及び靭性を付与する方法を指向した。さらに、未再結晶温度域での鍛造を800℃未満で行えば、結晶粒が十分に微細化し、鍛造後の強度及び靭性の向上が可能であることを見出した。
【0013】
未再結晶温度域で仕上げ鍛造を行うことにより、結晶粒径を微細化できる理由は、以下のように考えられる。通常、再結晶オーステナイト(再結晶γという)では再結晶により粒内の転位密度は減少している。このため、ほとんどのフェライト変態はオーステナイト結晶粒界(γ粒界という)を基点として始まる。また、再結晶γのγ粒界において、粒界単位面積値当たりのフェライト変態核生成数はほぼ一定値をとる。従って、γ粒界の面積が増加すると、即ち鍛造前の結晶粒径を微細化することにより、変態後のミクロ組織は微細になる。
【0014】
一方、未再結晶オーステナイト(未再結晶γという)では、再結晶が十分に進行していないため、粒内の転位密度が高く、粒界のみならず粒内からもフェライト変態が開始する。さらに粒界にも鍛造加工の影響が残っており、粒界単位面積当たりの変態核生成数も再結晶γと比べて多い。このため未再結晶γからは、鍛造前の結晶粒径が粗大であっても微細な変態組織が得られる。
【0015】
更に、未再結晶γからの変態によって得られるミクロ組織は、鍛造後の冷却速度によってフェライトとパーライトからなる組織(フェライト+パーライトという)、ベイナイト、マルテンサイトに大別できるが、これらの混合組織になると靭性が著しく低下する。そのため、鍛造後の冷速制御によりミクロ組織をフェライト+パーライトとすることが必要である。一般的に、ミクロ組織がフェライト+パーライトからなる熱間鍛造非調質鋼では、フェライトよりパーライトの方が遙かに粒径が粗大であり、破壊の抵抗となるのは微細なフェライトである。しかし、本発明ではフェライトとパーライトの粒径が同等の微細な変態組織が得られる。
【0016】
即ち、微細なフェライトとパーライトが均一に分布した組織形態となるため、パーライトも破壊の抵抗となり強度及び靭性に優れた鋼となる。
【0017】
以下に本発明を詳細に説明する。
【0018】
Cは、鋼を強化するのに有効な元素であるが、0.1%未満では充分な強度が得られない。一方、0.6%超を添加すると靭性が低下する。そのため、Cの添加量を0.1〜0.6%とした。
【0019】
Siは、脱酸材として有効であり、かつ固溶強化元素としても有効である。Siの添加量が0.2%未満では脱酸材としての作用が不足し、2.0%超を添加すると必要以上に強度を上げて靭性を低下させる。従って、Siの添加量を0.2〜2.0%とした。
【0020】
Mnは、脱酸元素及び強化元素として有効であるが、Mn添加量が0.5%未満では強度が不足し、2.5%超では靭性が低下するとともに、熱間圧延時に割れが生じて製造が困難となる。従って、Mnの添加量を0.5〜2.5%とした。
【0021】
Alは、鋼の脱酸及び結晶粒の微細化のために有効な元素であるが、0.002%未満ではその効果が不十分である。一方、0.06%超を添加すると靭性を低下させる。従って、Alの添加量を0.002〜0.06%とした。
【0022】
Nは、V窒化物を生成し、析出強化させるために必要な元素であるが、0.003%未満では充分な効果が得られない。一方、0.02%超を添加すると固溶したNによって靭性が劣化する。従って、Nの添加量を0.003〜0.02%とした。
【0023】
更に、V、Nbの1種又は2種を含有する。
【0024】
Vは、固溶原子が転位の回復及び再結晶を遅らせる効果がある。即ち、未再結晶温度を高温側に広げ、未再結晶鍛造を容易にする元素である。また、Vの添加により、未再結晶域での鍛造後、転位密度の高い部分にVの炭窒化物が微細に析出し、強度が上昇する。これらの効果を得るには0.05%以上の添加が好ましい。しかし、0.5%超を添加しても効果の向上が小さく、むしろ靭性をやや低下させるので、V添加量を0.05〜0.5%とすることが好ましい。
【0025】
NbもVと同様に未再結晶鍛造を容易にし、析出強化のために必要な元素であり、0.005%以上の添加が好ましいが、0.1%超を添加すると靭性がやや低下する。そのため、Nb添加量を0.005〜0.1%とすることが好ましい。
【0026】
更に、必要に応じて、Mg、Zr、Cr、Ni、Mo、Ti、B、S、Pb、Ca、Biの1種又は2種以上を含有しても良い。
【0027】
Mg及びZrはともに酸化物や硫化物、これらの複合物を形成し、加熱時のオーステナイトの粗大化を抑制する元素である。さらに、800℃未満の鍛造においては、フェライト変態時の粒成長も抑制する効果もあり組織微細化に極めて有効である。Mg及びZrの添加量は、何れも0.0002%未満ではその効果は小さく、0.005%超では靱性がやや低下する。従って、Mg及びZrの添加量を0.0002〜0.005%とすることが好ましい。
【0028】
Cr、Ni、Moは何れも強度を増大させる元素である。Cr、Ni、Moは、何れも0.1%未満では強度の上昇が小さく、3%超の添加により靭性がやや低下する。そのため、Cr、Ni、Moの添加量を、それぞれ0.1〜3%とすることが好ましい。
【0029】
Tiは,窒化物及び炭化物を生成する元素である。Tiの窒化物は加熱時に高温まで固溶せずに残るため、超高温鍛造においてオーステナイトの粗大化を防止するのに有効である。また炭化物は微細に分散するため析出強化に有効である。
【0030】
Ti添加量が0.003%未満ではこれらの効果が小さく、0.05%超の添加により靱性がやや低下する。そのため、Ti添加量を0.003〜0.05%とすることが好ましい。
【0031】
Bは焼入れ性を増加して強度を増し、さらに粗大なフェライトの生成を防止して組織の微細化を促進するのに有効な元素である。B添加量が0.0005%未満ではこれらの効果が顕著ではなく、0.005%超では靭性がやや低下する。そのために、Bの添加量を0.0005〜0.005%とすることが好ましい。
【0032】
S、Pb、Ca、Biは、何れも被削性を向上させる元素であるが、過小の添加ではその効果が小さく、過剰に添加すると靭性がやや低下する。そのため、S添加量は0.02〜0.1%に、Pb添加量は0.03〜0.3%に、Ca添加量は0.001〜0.05%に、Bi添加量は0.03〜0.3とすることが好ましい。
【0033】
次に本発明の組織形態について述べる。
【0034】
本発明鋼は、フェライトとパーライトの結晶粒径がともに微細なミクロ組織を有する。本発明においては、フェライト粒径とパーライト粒径の平均結晶粒径を10μm未満に微細化すると、強度、靭性、降伏比、伸びが顕著に向上し、平均結晶粒径が5μm以下であれば一層の効果が得られるため好ましい。また、フェライト粒径とパーライト粒径の平均結晶粒径の下限は特に定めないが、鍛造コストの面から2μm以上とすることが好ましい。
【0035】
なお、本発明におけるフェライト粒径とパーライト粒径の平均結晶粒径は、脱炭層を除いた位置から試験片を採取し、光学顕微鏡又は走査型電子顕微鏡により200〜1000倍で3〜5視野観察し、1視野ごとのフェライト粒径及びパーライト粒径をJIS G 0552に準拠して切断法により求め、3〜5視野の単純平均値をそれぞれ、フェライト平均粒径、パーライト平均粒径とし、(2)式により定義される面積平均値で定義した。
【0036】
(平均結晶粒径)=(フェライト平均粒径)×(フェライト分率)
+(パーライト平均粒径)×(1−(フェライト分率))・・・(2)
また、(2)式のフェライト分率は、3〜5視野の200〜500倍の光学顕微鏡組織写真を用いて、フェライトとパーライトのコントラストを二値化し、解析システムで算定することができる。この(2)式により、例えばフェライト平均粒径が6μm、パーライト平均粒径が12μm、フェライト分率が0.38の場合、平均結晶粒径は9.7μmとなる。
【0037】
鍛造後の全脱炭層深さDM−Tは、JIS G 0588で 規定するものであるが、0.06mmを超える脱炭層は鍛造品強度を著しく低下させる。特にシャフト部を有する熱間鍛造品では、捻り変形を受けることが多く表面の強度が重要となる。脱炭は超高温熱間鍛造の加熱により発生し、加熱温度と保持時間に依存するが、全脱炭層深さが0.02mmより少なくなるような短時間加熱では、加熱時に素材表面、特に熱集中を受ける素材角部等で溶融割れが発生する。従って、JIS G 0588で 規定する全脱炭層深さDM−Tは、0.02〜0.06mmの範囲とした。
【0038】
引張強さは、800MPa未満では鍛造品の軽量化の効果が不十分であり、1300MPaを超えると靭性が著しく低下し、切削寿命及び金型寿命も著しく低下する。そのため、引張強さを800〜1300MPaの範囲とした。引張強さは、JIS Z 2201の3号又は4号試験片を採取し、JIS Z 2241に準拠して引張試験を行って求めれば良い。なお、試験片は脱炭層を除く部分から採取する必要があり、偏析部などを避けるためには、素材の直径又は板厚の1/4部に相当する、製品の厚み又は幅の1/4部から採取することが好ましい。
【0039】
引張試験により測定した0.2%耐力と引張強さの比である降伏比は、疲労強度向上のため0.7を下限とした。一方、降伏比を0.95超に上げても疲労強度向上は飽和するので、上限を0.95とした。
【0040】
次に、製造方法について述べる。
【0041】
本発明の超高温熱間鍛造非調質部品の製造方法は、超高温鍛造後、仕上げ鍛造を行うことを特徴とし、超高温鍛造後、そのまま未再結晶温度域に冷却して仕上げ鍛造を行うことが好ましい。超高温鍛造後、室温まで冷却して未再結晶温度域に加熱し、仕上げ鍛造を行っても良い。なお、超高温熱間鍛造後に未再結晶温度域で鍛造するだけでなく、超高温熱間鍛造と通常の熱間鍛造とを組み合わせて鍛造品形状をほぼ成形し、最後に未再結晶温度域での仕上げ鍛造を行うことも可能である。
【0042】
鋼材の加熱温度は、超高温熱間鍛造によって変形抵抗を低減させるために、固相線温度×0.94又は1250℃の何れか高い方を下限とした。これは、充分に変形抵抗を低くし、材料流動を十分に行うためである。下限温度より低温では、鍛造を行う際の成形時の荷重が高く、複雑形状部品の成形が難しく、又、材料歩留まりが低下する。一方、上限温度を固相線温度×0.98とするのは、これを超える温度では超高温鍛造後の結晶粒が粗大化し、その後に仕上げ鍛造を加えても平均結晶粒径を10μm未満にできないからである。
【0043】
固相線温度は、澤井隆、他3名、「ニッケル基超合金のミクロ偏析生成挙動の解析」、鉄と鋼、日本鉄鋼協会、1987年発行、第73巻、第4号、p.196に記載の、析出物の凝固過程の観察に用いられる一方向凝固実験によって測定することができる。これは、高周波加熱とカーボンサセプターを用いて炉内に温度勾配を持たせ、その炉内で棒材を加熱し、その後急冷し、棒材のミクロ組織観察により棒材の各位置での温度とミクロ組織を対応させて、素材の固相線温度を推定する方法である。
【0044】
超高温熱間鍛造は、加熱と同じ温度域で行う。この理由は鋼材の加熱温度の上限及び下限温度を規定した理由と同様である。なお、上限温度の近傍で超高温鍛造した場合、加工発熱により素材温度が固相線温度を超え、鍛造後に粒界部などが溶融して超高温鍛造後にボイドが残留する可能性が考えられる。これを回避するためには、超高温鍛造の加工を対数ひずみで0.3以下とすることが好ましい。
【0045】
超高温熱間鍛造で粗成形した後に、製品形状を所定の形状にすると共に、強度、靭性、降伏比付与を目的とし、未再結晶温度域での仕上げ鍛造を行う。
【0046】
仕上げ鍛造時の温度は、800℃以上で鍛造を行って結晶粒を微細化しても、微細化による強度向上効果よりフェライト分率増加による強度低下の方が大きく、所定の強度を得られない。従って、本発明では強度低下の効果が生じないように800℃未満で仕上げ鍛造を行うこととする。また、700℃未満の鍛造では鍛造前にフェライトが生成し、生成したフェライトに鍛造を加えると加工フェライトとなって靭性を劣化させる。また、700℃未満での鍛造は成形荷重も非常に高くなる。以上のことから、超高温熱間鍛造後行う未再結晶温度域での仕上げ鍛造は、700〜800℃未満で行うこととした。
【0047】
本発明の仕上げ鍛造による組織微細化の効果は、未再結晶γからのフェライト変態の核生成に依存するため、未再結晶温度域で与えるひずみ量の影響が大きい。仕上げ鍛造の加工率εは、対数ひずみで0.5未満では組織微細化が不十分であるため、仕上げ鍛造の加工率εの下限を対数ひずみで0.5以上とする。仕上げ鍛造の加工率εの上限は規定しないが、鍛造金型負荷の観点から、上限を対数ひずみで3程度とすることが好ましい。なお、ここでの対数ひずみは素材の高さ変化、或いは断面積変化から(3)式、又は(4)式から算出されるものとする。
【0048】
仕上げ鍛造の加工率ε=ln(鍛造前の素材高さ/鍛造後の素材高さ) ・・・(3)
仕上げ鍛造の加工率ε=ln(鍛造前の素材断面積/鍛造後の素材断面積)・・・(4)
未再結晶γからの変態は、核生成速度が増大しているために、ミクロ組織と温度及び時間の関係を表す図(ime−emperature−ransformation線図、T−T−T線図という)における最短時間、いわゆるT−T−Tノ−ズが短時間側にシフトし、フェライトが生成しやすくなっている。
【0049】
このため、ミクロ組織をフェライト+パーライトとするには、Ar3点[℃]以下500℃以上の温度域で、(1)式に示した冷却速度CR[℃/s]で冷却することが好ましい。
【0050】
0.1≦CR≦(2.5ε+1) ・・・・・(1)
ここで、εは700〜800℃未満の温度域で鍛造を行った際の対数ひずみである。
【0051】
なお、Ar3点は、下記(5)式により求めた値とする。
【0052】
Ar3=868−396C+24.6Si−58.7Mn−50Ni
−35Cu+190V ・・・・・(5)
ここで、C、Si、Mn、Ni、Cu、Vは、質量%で表したC、Si、Mn、Ni、Cu、Vの含有量であり、選択元素であるVを含有しない場合は、Vを0として計算する。なお、Ar3点は、昇温及び降温による形状の変化を測定し、冷却時に線膨張率が変化し始める温度として求めても良い。
【0053】
冷却速度が0.1℃/秒より遅いと、充分な核生成速度を得られずフェライトがやや粗大化する。一方、冷却速度が(2.5ε+1)℃/sを超えると、ベイナイト又はマルテンサイトを生じて、靭性が劣化することがあるためである。また、冷却制御温度域をAr3点以下としたのは、Ar3点以下でフェライト変態が始まるためであり、500℃以上とするのは、この温度ではすでにミクロ組織がフェライト+パーライトに変態しているからである。
【0054】
【実施例】
(実施例1)
表1のA〜Wに示す化学成分を有する鋼材を用いて本発明例と比較例の実験を行った。鋼種A〜Qが本発明例の対象鋼種であり、鋼種R〜Vが比較例に用いられた鋼種である。なお表1には、参考としてPの含有量と、固相線温度Ts[℃]、及び未再結晶上限温度[℃]を併記した。固相線温度はφ15×250mmの棒状素材を用いた一方向凝固試験から推定した温度である。未再結晶上限温度は、再結晶が生じない上限の温度であり、下記(6)式によって求めた値である。下記(6)式は、温度制御機能と圧縮加工機能を有する加工フォーマスター試験機を用いて、V,Nb含有成分の鋼について加工焼入れ試験を行い、組織観察を行った結果、再結晶が生じない上限の温度をV量及びNb量で回帰分析して得られた実験式である。なお、(6)式は加工度の影響を表す項を除いた簡易式であり、V及びNbは、質量%で表した含有量である。
【0055】
未再結晶上限温度=819+61((V)+10(Nb))0.2 ・・・(6)
表1に示した鋼種のφ70×60mmの素材を、表2の加熱温度Tk[℃]に高周波で加熱し、約30秒間保持した後、超高温熱間鍛造を行った。素材の表面温度を放射温度計によって測定した。加熱時の周波数は3〜5KHzであり、加熱速度は、室温から1250℃までを5℃/s、その後加熱温度までを1℃/sとした。高周波加熱後、試料を鍛造機まで移動する間に素材の温度が低下したため、鍛造直前温度Tt[℃]を表2に示した。
【0056】
超高温熱間鍛造は、油圧サーボ機構を有する圧縮試験機にて、φ70×60mmの試料を横置きし、平坦な圧盤を用いて、圧縮ラム速度を200mm/sとして行った。超高温熱間鍛造の鍛造前後の高さの変化から求めた加工率は、対数ひずみにして約0.5であった。超高温鍛造後、800℃未満に冷却して、仕上げ鍛造を行ったが、この際にも仕上げ鍛造直前の素材の表面温度を放射温度計にて測温し、表2の仕上げ鍛造条件の鍛造前温度として示した。
【0057】
仕上げ鍛造後は室温まで放冷し、鍛造品の高さ方向のほぼ中央部を垂直に切断し、全断面を鏡面研磨し、エッチングを行い、フェライト及びパーライトの平均粒径をJIS G 0552に準拠して、全脱炭層深さをJIS G 0588に準拠して測定した。なお、試料断面において、製品厚及び製品幅の1/4の部位の平均粒径を測定するために、中心部の10mm角の範囲は平均粒径測定から除いた。脱炭層深さは光学顕微鏡での倍率を200〜500倍として、読み取り寸法を付した接眼鏡を用いて脱炭層深さを10カ所測定し、最大、最小を除く8カ所の平均値とした。
【0058】
表2と同条件で超高温鍛造及び仕上げ鍛造を行った試料の鍛造品幅の1/4の部位から、引張試験片としてJIS Z 2201の平行部直径10mmの3号試験片、シャルピー衝撃試験片としてJIS Z 2202のUノッチ試験片を採取した。Uノッチの形状は2mm、試験片の試験幅は5mmとした。引張試験は、JIS Z 2241に準拠して行い、シャルピー衝撃試験はJIS Z 2242に準拠し、−50℃で行った。表2に引張強さ、衝撃値、降伏比を示すが衝撃値は−50℃での吸収エネルギーである。
【0059】
表2においてNo.1〜18は本発明の範囲であり、引張強さが約800〜1000MPaであり、衝撃値も80J/cm2以上となっている。No.18は、仕上げ鍛造後の冷却速度が好ましい範囲よりも速いため、同成分のC鋼を用いたNo.3に比べて、衝撃値がやや低い。一方、No.19〜23は、成分が本発明の範囲外である、表1のR〜Vの鋼種を用いた比較例であるが、何れも衝撃値が50J/cm2に達していない。
【0060】
No.24は、仕上げ鍛造前温度が本発明の範囲よりも高いため、フェライト分率が高くなり、引張強さが低下し、No.25は、仕上げ鍛造前温度が本発明の範囲よりも低いため、フェライトが加工硬化しているため、シャルピー衝撃値が低い。また、No.26は、超高温鍛造時の加熱温度及び鍛造前温度が本発明の範囲よりも高く、所定の仕上げ鍛造を行っても結晶粒径が大きく、シャルピー衝撃値が低い。No.27は仕上げ鍛造を行わなかった場合で、結晶粒が非常に大きく、シャルピー衝撃値が低い。
【0061】
No.28は、仕上げ鍛造時のひずみが、本発明の範囲よりも小さいため、結晶粒径が大きく、引張強さ及びシャルピー衝撃値が低下している。No.29は、超高温鍛造の加熱後の保持温度時間を5分間と長くした場合であり、脱炭増が深く、引張強さ及びシャルピー衝撃値が低い。
(実施例2)
表1のA〜C、LおよびO鋼を用いて、表3に示した条件で超高温熱間鍛造及び仕上げ鍛造を、実施例1と同様にして行った。超高温熱間鍛造の加熱温度、鍛造前温度、加工ひずみ、仕上げ鍛造の鍛造前温度、加工ひずみ、全脱炭層深さ、平均結晶粒、引張強さ、衝撃値、降伏比は、実施例1と同様にして測定した。超高温熱間鍛造及び仕上げ鍛造の鍛造荷重は、圧縮試験機のロードセルによって測定した。なお、超高温熱間鍛造及び仕上げ鍛造の鍛造荷重は、高いと金型寿命の低下を招くことになり極力低いことが好ましい。
【0062】
試験結果を表3に示すが、No.31〜35は本発明の範囲内であり、超高温熱間鍛造時の荷重は約400KN以下、仕上げ鍛造時では2000KN前後である。一方、No.36は超高温鍛造時の加熱温度が発明の範囲よりも低く、No.37は超高温熱間鍛造において、加熱後、鍛造までの時間を長くして、超高温熱間鍛造直前温度を発明の範囲よりも低くした場合である。No.36及びNo.37は、何れも組織、平均結晶粒径、全脱炭層深さ、引張強さ、降伏比が、それぞれ本発明の範囲であるものの、鍛造荷重が500KN以上であり、本発明の範囲内で製造したNo.31〜35よりも高い。また、No.38は、仕上げ鍛造時直前温度が本発明の範囲よりも低い場合であるが、このときの仕上げ鍛造荷重は3000KNであり、本発明の範囲内で製造したNo.31〜35よりも1000KN以上高くなっている。
【0063】
No.39は、脱炭層を浅くするために所定の温度に加熱した後の30秒保持を行わず、加熱後直ぐに超高温熱間鍛造を行った場合であるが、熱間鍛造時の荷重が816KNと本発明での超高温熱間鍛造時の荷重より高くなった。これは、温度測定は試料の表面で行っており、表面温度は所定の温度に達しているものの、温度保持を行わないため中心部の素材は所定の温度にまで加熱されていないためと考えられる。
【0064】
【表1】

Figure 0004497842
【0065】
【表2】
Figure 0004497842
【0066】
【表3】
Figure 0004497842
【0067】
【発明の効果】
本発明により鋼材の成形性が著しく向上し、従来成し得なかった複雑形状部品の加工が可能になり、また歩留まりを高めることができる。従って、部品の軽量化を実現するとともに、従来より高い生産性、安いコストでの製造を実現できることになり、機械部品の製造における貢献が極めて高い。[0001]
BACKGROUND OF THE INVENTION
INDUSTRIAL APPLICABILITY The present invention is suitable for parts such as automobiles and construction machines, and has high strength and high toughness. It relates to a method of manufacturing.
[0002]
[Prior art]
Conventionally, hot forged parts that require high strength and high toughness among automobile parts and construction machine parts have been manufactured by tempering, that is, quenching and tempering after hot forging. However, since the tempering cost occupying the manufacturing cost is large, non-tempering has been promoted, and as disclosed in Patent Document 1, for hot forging that can ensure strength and toughness while being allowed to cool after hot forging. Non-tempered steel has been developed. Recently, in order to further reduce manufacturing costs, there has been a demand for improved material yield during hot forging. In addition, miniaturization of parts is required from the viewpoint of reducing the weight of automobiles, resulting in a complicated shape to ensure the rigidity of the parts, leading to an increase in forging load.
[0003]
In order to solve such a problem, it is necessary to reduce the deformation resistance of the steel material during hot forging. In Patent Document 2, the temperature range of 1150 to 1250 ° C., which is a conventional hot forging temperature range, is required. An ultra-high temperature hot forging method is disclosed in which a steel material is heated to a high temperature for hot forging. In this method, the lower limit of the heating temperature is about 45 ° C. lower than the solidus temperature, and the upper limit is 20 ° C. lower than the liquidus temperature, but because the heating temperature is high, austenite grains become coarse, After forging, there was a problem that toughness could not be secured if it was not tempered.
[0004]
Further, as non-heat treated steel whose toughness has been improved by optimizing the components and manufacturing method, Patent Document 3 discloses a steel with a small amount of precipitation hardening element added, and Patent Document 4 discloses a high carbon steel with a reduced carbon content. Patent Document 5 discloses steel that has been converted to Mn, and Patent Document 5 discloses steel in which crystal grains are refined by controlled cooling. However, it is not easy to obtain a non-tempered hot forged part excellent in strength and toughness by any of these methods. On the other hand, Patent Document 7 discloses a method of forging at 800 to 1100 ° C. and improving strength and toughness by refining ferrite crystal grains. However, in this temperature range, there is a problem that the ferrite fraction increases and the strength decreases as the processing temperature decreases.
[0005]
Further, Patent Document 8 proposes a non-tempered forged product excellent in strength and toughness having an average crystal grain size of ferrite and pearlite of 10 μm or less by forging at a temperature of 700 to 800 ° C. and a method for producing the same. Yes. However, in order to produce a forged product having a complicated shape by forging at a temperature of 700 to 800 ° C., the forging load is very large, and the load on the forging machine and the mold is considered to be large.
[0006]
[Patent Document 1]
Japanese Patent Laid-Open No. 1-198450
[Patent Document 2]
JP-A-5-15935
[Patent Document 3]
JP-A-55-82750
[Patent Document 4]
JP 54-121225 A
[Patent Document 5]
Japanese Patent Laid-Open No. 56-38448
[Patent Document 6]
JP 56-169723 A
[Patent Document 7]
JP-A-10-195530
[Patent Document 8]
JP 2003-147482 A
[0007]
[Problems to be solved by the invention]
The present invention is capable of producing parts having complex shapes, and can improve the material yield at the time of production. In ultra-high temperature hot forging, even if quenching and tempering is omitted, high strength and high toughness can be achieved by refining the microstructure. An ultra-high temperature hot forged non-tempered part having the above and a method for producing the same are provided.
[0008]
[Means for Solving the Problems]
The present invention has been made in view of the above problems, and the gist thereof is as follows.
(1) In mass%,
C: 0.1-0.6%, Si: 0.2-2.0%,
Mn: 0.5 to 2.5%, Al: 0.002 to 0.06%,
N: 0.003-0.02%
Further,
V: 0.05-0.5%, Nb: 0.005-0.1%
The balance is composed of Fe and inevitable impurities, the microstructure is composed of ferrite and pearlite, and the average grain size of ferrite grain and pearlite grain is less than 10 μm, as defined by JIS G 0588 Total high-temperature decarburization depth DM-T is 0.02 to 0.06 mm, tensile strength is 800 to 1300 MPa, and yield ratio is 0.7 to 0.95. parts The lower limit temperature of the steel material comprising the above components is set to the higher one of the solidus temperature [° C.] × 0.94 and 1250 ° C., and the upper limit temperature is set to the solidus temperature [° C.] × 0. After heating to a range of .98 and performing ultra-high temperature hot forging in the temperature range of the above range, the processed product is further subjected to finish forging at less than 700 to 800 ° C. and logarithmic strain of 0.5 or more. , A method for producing an ultra-high temperature hot-forged non-tempered part characterized by cooling .
(2) As described in (1) component In addition to mass%,
Mg: 0.0002 to 0.005%, Zr: 0.0002 to 0.005%
1 type or 2 types or more are contained As described in (1) Ultra-high temperature hot forged non-tempered parts Manufacturing method .
(3) As described in (1) or (2) component In addition to mass%,
Cr: 0.1-3%, Ni: 0.1-3%,
Mo: 0.1-3%, Ti: 0.003-0.05%,
B: 0.0005 to 0.005%
1 type or 2 types or more are contained As described in (1) or (2) Ultra-high temperature hot forged non-tempered parts Manufacturing method .
(4) According to any one of (1) to (3) component In addition to mass%,
S: 0.02-0.1%, Pb: 0.03-0.3%,
Ca: 0.001-0.05%, Bi: 0.03-0.3%
1 type or 2 types or more are contained (1) to any one of (3) Ultra-high temperature hot forged non-tempered parts Manufacturing method .
( 5 ) After finish forging, 500 ~ Ar 3 The temperature range of the point [° C.] is cooled at the cooling rate CR [° C./s] shown by the following formula (1) ( 1 ) ~ In any one of (4) The manufacturing method of the ultra high temperature hot forging non-tempered part of description.
[0009]
0.1 ≦ CR ≦ (2.5ε + 1) (1)
Here, ε is a logarithmic strain of the finishing forging rate.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The purpose of the present invention is to obtain high strength and high toughness while being allowed to cool after forging. However, even if ultra-high temperature forging is performed using a general non-tempered steel, the required toughness cannot be obtained. In order to obtain a forged product with excellent strength and toughness, the metal structure may be made finer. This can be achieved by hot forging to austenite (called γ) in a temperature range above the recrystallization temperature (called the recrystallization temperature range). Straining and refining by recrystallization and forging in a temperature range below the recrystallization temperature (referred to as the non-recrystallization temperature range) suppresses the decrease in dislocations due to recrystallization, allowing the dislocations to remain below the transformation temperature. There is a way to increase the nucleation rate of transformation.
[0011]
However, forging in the recrystallization temperature range has a limit in the refinement of the structure, and forging at, for example, 800 to 1100 ° C. to achieve further refinement, the ferrite fraction increases and the strength increases. In many cases, the strength of the forged product cannot be ensured. On the other hand, in the case of hot forging in the non-recrystallization temperature range, there is a problem that the heating temperature of the raw material is low and the forging load increases rapidly, so that it cannot be formed into a predetermined shape.
[0012]
Therefore, the present inventor noticed that when forming into a predetermined shape by hot forging, it is processed in a plurality of steps, rough forming is performed by ultra high temperature hot forging, and the product shape is almost completed. A method for imparting strength and toughness by performing final forging in the non-recrystallization temperature range was directed. Furthermore, it has been found that if the forging in the non-recrystallization temperature region is performed at less than 800 ° C., the crystal grains are sufficiently refined and the strength and toughness after forging can be improved.
[0013]
The reason why the crystal grain size can be refined by performing finish forging in the non-recrystallization temperature range is considered as follows. Usually, in recrystallized austenite (referred to as recrystallized γ), the dislocation density in the grains decreases due to recrystallization. For this reason, most ferrite transformations start from the austenite grain boundaries (called γ grain boundaries). In addition, at the γ grain boundary of the recrystallized γ, the ferrite transformation nucleation number per grain boundary unit area value takes a substantially constant value. Therefore, when the area of the γ grain boundary is increased, that is, by reducing the crystal grain size before forging, the microstructure after transformation becomes fine.
[0014]
On the other hand, in non-recrystallized austenite (referred to as non-recrystallized γ), since recrystallization does not proceed sufficiently, the dislocation density in the grains is high, and ferrite transformation starts not only from the grain boundaries but also from within the grains. Furthermore, the effect of forging remains on the grain boundaries, and the number of transformation nuclei generated per grain boundary unit area is larger than that of recrystallized γ. Therefore, a fine transformation structure can be obtained from unrecrystallized γ even if the crystal grain size before forging is coarse.
[0015]
Furthermore, the microstructure obtained by transformation from non-recrystallized γ can be broadly divided into ferrite and pearlite structures (ferrite + pearlite), bainite and martensite depending on the cooling rate after forging. If it becomes, toughness will fall remarkably. Therefore, it is necessary to change the microstructure to ferrite + pearlite by cold speed control after forging. In general, in hot forged non-tempered steel having a microstructure of ferrite + pearlite, pearlite has a much larger particle size than ferrite, and the resistance to fracture is fine ferrite. However, in the present invention, a fine transformation structure in which the particle sizes of ferrite and pearlite are equivalent can be obtained.
[0016]
That is, since the fine ferrite and the pearlite are uniformly distributed, the pearlite is also resistant to fracture and becomes a steel excellent in strength and toughness.
[0017]
The present invention is described in detail below.
[0018]
C is an element effective for strengthening steel, but if it is less than 0.1%, sufficient strength cannot be obtained. On the other hand, addition of more than 0.6% reduces toughness. Therefore, the addition amount of C is set to 0.1 to 0.6%.
[0019]
Si is effective as a deoxidizing material and is also effective as a solid solution strengthening element. If the addition amount of Si is less than 0.2%, the action as a deoxidizer is insufficient, and if over 2.0% is added, the strength is increased more than necessary and the toughness is reduced. Therefore, the amount of Si added is set to 0.2 to 2.0%.
[0020]
Mn is effective as a deoxidizing element and a strengthening element, but if the amount of Mn added is less than 0.5%, the strength is insufficient, and if it exceeds 2.5%, the toughness is lowered and cracking occurs during hot rolling. Manufacturing becomes difficult. Therefore, the amount of Mn added is set to 0.5 to 2.5%.
[0021]
Al is an effective element for deoxidation of steel and refinement of crystal grains, but if it is less than 0.002%, its effect is insufficient. On the other hand, if over 0.06% is added, the toughness is lowered. Therefore, the additive amount of Al is set to 0.002 to 0.06%.
[0022]
N is an element necessary for generating V nitride and strengthening precipitation, but if it is less than 0.003%, a sufficient effect cannot be obtained. On the other hand, if adding over 0.02%, the toughness deteriorates due to the dissolved N. Therefore, the addition amount of N is set to 0.003 to 0.02%.
[0023]
Furthermore, 1 type or 2 types of V and Nb are contained.
[0024]
V has an effect that solid solution atoms delay recovery of dislocation and recrystallization. That is, it is an element that extends the non-recrystallization temperature to the high temperature side and facilitates non-recrystallization forging. Further, by adding V, after forging in the non-recrystallized region, V carbonitride is finely precipitated in a portion having a high dislocation density, and the strength is increased. To obtain these effects, 0.05% or more is preferable. However, even if more than 0.5% is added, the effect is small and rather the toughness is somewhat lowered. Therefore, the V addition amount is preferably 0.05 to 0.5%.
[0025]
Nb, like V, facilitates non-recrystallized forging and is an element necessary for precipitation strengthening, and is preferably added in an amount of 0.005% or more, but if added over 0.1%, the toughness is slightly lowered. Therefore, the Nb addition amount is preferably 0.005 to 0.1%.
[0026]
Furthermore, you may contain 1 type, or 2 or more types of Mg, Zr, Cr, Ni, Mo, Ti, B, S, Pb, Ca, Bi as needed.
[0027]
Mg and Zr are both elements that form oxides, sulfides, and composites thereof and suppress austenite coarsening during heating. Furthermore, forging at temperatures lower than 800 ° C. has an effect of suppressing grain growth during ferrite transformation and is extremely effective for refining the structure. If the amount of Mg and Zr added is less than 0.0002%, the effect is small, and if it exceeds 0.005%, the toughness is slightly lowered. Therefore, it is preferable that the addition amount of Mg and Zr is 0.0002 to 0.005%.
[0028]
Cr, Ni, and Mo are all elements that increase the strength. Cr, Ni, and Mo are all less than 0.1% in strength, and the addition of more than 3% slightly reduces toughness. Therefore, it is preferable that the addition amount of Cr, Ni, and Mo is 0.1 to 3%, respectively.
[0029]
Ti is an element that generates nitrides and carbides. Since the nitride of Ti remains without being dissolved to a high temperature during heating, it is effective in preventing austenite coarsening in ultra-high temperature forging. In addition, since carbide is finely dispersed, it is effective for precipitation strengthening.
[0030]
When the amount of Ti added is less than 0.003%, these effects are small, and when it exceeds 0.05%, the toughness is slightly lowered. Therefore, it is preferable to make Ti addition amount 0.003-0.05%.
[0031]
B is an element effective for increasing the hardenability and increasing the strength, and further preventing the formation of coarse ferrite and promoting the refinement of the structure. If the B addition amount is less than 0.0005%, these effects are not remarkable, and if it exceeds 0.005%, the toughness is slightly lowered. Therefore, it is preferable that the addition amount of B is 0.0005 to 0.005%.
[0032]
S, Pb, Ca, and Bi are all elements that improve the machinability, but the effect is small if added too little, and the toughness slightly decreases if added excessively. Therefore, the S addition amount is 0.02 to 0.1%, the Pb addition amount is 0.03 to 0.3%, the Ca addition amount is 0.001 to 0.05%, and the Bi addition amount is 0.00. It is preferable to set it as 03-0.3.
[0033]
Next, the organization form of the present invention will be described.
[0034]
The steel of the present invention has a microstructure in which both the crystal grain sizes of ferrite and pearlite are fine. In the present invention, when the average grain size of ferrite grain size and pearlite grain size is reduced to less than 10 μm, the strength, toughness, yield ratio, and elongation are remarkably improved. Since the effect of this is acquired, it is preferable. The lower limit of the average grain size of the ferrite grain size and the pearlite grain size is not particularly defined, but is preferably 2 μm or more from the viewpoint of forging cost.
[0035]
In addition, the average crystal grain size of ferrite grain size and pearlite grain size in the present invention is obtained by taking a test piece from the position excluding the decarburized layer, and observing 3 to 5 fields with an optical microscope or a scanning electron microscope at 200 to 1000 times. Then, the ferrite particle size and pearlite particle size for each field of view are determined by a cutting method in accordance with JIS G 0552, and the simple average values of 3 to 5 fields of view are defined as ferrite average particle size and pearlite average particle size, respectively (2 ) The area average value defined by the formula.
[0036]
(Average crystal grain size) = (Ferrite average grain size) × (Ferrite fraction)
+ (Pearlite average particle size) × (1- (ferrite fraction)) (2)
Moreover, the ferrite fraction of the formula (2) can be calculated by an analysis system by binarizing the contrast between ferrite and pearlite using an optical microscope texture photograph of 200 to 500 times of 3 to 5 visual fields. According to the formula (2), for example, when the ferrite average particle size is 6 μm, the pearlite average particle size is 12 μm, and the ferrite fraction is 0.38, the average crystal particle size is 9.7 μm.
[0037]
The total decarburized layer depth DM-T after forging is specified by JIS G 0588, but a decarburized layer exceeding 0.06 mm significantly decreases the strength of the forged product. In particular, a hot forged product having a shaft portion is often subjected to torsional deformation, and the strength of the surface is important. Decarburization occurs by heating at ultra-high temperature hot forging and depends on the heating temperature and holding time, but in short-time heating where the total decarburization layer depth is less than 0.02 mm, the surface of the material, especially the heat during heating Melting cracks occur at the corners of the material that receive the concentration. Therefore, the total decarburized layer depth DM-T specified by JIS G 0588 is set in the range of 0.02 to 0.06 mm.
[0038]
If the tensile strength is less than 800 MPa, the effect of reducing the weight of the forged product is insufficient, and if it exceeds 1300 MPa, the toughness is remarkably reduced, and the cutting life and die life are also significantly reduced. Therefore, the tensile strength is set in the range of 800 to 1300 MPa. The tensile strength may be determined by taking a JIS Z 2201 No. 3 or 4 test piece and conducting a tensile test according to JIS Z 2241. In addition, it is necessary to collect the test piece from the portion excluding the decarburized layer, and in order to avoid the segregation portion, the thickness or width of the product corresponding to ¼ of the diameter or plate thickness of the material. It is preferable to collect from the part.
[0039]
The yield ratio, which is the ratio between the 0.2% proof stress and the tensile strength measured by a tensile test, was set at 0.7 as a lower limit for improving fatigue strength. On the other hand, even if the yield ratio is increased to more than 0.95, the improvement in fatigue strength is saturated, so the upper limit was made 0.95.
[0040]
Next, a manufacturing method will be described.
[0041]
The method for producing an ultra-high temperature hot forged non-tempered part according to the present invention is characterized by performing finish forging after ultra high temperature forging, and performing finish forging by cooling to an unrecrystallized temperature range as it is after ultra high temperature forging. It is preferable. After ultra-high temperature forging, finish forging may be performed by cooling to room temperature and heating to a non-recrystallization temperature range. In addition to forging in the non-recrystallization temperature range after ultra-high temperature hot forging, the forged product shape is almost formed by combining ultra-high temperature hot forging and normal hot forging, and finally in the non-recrystallization temperature range. It is also possible to perform finish forging at.
[0042]
In order to reduce deformation resistance by ultra-high temperature hot forging, the heating temperature of the steel material was set to a lower limit of the solidus temperature × 0.94 or 1250 ° C., whichever is higher. This is because the deformation resistance is sufficiently lowered and the material flows sufficiently. If the temperature is lower than the lower limit temperature, the load at the time of forming during forging is high, it is difficult to form a complex shaped part, and the material yield decreases. On the other hand, the upper limit temperature is set to the solidus temperature × 0.98 because the crystal grains after ultra-high temperature forging become coarser at temperatures exceeding this, and even if finishing forging is added thereafter, the average crystal grain size is less than 10 μm. It is not possible.
[0043]
The solidus temperature was determined by Takashi Sawai and three others, “Analysis of microsegregation behavior of nickel-base superalloys”, Iron and Steel, Japan Iron and Steel Institute, published in 1987, Vol. 73, No. 4, p. 196, and can be measured by a unidirectional solidification experiment used for observation of the solidification process of the precipitate. This is because the furnace has a temperature gradient using high-frequency heating and a carbon susceptor, the bar is heated in the furnace, and then rapidly cooled, and the temperature at each position of the bar is observed by microscopic observation of the bar. This is a method of estimating the solidus temperature of a material by making the microstructure correspond.
[0044]
Ultra-high temperature hot forging is performed in the same temperature range as heating. The reason for this is the same as the reason for defining the upper limit and the lower limit temperature of the steel material heating temperature. In addition, when ultra-high temperature forging is performed in the vicinity of the upper limit temperature, there is a possibility that the raw material temperature exceeds the solidus temperature due to processing heat generation, the grain boundary portion and the like melt after forging, and voids remain after ultra-high temperature forging. In order to avoid this, it is preferable that the ultra-high temperature forging is performed with a logarithmic strain of 0.3 or less.
[0045]
After rough forming by ultra-high temperature hot forging, finish forging is performed in an unrecrystallized temperature range for the purpose of imparting strength, toughness, and yield ratio, while making the product shape into a predetermined shape.
[0046]
Even if the forging is performed at 800 ° C. or higher and the crystal grains are made finer, the strength reduction due to the increase in the ferrite fraction is larger than the strength improvement effect of the refinement, and the predetermined strength cannot be obtained. Therefore, in the present invention, finish forging is performed at less than 800 ° C. so that the effect of strength reduction does not occur. Further, in forging at less than 700 ° C., ferrite is generated before forging, and when forging is added to the generated ferrite, it becomes processed ferrite and deteriorates toughness. In addition, forging at less than 700 ° C., the molding load is very high. From the above, the finish forging in the non-recrystallization temperature range performed after the ultra-high temperature hot forging is performed at 700 to less than 800 ° C.
[0047]
The effect of refining the structure by finish forging according to the present invention depends on the nucleation of ferrite transformation from non-recrystallized γ, and therefore the influence of the strain amount in the non-recrystallized temperature range is large. If the processing rate ε of the finish forging is less than 0.5 in logarithmic strain, the refinement of the structure is insufficient. Therefore, the lower limit of the processing rate ε of finish forging is set to 0.5 or more in logarithmic strain. Although the upper limit of the finishing forging rate ε is not specified, it is preferable that the upper limit is about 3 in logarithmic strain from the viewpoint of forging die load. Here, the logarithmic strain is calculated from the formula (3) or (4) from the change in the height of the material or the change in the cross-sectional area.
[0048]
Finishing forging rate ε = ln (material height before forging / material height after forging) (3)
Finish forging rate ε = ln (material cross-sectional area before forging / material cross-sectional area after forging) (4)
The transformation from unrecrystallized γ shows the relationship between microstructure, temperature and time because the nucleation rate is increased ( T ime- T temperature- T The shortest time in the transformation chart (referred to as the TTT chart), the so-called TT noise, shifts to the short time side, and ferrite is easily generated.
[0049]
For this reason, to make the microstructure ferrite + pearlite, Ar Three It is preferable to cool at a cooling rate CR [° C./s] shown in the equation (1) in a temperature range of point [° C.] or less and 500 ° C. or more.
[0050]
0.1 ≦ CR ≦ (2.5ε + 1) (1)
Here, ε is a logarithmic strain when forging is performed in a temperature range of 700 to 800 ° C.
[0051]
Ar Three The point is a value obtained by the following equation (5).
[0052]
Ar Three = 868-396C + 24.6Si-58.7Mn-50Ni
-35Cu + 190V (5)
Here, C, Si, Mn, Ni, Cu, and V are contents of C, Si, Mn, Ni, Cu, and V expressed by mass%, and when V that is a selective element is not contained, V Is calculated as 0. Ar Three The point may be obtained as a temperature at which the linear expansion coefficient starts to change at the time of cooling by measuring a change in shape due to temperature rise and fall.
[0053]
When the cooling rate is slower than 0.1 ° C./second, a sufficient nucleation rate cannot be obtained and the ferrite becomes slightly coarse. On the other hand, when the cooling rate exceeds (2.5ε + 1) ° C./s, bainite or martensite is generated, and the toughness may be deteriorated. The cooling control temperature range is Ar Three Below the point, Ar Three This is because the ferrite transformation starts below the point, and the reason why the temperature is set to 500 ° C. or more is that at this temperature, the microstructure has already been transformed into ferrite + pearlite.
[0054]
【Example】
Example 1
Using the steel materials having chemical components shown in A to W of Table 1, experiments of the present invention and comparative examples were conducted. Steel types A to Q are target steel types of the present invention examples, and steel types R to V are steel types used in the comparative examples. In Table 1, the P content, the solidus temperature Ts [° C.], and the non-recrystallization upper limit temperature [° C.] are also shown for reference. The solidus temperature is a temperature estimated from a unidirectional solidification test using a rod-shaped material of φ15 × 250 mm. The unrecrystallized upper limit temperature is an upper limit temperature at which recrystallization does not occur, and is a value determined by the following equation (6). The following formula (6) shows that recrystallization occurs as a result of processing and quenching tests on steels with V and Nb content using a processing for master testing machine having a temperature control function and a compression processing function, and observing the structure. It is an empirical formula obtained by regression analysis of the upper limit temperature with no V amount and Nb amount. In addition, (6) Formula is a simple formula except the term showing the influence of a work degree, and V and Nb are content expressed with the mass%.
[0055]
Non-recrystallization upper limit temperature = 819 + 61 ((V) +10 (Nb)) 0.2 ... (6)
A material of φ70 × 60 mm of the steel types shown in Table 1 was heated at a high frequency to the heating temperature Tk [° C.] shown in Table 2 and held for about 30 seconds, and then ultra-high temperature hot forging was performed. The surface temperature of the material was measured with a radiation thermometer. The frequency during heating was 3 to 5 KHz, and the heating rate was 5 ° C./s from room temperature to 1250 ° C., and then 1 ° C./s until the heating temperature. Since the temperature of the material decreased while the sample was moved to the forging machine after high-frequency heating, the temperature Tt [° C.] immediately before forging is shown in Table 2.
[0056]
The ultra-high temperature hot forging was performed using a compression tester having a hydraulic servo mechanism by placing a sample of φ70 × 60 mm horizontally and using a flat platen at a compression ram speed of 200 mm / s. The processing rate obtained from the change in height before and after forging in ultra-high temperature hot forging was about 0.5 in terms of logarithmic strain. After ultra-high temperature forging, it was cooled to less than 800 ° C and finished forging. At this time, the surface temperature of the material immediately before finishing forging was measured with a radiation thermometer, and forging under the forging conditions shown in Table 2 Shown as pre-temperature.
[0057]
After finishing forging, it is allowed to cool to room temperature, the central part in the height direction of the forged product is cut vertically, the entire cross section is mirror-polished, etched, and the average grain size of ferrite and pearlite conforms to JIS G 0552 Then, the total decarburized layer depth was measured according to JIS G 0588. In the sample cross section, in order to measure the average particle size of a quarter of the product thickness and product width, the 10 mm square range at the center was excluded from the average particle size measurement. The decarburization layer depth was 200-500 times with an optical microscope, and the decarburization layer depth was measured at 10 locations using an eyepiece with reading dimensions, and the average value of 8 locations excluding the maximum and minimum was taken.
[0058]
From the 1/4 part of the forged product width of the sample subjected to ultra-high temperature forging and finish forging under the same conditions as in Table 2, a JIS Z 2201 parallel part diameter 10 mm test piece, Charpy impact test piece as a tensile test piece A U-notch test piece of JIS Z 2202 was collected. The shape of the U notch was 2 mm, and the test width of the test piece was 5 mm. The tensile test was performed according to JIS Z 2241, and the Charpy impact test was performed at -50 ° C. according to JIS Z 2242. Table 2 shows the tensile strength, impact value, and yield ratio. The impact value is the absorbed energy at -50 ° C.
[0059]
In Table 2, no. 1 to 18 is the range of the present invention, the tensile strength is about 800 to 1000 MPa, and the impact value is also 80 J / cm. 2 That's it. No. No. 18 has a cooling rate after finish forging that is faster than the preferred range. Compared to 3, the impact value is slightly lower. On the other hand, no. Nos. 19 to 23 are comparative examples using the steel grades R to V in Table 1 whose components are outside the scope of the present invention, and the impact values are all 50 J / cm. 2 Not reached.
[0060]
No. No. 24, because the temperature before finish forging is higher than the range of the present invention, the ferrite fraction increases, the tensile strength decreases, No. 25 has a low Charpy impact value because the temperature before finish forging is lower than the range of the present invention and the ferrite is work-hardened. No. In No. 26, the heating temperature and the temperature before forging during ultra-high temperature forging are higher than the range of the present invention, and the crystal grain size is large and the Charpy impact value is low even if predetermined finish forging is performed. No. 27 is a case where finish forging was not performed, and the crystal grains were very large and the Charpy impact value was low.
[0061]
No. In No. 28, since the strain during finish forging is smaller than the range of the present invention, the crystal grain size is large, and the tensile strength and Charpy impact value are lowered. No. 29 is a case where the holding temperature time after heating of ultra-high temperature forging is increased to 5 minutes, the decarburization increase is deep, and the tensile strength and Charpy impact value are low.
(Example 2)
Super high temperature hot forging and finish forging were performed in the same manner as in Example 1 using the steels A to C, L, and O in Table 1 under the conditions shown in Table 3. Example 1 is the heating temperature for ultra-high temperature hot forging, the temperature before forging, the processing strain, the temperature for forging for finish forging, the processing strain, the total decarburized layer depth, the average crystal grain, the tensile strength, the impact value, and the yield ratio. Measured in the same manner as above. The forging load of ultra high temperature hot forging and finish forging was measured by a load cell of a compression tester. It should be noted that if the forging loads of the ultra-high temperature hot forging and finish forging are high, the die life is reduced, and it is preferable that the forging load is as low as possible.
[0062]
The test results are shown in Table 3. 31 to 35 are within the scope of the present invention, and the load at the time of ultra-high temperature hot forging is about 400 KN or less, and at the time of finish forging is around 2000 KN. On the other hand, no. 36 is the heating temperature during ultra-high temperature forging Book It is lower than the scope of the invention. 37, in ultra-high temperature hot forging, lengthen the time until forging after heating, and set the temperature just before ultra-high temperature hot forging. Book This is a case where it is lower than the range of the invention. No. 36 and no. 37 shows the structure, average grain size, total decarburized layer depth, tensile strength, and yield ratio. Book Although it is within the scope of the invention, the forging load is 500 KN or more, and No. manufactured within the scope of the present invention. Higher than 31-35. No. No. 38 is a case where the temperature immediately before finish forging is lower than the range of the present invention, but the finish forge load at this time is 3000 KN, and No. 38 manufactured within the range of the present invention. It is 1000 KN or more higher than 31-35.
[0063]
No. 39 is a case where ultra high temperature hot forging is performed immediately after heating without holding for 30 seconds after heating to a predetermined temperature to make the decarburized layer shallow, but the load during hot forging is 816 KN It became higher than the load at the time of ultra-high temperature hot forging in the present invention. This is probably because the temperature measurement is performed on the surface of the sample and the surface temperature has reached a predetermined temperature, but the temperature is not maintained and the material in the center is not heated to the predetermined temperature. .
[0064]
[Table 1]
Figure 0004497842
[0065]
[Table 2]
Figure 0004497842
[0066]
[Table 3]
Figure 0004497842
[0067]
【The invention's effect】
According to the present invention, the formability of the steel material is remarkably improved, and it is possible to process a complex shaped part that cannot be achieved conventionally, and the yield can be increased. Accordingly, the weight of the parts can be reduced, and the production with higher productivity and lower cost can be realized, and the contribution to the production of the machine parts is extremely high.

Claims (5)

質量%で、
C :0.1〜0.6%、
Si:0.2〜2.0%、
Mn:0.5〜2.5%、
Al:0.002〜0.06%、
N :0.003〜0.02%
を含有し、更に
V :0.05〜0.5%、
Nb:0.005〜0.1%
の1種又は2種を含有し、残部がFe及び不可避不純物からなり、ミクロ組織がフェライトとパーライトからなり、フェライト粒径とパーライト粒径の平均結晶粒径が10μm未満、JIS G 0588で 規定する全脱炭層深さDM−Tが0.02〜0.06mm、引張強さが800〜1300MPa、降伏比が0.7〜0.95である超高温熱間鍛造非調質部品を製造する方法であって、前記成分からなる鋼材を、下限温度を固相線温度[℃]×0.94又は1250℃の何れか高い方とし、上限温度を固相線温度[℃]×0.98とする範囲に加熱し、前記範囲の温度域で超高温熱間鍛造加工した後、さらに、加工品を700〜800℃未満で、対数ひずみが0.5以上の仕上げ鍛造を加えた後、放冷することを特徴とする超高温熱間鍛造非調質部品の製造方法。
% By mass
C: 0.1 to 0.6%
Si: 0.2-2.0%,
Mn: 0.5 to 2.5%
Al: 0.002 to 0.06%,
N: 0.003-0.02%
Further,
V: 0.05-0.5%
Nb: 0.005 to 0.1%
The balance is composed of Fe and inevitable impurities, the microstructure is composed of ferrite and pearlite, and the average grain size of ferrite grain and pearlite grain is less than 10 μm, as defined by JIS G 0588 Method for producing an ultra-high temperature hot forged non- tempered part having a total decarburized layer depth DM-T of 0.02 to 0.06 mm, a tensile strength of 800 to 1300 MPa, and a yield ratio of 0.7 to 0.95 In the steel material comprising the above components, the lower limit temperature is the solidus temperature [° C.] × 0.94 or 1250 ° C., whichever is higher, and the upper limit temperature is the solidus temperature [° C.] × 0.98. After heating to a range to be heated and performing ultra-high temperature hot forging in the temperature range of the above range, the processed product is further subjected to finish forging at 700 to 800 ° C. and logarithmic strain of 0.5 or more, and then allowed to cool. Ultra high temperature hot forging characterized by Manufacturing method of refining parts.
請求項1記載の成分に加えてさらに、質量%で、In addition to the ingredients of claim 1,
Mg:0.0002〜0.005%、Mg: 0.0002 to 0.005%,
Zr:0.0002〜0.005%Zr: 0.0002 to 0.005%
の1種又は2種以上を含有することを特徴とする請求項1に記載の超高温熱間鍛造非調質部品の製造方法。1 or 2 types or more of these are contained, The manufacturing method of the ultra high temperature hot forging non-tempered part of Claim 1 characterized by the above-mentioned.
請求項1又は2に記載の成分に加えてさらに、質量%で、In addition to the component according to claim 1 or 2, further in mass%,
Cr:0.1〜3%、Cr: 0.1 to 3%,
Ni:0.1〜3%、Ni: 0.1 to 3%,
Mo:0.1〜3%、Mo: 0.1 to 3%,
Ti:0.003〜0.05%、Ti: 0.003 to 0.05%,
B :0.0005〜0.005%B: 0.0005 to 0.005%
の1種又は2種以上を含有することを特徴とする請求項1又は2に記載の超高温熱間鍛造非調質部品の製造方法。1 or 2 types or more of these are contained, The manufacturing method of the ultra high temperature hot forging non-tempered part of Claim 1 or 2 characterized by the above-mentioned.
請求項1〜3の何れか1項に記載の成分に加えてさらに、質量%で、In addition to the component according to any one of claims 1 to 3, further in mass%,
S :0.02〜0.10%、S: 0.02 to 0.10%,
Pb:0.03〜0.3%、Pb: 0.03-0.3%
Ca:0.001〜0.05%、Ca: 0.001 to 0.05%,
Bi:0.03〜0.3%Bi: 0.03-0.3%
の1種又は2種以上を含有することを特徴とする請求項1〜3の何れか1項に記載の超高温熱間鍛造非調質部品の製造方法。1 or 2 types or more of these are contained, The manufacturing method of the ultra high temperature hot forging non-heat-treated part of any one of Claims 1-3 characterized by the above-mentioned.
仕上げ鍛造後、500〜Ar点[℃]の温度域を下記(1)式で示した冷却速度CR[℃/s]で冷却することを特徴とする請求項1〜4の何れか1項に記載の超高温熱間鍛造非調質部品の製造方法。
0.1≦CR≦(2.5ε+1) ・・・・・(1)
ここで、εは、仕上げ鍛造の加工率の対数ひずみである。
After finishing forging, any one of claims 1 to 4, characterized in that at a cooling rate CR [℃ / s] showing temperature range the following equation (1) of 500~Ar 3-point [℃] ultra high temperature hot forging non-heat treated component manufacturing method according to.
0.1 ≦ CR ≦ (2.5ε + 1) (1)
Here, ε is a logarithmic strain of the finishing forging rate.
JP2003148077A 2003-05-26 2003-05-26 Method for manufacturing ultra-high temperature hot forged non-tempered parts Expired - Fee Related JP4497842B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003148077A JP4497842B2 (en) 2003-05-26 2003-05-26 Method for manufacturing ultra-high temperature hot forged non-tempered parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003148077A JP4497842B2 (en) 2003-05-26 2003-05-26 Method for manufacturing ultra-high temperature hot forged non-tempered parts

Publications (2)

Publication Number Publication Date
JP2004346415A JP2004346415A (en) 2004-12-09
JP4497842B2 true JP4497842B2 (en) 2010-07-07

Family

ID=33534414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003148077A Expired - Fee Related JP4497842B2 (en) 2003-05-26 2003-05-26 Method for manufacturing ultra-high temperature hot forged non-tempered parts

Country Status (1)

Country Link
JP (1) JP4497842B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5195081B2 (en) * 2008-06-27 2013-05-08 日本精工株式会社 Rolling bearing unit for wheel support and manufacturing method thereof
JP5233848B2 (en) * 2009-06-08 2013-07-10 新日鐵住金株式会社 Non-tempered steel bar for direct cutting
JP5512494B2 (en) * 2010-11-15 2014-06-04 株式会社神戸製鋼所 High-strength, high-toughness non-tempered hot forged parts and manufacturing method thereof
JP5639494B2 (en) * 2011-02-08 2014-12-10 株式会社神戸製鋼所 Manufacturing method of ferrite-pearlite type non-tempered forged parts
JP5639493B2 (en) * 2011-02-08 2014-12-10 株式会社神戸製鋼所 Manufacturing method of ferrite-pearlite type non-tempered forged parts
UA109963C2 (en) 2011-09-06 2015-10-26 CATHANE STEEL, APPROVING CONSEQUENCES OF SEPARATION OF PARTS AFTER HOT FORMING AND / OR CUTTING IN TOOL, THAT HAS A HIGHER MACHINE
IN2014KN01143A (en) * 2011-12-07 2015-10-16 Jfe Steel Corp
CN106661688B (en) * 2014-07-03 2018-05-08 新日铁住金株式会社 Mechanical structure rolling bar steel and its manufacture method
JP6249100B2 (en) * 2014-07-03 2017-12-20 新日鐵住金株式会社 Rolled steel bar for machine structure and manufacturing method thereof
CN107385329B (en) * 2017-06-30 2019-04-26 江阴兴澄特种钢铁有限公司 A kind of big thickness Q500GJE high-strength building structural steel plate and its manufacturing method
CN111295457A (en) * 2017-10-31 2020-06-16 日本制铁株式会社 Hot forged steel material
CN111304517B (en) * 2020-03-05 2021-04-30 中天钢铁集团有限公司 High-strength high-yield-ratio non-quenched and tempered steel for automobile engine cracking connecting rod and production method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003147482A (en) * 2001-11-14 2003-05-21 Nippon Steel Corp Non-heatteated high strength and high toughness forging, and production method therefor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3226781B2 (en) * 1996-01-12 2001-11-05 トヨタ自動車株式会社 Manufacturing method of non-tempered forged product excellent in fatigue strength
JPH10265891A (en) * 1997-03-24 1998-10-06 Sumitomo Metal Ind Ltd Ferrite/pearlite type non-heat treated steel

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003147482A (en) * 2001-11-14 2003-05-21 Nippon Steel Corp Non-heatteated high strength and high toughness forging, and production method therefor

Also Published As

Publication number Publication date
JP2004346415A (en) 2004-12-09

Similar Documents

Publication Publication Date Title
CN101263239B (en) Method of producing high-strength steel plates with excellent ductility and plates thus produced
JP6048580B2 (en) Hot rolled steel sheet and manufacturing method thereof
US7833363B2 (en) Method for producing high-strength forged parts having high reduction of area
CN110100032B (en) Tempered martensitic steel having low yield ratio and excellent uniform elongation and method for producing same
JP4692259B2 (en) High-strength steel sheet with excellent formability and shape freezeability
JP6226086B2 (en) Rolled steel bar or wire rod for cold forging parts
WO2018033960A1 (en) Hot press-formed member
JP4855553B2 (en) High-strength ultra-thick H-section steel and its manufacturing method
JP5363922B2 (en) High-strength cold-rolled steel sheet with an excellent balance between elongation and stretch flangeability
CN114438418A (en) Hot-formed member and method for manufacturing same
CN108315637B (en) High carbon hot-rolled steel sheet and method for producing same
KR20120138246A (en) Automotive underbody part having excellent low cycle fatigue properties, and process for production thereof
JP4497842B2 (en) Method for manufacturing ultra-high temperature hot forged non-tempered parts
JP5302840B2 (en) High-strength cold-rolled steel sheet with an excellent balance between elongation and stretch flangeability
CN109154047B (en) Method for producing a restored steel sheet having an austenitic matrix
JP3738004B2 (en) Case-hardening steel with excellent cold workability and prevention of coarse grains during carburizing, and its manufacturing method
JP5080215B2 (en) High-strength cold-rolled steel sheet with excellent isotropy, elongation and stretch flangeability
JP5189959B2 (en) High strength cold-rolled steel sheet with excellent elongation and stretch flangeability
JP5153221B2 (en) Soft nitriding non-tempered machine parts
JP5177119B2 (en) Steel sheet for hot press
JP4263946B2 (en) Ultra-high temperature hot forged non-tempered parts and manufacturing method thereof
JP6390685B2 (en) Non-tempered steel and method for producing the same
JP4967356B2 (en) High strength seamless steel pipe and manufacturing method thereof
EP3790999B1 (en) Variably rolled steel strip, sheet or blank and production method therefor
JP3750737B2 (en) Manufacturing method of non-tempered high strength and high toughness forgings

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100316

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100413

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4497842

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140423

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees