JP4492899B2 - Porous substrate and method for producing the same, multilayer sliding member and method for producing the same - Google Patents

Porous substrate and method for producing the same, multilayer sliding member and method for producing the same Download PDF

Info

Publication number
JP4492899B2
JP4492899B2 JP2000201477A JP2000201477A JP4492899B2 JP 4492899 B2 JP4492899 B2 JP 4492899B2 JP 2000201477 A JP2000201477 A JP 2000201477A JP 2000201477 A JP2000201477 A JP 2000201477A JP 4492899 B2 JP4492899 B2 JP 4492899B2
Authority
JP
Japan
Prior art keywords
layer
substrate
porous
particles
sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000201477A
Other languages
Japanese (ja)
Other versions
JP2002012903A (en
Inventor
真二 山田
正伸 佐藤
義則 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oiles Corp
Original Assignee
Oiles Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oiles Corp filed Critical Oiles Corp
Priority to JP2000201477A priority Critical patent/JP4492899B2/en
Publication of JP2002012903A publication Critical patent/JP2002012903A/en
Application granted granted Critical
Publication of JP4492899B2 publication Critical patent/JP4492899B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/20Sliding surface consisting mainly of plastics
    • F16C33/201Composition of the plastic

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Sliding-Contact Bearings (AREA)
  • Powder Metallurgy (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、鋼板などの基板に多孔質焼結層が形成された多孔質基材及びその製造方法、並びに、多孔質基材の多孔質焼結層に樹脂層が充填被覆(含浸)された複層摺動部材及びその製造方法に関する。
【0002】
【従来の技術】
従来から、多孔質基材に樹脂が充填被覆された所謂ドライベアリングなどの複層摺動部材が知られている(特公昭31−2452号公報、特公昭39−16950号公報、特公昭41−1868号公報、特公平1−22486号公報、特公平7−58095号公報などを参照)。多孔質基材は、例えば鋼板などの基板に多孔質の金属焼結層が形成されたものである。この多孔質金属焼結層にポリテトラフルオロエチレン樹脂(以下「PTFE」という)などのフッ素樹脂が充填被覆されて樹脂層が形成され、これにより複層摺動部材が製造される。また、PTFEに充填材が混入された合成樹脂層が形成された複層摺動部材も知られている。さらに、PTFEに代えてポリアセタール樹脂を用いた複層摺動部材も知られている(特公昭49−44597号公報参照)。
【0003】
上記した複層摺動部材は平板の形態で使用されるよりも、樹脂層を内側にして円筒状に捲回した所謂巻きブッシュの形態で使用されることが多い。このような複層摺動部材は、合成樹脂単体からなる摺動部材に比べ、耐荷重性を大幅に向上できるという利点を有する。このため、複層摺動部材は各種用途に広く賞用されている。
【0004】
【発明が解決しようとする課題】
ところで、上述した複層摺動部材の摺動性能は、多孔質金属焼結層に充填被覆される合成樹脂や合成樹脂組成物の摺動特性に影響される。合成樹脂などの摺動特性が良いときは、複層摺動部材の摺動性能も良好である。
【0005】
また、複層摺動部材の摺動性能は、基板に形成された多孔質金属焼結層の良否にも影響される。多孔質金属焼結層の良否を決定する要因としては、
(1)多孔質金属焼結層を形成する金属粉末の形態
(2)多孔質金属焼結層と基板との接合強度
(3)合成樹脂などに対する多孔質金属焼結層の投錨効果(アンカー効果)の程度
などが挙げられる。ここで、投錨効果とは、多孔質金属焼結層に充填被覆された樹脂層をこの多孔質金属焼結層が繋ぎ止めておける(剥離させない、付着させたままでいる)力をいう。
【0006】
上述した要因について、さらに詳細に検討する。
【0007】
従来から、多孔質金属焼結層を形成するための金属粉末としては、多数の球状又は不規則形状(角状など)の粒子を集めた(から構成された)金属粉末が使用されている。
【0008】
金属粉末として多数の球状粒子から構成された粉末を使用した場合、この粉末が焼結された多孔質金属焼結層は基板に強く接合される。この反面、多数の球状粒子が焼結された多孔質金属焼結層では投錨効果が低くなり、合成樹脂層が多孔質金属焼結層から剥離し易いという問題がある。
【0009】
一方、金属粉末として多数の不規則形状粒子から構成された粉末を使用した場合、この粉末が焼結された多孔質金属焼結層では投錨効果は高い。この反面、多数の不規則形状粒子が焼結された多孔質金属焼結層は基板に強く接合されないという問題がある。
【0010】
本発明は、上記事情に鑑み、基板と多孔質焼結層が強く接合すると共に樹脂層に対する投錨効果の高い多孔質基材及びその製造方法、並びに、基板と多孔質焼結層が強く接合すると共に樹脂層も多孔質焼結層に強く接合して剥離強度の高い(投錨効果の高い)複層摺動部材及びその製造方法を提供することを目的とする。
【0011】
【課題を解決するための手段】
上記目的を達成するための本発明の多孔質基材は、
(1)所定厚さの基板と、
(2)この基板の表面を一様に覆う第1の焼結層と、
(3)多数の不規則形状粒子同士が結合してその内部に多数の空隙が形成された、上記第1の焼結層から連続してこの第1の焼結層を覆う第2の焼結層とを有することを特徴とするものである。
【0012】
ここで、
(4)上記基板は、鋼製のものであってもよい。
【0013】
また、
(5)上記第1及び第2の焼結層は、青銅からなるものであってもよい。
【0014】
さらに、
(6)上記青銅は、9重量%以上12重量%以下の錫、0.01重量%以上0.50重量%以下の燐、及び残部は銅からなる組成のものであってもよい。
【0015】
また、上記目的を達成するための本発明の多孔質基材の製造方法は、所定厚さの基板の表面に多孔質焼結層が形成された多孔質基材を製造する多孔質基材の製造方法において、
(7)多数の球状粒子と多数の不規則形状粒子とが混合された粉末層を基板の表面に形成する粉末層形成工程と、
(8)上記基板の表面に形成された上記粉末層を振動させる振動工程と、
(9)この振動工程が終了した後もしくはこの振動工程と共に、上記基板の表面に形成された上記粉末層を焼結する焼結工程とを含むことを特徴とするものである。
【0016】
ここで、
(10)上記粉末層形成工程は、鋼製の基板の表面に上記粉末層を形成する工程であってもよい。
【0017】
また、
(11)上記粉末層形成工程は、青銅からなる上記球状粒子及び上記不規則形状粒子が混合された粉末層を上記基板の表面に形成する工程であってもよい。
【0018】
さらに、
(12)上記粉末層形成工程は、9重量%以上12重量%以下の錫、0.01重量%以上0.50重量%以下の燐、及び残部は銅からなる組成の青銅で製造された上記球状粒子及び上記不規則形状粒子が混合された粉末層を上記基板の表面に形成する工程であってもよい。
【0019】
さらにまた、
(13)上記粉末層形成工程は、上記多数の不規則形状粒子の平均粒度よりも小さい平均粒度を有する上記多数の球状粒子が混合された粉末層を上記基板の表面に形成する工程であってもよい。
【0020】
さらにまた、
(14)上記粉末層形成工程は、
(14−1)上記多数の球状粒子及び上記多数の不規則形状粒子からなる全ての粒子が60メッシュを通過する粒子であって、しかも、
(14−2)250メッシュを通過し、且つその見掛密度が3.6g/cm3 以上4.2g/cm3 以下であり、さらに上記全ての粒子の30重量%以上50重量%以下の範囲内の量だけ存在する球状粒子と、
(14−3)100メッシュを通過するが200メッシュを通過せず、且つその見掛密度が3.1g/cm3以上3.5g/cm 3以下であり、さらに上記全ての粒子の35重量%以上50重量%以下の範囲内の量だけ存在する不規則形状粒子とが混合された粉末層を上記基板の表面に形成する工程であってもよい。
【0021】
さらにまた、
(15)上記焼結工程は、中性雰囲気もしくは還元性雰囲気に調整された加熱炉において850℃以上950℃以下の範囲内の温度で30分間以上60分間以下の範囲内の時間だけ焼結する工程であってもよい。
【0022】
また、上記目的を達成するための本発明の複層摺動部材は、
(16)請求項1から4までのうちのいずれか一項に記載された多孔質基材と、
(17)この多孔質基材の第2の焼結層に充填被覆された樹脂層とを有することを特徴とするものである。
【0023】
ここで、
(18)上記樹脂層は、フッ素樹脂からなるものであってもよい。
【0024】
また、上記目的を達成するための本発明の複層摺動部材の製造方法は、所定厚さの基板の表面に多孔質焼結層が形成された多孔質基材と、上記多孔質焼結層に充填被覆された樹脂層とを有する複層摺動部材を製造する複層摺動部材の製造方法において、
(19)請求項5から11までのうちのいずれか一項に記載された多孔質基材の製造方法の各工程と、
(20)多数の不規則形状粒子が焼結されて形成された第2の焼結層を塑性変形させながらこの第2の焼結層に樹脂を充填被覆して樹脂層を形成する樹脂層形成工程とを含むことを特徴とするものである。
【0025】
ここで、球状粒子とは、その全体的な形状が球状の粒子をいう。また、不規則形状粒子とは、球状を除く形状を有する粒子をいい、例えば、星の形状、樹枝の形状、角ばった形状などが挙げられる。
【0026】
【発明の実態の形態】
図1から図4までを参照して本発明の実施形態を説明する。
【0027】
図1は、多孔質基材を製造する製造装置の概略構成を示す模式図である。図2は、鋼板に散布された直後の粉末を模式的に示す断面図である。図3は、図2の鋼板及び粉末を振動させた後の状態を模式的に示す断面図である。図4は、図3に示す粉末を焼結して得られた多孔質基材を模式的に示す断面図である。
【0028】
多孔質基材製造装置10は、フープ状に捲回された鋼板20をその一端から引き出して搬送しながら鋼板20のうねり等を矯正するレベラー12を備えている。鋼板20としては、板厚が0.5mm〜2mm程度の冷間圧延鋼板または帯鋼(JISG3141)が使用される。
【0029】
鋼板20はレベラー12によって矢印A方向(搬送方向)に搬送されながらうねり等を矯正される。レベラー12よりもやや搬送方向下流側には、青銅粉末22が貯蔵されたホッパー14が配置されている。レベラー12を通過した鋼板20の表面には、ホッパー14に貯蔵された青銅粉末22が供給(散布)される。ホッパー14の下端部には、鋼板20の表面に供給された青銅粉末22を平滑化する掻き板16が固定されている。掻き板16を通過した青銅粉末22は平滑化され、これにより鋼板20の表面には一様な厚さの青銅粉末層24が形成される。ここまでの工程は、本発明にいう粉末層形成工程の一例である。
【0030】
また、ホッパー14よりも搬送方向下流側には焼結炉18(本発明にいう加熱炉の一例である)が配置されている。この焼結炉18は周知の構造のものである。
【0031】
上記の青銅粉末22としては、表1に示す粒度分布(%)を有する青銅粉末が使用される。
【0032】
【表1】

Figure 0004492899
表1において、メッシュの数値の前に付した符号「−」は、粉末を構成する粒子がその数値のメッシュを通過することを表わす。一方、メッシュの数値の前に付した符号「+」は、粉末を構成する粒子がその数値のメッシュを不通過(通過しない)ことを表わす。従って、例えば、粒度が+60メッシュとは、60メッシュを通過できない粒度をいう。
【0033】
本実施形態では、表1に示すように、青銅粉末を構成する全ての粒子が−60メッシュの粒度を有する。これら全ての粒子のうち、−100〜+145メッシュ(−100メッシュから+145メッシュまでをいい、以下、同様である)及び−145〜+200メッシュの粒度を有する粒子の割合が35重量%以上50重量%以下の範囲内である。また、−250〜+350メッシュ及び−350メッシュの粒度を有する粒子の割合が30重量%以上50重量%以下の範囲内である。
【0034】
上記の結果、多数の球状粒子及び多数の不規則形状粒子からなる全ての粒子が60メッシュを通過する粒子である。しかも、250メッシュを通過する粒子は球状粒子で、その見掛密度が3.6g/cm3以上4.2g/cm 3以下であり、さらに上記全ての粒子の30重量%以上50重量%以下の範囲内の量だけ存在する。一方、100メッシュを通過するが200メッシュを通過しない粒子は不規則形状粒子で、その見掛密度が3.1g/cm3以上3.5g/cm 3以下であり、さらに上記全ての粒子の35重量%以上50重量%以下の範囲内の量だけ存在する。
【0035】
このように−100〜+200メッシュと−250メッシュの2箇所に粒度のピークを有する2種類の多数の青銅粒子が集まった青銅粉末が鋼板20の表面に一様な厚さに散布され、鋼板20の表面には青銅粉末層24が形成される。掻き板16を通過した直後の青銅粉末層24では、図2に示すように、−60〜+250メッシュの粒度をもつ不規則形状粒子Iと、−250メッシュの粒度をもつ球状粒子Bとが混じり合った状態である。
【0036】
鋼板20が矢印A方向に搬送されている間、鋼板20にはレベラー12などの振動が伝導される。このため、鋼板20と共に青銅粉末層24も振動する。この振動によって、図3に示すように、球状粒子Bが不規則形状粒子Iの間を通過して鋼板20の表面に集まり、一方、不規則形状粒子Iは球状粒子Bのほぼ上に集まって球状粒子Bを覆うようになる。このように、青銅粉末層24において球状粒子Bと不規則形状粒子Iが偏ることを、青銅粉末層24に粒度偏析が生じたという。なお、上記のようにして青銅粉末層24を振動させる工程は、本発明にいう振動工程の一例である。
【0037】
粒度偏析を生じた青銅粉末層24が表面に形成された鋼板20は、図1に示すように、焼結炉18に搬入される。焼結炉18は中性雰囲気もしくは還元性雰囲気に調整されている。焼結炉18に搬入された鋼板20と青銅粉末層24は850℃以上950℃以下の範囲内の温度で30分間以上60分間以下の範囲内の時間だけ焼結される。この焼結工程は、本発明にいう焼結工程の一例である。
【0038】
この焼結工程において、鋼板20の表面上に分布した多数の球状粒子Bは液相を生じて緻密化が速く進行し、図4に示すように、鋼板20の表面を一様に覆って接合層26(本発明にいう第1の焼結層の一例である)を形成する。
【0039】
一方、焼結工程においては、球状粒子Bのほぼ上に集まった不規則形状粒子Iも液相を生じる。しかし、不規則形状粒子Iはその形状をあまり変化させずに不規則な外形を保ったまま接合層26に連続して結合する。このため、図4に示すように、多孔質層28(本発明にいう第2の焼結層の一例である)を形成する。多孔質層28には多数の空隙28aが形成される。
【0040】
上記のようにして、鋼板20とその表面を覆う接合層26、及び接合層26から連続してこの接合層26を覆う多孔質層28双方を有する多孔質基材30が製造される。接合層26は鋼板20の表面を一様に覆うので、両者の接合強度は高い。
【0041】
また、多孔質基材30の多孔質層28には、上述したように、多数の空隙28aが形成されおり、多数の凹凸が形成されていることとなる。この結果、多孔質層28ではその比表面積が拡大されるので、多孔質層28に合成樹脂が充填被覆された場合は、合成樹脂が上記の凹凸に引っ掛かる状態となる。この結果、いわゆる投錨効果(アンカー効果)が高まるので、合成樹脂が多孔質層28から剥離しにくくなり、剥離強度が高まる。
【0042】
【実施例】
以下、本発明の実施例について説明する。
【0043】
<実施例1及び実施例2>
鋼板20(図1参照)として、幅180mm、板厚0.75mmの冷間圧延鋼板を2枚用意した。図1に示す多孔質基材製造装置10を使用してこの2枚の冷間圧延鋼板の表面に、表2に示す粒度分布を有する多数の青銅粒子からなる2種類(実施例1および実施例2の2種類)青銅粉末をそれぞれ一様の厚さに散布し、厚さ0.3mmの青銅粉末層を形成した。実施例1及び実施例2では、青銅粉末として錫10重量%、燐0.05重量%、残部銅からなる青銅粉末を使用した。
【0044】
【表2】
Figure 0004492899
表2において、−60メッシュ〜+250メッシュの粒度を有する粒子は不規則形状粒子である。また、−250メッシュの粒度を有する粒子は球状粒子である。
【0045】
冷間圧延鋼板の表面に形成された青銅粉末層24に、図1で説明したように振動を与えた。この振動によって、−250メッシュの多数の球状粒子は多数の不規則形状粒子の間を通り抜け、主として冷間圧延鋼板の表面に向けて移動してこの表面に集まった。一方、不規則形状粒子は球状粒子のほぼ上に集まって球状粒子を覆った。これにより、図3に示すように、粒度偏析が生じた。
【0046】
粒度偏析を生じた青銅粉末層が表面に形成された冷間圧延鋼板は、還元性雰囲気に調整された焼結炉18(図1参照)に搬入された。焼結炉18に搬入された冷間圧延鋼板と青銅粉末層は900℃で30分間焼結された。
【0047】
この焼結工程において、冷間圧延鋼板の表面上に分布した多数の球状粒子は液相を生じ、多数の球状粒子同士が結合すると共に冷間圧延鋼板の表面にも結合して接合層26(図4参照)が形成された。一方、焼結工程においては、多数の不規則形状粒子も液相を生じるが、これら不規則形状粒子はその形状をあまり変化させずに不規則な外形を保ったまま、多数の不規則形状粒子同士が結合すると共に接合層26にも連続して結合し、さらに、一部の不規則形状粒子は冷間圧延鋼板の表面にも結合した。これにより、例えば図4に示すように、多孔質層28が形成された。多孔質層28には多数の空隙28aが形成されている。
【0048】
上記のようにして、冷間圧延鋼板とその表面を覆う接合層26、及びこの接合層26から連続してこの接合層26を覆う多孔質層28を有する多孔質基材が製造された。なお、上述したように、接合層26は、主に−250メッシュの多数の球状粒子からなる青銅粉末が焼結されたものであり、多孔質層28は、主に−60メッシュ〜+250メッシュの多数の不規則形状粒子からなる青銅粉末が焼結されたものである。
<比較例>
上記した実施例と同様に、幅180mm、板厚0.75mmの冷間圧延鋼板を用意した。この冷間圧延鋼板の表面に、表3に示す粒度分布を有すると共に角状の粒子が多数集合した青銅粉末を、上記の実施例と同様に、冷間圧延鋼板の表面に0.3mmの厚さに散布して青銅粉末層を形成した。
【0049】
【表3】
Figure 0004492899
この青銅粉末層が表面に形成された冷間圧延鋼板を還元性雰囲気に調整した焼結炉18(図1参照)に搬入し、900℃で30分間焼結した。これにより、図5に示すように、青銅粉末が焼結された多孔質焼結層42と、この多孔質焼結層42が表面に一体に被着形成された冷間圧延鋼板とからなる多孔質基材40が得られた。多孔質焼結層42には、図5に模式的に示すように、多数の空隙42aが形成されていた。しかし、図4に示す空隙28aと比べた場合、空隙42aの空間は広く、凹凸は少ない。
【0050】
上述した実施例1,2及び比較例で得られた多孔質基材30,40それぞれの多孔質焼結層28,42に合成樹脂組成物を充填被覆して合成樹脂層を形成した。その後、この合成樹脂層の剥離強度を測定した。この測定結果等を説明する。<合成樹脂組成物および合成樹脂層の作製>
ポリイミド樹脂粉末20重量%、黒鉛粉末1重量%、残部ポリテトラフルオロエチレン樹脂粉末をヘンシェルミキサーによって均一に混合して合成樹脂組成物を作製した。この合成樹脂組成物に石油系溶剤を加えて湿潤樹脂組成物を調製した。この湿潤樹脂組成物を、上記の実施例1,2及び比較例で得られた多孔質基材30,40それぞれの多孔質焼結層28,42に供給した。その後、湿潤樹脂組成物が供給された多孔質焼結層28,42を周知のローラで圧延した。これにより湿潤樹脂組成物が多孔質焼結層28,42に充填被覆された。その後、200℃の温度に加熱した熱風乾燥炉に多孔質焼結層28,42を5分間保持して湿潤樹脂組成物中の溶剤を逸散除去した。
【0051】
上記の状態の多孔質基材30,40の全体を周知のローラによって加圧力400kgf/cm2 で加圧した。このようにして加圧した多孔質基材30,40を加熱炉内に搬入して370℃の温度で10分間加熱焼成した。このようにして、図6に示すように、多孔質基材30に合成樹脂層52が充填被覆された複層摺動部材50(実施例)が製造された。また、図7に示すように、多孔質基材40に合成樹脂層62が充填被覆された複層摺動部材60(比較例)が製造された。なお、多孔質焼結層28に樹脂組成物が充填被覆された多孔質基材30の全体をローラで加圧する際、多孔質焼結層28を塑性変形させた。
【0052】
上記のようにして製造された2種類の複層摺動部材50,60の多孔質焼結層28,42にそれぞれ充填被覆された合成樹脂層52,62の剥離強度を測定した。
【0053】
<剥離強度測定方法>
図8を参照して、剥離強度の測定方法を説明する。
【0054】
図8は、剥離強度の測定方法を示す模式図である。
【0055】
2種類の複層摺動部材50,60の合成樹脂層52,62の剥離強度を測定する方法は全く同じである。ここでは複層摺動部材50を例に挙げて説明する。
【0056】
合成樹脂層52の剥離強度を測定するに当たっては、先ず、合成樹脂層52を多孔質焼結層28(図4参照)の端部から予め剥がしておく。合成樹脂層52が剥がされた複層摺動部材50をバイス70にチャッキングすると共に剥がされた合成樹脂層52を固定治具72の先端部72aに挟持して固定した。固定治具72にプッシュプルゲージ74を取付け、180°方向(鋼板に平行な方向)に合成樹脂層52を引っ張り、そのときの強度をプッシュプルゲージ74で測定した。
【0057】
上記のようにして測定した結果、実施例1,2の多孔質基材30(図4参照)を使用した複層摺動部材50の合成樹脂層52の剥離強度は2.74kgf/cmであった。一方、比較例の多孔質基材40を使用した複層摺動部材60の合成樹脂層62の剥離強度は1.84kgf/cmであった。
【0058】
この測定結果から、複層摺動部材50の合成樹脂層52の剥離強度は、複層摺動部材60の合成樹脂層62の剥離強度よりも約50%高められていることが分かった。この理由は、下記のとおりであると推測される。
【0059】
図4に模式的に示す多孔質基材30と、図6に模式的に示す複層摺動部材50とから分かるように、多孔質基材30の多孔質焼結層28は、この多孔質焼結層28に合成樹脂を充填被覆する際のローラによる加圧力により塑性変形を生じる。この塑性変形の結果、合成樹脂層52と多孔質焼結層28との結合力が高められ、この結合力が、多孔質焼結層28の投錨効果に加えられたためと推測される。
【0060】
合成樹脂層52の剥離強度が高い場合、板状の複層摺動部材50を円筒状に曲げ加工したり、円筒状に曲げ加工された複層摺動部材50の端部に鍔加工を施したりする際に合成樹脂層52が剥離しない。従って、合成樹脂層52の剥離強度は、板状の複層摺動部材50を加工する際に極めて重要なファクターとなる。
【0061】
【発明の効果】
以上説明したように本発明の多孔質基材によれば、基板の表面を第1の焼結層が一様に覆っている。従って、基板の表面と第1の焼結層とが充分に接触しているので、基板と第1の焼結層との接合強度が高い(強い)。また、第2の焼結層では多数の不規則形状粒子同士が結合してその内部に多数の空隙が形成されているので、第2の焼結層の内部には、多数の凹凸が形成されていることとなる。このため、第2の焼結層に例えば樹脂を充填被覆(含浸)させた場合は、樹脂が第2の焼結層の凹凸に引っ掛かる状態となる。この結果、いわゆる投錨効果(アンカー効果)が高まるので、樹脂が第2の焼結層から剥離しにくくなり、剥離強度が高まる。
【0062】
ここで、上記基板は、鋼製のものである場合は、基板の強度が高いので、高強度の多孔質基材が得られる。
【0063】
また、上記第1及び第2の焼結層は、青銅からなるものである場合は、耐食性に優れた焼結層が得られる。
【0064】
さらに、上記青銅は、9重量%以上12重量%以下の錫、0.01重量%以上0.50重量%以下の燐、及び残部は銅からなる組成のものである場合は、9重量%以上12重量%以下の錫を含有しているので、第1の焼結層と鋼板との接合強度が高められる。また、0.01重量%以上0.50重量%以下の燐を含有しているので、多数の不規則形状粒子が焼結されて第2の焼結層が形成されるときに、各粒子が変形しにくくその不規則形状が保たれる。この結果、いわゆる投錨効果がいっそう高まるので、第2の焼結層に充填被覆された樹脂が第2の焼結層からいっそう剥離しにくくなり、剥離強度がいっそう高まる。
【0065】
また、本発明の多孔質基材の製造方法によれば、振動工程において多数の球状粒子が多数の不規則形状粒子の間を通過して基板の表面に集まる。このため、多数の不規則形状粒子が多数の球状粒子の上に集まってこれらを覆う。この状態で焼結工程において粉末層が焼結される。この場合、多数の球状粒子は液相になって基板の表面を一様に覆う。従って、多数の球状粒子が焼結されて形成された層(第1の焼結層)と基板の表面とが充分に接触するので、基板と第1の焼結層との接合強度が高い(強い)。一方、多数の不規則形状粒子は部分的に液相になるが、ほぼ不規則形状を保ったまま焼結される。従って、多数の不規則形状粒子が焼結されて形成された層(第2の焼結層)では多数の不規則形状粒子同士が結合してその内部に多数の空隙が形成されているので、第2の焼結層の内部には、多数の凹凸が形成されていることとなる。このため、第2の焼結層に例えば樹脂を充填被覆(含浸)させた場合は、樹脂が第2の焼結層の凹凸に引っ掛かる状態となる。この結果、いわゆる投錨効果(アンカー効果)が高まるので、樹脂が第2の焼結層から剥離しにくくなり、剥離強度が高まる。
【0066】
ここで、上記粉末層形成工程は、鋼製の基板表面に上記粉末層を形成する工程である場合は、基板の強度が高いので、高強度の多孔質基材が得られる。
【0067】
さらに、上記粉末層形成工程は、青銅からなる上記球状粒子及び上記不規則形状粒子が混合された粉末層を上記基板の表面に形成する工程である場合は、焼結層が青銅製のものとなるので、耐食性に優れた焼結層が得られる。
【0068】
さらにまた、上記粉末層形成工程は、9重量%以上12重量%以下の錫、0.01重量%以上0.50重量%以下の燐、及び残部は銅からなる組成の青銅で製造された上記球状粒子及び上記不規則形状粒子が混合された粉末層を上記基板の表面に形成する工程である場合は、9重量%以上12重量%以下の錫を含有しているので、多数の球状粒子が焼結されて形成された第1の焼結層と鋼板との接合強度が高められる。また、0.01重量%以上0.50重量%以下の燐を含有しているので、多数の不規則形状粒子が焼結されて第2の焼結層が形成されるときに、各粒子が変形しにくくその不規則形状が保たれる。この結果、いわゆる投錨効果がいっそう高まるので、第2の焼結層に充填被覆された樹脂が第2の焼結層からいっそう剥離しにくくなり、剥離強度がいっそう高まる。
【0069】
さらにまた、上記粉末層形成工程は、上記多数の不規則形状粒子の平均粒度よりも小さい平均粒度を有する上記多数の球状粒子が混合された粉末層を上記基板の表面に形成する工程である場合は、多数の球状粒子の平均粒度が多数の不規則形状粒子の平均粒度よりも小さいので、振動工程においては、球状粒子が不規則形状粒子の間を通過し易い。従って、多数の球状粒子が基板の表面に集まり易い。この結果、基板と第1の焼結層がいっそう強く接合されることとなる。また、不規則形状粒子が球状粒子の上に集まり易いので、第2の焼結層はいっそう高い投錨効果を有することとなる。
【0070】
さらにまた、上記粉末層形成工程は、上記多数の球状粒子及び上記多数の不規則形状粒子からなる全ての粒子が60メッシュを通過する粒子であって、しかも、250メッシュを通過し、且つその見掛密度が3.6g/cm3 以上4.2g/cm3 以下であり、さらに上記全ての粒子の30重量%以上50重量%以下の範囲内の量だけ存在する球状粒子と、100メッシュを通過するが200メッシュを通過せず、且つその見掛密度が3.1g/cm3以上3.5g/cm 3以下であり、さらに上記全ての粒子の35重量%以上50重量%以下の範囲内の量だけ存在する不規則形状粒子とが混合された粉末層を上記基板の表面に形成する工程である場合は、振動工程において、球状粒子が不規則形状粒子の間をいっそう通過し易い。従って、多数の球状粒子が基板の表面にいっそう集まり易い。この結果、基板と第1の焼結層がさらにいっそう強く接合されることとなる。また、不規則形状粒子が球状粒子の上にいっそう集まり易いので、第2の焼結層はさらにいっそう高い投錨効果を有することとなる。
【0071】
さらにまた、上記焼結工程は、中性雰囲気もしくは還元性雰囲気に調整された加熱炉において850℃以上950℃以下の範囲内の温度で30分間以上60分間以下の範囲内の時間だけ焼結する工程である場合は、球状粒子が確実に液相になって基板の表面を一様に覆う。従って、基板と第1の焼結層がさらにいっそう確実に強く接合されることとなる。また、多数の不規則形状粒子は不規則形状をいっそう確実に保てるので、いわゆる投錨効果をいっそう確実に発揮できることとなる。
【0072】
また、本発明の複層摺動部材によれば、第2の焼結層の内部には多数の凹凸が形成されているので、これらの凹凸に樹脂層が引っ掛かる。このため、いわゆる投錨効果が高まるので、樹脂層が第2の焼結層から剥離されにくい。
【0073】
ここで、上記樹脂層は、フッ素樹脂からなるものである場合は、摺動性にいっそう優れた複層摺動部材が得られる。
【0074】
また、本発明の複層摺動部材の製造方法によれば、第2の焼結層は多数の不規則形状粒子が焼結されたものであるので、第2の焼結層の内部には多数の凹凸が形成されている。これらの凹凸に樹脂層が引っ掛かる。さらに、第2の焼結層が塑性変形するので、この第2の焼結層が樹脂層に食い込む。このため、いわゆる投錨効果が非常に高まり、樹脂層が第2の焼結層から非常に剥離されにくい。従って、長寿命の複層摺動部材が得られる。
【図面の簡単な説明】
【図1】多孔質基材を製造する製造装置の概略構成を示す模式図である。
【図2】鋼板に散布された直後の粉末を模式的に示す断面図である。
【図3】図2の鋼板及び粉末を振動させた後の状態を模式的に示す断面図である。
【図4】図3に示す粉末を焼結して得られた多孔質基材を模式的に示す断面図である。
【図5】比較例の多孔質基材を模式的に示す断面図である。
【図6】実施例の複層摺動部材を模式的に示す断面図である。
【図7】比較例の複層摺動部材を模式的に示す断面図である。
【図8】剥離強度の測定方法を示す模式図である。
【符号の説明】
20 鋼板
22 青銅粉末
24 青銅粉末層
26 接合層
28 多孔質層
28a 空隙
30 多孔質基材
50 複層摺動部材
52 合成樹脂層
B 球状粒子
I 不規則形状粒子[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a porous base material in which a porous sintered layer is formed on a substrate such as a steel plate, a method for producing the same, and a porous sintered layer of the porous base material is coated with a resin layer (impregnated). The present invention relates to a multilayer sliding member and a manufacturing method thereof.
[0002]
[Prior art]
Conventionally, a multi-layer sliding member such as a so-called dry bearing in which a porous base material is filled with a resin is known (Japanese Patent Publication No. 31-2452, Japanese Patent Publication No. 39-16950, Japanese Patent Publication No. 41-). No. 1868, Japanese Patent Publication No. 1-2486, Japanese Patent Publication No. 7-58095, etc.). The porous base material is obtained by forming a porous metal sintered layer on a substrate such as a steel plate. The porous metal sintered layer is filled with a fluororesin such as polytetrafluoroethylene resin (hereinafter referred to as “PTFE”) to form a resin layer, whereby a multilayer sliding member is manufactured. A multilayer sliding member in which a synthetic resin layer in which a filler is mixed in PTFE is also known. Furthermore, a multilayer sliding member using a polyacetal resin instead of PTFE is also known (see Japanese Patent Publication No. 49-44597).
[0003]
The multilayer sliding member described above is often used in the form of a so-called wound bush that is wound in a cylindrical shape with the resin layer inside, rather than being used in the form of a flat plate. Such a multi-layer sliding member has an advantage that load resistance can be greatly improved as compared with a sliding member made of a synthetic resin alone. For this reason, the multilayer sliding member is widely used for various purposes.
[0004]
[Problems to be solved by the invention]
By the way, the sliding performance of the multilayer sliding member described above is affected by the sliding characteristics of the synthetic resin and the synthetic resin composition filled and coated on the porous metal sintered layer. When the sliding characteristics of a synthetic resin or the like are good, the sliding performance of the multilayer sliding member is also good.
[0005]
The sliding performance of the multilayer sliding member is also affected by the quality of the porous metal sintered layer formed on the substrate. As a factor that determines the quality of the sintered porous metal layer,
(1) Form of metal powder forming the porous metal sintered layer
(2) Bonding strength between porous metal sintered layer and substrate
(3) Degree of anchoring effect of porous metal sintered layer on synthetic resin
Etc. Here, the anchoring effect refers to the force that the porous metal sintered layer can keep the resin layer filled and coated on the porous metal sintered layer (not peeled off or left attached).
[0006]
Consider the above factors in more detail.
[0007]
Conventionally, as a metal powder for forming a porous metal sintered layer, a metal powder in which a large number of spherical or irregularly shaped (corner-like) particles are collected (consisting of) is used.
[0008]
When a powder composed of a large number of spherical particles is used as the metal powder, the porous metal sintered layer obtained by sintering the powder is strongly bonded to the substrate. On the other hand, in the porous metal sintered layer in which a large number of spherical particles are sintered, the anchoring effect is lowered, and there is a problem that the synthetic resin layer is easily separated from the porous metal sintered layer.
[0009]
On the other hand, when a powder composed of a large number of irregularly shaped particles is used as the metal powder, the anchoring effect is high in the porous metal sintered layer in which the powder is sintered. On the other hand, there is a problem that the porous metal sintered layer in which a large number of irregularly shaped particles are sintered is not strongly bonded to the substrate.
[0010]
In view of the above circumstances, the present invention strongly bonds a substrate and a porous sintered layer, and has a high anchoring effect on a resin layer, a manufacturing method thereof, and a substrate and a porous sintered layer. Another object of the present invention is to provide a multilayer sliding member having a high peel strength (high throwing effect) by strongly bonding the resin layer to the porous sintered layer and a method for producing the same.
[0011]
[Means for Solving the Problems]
In order to achieve the above object, the porous substrate of the present invention comprises:
(1) a substrate having a predetermined thickness;
(2) a first sintered layer that uniformly covers the surface of the substrate;
(3) Second sintering that covers the first sintered layer continuously from the first sintered layer, in which a large number of irregularly shaped particles are combined to form a large number of voids therein. And a layer.
[0012]
here,
(4) The substrate may be made of steel.
[0013]
Also,
(5) The first and second sintered layers may be made of bronze.
[0014]
further,
(6) The bronze may be composed of 9% by weight to 12% by weight tin, 0.01% by weight to 0.50% by weight phosphorus, and the balance of copper.
[0015]
In addition, the method for producing a porous substrate of the present invention for achieving the above object provides a porous substrate for producing a porous substrate having a porous sintered layer formed on the surface of a substrate having a predetermined thickness. In the manufacturing method,
(7) a powder layer forming step of forming a powder layer in which a large number of spherical particles and a large number of irregularly shaped particles are mixed on the surface of the substrate;
(8) a vibration step of vibrating the powder layer formed on the surface of the substrate;
(9) A sintering step of sintering the powder layer formed on the surface of the substrate after the vibration step is completed or together with the vibration step.
[0016]
here,
(10) The powder layer forming step may be a step of forming the powder layer on the surface of a steel substrate.
[0017]
Also,
(11) The powder layer forming step may be a step of forming a powder layer in which the spherical particles made of bronze and the irregularly shaped particles are mixed on the surface of the substrate.
[0018]
further,
(12) The above powder layer forming step is made of 9% by weight or more and 12% by weight or less of tin, 0.01% by weight or more and 0.50% by weight or less of phosphorus, and the balance is made of bronze having a composition comprising copper. It may be a step of forming a powder layer in which spherical particles and the irregularly shaped particles are mixed on the surface of the substrate.
[0019]
Furthermore,
(13) The powder layer forming step is a step of forming, on the surface of the substrate, a powder layer in which the multiple spherical particles having an average particle size smaller than the average particle size of the multiple irregularly shaped particles are mixed. Also good.
[0020]
Furthermore,
(14) The powder layer forming step includes:
(14-1) All the particles composed of the large number of spherical particles and the large number of irregularly shaped particles pass through 60 mesh, and
(14-2) It passes 250 mesh and its apparent density is 3.6 g / cm Three 4.2 g / cm Three Spherical particles that are present in an amount in the range of 30% by weight to 50% by weight of all the above particles,
(14-3) Passes 100 mesh but does not pass 200 mesh, and its apparent density is 3.1 g / cm. Three 3.5 g / cm Three Or a step of forming on the surface of the substrate a powder layer mixed with irregularly shaped particles present in an amount in the range of 35% by weight to 50% by weight of all the particles. Good.
[0021]
Furthermore,
(15) In the sintering step, sintering is performed in a heating furnace adjusted to a neutral atmosphere or a reducing atmosphere at a temperature in the range of 850 ° C. to 950 ° C. for a time in the range of 30 minutes to 60 minutes. It may be a process.
[0022]
The multilayer sliding member of the present invention for achieving the above object is
(16) The porous substrate according to any one of claims 1 to 4,
(17) It has a resin layer filled and coated on the second sintered layer of the porous substrate.
[0023]
here,
(18) The resin layer may be made of a fluororesin.
[0024]
Further, the manufacturing method of the multilayer sliding member of the present invention for achieving the above object includes a porous base material in which a porous sintered layer is formed on the surface of a substrate having a predetermined thickness, and the above porous sintered material. In the manufacturing method of a multilayer sliding member for producing a multilayer sliding member having a resin layer filled and coated in the layer,
(19) Each step of the method for producing a porous substrate according to any one of claims 5 to 11,
(20) Resin layer formation in which a resin layer is formed by filling and coating a resin on the second sintered layer while plastically deforming the second sintered layer formed by sintering a large number of irregularly shaped particles. And a process.
[0025]
Here, the spherical particles are particles whose overall shape is spherical. Irregularly shaped particles refer to particles having a shape other than a spherical shape, and examples thereof include a star shape, a tree branch shape, and a square shape.
[0026]
[Form of the present invention]
An embodiment of the present invention will be described with reference to FIGS.
[0027]
FIG. 1 is a schematic diagram showing a schematic configuration of a production apparatus for producing a porous substrate. FIG. 2 is a cross-sectional view schematically showing the powder immediately after being spread on the steel plate. FIG. 3 is a cross-sectional view schematically showing a state after the steel plate and powder of FIG. 2 are vibrated. 4 is a cross-sectional view schematically showing a porous substrate obtained by sintering the powder shown in FIG.
[0028]
The porous substrate manufacturing apparatus 10 includes a leveler 12 that corrects the swell of the steel plate 20 while the steel plate 20 wound in a hoop shape is pulled out from one end and conveyed. As the steel plate 20, a cold-rolled steel plate or strip steel (JISG 3141) having a thickness of about 0.5 mm to 2 mm is used.
[0029]
The steel plate 20 is corrected for waviness and the like while being conveyed in the direction of arrow A (conveyance direction) by the leveler 12. A hopper 14 in which bronze powder 22 is stored is disposed slightly downstream of the leveler 12 in the transport direction. Bronze powder 22 stored in the hopper 14 is supplied (spread) to the surface of the steel plate 20 that has passed through the leveler 12. A scraper plate 16 for smoothing the bronze powder 22 supplied to the surface of the steel plate 20 is fixed to the lower end portion of the hopper 14. The bronze powder 22 that has passed through the scraper 16 is smoothed, whereby a bronze powder layer 24 having a uniform thickness is formed on the surface of the steel plate 20. The process so far is an example of the powder layer forming process referred to in the present invention.
[0030]
A sintering furnace 18 (an example of a heating furnace referred to in the present invention) is disposed downstream of the hopper 14 in the transport direction. This sintering furnace 18 has a known structure.
[0031]
As the bronze powder 22, bronze powder having a particle size distribution (%) shown in Table 1 is used.
[0032]
[Table 1]
Figure 0004492899
In Table 1, the sign “−” attached to the front of the numerical value of the mesh indicates that particles constituting the powder pass through the numerical value mesh. On the other hand, the sign “+” attached in front of the numerical value of the mesh indicates that the particles constituting the powder do not pass (do not pass through) the numerical value mesh. Therefore, for example, a particle size of +60 mesh means a particle size that cannot pass through 60 mesh.
[0033]
In this embodiment, as shown in Table 1, all particles constituting the bronze powder have a particle size of −60 mesh. Among all these particles, the proportion of particles having a particle size of −100 to +145 mesh (from −100 mesh to +145 mesh, hereinafter the same) and −145 to +200 mesh is 35% by weight to 50% by weight. Within the following range. Moreover, the ratio of the particle | grains which have a particle size of -250- + 350 mesh and -350 mesh exists in the range of 30 to 50 weight%.
[0034]
As a result of the above, all particles composed of a large number of spherical particles and a large number of irregularly shaped particles are particles that pass through 60 meshes. Moreover, the particles passing through 250 mesh are spherical particles, and the apparent density is 3.6 g / cm. Three 4.2 g / cm Three And is present in an amount in the range of 30% to 50% by weight of all the particles. On the other hand, particles that pass through 100 mesh but do not pass through 200 mesh are irregularly shaped particles with an apparent density of 3.1 g / cm 3. Three 3.5 g / cm Three And is present in an amount in the range of 35% to 50% by weight of all the particles.
[0035]
Thus, the bronze powder in which a large number of two types of bronze particles having a particle size peak at two locations of −100 to +200 mesh and −250 mesh are collected to a uniform thickness on the surface of the steel plate 20, and the steel plate 20 A bronze powder layer 24 is formed on the surface. In the bronze powder layer 24 immediately after passing through the scraping plate 16, irregularly shaped particles I having a particle size of -60 to +250 mesh and spherical particles B having a particle size of -250 mesh are mixed as shown in FIG. It is in a state of fit.
[0036]
While the steel plate 20 is being conveyed in the direction of arrow A, vibrations such as the leveler 12 are conducted to the steel plate 20. For this reason, the bronze powder layer 24 vibrates together with the steel plate 20. 3, the spherical particles B pass between the irregularly shaped particles I and gather on the surface of the steel plate 20, while the irregularly shaped particles I gather almost on the spherical particles B. The spherical particles B are covered. Thus, it is said that the segregation of the spherical particles B and the irregularly shaped particles I in the bronze powder layer 24 has occurred in the bronze powder layer 24. In addition, the process of vibrating the bronze powder layer 24 as described above is an example of the vibration process referred to in the present invention.
[0037]
The steel plate 20 on which the bronze powder layer 24 with grain size segregation is formed is carried into the sintering furnace 18 as shown in FIG. The sintering furnace 18 is adjusted to a neutral atmosphere or a reducing atmosphere. The steel plate 20 and the bronze powder layer 24 carried into the sintering furnace 18 are sintered at a temperature in the range of 850 ° C. to 950 ° C. for a time in the range of 30 minutes to 60 minutes. This sintering process is an example of the sintering process referred to in the present invention.
[0038]
In this sintering step, a large number of spherical particles B distributed on the surface of the steel plate 20 generate a liquid phase and the densification proceeds rapidly, and as shown in FIG. 4, the surface of the steel plate 20 is uniformly covered and joined. The layer 26 (which is an example of the first sintered layer in the present invention) is formed.
[0039]
On the other hand, in the sintering process, the irregularly shaped particles I collected almost on the spherical particles B also generate a liquid phase. However, the irregularly shaped particles I are continuously bonded to the bonding layer 26 while maintaining an irregular outer shape without changing their shape so much. For this reason, as shown in FIG. 4, the porous layer 28 (which is an example of the second sintered layer in the present invention) is formed. A large number of voids 28 a are formed in the porous layer 28.
[0040]
As described above, the porous base material 30 having both the steel plate 20 and the bonding layer 26 covering the surface thereof, and the porous layer 28 continuously covering the bonding layer 26 from the bonding layer 26 is manufactured. Since the joining layer 26 covers the surface of the steel plate 20 uniformly, both joining strength is high.
[0041]
Further, as described above, a large number of voids 28a are formed in the porous layer 28 of the porous substrate 30, and a large number of irregularities are formed. As a result, the specific surface area of the porous layer 28 is enlarged, and therefore, when the porous layer 28 is filled with the synthetic resin, the synthetic resin is caught by the above-described irregularities. As a result, since the so-called anchoring effect (anchor effect) is increased, the synthetic resin becomes difficult to peel from the porous layer 28, and the peel strength is increased.
[0042]
【Example】
Examples of the present invention will be described below.
[0043]
<Example 1 and Example 2>
As the steel plate 20 (see FIG. 1), two cold rolled steel plates having a width of 180 mm and a plate thickness of 0.75 mm were prepared. Using the porous substrate manufacturing apparatus 10 shown in FIG. 1, two types of bronze particles having a particle size distribution shown in Table 2 (Example 1 and Example) on the surface of the two cold-rolled steel plates. 2) 2) Bronze powder was sprayed to a uniform thickness to form a bronze powder layer having a thickness of 0.3 mm. In Examples 1 and 2, bronze powder composed of 10% by weight of tin, 0.05% by weight of phosphorus, and the balance copper was used as the bronze powder.
[0044]
[Table 2]
Figure 0004492899
In Table 2, particles having a particle size of −60 mesh to +250 mesh are irregularly shaped particles. The particles having a particle size of −250 mesh are spherical particles.
[0045]
The bronze powder layer 24 formed on the surface of the cold rolled steel plate was vibrated as described with reference to FIG. Due to this vibration, a large number of spherical particles of −250 mesh passed between a large number of irregularly shaped particles, moved mainly toward the surface of the cold-rolled steel sheet, and gathered on this surface. On the other hand, the irregularly shaped particles gathered almost on the spherical particles and covered the spherical particles. Thereby, as shown in FIG. 3, particle size segregation occurred.
[0046]
The cold-rolled steel sheet on which the bronze powder layer with grain size segregation was formed was carried into a sintering furnace 18 (see FIG. 1) adjusted to a reducing atmosphere. The cold rolled steel sheet and the bronze powder layer carried into the sintering furnace 18 were sintered at 900 ° C. for 30 minutes.
[0047]
In this sintering step, a large number of spherical particles distributed on the surface of the cold-rolled steel sheet generate a liquid phase, and the large number of spherical particles are bonded to each other and also bonded to the surface of the cold-rolled steel sheet. 4) was formed. On the other hand, in the sintering process, a large number of irregularly shaped particles also generate a liquid phase. However, these irregularly shaped particles maintain a random shape without changing their shape so much that many irregularly shaped particles. They were bonded together and also bonded continuously to the bonding layer 26, and some irregularly shaped particles were also bonded to the surface of the cold-rolled steel sheet. Thereby, for example, as shown in FIG. 4, the porous layer 28 was formed. A number of voids 28 a are formed in the porous layer 28.
[0048]
As described above, a porous substrate having the cold-rolled steel sheet and the bonding layer 26 covering the surface thereof and the porous layer 28 continuously covering the bonding layer 26 from the bonding layer 26 was manufactured. As described above, the bonding layer 26 is obtained by sintering bronze powder mainly composed of a large number of spherical particles of −250 mesh, and the porous layer 28 is mainly of −60 mesh to +250 mesh. Bronze powder composed of a large number of irregularly shaped particles is sintered.
<Comparative example>
Similar to the above-described example, a cold rolled steel plate having a width of 180 mm and a plate thickness of 0.75 mm was prepared. A bronze powder having a particle size distribution shown in Table 3 and a large number of square particles gathered on the surface of the cold-rolled steel sheet was formed on the surface of the cold-rolled steel sheet with a thickness of 0.3 mm. Bronze powder layer was formed by spraying on the surface.
[0049]
[Table 3]
Figure 0004492899
The cold-rolled steel sheet with the bronze powder layer formed on the surface was carried into a sintering furnace 18 (see FIG. 1) adjusted to a reducing atmosphere and sintered at 900 ° C. for 30 minutes. As a result, as shown in FIG. 5, a porous sintered layer 42 composed of a sintered bronze powder and a cold rolled steel sheet having the porous sintered layer 42 integrally formed on the surface thereof. A quality substrate 40 was obtained. In the porous sintered layer 42, a large number of voids 42a were formed as schematically shown in FIG. However, when compared with the gap 28a shown in FIG. 4, the space of the gap 42a is wide and there are few irregularities.
[0050]
A synthetic resin layer was formed by filling and covering the porous sintered layers 28 and 42 of the porous base materials 30 and 40 obtained in Examples 1 and 2 and Comparative Example described above with a synthetic resin composition. Thereafter, the peel strength of the synthetic resin layer was measured. The measurement results will be described. <Production of synthetic resin composition and synthetic resin layer>
A synthetic resin composition was prepared by uniformly mixing 20% by weight of polyimide resin powder, 1% by weight of graphite powder, and the remaining polytetrafluoroethylene resin powder with a Henschel mixer. A wet resin composition was prepared by adding a petroleum solvent to the synthetic resin composition. This wet resin composition was supplied to the porous sintered layers 28 and 42 of the porous substrates 30 and 40 obtained in Examples 1 and 2 and the comparative example, respectively. Thereafter, the porous sintered layers 28 and 42 supplied with the wet resin composition were rolled with a known roller. As a result, the wet resin composition was filled and coated on the porous sintered layers 28 and 42. Thereafter, the porous sintered layers 28 and 42 were held for 5 minutes in a hot air drying furnace heated to a temperature of 200 ° C. to remove and remove the solvent in the wet resin composition.
[0051]
The entire porous base materials 30 and 40 in the above state are applied with a pressure of 400 kgf / cm by a known roller. 2 Was pressurized. The porous substrates 30 and 40 thus pressurized were carried into a heating furnace and baked at a temperature of 370 ° C. for 10 minutes. In this way, as shown in FIG. 6, a multilayer sliding member 50 (Example) in which the porous base material 30 was filled with the synthetic resin layer 52 was manufactured. Moreover, as shown in FIG. 7, the multilayer sliding member 60 (comparative example) by which the porous base material 40 was filled and covered with the synthetic resin layer 62 was manufactured. The porous sintered layer 28 was plastically deformed when the entire porous substrate 30 in which the porous sintered layer 28 was covered with the resin composition was pressed with a roller.
[0052]
The peel strength of the synthetic resin layers 52 and 62 filled and coated on the porous sintered layers 28 and 42 of the two types of multilayer sliding members 50 and 60 manufactured as described above was measured.
[0053]
<Peel strength measurement method>
With reference to FIG. 8, the measuring method of peeling strength is demonstrated.
[0054]
FIG. 8 is a schematic diagram showing a method for measuring peel strength.
[0055]
The method of measuring the peel strength of the synthetic resin layers 52 and 62 of the two types of multilayer sliding members 50 and 60 is exactly the same. Here, the multilayer sliding member 50 will be described as an example.
[0056]
In measuring the peel strength of the synthetic resin layer 52, first, the synthetic resin layer 52 is previously peeled off from the end of the porous sintered layer 28 (see FIG. 4). The multilayer sliding member 50 from which the synthetic resin layer 52 was peeled was chucked on the vice 70, and the peeled synthetic resin layer 52 was sandwiched and fixed to the tip 72a of the fixing jig 72. A push-pull gauge 74 was attached to the fixing jig 72, the synthetic resin layer 52 was pulled in the 180 ° direction (direction parallel to the steel plate), and the strength at that time was measured with the push-pull gauge 74.
[0057]
As a result of the measurement as described above, the peel strength of the synthetic resin layer 52 of the multilayer sliding member 50 using the porous substrate 30 of Examples 1 and 2 (see FIG. 4) was 2.74 kgf / cm. It was. On the other hand, the peel strength of the synthetic resin layer 62 of the multilayer sliding member 60 using the porous substrate 40 of the comparative example was 1.84 kgf / cm.
[0058]
From this measurement result, it was found that the peel strength of the synthetic resin layer 52 of the multilayer sliding member 50 is about 50% higher than the peel strength of the synthetic resin layer 62 of the multilayer sliding member 60. The reason is presumed to be as follows.
[0059]
As can be seen from the porous substrate 30 schematically shown in FIG. 4 and the multilayer sliding member 50 schematically shown in FIG. 6, the porous sintered layer 28 of the porous substrate 30 is made of this porous material. Plastic deformation is caused by the pressure applied by the roller when the sintered layer 28 is filled with a synthetic resin. As a result of this plastic deformation, it is presumed that the bonding force between the synthetic resin layer 52 and the porous sintered layer 28 was increased, and this bonding force was added to the anchoring effect of the porous sintered layer 28.
[0060]
When the peel strength of the synthetic resin layer 52 is high, the plate-like multilayer sliding member 50 is bent into a cylindrical shape, or the edge of the multilayer sliding member 50 bent into a cylindrical shape is subjected to scoring. The synthetic resin layer 52 does not peel off. Therefore, the peel strength of the synthetic resin layer 52 is an extremely important factor when the plate-shaped multilayer sliding member 50 is processed.
[0061]
【The invention's effect】
As described above, according to the porous base material of the present invention, the first sintered layer uniformly covers the surface of the substrate. Therefore, since the surface of the substrate and the first sintered layer are in sufficient contact, the bonding strength between the substrate and the first sintered layer is high (strong). In addition, since a large number of irregularly shaped particles are bonded to each other in the second sintered layer and a large number of voids are formed therein, a large number of irregularities are formed in the second sintered layer. Will be. For this reason, when the second sintered layer is filled and impregnated (impregnated) with, for example, a resin, the resin is caught by the unevenness of the second sintered layer. As a result, since the so-called anchoring effect (anchor effect) is increased, the resin is difficult to peel from the second sintered layer, and the peel strength is increased.
[0062]
Here, when the substrate is made of steel, the strength of the substrate is high, and thus a high-strength porous base material is obtained.
[0063]
Further, when the first and second sintered layers are made of bronze, a sintered layer having excellent corrosion resistance can be obtained.
[0064]
Further, when the bronze is composed of 9% by weight or more and 12% by weight or less of tin, 0.01% by weight or more and 0.50% by weight or less of phosphorus, and the balance is made of copper, 9% by weight or more Since 12 wt% or less of tin is contained, the bonding strength between the first sintered layer and the steel sheet can be increased. In addition, since it contains 0.01 wt% or more and 0.50 wt% or less of phosphorus, when a plurality of irregularly shaped particles are sintered to form the second sintered layer, each particle It is difficult to deform and its irregular shape is maintained. As a result, since the so-called anchoring effect is further increased, the resin filled and coated on the second sintered layer becomes more difficult to peel from the second sintered layer, and the peel strength is further increased.
[0065]
In addition, according to the method for producing a porous substrate of the present invention, a large number of spherical particles pass between a large number of irregularly shaped particles and gather on the surface of the substrate in the vibration step. For this reason, a large number of irregularly shaped particles gather on a large number of spherical particles to cover them. In this state, the powder layer is sintered in the sintering process. In this case, many spherical particles become a liquid phase and uniformly cover the surface of the substrate. Therefore, since the layer formed by sintering a large number of spherical particles (first sintered layer) and the surface of the substrate are in sufficient contact, the bonding strength between the substrate and the first sintered layer is high ( strong). On the other hand, a large number of irregularly shaped particles are partially in a liquid phase, but are sintered while maintaining a substantially irregular shape. Therefore, in the layer formed by sintering a large number of irregularly shaped particles (second sintered layer), a large number of irregularly shaped particles are bonded together to form a large number of voids therein, A large number of irregularities are formed in the second sintered layer. For this reason, when the second sintered layer is filled and impregnated (impregnated) with, for example, a resin, the resin is caught by the unevenness of the second sintered layer. As a result, since the so-called anchoring effect (anchor effect) is increased, the resin is difficult to peel from the second sintered layer, and the peel strength is increased.
[0066]
Here, when the powder layer forming step is a step of forming the powder layer on the surface of the steel substrate, the strength of the substrate is high, and thus a high strength porous substrate is obtained.
[0067]
Furthermore, when the powder layer forming step is a step of forming a powder layer in which the spherical particles made of bronze and the irregularly shaped particles are mixed on the surface of the substrate, the sintered layer is made of bronze. Therefore, a sintered layer having excellent corrosion resistance can be obtained.
[0068]
Furthermore, the powder layer forming step is made of 9% by weight to 12% by weight of tin, 0.01% by weight to 0.50% by weight of phosphorus, and the balance made of bronze having a composition comprising copper. In the step of forming a powder layer in which spherical particles and the irregularly shaped particles are mixed on the surface of the substrate, since it contains 9 wt% or more and 12 wt% or less of tin, a large number of spherical particles are formed. The bonding strength between the first sintered layer formed by sintering and the steel sheet is increased. In addition, since it contains 0.01 wt% or more and 0.50 wt% or less of phosphorus, when a plurality of irregularly shaped particles are sintered to form the second sintered layer, each particle It is difficult to deform and its irregular shape is maintained. As a result, since the so-called anchoring effect is further increased, the resin filled and coated on the second sintered layer becomes more difficult to peel from the second sintered layer, and the peel strength is further increased.
[0069]
Furthermore, the powder layer forming step is a step of forming on the surface of the substrate a powder layer in which the multiple spherical particles having an average particle size smaller than the average particle size of the multiple irregularly shaped particles are mixed. Since the average particle size of a large number of spherical particles is smaller than the average particle size of a large number of irregularly shaped particles, the spherical particles easily pass between the irregularly shaped particles in the vibration step. Therefore, many spherical particles are likely to gather on the surface of the substrate. As a result, the substrate and the first sintered layer are more strongly bonded. Moreover, since irregularly-shaped particles tend to gather on the spherical particles, the second sintered layer has a higher anchoring effect.
[0070]
Furthermore, in the powder layer forming step, all the particles composed of the large number of spherical particles and the large number of irregularly shaped particles pass through 60 mesh, and further pass through 250 mesh. Hanging density is 3.6 g / cm Three 4.2 g / cm Three Spherical particles present in an amount within the range of 30% by weight to 50% by weight of all the above particles, 100 meshes but not 200 meshes, and the apparent density is 3 .1g / cm Three 3.5 g / cm Three And a step of forming a powder layer mixed with irregularly shaped particles present in an amount in the range of 35 wt% to 50 wt% of all the particles on the surface of the substrate. In the vibration process, spherical particles are more likely to pass between irregularly shaped particles. Therefore, a large number of spherical particles are more likely to collect on the surface of the substrate. As a result, the substrate and the first sintered layer are further strongly bonded. In addition, since the irregularly shaped particles are more likely to collect on the spherical particles, the second sintered layer has an even higher anchoring effect.
[0071]
Furthermore, the sintering step sinters at a temperature in the range of 850 ° C. to 950 ° C. for a time in the range of 30 minutes to 60 minutes in a heating furnace adjusted to a neutral atmosphere or a reducing atmosphere. In the case of the process, the spherical particles surely become a liquid phase and uniformly cover the surface of the substrate. Therefore, the substrate and the first sintered layer are more strongly and strongly bonded. In addition, since a large number of irregularly shaped particles can more reliably maintain an irregular shape, the so-called anchoring effect can be more reliably exhibited.
[0072]
Moreover, according to the multilayer sliding member of this invention, since many unevenness | corrugations are formed inside the 2nd sintered layer, a resin layer is caught in these unevenness | corrugations. For this reason, since the so-called anchoring effect is enhanced, the resin layer is hardly peeled off from the second sintered layer.
[0073]
Here, in the case where the resin layer is made of a fluororesin, a multilayer sliding member having further excellent slidability can be obtained.
[0074]
In addition, according to the method for manufacturing a multilayer sliding member of the present invention, the second sintered layer is obtained by sintering a large number of irregularly shaped particles. Many irregularities are formed. The resin layer is caught on these irregularities. Furthermore, since the second sintered layer is plastically deformed, the second sintered layer bites into the resin layer. For this reason, the so-called anchoring effect is greatly enhanced, and the resin layer is hardly peeled off from the second sintered layer. Therefore, a long-life multilayer sliding member is obtained.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing a schematic configuration of a production apparatus for producing a porous substrate.
FIG. 2 is a cross-sectional view schematically showing a powder immediately after being spread on a steel plate.
3 is a cross-sectional view schematically showing a state after the steel plate and powder of FIG. 2 are vibrated. FIG.
4 is a cross-sectional view schematically showing a porous substrate obtained by sintering the powder shown in FIG. 3. FIG.
FIG. 5 is a cross-sectional view schematically showing a porous substrate of a comparative example.
FIG. 6 is a cross-sectional view schematically showing a multilayer sliding member of an example.
FIG. 7 is a cross-sectional view schematically showing a multilayer sliding member of a comparative example.
FIG. 8 is a schematic diagram showing a method for measuring peel strength.
[Explanation of symbols]
20 Steel plate
22 Bronze powder
24 Bronze powder layer
26 Bonding layer
28 Porous layer
28a gap
30 Porous substrate
50 Multi-layer sliding member
52 Synthetic resin layer
B Spherical particles
I Irregularly shaped particles

Claims (13)

所定厚さの基板と、
該基板の表面を一様な厚さで覆う多数の球状粒子が焼結されてなる第1の焼結層と、
前記多数の球状粒子の平均粒度よりも大きい平均粒度をもつ多数の不規則形状粒子同士が結合してその内部に多数の空隙が形成された、前記第1の焼結層から連続して該第1の焼結層を覆う第2の焼結層とを有することを特徴とする多孔質基材。
A substrate of a predetermined thickness;
A first sintered layer formed by sintering a large number of spherical particles covering the surface of the substrate with a uniform thickness ;
A plurality of irregularly shaped particles having an average particle size larger than the average particle size of the plurality of spherical particles are combined to form a plurality of voids therein, and the first sintered layer is continuously formed. And a second sintered layer covering one sintered layer.
前記基板は、鋼製のものであることを特徴とする請求項1に記載の多孔質基材。  The porous substrate according to claim 1, wherein the substrate is made of steel. 前記第1及び第2の焼結層は、青銅からなるものであることを特徴とする請求項1又は2に記載の多孔質基材。  The porous substrate according to claim 1 or 2, wherein the first and second sintered layers are made of bronze. 前記青銅は、
9重量%以上12重量%以下の錫、0.01重量%以上0.50重量%以下の燐、及び残部は銅からなる組成のものであることを特徴とする請求項3に記載の多孔質基材。
The bronze is
The porous material according to claim 3, wherein the porous material is composed of 9 wt% or more and 12 wt% or less of tin, 0.01 wt% or more and 0.50 wt% or less of phosphorus, and the balance is copper. Base material.
所定厚さの基板の表面に多孔質焼結層が形成された多孔質基材を製造する多孔質基材の製造方法において、
多数の球状粒子と、これら多数の球状粒子の平均粒度よりも大きい平均粒度をもつ多数の不規則形状粒子とが混合された粉末層を基板の表面に形成する粉末層形成工程と、
前記基板の表面に形成された前記粉末層を振動させることにより、前記多数の球状粒子を前記基板の表面に集めると共に、前記多数の不規則形状粒子を前記多数の球状粒子のほぼ上に集めて前記多数の球状粒子を覆わせる振動工程と、
該振動工程が終了した後もしくは該振動工程と共に、前記基板の表面に形成された前記粉末層を焼結する焼結工程とを含むことを特徴とする多孔質基材の製造方法。
In the method for producing a porous substrate for producing a porous substrate in which a porous sintered layer is formed on the surface of a substrate having a predetermined thickness,
A powder layer forming step of forming on the surface of the substrate a powder layer in which a large number of spherical particles and a large number of irregularly shaped particles having an average particle size larger than the average particle size of the large number of spherical particles are mixed;
By vibrating the powder layer formed on the surface of the substrate, the large number of spherical particles are collected on the surface of the substrate, and the large number of irregularly shaped particles are collected almost on the large number of spherical particles. A vibration process for covering the multiple spherical particles ;
A method for producing a porous substrate, comprising: a sintering step of sintering the powder layer formed on the surface of the substrate after the vibration step is completed or together with the vibration step.
前記粉末層形成工程は、
鋼製の基板の表面に前記粉末層を形成する工程であることを特徴とする請求項5に記載の多孔質基材の製造方法。
The powder layer forming step includes
6. The method for producing a porous substrate according to claim 5, wherein the powder layer is formed on the surface of a steel substrate.
前記粉末層形成工程は、
青銅からなる前記球状粒子及び前記不規則形状粒子が混合された粉末層を前記基板の表面に形成する工程であることを特徴とする請求項5又は6に記載の多孔質基材の製造方法。
The powder layer forming step includes
The method for producing a porous substrate according to claim 5 or 6, wherein the method is a step of forming a powder layer in which the spherical particles made of bronze and the irregularly shaped particles are mixed on the surface of the substrate.
前記粉末層形成工程は、
9重量%以上12重量%以下の錫、0.01重量%以上0.50重量%以下の燐、及び残部は銅からなる組成の青銅で製造された前記球状粒子及び前記不規則形状粒子が混合された粉末層を前記基板の表面に形成する工程であることを特徴とする請求項5,6,又は7に記載の多孔質基材の製造方法。
The powder layer forming step includes
9% by weight to 12% by weight of tin, 0.01% by weight to 0.50% by weight of phosphorus, and the balance of the spherical particles and irregularly shaped particles made of bronze with a composition of copper The method for producing a porous substrate according to claim 5, 6 or 7, wherein the method is a step of forming a powder layer on the surface of the substrate.
前記粉末層形成工程は、
前記多数の球状粒子及び前記多数の不規則形状粒子からなる全ての粒子が60メッシュを通過する粒子であって、しかも、
250メッシュを通過し、且つその見掛密度が3.6g/cm3以上4.2g /cm3以下であり、さらに前記全ての粒子の30重量%以上50重量%以下の 範囲内の量だけ存在する球状粒子と、
100メッシュを通過するが200メッシュを通過せず、且つその見掛密度が3.1g/cm3以上3.5g/cm3以下であり、さらに前記全ての粒子の35重量%以上50重量%以下の範囲内の量だけ存在する不規則形状粒子と
が混合された粉末層を前記基板の表面に形成する工程であることを特徴とする請求項5から8までのうちのいずれか一項に記載の多孔質基材の製造方法。
The powder layer forming step includes
All particles composed of the plurality of spherical particles and the plurality of irregularly shaped particles pass through 60 mesh, and
It passes 250 mesh, and its apparent density is 3.6 g / cm 3 or more and 4.2 g / cm 3 or less, and also exists in an amount in the range of 30 wt% to 50 wt% of all the particles. Spherical particles to
Passes 100 mesh but does not pass 200 mesh, and its apparent density is 3.1 g / cm 3 or more and 3.5 g / cm 3 or less, and 35% by weight or more and 50% by weight or less of all the particles. 9. The method according to claim 5, wherein a powder layer mixed with irregularly shaped particles present in an amount within a range of is formed on the surface of the substrate. A method for producing a porous substrate.
前記焼結工程は、
中性雰囲気もしくは還元性雰囲気に調整された加熱炉において850℃以上950℃以下の範囲内の温度で30分間以上60分間以下の範囲内の時間だけ焼結する工程であることを特徴とする請求項5から9までのうちのいずれか一項に記載の多孔質基材の製造方法。
The sintering step includes
It is a step of sintering in a heating furnace adjusted to a neutral atmosphere or a reducing atmosphere at a temperature within a range of 850 ° C. to 950 ° C. for a time within a range of 30 minutes to 60 minutes. Item 10. The method for producing a porous substrate according to any one of Items 5 to 9.
請求項1から4までのうちのいずれか一項に記載された多孔質基材と、この多孔質基材の第2の焼結層に充填被覆された樹脂層とを有することを特徴とする複層摺動部材。  It has the porous base material as described in any one of Claim 1 to 4, and the resin layer by which the 2nd sintered layer of this porous base material was filled and coat | covered, It is characterized by the above-mentioned. Multi-layer sliding member. 前記樹脂層は、
フッ素樹脂からなるものであることを特徴とする請求項11に記載の複層摺動部材。
The resin layer is
The multilayer sliding member according to claim 11, wherein the multilayer sliding member is made of a fluororesin.
所定厚さの基板の表面に多孔質焼結層が形成された多孔質基材と、前記多孔質焼結層に充填被覆された樹脂層とを有する複層摺動部材を製造する複層摺動部材の製造方法において、
請求項5から10までのうちのいずれか一項に記載された多孔質基材の製造方法の各工程と、
多数の不規則形状粒子が焼結されて形成された第2の焼結層を塑性変形させながら該第2の焼結層に樹脂を充填被覆して樹脂層を形成する樹脂層形成工程とを含むことを特徴とする複層摺動部材の製造方法。
A multilayer sliding member for producing a multilayer sliding member having a porous base material having a porous sintered layer formed on the surface of a substrate having a predetermined thickness and a resin layer filled and coated on the porous sintered layer. In the manufacturing method of the moving member,
Each process of the manufacturing method of the porous substrate according to any one of claims 5 to 10,
A resin layer forming step of forming a resin layer by filling the second sintered layer with a resin while plastically deforming the second sintered layer formed by sintering a number of irregularly shaped particles. A manufacturing method of a multilayer sliding member characterized by including.
JP2000201477A 2000-06-29 2000-06-29 Porous substrate and method for producing the same, multilayer sliding member and method for producing the same Expired - Lifetime JP4492899B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000201477A JP4492899B2 (en) 2000-06-29 2000-06-29 Porous substrate and method for producing the same, multilayer sliding member and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000201477A JP4492899B2 (en) 2000-06-29 2000-06-29 Porous substrate and method for producing the same, multilayer sliding member and method for producing the same

Publications (2)

Publication Number Publication Date
JP2002012903A JP2002012903A (en) 2002-01-15
JP4492899B2 true JP4492899B2 (en) 2010-06-30

Family

ID=18699165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000201477A Expired - Lifetime JP4492899B2 (en) 2000-06-29 2000-06-29 Porous substrate and method for producing the same, multilayer sliding member and method for producing the same

Country Status (1)

Country Link
JP (1) JP4492899B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4253834B2 (en) * 2002-08-28 2009-04-15 三菱マテリアルPmg株式会社 Manufacturing method of sliding parts
JP4736867B2 (en) * 2006-03-07 2011-07-27 オイレス工業株式会社 Cylindrical cylindrical bearing bush, manufacturing method thereof, and hinge structure using the cylindrical cylindrical bushing
JP2011080525A (en) * 2009-10-07 2011-04-21 Oiles Corp Multiple layer sliding member
JP7339202B2 (en) * 2020-04-08 2023-09-05 大豊工業株式会社 sliding member

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5148104U (en) * 1974-10-09 1976-04-10
JPS6037163B2 (en) * 1977-03-22 1985-08-24 日本ダイアクレバイト株式会社 Dry bearing manufacturing method
JPS5713102A (en) * 1980-06-27 1982-01-23 Komatsu Ltd Production of sintered bearing material with back metal
JPH03274237A (en) * 1990-03-26 1991-12-05 Ndc Co Ltd Copper base plain bearing material and its manufacture
JP3357561B2 (en) * 1997-01-29 2002-12-16 大同メタル工業株式会社 Multi-layer resin sliding material
JPH11173331A (en) * 1997-12-11 1999-06-29 Oiles Ind Co Ltd Multiple-layered sliding member and manufacture thereof

Also Published As

Publication number Publication date
JP2002012903A (en) 2002-01-15

Similar Documents

Publication Publication Date Title
EP1998953B1 (en) Pprocess for producing a stampable reinforced composite semi-finished product
JPH04241938A (en) Composite item and manufacture thereof
EP1090161A1 (en) Method for forming corrosion resistant coating on an alloy surface
TWI744459B (en) Metal fiber nonwoven fabric
JP2000173603A (en) Method for manufacturing electrode plate for battery, electrode plate manufactured by the method, and battery provided with the electrode plate
CN1089893A (en) Metallic honeycomb bodies is carried out the method and apparatus of solder brazing with braze material
EP1718781A1 (en) Porous coated member and manufacturing method thereof using cold spray
JPH10204506A (en) Production of sliding bearing material
JP2008127584A (en) Bilayer sliding member and manufacturing method therefor
JP2000192961A (en) Plural-layer sliding member and manufacture therefor
JP4492899B2 (en) Porous substrate and method for producing the same, multilayer sliding member and method for producing the same
JPS592839A (en) Laminated composite material and its manufacture
JP2009511751A (en) Material coating method
JP5869673B2 (en) Method for applying brazing material to metal honeycomb matrix, metal honeycomb matrix, and manufacturing method thereof
JP3949183B2 (en) Resin composition for sliding member and sliding member using the same
US3335000A (en) Manufacture of metal foil
JP2010031438A (en) Production method of glass chopped strand mat, glass chopped strand mat and automotive molded ceiling material
US20210371677A1 (en) Composite article with lightning strike protection and method and release film for forming same
JP3965244B2 (en) Resin composition for sliding member and sliding member using the same
JPS6121421A (en) Improved bearing material and manufacture thereof
US2747256A (en) Process of forming composite strips of backing and bearing metals
JP2000309807A (en) Sliding member
JPH0758095B2 (en) Method for manufacturing multi-layer bearing
JPS6147257A (en) Manufacture of band plate
JPH04145225A (en) Multilayer bearing and manufacture thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070521

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090716

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090910

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100331

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100401

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4492899

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140416

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term