JP2011080525A - Multiple layer sliding member - Google Patents

Multiple layer sliding member Download PDF

Info

Publication number
JP2011080525A
JP2011080525A JP2009232965A JP2009232965A JP2011080525A JP 2011080525 A JP2011080525 A JP 2011080525A JP 2009232965 A JP2009232965 A JP 2009232965A JP 2009232965 A JP2009232965 A JP 2009232965A JP 2011080525 A JP2011080525 A JP 2011080525A
Authority
JP
Japan
Prior art keywords
porous metal
mass
layer
metal sintered
sintered layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009232965A
Other languages
Japanese (ja)
Inventor
Yusuke Oda
裕介 小田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oiles Corp
Oiles Industry Co Ltd
Original Assignee
Oiles Corp
Oiles Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oiles Corp, Oiles Industry Co Ltd filed Critical Oiles Corp
Priority to JP2009232965A priority Critical patent/JP2011080525A/en
Publication of JP2011080525A publication Critical patent/JP2011080525A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/20Sliding surface consisting mainly of plastics
    • F16C33/203Multilayer structures, e.g. sleeves comprising a plastic lining
    • F16C33/206Multilayer structures, e.g. sleeves comprising a plastic lining with three layers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/12Structural composition; Use of special materials or surface treatments, e.g. for rust-proofing
    • F16C33/128Porous bearings, e.g. bushes of sintered alloy

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Sliding-Contact Bearings (AREA)
  • Laminated Bodies (AREA)
  • Lubricants (AREA)
  • Powder Metallurgy (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a multiple layer sliding member having a porous metal sintered layer which can suppress the progress of sulfidization corrosion even of lubricating oil containing an extreme-pressure additive including sulfur is used, and also can exert sliding performance equal to that of a bronze-based copper alloy. <P>SOLUTION: The multiple layer sliding member includes: a back metal formed of a steel sheet; a porous metal sintered layer integrally formed on the surface of the back metal; and a sliding layer composed of a synthetic resin composition filled in the pores and surface of the porous metal sintered layer to cover them. The porous metal sintered layer includes Ni: 21-35 mass%, Sn: 3-12 mass%, P: 0.4-1.35 mass%, and the balance Cu. The sheet plate of the back metal is plated with Cu or N. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、鋼板からなる裏金と、該裏金の表面に一体的に形成された多孔質金属焼結層と、該多孔質金属焼結層の孔隙及び表面に充填被覆された合成樹脂組成物からなる滑り層とを具備した複層摺動部材に関する。   The present invention comprises a backing metal made of a steel plate, a porous metal sintered layer integrally formed on the surface of the backing metal, and a synthetic resin composition filled and coated on the pores and the surface of the porous metal sintered layer. The present invention relates to a multilayer sliding member having a sliding layer.

上記複層摺動部材において、鋼板からなる裏金の表面に一体的に形成された多孔質金属焼結層には、従来、青銅、鉛青銅又はリン青銅等の青銅系銅合金が用いられている(特許文献1乃至特許文献5参照)。   In the multilayer sliding member, a bronze-based copper alloy such as bronze, lead bronze or phosphor bronze has been conventionally used for the porous metal sintered layer integrally formed on the surface of the back metal plate. (See Patent Document 1 to Patent Document 5).

この多孔質金属焼結層に青銅系銅合金が用いられるのは、多孔質金属焼結層の孔隙及び表面に充填被覆される合成樹脂組成物からなる滑り層の該多孔質金属焼結層への強固な接合強度(アンカー効果)を達成することができることと、相手材との摺動摩擦によって合成樹脂組成物からなる滑り層に摩耗を生じ、該滑り層(摺動面)に多孔質金属焼結層の一部が露出しても、露出した青銅系銅合金が具有する良好な摺動性能により、複層摺動部材としての摩擦摩耗等の良好な摺動特性を維持することができるという理由による。   The bronze-based copper alloy is used for the porous metal sintered layer because the porous metal sintered layer has a pore and a sliding layer made of a synthetic resin composition filled and coated on the surface. The strong sliding strength (anchor effect) can be achieved, and the sliding layer made of the synthetic resin composition is abraded by sliding friction with the counterpart material, and the porous metal fires on the sliding layer (sliding surface). Even if a part of the bonding layer is exposed, the good sliding performance of the exposed bronze-based copper alloy can maintain good sliding characteristics such as frictional wear as a multilayer sliding member. Depending on the reason.

上記特徴を有する複層摺動部材は、多くの異なった使用条件、例えば乾燥摩擦条件又は油中乃至油潤滑条件等、幅広い条件下で使用されている。油中乃至油潤滑条件での使用、特に摩擦面での負荷面圧が高く、油膜の破断に起因する焼付きを生じやすい極圧条件では、油中に塩素、硫黄(S)、リン(P)などを含む極圧添加剤を含有する場合がある。この極圧添加剤として、特に硫黄分を含む極圧剤を含有する潤滑油が使用される場合には、多孔質金属焼結層を形成する青銅系銅合金に硫化腐食を生じる虞がある。すなわち、複層摺動部材の切削加工により、青銅系銅合金からなる多孔質金属焼結層が露出した端面部や、摺動面としての合成樹脂組成物からなる滑り層に露出した青銅系銅合金からなる多孔質金属焼結層の銅(Cu)成分と、極圧添加剤成分として含有されている潤滑油中のS成分との反応により硫化物(CuS等)が生成され、青銅系銅合金からなる多孔質金属焼結層に硫化腐食を生じるのである。この硫化物の生成は、多孔質金属焼結層に強度低下を来たし、かつ硫化物の滑り層への露出により摩耗を促進させるという欠点として現れる。この硫化物の生成は、多孔質金属焼結層に銅合金を使用する限りにおいては避けられない事象であり、発生した硫化腐食の進行を抑制する技術の開発が望まれる。   The multilayer sliding member having the above characteristics is used under a wide range of conditions such as many different use conditions, such as dry friction conditions or in-oil to oil lubrication conditions. When used in oil or under oil lubrication conditions, particularly under extreme pressure conditions where the load surface pressure on the friction surface is high and seizure due to rupture of the oil film is likely to occur, chlorine, sulfur (S), phosphorus (P ) And the like may be included. In particular, when a lubricating oil containing an extreme pressure agent containing a sulfur component is used as this extreme pressure additive, there is a risk of causing sulfidation corrosion in the bronze-based copper alloy forming the porous metal sintered layer. That is, bronze-based copper exposed on the end surface portion where the porous metal sintered layer made of a bronze-based copper alloy is exposed or the sliding layer made of a synthetic resin composition as a sliding surface by cutting the multi-layer sliding member Sulfides (CuS, etc.) are produced by the reaction between the copper (Cu) component of the porous metal sintered layer made of an alloy and the S component in the lubricating oil contained as the extreme pressure additive component, and bronze copper Sulfide corrosion occurs in the sintered porous metal layer made of an alloy. The formation of the sulfide appears as a defect that the strength of the sintered porous metal layer is lowered and the wear is promoted by the exposure of the sulfide to the sliding layer. This generation of sulfide is an unavoidable event as long as a copper alloy is used for the porous metal sintered layer, and development of a technique for suppressing the progress of the generated sulfide corrosion is desired.

特開昭50−43006号公報Japanese Patent Laid-Open No. 50-43006 特開昭53−117149号公報JP-A-53-117149 特開2000−319472号公報JP 2000-319472 A 特開2005−321057号公報JP-A-2005-321057 特開2006−62328号公報JP 2006-62328 A

本発明は、前記諸点に鑑みてなされたものであって、その目的とするところは、硫黄等の極圧添加剤を含有する潤滑油を使用する場合でも、硫化腐食の進行を抑えることができると共に、青銅系銅合金と同等の摺動性能を発揮する多孔質金属焼結層を備えた複層摺動部材を提供することにある。   The present invention has been made in view of the above points, and the object of the present invention is to suppress the progress of sulfidation corrosion even when a lubricating oil containing an extreme pressure additive such as sulfur is used. Another object of the present invention is to provide a multilayer sliding member provided with a porous metal sintered layer that exhibits sliding performance equivalent to that of a bronze-based copper alloy.

本発明者は、上記目的を達成するべく鋭意検討を重ねた結果、銅−ニッケル(Cu−Ni)系の白銅を主成分とし、これに所定量の割合の錫(Sn)及びリン(P)を添加して形成した多孔質金属焼結層は、硫黄等の極圧添加剤を含有する潤滑油の使用において、該多孔質金属焼結層の硫化腐食の進行を極力抑えることができ、該硫化腐食に起因する硫化物(CuS等)の生成による多孔質金属焼結層の脱落や、滑り層の剥離を生じることがなく、多孔質金属焼結層としての役割を充分に果たすことができることを見出し、本発明をなすに至った。   As a result of intensive studies to achieve the above object, the present inventor has copper-nickel (Cu-Ni) -based white copper as a main component, and a predetermined amount of tin (Sn) and phosphorus (P). In the use of a lubricating oil containing an extreme pressure additive such as sulfur, the porous metal sintered layer formed by adding can suppress the progress of sulfidation corrosion of the porous metal sintered layer as much as possible, The porous metal sintered layer does not fall off due to the formation of sulfides (CuS, etc.) due to sulfidation corrosion, and the sliding layer does not peel off, and can fully serve as a porous metal sintered layer. The present invention has been found and the present invention has been made.

本発明の複層摺動部材は、上記知見に基づいてなされたものであり、鋼板からなる裏金と、該裏金の表面に一体的に形成された多孔質金属焼結層と、該多孔質金属焼結層の孔隙及び表面に充填被覆された合成樹脂組成物からなる滑り層とを具備した複層摺動部材であって、該多孔質金属焼結層は、Ni:21〜35質量%、Sn:3〜12質量%、P:0.4〜1.35質量%、残部Cuからなることを特徴としている。   The multilayer sliding member of the present invention is made on the basis of the above knowledge, and includes a backing metal made of a steel plate, a porous metal sintered layer integrally formed on the surface of the backing metal, and the porous metal. A multi-layer sliding member comprising a pore of the sintered layer and a sliding layer comprising a synthetic resin composition filled and coated on the surface, the porous metal sintered layer comprising Ni: 21 to 35% by mass, It is characterized by consisting of Sn: 3 to 12% by mass, P: 0.4 to 1.35% by mass, and the balance Cu.

本発明の複層摺動部材によれば、硫黄等の極圧剤を含む潤滑油の使用においても、該多孔質金属焼結層に生じた硫化腐食の進行を極力抑制することができ、該硫化腐食に起因する硫化物の生成による多孔質金属焼結層の脱落や、合成樹脂組成物からなる滑り層の剥離等を生じることがなく、多孔質金属焼結層としての役割を充分に果たすことができる。   According to the multilayer sliding member of the present invention, even when using a lubricating oil containing an extreme pressure agent such as sulfur, it is possible to suppress the progress of sulfidation corrosion generated in the porous metal sintered layer as much as possible, The porous metal sintered layer does not drop off due to the formation of sulfides due to sulfide corrosion, and the sliding layer made of the synthetic resin composition does not peel off. be able to.

本発明の複層摺動部材において、鋼板からなる裏金の表面にCuメッキ(カッパータイト)又はNiメッキ(ニッケルトップ)を施してもよい。これらメッキの厚さは、概ね2〜10μmであることが好ましい。これら鋼板からなる裏金の表面に施されるCuメッキ又はNiメッキによって、多孔質金属焼結層の裏金表面への接合強度を高めることができる。   In the multilayer sliding member of the present invention, Cu plating (kappa tight) or Ni plating (nickel top) may be applied to the surface of the back plate made of a steel plate. The thickness of these platings is preferably about 2 to 10 μm. The bonding strength of the porous metal sintered layer to the back metal surface can be increased by Cu plating or Ni plating applied to the back metal surface made of these steel plates.

本発明の複層摺動部材において、鋼板からなる裏金の表面に一体的に形成された多孔質金属焼結層の孔隙及び表面に充填被覆される合成樹脂組成物は、フルオロカーボン重合体(ポリテトラフルオロエチレン樹脂等)、ポリアセタール樹脂、ポリアミド樹脂、ポリフェニレンサルファイド樹脂、ポリエーテルエーテルケトン樹脂、ポリアミドイミド樹脂から選択される少なくとも一つの合成樹脂に、耐摩耗性向上剤としてポリイミド樹脂、焼成フェノール樹脂、ポリフェニレンスルホン樹脂及びオキシベンゾイルポリエステル樹脂から選択される少なくとも一つの有機材料、その他リン酸塩、硫酸バリウム、固体潤滑剤から選択される少なくとも一つの無機材料を含んでもよい。   In the multilayer sliding member of the present invention, the synthetic resin composition filled and coated on the pores and the surface of the porous metal sintered layer integrally formed on the surface of the back metal plate is made of a fluorocarbon polymer (polytetrafluoroethylene). Fluoroethylene resin, etc.), polyacetal resin, polyamide resin, polyphenylene sulfide resin, polyether ether ketone resin, polyamideimide resin, at least one synthetic resin, polyimide resin, calcined phenol resin, polyphenylene as an abrasion resistance improver It may include at least one organic material selected from sulfone resins and oxybenzoyl polyester resins, and at least one inorganic material selected from phosphates, barium sulfate, and solid lubricants.

複層摺動部材の摺動面としての滑り層を形成する前記合成樹脂組成物は、相手材との摺動摩擦において、低摩擦性を発揮すると共に優れた耐摩耗性を発揮する。そして、滑り層に摩耗を生じ、該滑り層に、Ni:21〜35質量%、Sn:3〜12質量%、P:0.4〜1.35質量%、残部Cuからなる多孔質金属焼結層の一部が露出しても、露出した該成分組成からなる焼結層が良好な摺動性能を発揮するので、複層摺動部材としての摩擦摩耗等の摺動特性を維持することができる。   The synthetic resin composition that forms the sliding layer as the sliding surface of the multilayer sliding member exhibits low friction and excellent wear resistance in sliding friction with the counterpart material. Then, wear occurs in the sliding layer, and the porous layer is made of Ni: 21 to 35% by mass, Sn: 3 to 12% by mass, P: 0.4 to 1.35% by mass, and remaining Cu. Even if a part of the binder layer is exposed, the exposed sintered layer composed of the component composition exhibits good sliding performance, so that sliding characteristics such as frictional wear as a multilayer sliding member should be maintained. Can do.

本発明によれば、鋼板からなる裏金の表面に一体に形成された多孔質金属焼結層は、Ni:21〜35質量%、Sn:3〜12質量%、P:0.4〜1.35質量%、残部Cuからなり、該多孔質金属焼結層は、極圧添加剤を含有する潤滑油の使用における硫化腐食の進行を抑制することができ、該硫化腐食に起因する硫化物の生成による多孔質金属焼結層の脱落や、滑り層の剥離を生じることがなく、多孔質金属焼結層としての役割を充分に果たすことができる。また、上記成分組成からなる多孔質金属焼結層は、それ自体が摺動特性に優れているので、該多孔質金属焼結層の孔隙及び表面に充填被覆された樹脂組成物からなる滑り層に摩耗を生じ、滑り層に該多孔質金属焼結層の一部が露出しても良好な摺動特性を維持することができる。   According to the present invention, the porous metal sintered layer integrally formed on the surface of the back plate made of a steel plate has Ni: 21-35% by mass, Sn: 3-12% by mass, P: 0.4-1. The porous metal sintered layer comprising 35% by mass and the balance Cu can suppress the progress of sulfidation corrosion in the use of a lubricating oil containing an extreme pressure additive. The porous metal sintered layer does not fall off due to the formation and the sliding layer does not peel off, and can sufficiently fulfill the role as the porous metal sintered layer. Further, since the porous metal sintered layer comprising the above component composition itself has excellent sliding properties, the sliding layer comprising the resin composition filled and coated on the pores and the surface of the porous metal sintered layer. Even if a part of the porous metal sintered layer is exposed to the sliding layer, good sliding characteristics can be maintained.

極圧添加剤を含む潤滑油中に浸漬直後の本発明の多孔質金属焼結層の表面を示す写真である。It is a photograph which shows the surface of the porous metal sintered layer of this invention immediately after being immersed in the lubricating oil containing an extreme pressure additive. 図1のA−A断面を示す写真である。It is a photograph which shows the AA cross section of FIG. 極圧添加剤を含む潤滑油中に100時間浸漬後の本発明の多孔質金属焼結層の表面を示す写真である。It is a photograph which shows the surface of the porous metal sintered layer of this invention after being immersed in the lubricating oil containing an extreme pressure additive for 100 hours. 図3のB−B断面を示す写真である。It is a photograph which shows the BB cross section of FIG. 硫黄、燐系の極圧剤を含む潤滑油中に浸漬直後の従来の青銅成分からなる多孔質金属焼結層の表面を示す写真である。It is a photograph which shows the surface of the porous metal sintered layer which consists of a conventional bronze component immediately after being immersed in the lubricating oil containing sulfur and a phosphorus type extreme pressure agent. 図5のC−C断面を示す写真である。It is a photograph which shows CC section of FIG. 極圧添加剤を含む潤滑油中に100時間浸漬後の従来の青銅成分からなる多孔質金属焼結層の表面を示す写真である。It is a photograph which shows the surface of the porous metal sintered layer which consists of the conventional bronze component after 100-hour immersion in the lubricating oil containing an extreme pressure additive. 図7のD−D断面を示す写真である。It is a photograph which shows the DD cross section of FIG. スラスト試験方法を説明するための斜視図である。It is a perspective view for demonstrating a thrust test method. 極圧添加剤を含む潤滑油中に浸漬直後の本発明の多孔質金属焼結層を含む複層摺動部材の滑り層の表面を示す写真である。It is a photograph which shows the surface of the sliding layer of the multilayer sliding member containing the porous metal sintered layer of this invention immediately after being immersed in the lubricating oil containing an extreme pressure additive. 図10のE−E断面を示す写真である。It is a photograph which shows the EE cross section of FIG. 極圧添加剤を含む潤滑油中に100時間浸漬後の本発明の多孔質金属焼結層を含む複層摺動部材の滑り層の表面を示す写真である。It is a photograph which shows the surface of the sliding layer of the multilayer sliding member containing the porous metal sintered layer of this invention after being immersed in the lubricating oil containing an extreme pressure additive for 100 hours. 極圧添加剤を含む潤滑油中に50時間浸漬後の実施例1の多孔質金属焼結層を含む複層摺動部材からなる巻きブッシュの内周面の状態を示す写真である。It is a photograph which shows the state of the internal peripheral surface of the winding bush which consists of a multilayer sliding member containing the porous metal sintered layer of Example 1 after 50-hour immersion in the lubricating oil containing an extreme pressure additive. 極圧添加剤を含む潤滑油中に100時間浸漬後の実施例1の多孔質金属焼結層を含む複層摺動部材からなる巻きブッシュの内周面の状態を示す写真である。It is a photograph which shows the state of the internal peripheral surface of the winding bush which consists of a multilayer sliding member containing the porous metal sintered layer of Example 1 after 100-hour immersion in the lubricating oil containing an extreme pressure additive. 極圧添加剤を含む潤滑油中に50時間浸漬後の実施例2の多孔質金属焼結層を含む複層摺動部材からなる巻きブッシュの内周面の状態を示す写真である。It is a photograph which shows the state of the internal peripheral surface of the winding bush which consists of a multilayer sliding member containing the porous metal sintered layer of Example 2 after 50-hour immersion in the lubricating oil containing an extreme pressure additive. 極圧添加剤を含む潤滑油中に100時間浸漬後の実施例2の多孔質金属焼結層を含む複層摺動部材からなる巻きブッシュの内周面の状態を示す写真である。It is a photograph which shows the state of the internal peripheral surface of the winding bush which consists of a multilayer sliding member containing the porous metal sintered layer of Example 2 after 100-hour immersion in the lubricating oil containing an extreme pressure additive. 極圧添加剤を含む潤滑油中に50時間浸漬後の比較例の多孔質金属焼結層を含む複層摺動部材からなる巻きブッシュの内周面の状態を示す写真である。It is a photograph which shows the state of the internal peripheral surface of the winding bush which consists of a multilayer sliding member containing the porous metal sintered layer of the comparative example after 50-hour immersion in the lubricating oil containing an extreme pressure additive. 極圧添加剤を含む潤滑油中に100時間浸漬後の比較例の多孔質金属焼結層を含む複層摺動部材からなる巻きブッシュの内周面の状態を示す写真である。It is a photograph which shows the state of the internal peripheral surface of the winding bush which consists of a multilayer sliding member containing the porous metal sintered layer of the comparative example after being immersed in the lubricating oil containing an extreme pressure additive for 100 hours.

次に、本発明を実施するための形態について詳細に説明する。尚、本発明はこれらの例に何等限定されない。   Next, the form for implementing this invention is demonstrated in detail. The present invention is not limited to these examples.

本発明の複層摺動部材は、鋼板からなる裏金と、該裏金の表面に一体的に形成された多孔質金属焼結層と、該多孔質金属焼結層の孔隙及び表面に充填被覆された合成樹脂組成物からなる滑り層とを具備した複層摺動部材であって、該多孔質金属焼結層は、Ni:21〜35質量%、Sn:3〜12質量%、P:0.4〜1.35質量%、残部Cuからなるものである。以下、本発明の複層摺動部材における多孔質金属焼結層の成分組成について説明する。   The multilayer sliding member of the present invention comprises a back plate made of a steel plate, a porous metal sintered layer integrally formed on the surface of the back metal, and a filling and coating on the pores and the surface of the porous metal sintered layer. And a sliding layer made of a synthetic resin composition comprising: Ni: 21-35% by mass, Sn: 3-12% by mass, P: 0 .4 to 1.35% by mass and the balance being Cu. Hereinafter, the component composition of the porous metal sintered layer in the multilayer sliding member of the present invention will be described.

Niは、主成分をなすCuに固溶して多孔質金属焼結層の耐摩耗性及び強度向上に寄与すると共に、硫化腐食の進行に対する抑制作用を発揮する。Niは焼結時に裏金(鋼板)表面に固溶してその表面を合金化し、多孔質金属焼結層の裏金への接合強度を増大させると共に、後述するPと液相を生じ、一部合金化してNi−P合金を形成し、Cuと親和性のよいNi−P合金が多孔質金属焼結層と裏金との接合界面に介在し、界面で上記Niの固溶による合金化と相俟って、多孔質金属焼結層を裏金に強固に接合一体化させる作用をなす。また、Niの配合量が21質量%未満では上記した効果が得られず、また35質量%を超えて配合すると、焼結性の低下を来たし、結果として多孔質金属焼結層の強度低下を招来する虞がある。従って、Niの配合量は21〜35質量%、好ましくは24〜28質量%である。   Ni is dissolved in Cu as a main component to contribute to the improvement of wear resistance and strength of the porous metal sintered layer, and also exhibits an inhibitory action against the progress of sulfide corrosion. Ni forms a solid solution on the surface of the back metal (steel plate) during sintering and alloyes the surface, increasing the bonding strength of the porous metal sintered layer to the back metal and generating a liquid phase with P, which will be described later. To form a Ni-P alloy, and a Ni-P alloy having a good affinity for Cu is present at the joining interface between the porous metal sintered layer and the back metal, and the alloying by solid solution of Ni at the interface Thus, the porous metal sintered layer is firmly joined and integrated with the back metal. Further, if the amount of Ni is less than 21% by mass, the above-described effect cannot be obtained. If the amount exceeds 35% by mass, the sinterability is lowered, resulting in a decrease in strength of the porous metal sintered layer. There is a risk of being invited. Therefore, the blending amount of Ni is 21 to 35% by mass, preferably 24 to 28% by mass.

Snは、主成分をなすCuと合金化してCu−Sn合金を形成し、焼結を促進して多孔質金属焼結層の強度及び耐摩耗性の向上に寄与すると共に、前記Niと同様、硫化腐食の進行に対する抑制作用を有する。Snの配合量が3質量%未満では上記した効果が充分に得られず、また12質量%を超えて配合すると、多孔質金属焼結層の孔隙を消失させ、該多孔質金属焼結層の孔隙に充填される合成樹脂組成物からなる滑り層の保持力、所謂アンカー効果を低下させる上に、硬いCu−Ni−Snの金属間化合物を生成して該多孔質金属焼結層の強度や靭性の低下を来たす虞がある。従って、Snの配合量は3〜12質量%、好ましくは8〜11質量%である。   Sn is alloyed with Cu as a main component to form a Cu-Sn alloy, promotes sintering and contributes to improvement of the strength and wear resistance of the porous metal sintered layer. Has an inhibitory effect on the progress of sulfidation corrosion. If the blending amount of Sn is less than 3% by mass, the above-described effects cannot be obtained sufficiently, and if blending exceeding 12% by mass, the pores of the porous metal sintered layer disappear, In addition to lowering the holding power of the sliding layer made of the synthetic resin composition filled in the pores, the so-called anchor effect, a hard Cu-Ni-Sn intermetallic compound is formed to increase the strength of the porous metal sintered layer. There is a risk of reduced toughness. Therefore, the compounding amount of Sn is 3 to 12% by mass, preferably 8 to 11% by mass.

Pは、主成分をなすCuと、また成分中のNiと液相を生じ、一部合金化して多孔質金属焼結層の地の強度を高めると共に、耐摩耗性の向上に寄与する。Pは還元力が強いため、裏金表面をその還元作用により清浄化し、前記Niの裏金表面への拡散による合金化を助長する効果がある。尚、Ni−P合金の効果については前記したとおりである。Pの配合量が0.4質量%未満では上記した効果が充分に得られず、また1.35質量%を超えて配合すると、液相の発生量が多くなり、多孔質金属焼結層の孔隙を消失させ、該多孔質金属焼結層の孔隙に充填される合成樹脂組成物からなる滑り層のアンカー効果を低下させる虞がある。従って、Pの配合量は0.4〜1.35質量%、好ましくは0.5〜1.1質量%である。   P forms a liquid phase with Cu as the main component and Ni in the component, and is partly alloyed to increase the strength of the ground of the porous metal sintered layer and contribute to the improvement of wear resistance. Since P has a strong reducing power, it has an effect of cleaning the back metal surface by its reducing action and promoting alloying by diffusion of Ni to the back metal surface. The effect of the Ni-P alloy is as described above. If the amount of P is less than 0.4% by mass, the above effects cannot be obtained sufficiently. If the amount exceeds 1.35% by mass, the amount of liquid phase generated increases, and the porous metal sintered layer There is a possibility that the pores disappear and the anchor effect of the sliding layer made of the synthetic resin composition filled in the pores of the porous metal sintered layer is lowered. Accordingly, the amount of P is 0.4 to 1.35% by mass, preferably 0.5 to 1.1% by mass.

上記したSnは、主成分をなすCuに対し単体粉末の形態で配合されるが、Niは、通常Cu−Niの合金粉末、例えばCu−30質量%Ni又はCu−40質量%Niのアトマイズ合金粉末の形態で配合されるが、単体粉末の形態で配合してもよく、また、Pは通常Cu−Pの合金粉末、例えばCu−15質量%Pの搗砕合金粉末の形態で配合される。また、Cu、Ni、Sn、Pからなる成分が予め所望の配合比となるように調整して製造したCu−Ni−Sn−Pのアトマイズ合金粉末も使用することができる。そして、これら粉末は、200メッシュ(75μm)アンダーの粉末を使用することが好適である。   The above-mentioned Sn is blended in the form of a single powder with respect to Cu as the main component, but Ni is usually an alloy powder of Cu—Ni, for example, an atomized alloy of Cu-30 mass% Ni or Cu-40 mass% Ni. Although it mix | blends with the form of a powder, you may mix | blend with the form of a single-piece | unit powder, and P is normally mix | blended with the form of the alloy powder of Cu-P, for example, the crushing alloy powder of Cu-15 mass% P. . Moreover, the atomized alloy powder of Cu-Ni-Sn-P manufactured by adjusting the components composed of Cu, Ni, Sn, and P in advance so as to have a desired blending ratio can also be used. These powders are preferably 200 mesh (75 μm) under powder.

ここで、本発明の複層摺動部材における鋼板からなる裏金の表面に一体的に形成した多孔質金属焼結層を備えた複層板の製造方法の一例について説明する。   Here, an example of the manufacturing method of the multilayer board provided with the porous metal sintered layer integrally formed in the surface of the back metal plate which consists of a steel plate in the multilayer sliding member of this invention is demonstrated.

<複層板の製造方法>
裏金として、コイル状に巻いてフープ材として提供される厚さ0.3〜1.5mmの一般構造用圧延鋼板(JISG3101)を好適に使用できるが、必ずしも連続条片に限らず、適当な長さに切断した条片を使用することもできる。また裏金として、上記鋼板にCuメッキ(カッパータイト)又はNiメッキ(Niトップ)を施した鋼板を使用してもよい。
<Manufacturing method of multilayer board>
As the backing metal, a rolled steel sheet for general structure (JISG3101) having a thickness of 0.3 to 1.5 mm provided as a hoop material wound in a coil shape can be suitably used, but is not necessarily limited to a continuous strip and has an appropriate length. A strip that has been cut can also be used. Moreover, you may use the steel plate which gave Cu plating (copper tight) or Ni plating (Ni top) to the said steel plate as a back metal.

200メッシュアンダーのCu−30質量%Ni又はCu−40質量%Niのアトマイズ合金粉末と、350メッシュ(42μm)アンダーのSnアトマイズ粉末と、200メッシュアンダーのCu−15質量%Pの搗砕合金粉末とを準備し、これらの粉末を配合割合がNi:21〜35質量%、Sn:3〜12質量%、P:0.4〜1.35質量%、残部Cuとなるように調整後V型ミキサーに投入し、20〜60分間混合して混合粉末を作製する。この混合粉末を前記鋼板の一方の表面に一様な厚さに散布し、これを還元性雰囲気に調整された加熱炉内で870〜970℃の温度で20〜60分間焼結し、該鋼板の表面にNi:21〜35質量%、Sn:3〜12質量%、P:0.4〜1.35質量%、残部Cuからなる多孔質金属焼結層を一体的に接合した複層板を作製する。   200 mesh under Cu-30 mass% Ni or Cu-40 mass% Ni atomized alloy powder, 350 mesh (42 μm) under Sn atomized powder, 200 mesh under Cu-15 mass% P ground alloy powder These powders were adjusted to have a blending ratio of Ni: 21 to 35% by mass, Sn: 3 to 12% by mass, P: 0.4 to 1.35% by mass, and the balance Cu. It puts into a mixer and mixes for 20 to 60 minutes to produce a mixed powder. This mixed powder is spread on one surface of the steel plate to a uniform thickness, and this is sintered in a heating furnace adjusted to a reducing atmosphere at a temperature of 870 to 970 ° C. for 20 to 60 minutes. A multilayer plate in which a porous metal sintered layer comprising Ni: 21 to 35% by mass, Sn: 3 to 12% by mass, P: 0.4 to 1.35% by mass, and the balance Cu is integrally bonded to the surface of Is made.

上記焼結工程において、232℃の温度からSnの液相が生成し、更に875℃付近の温度からNi−P合金(Ni3P)を主体とする液相が生成して焼結が進行する。この複層板の製造において、裏金としてCuメッキ鋼板又はNiメッキ鋼板を使用することにより、Ni及びPの作用により裏金との強固な接合一体化を行わせることができる。裏金に一体的に接合されたNi:21〜35質量%、Sn:3〜12質量%、P:0.4〜1.35質量%、残部Cuからなる多孔質金属焼結層の厚さは、概ね0.10〜0.40mm、就中0.2〜0.3mmであることが好ましく、多孔度は、概ね10容積%以上、就中15〜40容積%であることが推奨される。 In the sintering step, a Sn liquid phase is generated from a temperature of 232 ° C., and a liquid phase mainly composed of a Ni—P alloy (Ni 3 P) is generated from a temperature near 875 ° C., and sintering proceeds. . In the production of this multilayer board, by using a Cu-plated steel plate or a Ni-plated steel plate as the back metal, it is possible to cause strong joining and integration with the back metal by the action of Ni and P. The thickness of the porous metal sintered layer composed of Ni: 21 to 35% by mass, Sn: 3 to 12% by mass, P: 0.4 to 1.35% by mass, and remaining Cu integrally bonded to the back metal is It is recommended that the porosity is approximately 0.10 to 0.40 mm, especially 0.2 to 0.3 mm, and the porosity is approximately 10% by volume or more, especially 15 to 40% by volume.

上記した複層板の多孔質金属焼結層の孔隙及び表面に充填被覆される合成樹脂組成物としては、フルオロカーボン重合体(ポリテトラフルオロエチレン樹脂等)、ポリアセタール樹脂、ポリアミド樹脂、ポリフェニレンサルファイド樹脂、ポリエーテルエーテルケトン樹脂、ポリアミドイミド樹脂から選択される少なくとも一つの合成樹脂を含有し、耐摩耗性向上剤としてポリイミド樹脂、焼成フェノール樹脂、ポリフェニレンスルホン樹脂及びオキシベンゾイルポリエステル樹脂から選択される少なくとも一つの有機材料、その他リン酸塩、硫酸バリウム、固体潤滑剤から選択される少なくとも一つの無機材料を含んでいてもよい。   As the synthetic resin composition filled and coated on the pores and the surface of the porous metal sintered layer of the multilayer board described above, fluorocarbon polymer (polytetrafluoroethylene resin etc.), polyacetal resin, polyamide resin, polyphenylene sulfide resin, At least one synthetic resin selected from polyetheretherketone resin and polyamideimide resin, and at least one selected from polyimide resin, calcined phenol resin, polyphenylenesulfone resin and oxybenzoyl polyester resin as an abrasion resistance improver It may contain at least one inorganic material selected from organic materials, other phosphates, barium sulfate, and solid lubricants.

この合成樹脂組成物の具体例としては、前記特許文献3に開示されている硫酸バリウム5〜40質量%、リン酸塩1〜30質量%、ポリイミド樹脂、焼成フェノール樹脂及びポリフェニレンスルホン樹脂から選択される1種又は2種以上の有機材料1〜10質量%、残部ポリテトラフルオロエチレン樹脂からなる合成樹脂組成物、又は前記特許文献4に開示されているオキシベンゾイルポリエステル樹脂1〜25体積%、リン酸塩1〜15体積%、硫酸バリウム1〜20体積%、残部ポリテトラフルオロエチレン樹脂からなる合成樹脂組成物、更には前記特許文献5に開示されている飽和脂肪酸と多価アルコールとから誘導される多価アルコール脂肪酸エステル0.5〜5重量%と、ホホバ油0.5〜3重量%と、残部ポリアセタール樹脂とからなる合成樹脂組成物等を例示することができる。   Specific examples of this synthetic resin composition are selected from barium sulfate 5 to 40% by mass, phosphate 1 to 30% by mass, polyimide resin, calcined phenol resin and polyphenylenesulfone resin disclosed in Patent Document 3. 1 to 10% by mass of one or more organic materials, a synthetic resin composition composed of the remaining polytetrafluoroethylene resin, or 1 to 25% by volume of oxybenzoyl polyester resin disclosed in Patent Document 4 above, phosphorus It is derived from a synthetic resin composition comprising 1 to 15% by volume of an acid salt, 1 to 20% by volume of barium sulfate, and the remainder polytetrafluoroethylene resin, and further from a saturated fatty acid and polyhydric alcohol disclosed in Patent Document Polyhydric alcohol fatty acid ester 0.5 to 5% by weight, jojoba oil 0.5 to 3% by weight, and the remainder polyacetal resin It can be exemplified Ranaru synthetic resin composition or the like.

ここで、合成樹脂組成物として、前記特許文献3に開示されている合成樹脂組成物を使用し、該合成樹脂組成物を前記複層板の多孔質金属焼結層の孔隙及び表面に充填被覆して形成される複層摺動部材の製造方法の一例について説明する。   Here, the synthetic resin composition disclosed in Patent Document 3 is used as the synthetic resin composition, and the synthetic resin composition is filled and coated on the pores and the surface of the porous metal sintered layer of the multilayer board. An example of a method for manufacturing the multilayer sliding member formed as described above will be described.

<複層摺動部材の製造方法>
ポリテトラフルオロエチレン樹脂に対し、硫酸バリウム5〜40質量%、リン酸塩1〜30質量%、ポリイミド樹脂、焼成フェノール樹脂及びポリフェニレンスルホン樹脂から選択される1種又は2種以上の有機材料1〜10質量%、残部ポリテトラフルオロエチレン樹脂を配合し、ヘンシェルミキサー内に供給して撹拌混合して混合物を作製する。該混合物100重量部に対し石油系溶剤を15〜30重量部配合し、ポリテトラフルオロエチレン樹脂の室温転移点以下の温度(15℃)で混合して合成樹脂組成物を作製する。この合成樹脂組成物を鋼板からなる裏金上に一体的に接合された多孔質金属焼結層上に散布供給し、合成樹脂組成物の厚さが所定の厚さになるようにローラで圧延して多孔質金属焼結層の孔隙及び表面に合成樹脂組成物を充填被覆した複層部材を作製する。該複層部材を200〜250℃の温度に加熱した熱風乾燥炉中に数分間保持して溶剤を除去した後、乾燥した合成樹脂組成物を所定の厚さになるように300〜600kgf/cm2の加圧下で加圧ローラ処理する。複層部材を加熱炉に導入して360〜380℃の温度で数分乃至10数分間加熱して焼成を行なった後、炉から取り出し、再度ローラ処理によって寸法のばらつきを調整し、所望の複層摺動部材とする。
<Manufacturing method of multilayer sliding member>
1 to 2 or more organic materials selected from 5 to 40% by mass of barium sulfate, 1 to 30% by mass of phosphate, polyimide resin, calcined phenol resin and polyphenylene sulfone resin with respect to polytetrafluoroethylene resin 10% by mass and the remainder polytetrafluoroethylene resin are blended and fed into a Henschel mixer and mixed by stirring to prepare a mixture. 15-30 parts by weight of a petroleum solvent is blended with 100 parts by weight of the mixture and mixed at a temperature (15 ° C.) below the room temperature transition point of the polytetrafluoroethylene resin to produce a synthetic resin composition. This synthetic resin composition is sprayed and supplied onto a porous metal sintered layer integrally joined onto a back plate made of a steel plate, and rolled with a roller so that the thickness of the synthetic resin composition becomes a predetermined thickness. Thus, a multi-layer member in which the pores and the surface of the porous metal sintered layer are filled and coated with the synthetic resin composition is prepared. The multilayer member is held in a hot air drying furnace heated to a temperature of 200 to 250 ° C. for several minutes to remove the solvent, and then the dried synthetic resin composition is 300 to 600 kgf / cm so as to have a predetermined thickness. Treat with pressure roller under pressure of 2 . The multilayer member is introduced into a heating furnace, heated at a temperature of 360 to 380 ° C. for several minutes to several tens of minutes for firing, and then taken out from the furnace and adjusted for dimensional variations by roller treatment again to obtain a desired composite material. A layer sliding member is used.

上記複層摺動部材において、多孔質金属焼結層の厚さは0.10〜0.40mm、合成樹脂組成物から形成された被覆層(滑り層)の厚さは0.02〜0.15mmとされる。このようにして得られた複層摺動部材は、適宜の寸法に切断されて平板状態で滑り板として使用されたり、また丸曲げされて円筒状の巻きブッシュとして使用される。   In the multilayer sliding member, the thickness of the porous metal sintered layer is 0.10 to 0.40 mm, and the thickness of the coating layer (sliding layer) formed from the synthetic resin composition is 0.02 to 0.00. 15 mm. The multilayer sliding member obtained in this way is cut into an appropriate size and used as a sliding plate in a flat plate state, or rounded and used as a cylindrical wound bush.

図1は、鋼板からなる裏金の表面にNiメッキ層を介して本発明のNi:25.5質量%、Sn:10.1質量%、P:0.76質量%、残部Cu:63.54質量%からなる厚さ0.25mmの多孔質金属焼結層を接合した複層板を、極圧添加剤を含む潤滑油(ギヤオイル:新日本石油株式会社製「エネオスツーリングGL−5 75W90」(商品名))中に浸漬した直後の該複層板の多孔質金属焼結層の表面を示す写真であり、図2は、図1(複層板)のA−A断面を示す写真である。   FIG. 1 shows that Ni: 25.5% by mass, Sn: 10.1% by mass, P: 0.76% by mass, balance Cu: 63.54 of the present invention through a Ni plating layer on the surface of a back metal plate made of a steel plate. A multilayer plate in which a porous metal sintered layer having a thickness of 0.25 mm composed of mass% is bonded to a lubricating oil containing an extreme pressure additive (gear oil: “Eneos Touring GL-5 75W90” manufactured by Nippon Oil Corporation) ( Product name)) is a photograph showing the surface of the porous metal sintered layer of the multilayer plate immediately after being immersed in it, and FIG. 2 is a photograph showing an AA cross section of FIG. 1 (multilayer plate). .

図3は、前記複層板を極圧添加剤を含む潤滑油中に100時間浸漬した後の多孔質金属焼結層の表面を示す写真であり、図4は、図3のB−B断面を示す写真である。   FIG. 3 is a photograph showing the surface of the sintered porous metal layer after the multilayer plate is immersed in a lubricating oil containing an extreme pressure additive for 100 hours, and FIG. 4 is a cross-sectional view taken along line BB in FIG. It is a photograph which shows.

一方、図5は、鋼板からなる裏金の表面に従来のCu:90質量%とSn:10質量%の青銅合金からなる厚さ0.25mmの多孔質金属焼結層を備えた複層板を、前記と同様の極圧添加剤中に浸漬した直後の該複層板の多孔質金属焼結層の表面を示す写真であり、図6は、図5(複層板)のC−C断面を示す写真である。   On the other hand, FIG. 5 shows a multilayer plate having a porous metal sintered layer having a thickness of 0.25 mm made of a conventional bronze alloy of Cu: 90% by mass and Sn: 10% by mass on the surface of a back metal made of a steel plate. FIG. 6 is a photograph showing the surface of the porous metal sintered layer of the multilayer board immediately after being immersed in the same extreme pressure additive as described above, and FIG. 6 is a cross-sectional view taken along the line CC in FIG. 5 (multilayer board). It is a photograph which shows.

図7は、前記従来の複層板を極圧添加剤を含む潤滑油中に100時間浸漬した後の多孔質金属焼結層の表面を示す写真であり、図8は、図7のD−D断面を示す写真である。   FIG. 7 is a photograph showing the surface of the porous metal sintered layer after the conventional multilayer plate is immersed in a lubricating oil containing an extreme pressure additive for 100 hours, and FIG. It is a photograph which shows D section.

本発明の複層板における多孔質金属焼結層を示す図1乃至図4と、従来の複層板における多孔質金属焼結層を示す図5乃至図8とを比較すると、図3及び図4と、図7及び図8に示す極圧添加剤を含む潤滑油中に100時間浸漬した後の多孔質金属焼結層の表面及び断面写真から分かるように、本発明の複層摺動部材における多孔質金属焼結層は、その表面には硫化腐食による硫化物(CuS等)が生成しているが、該焼結層の中への該硫化腐食の進行を抑制しているのに対し、従来の複層板における多孔質金属焼結層は、その表面から該多孔質金属焼結層の中まで硫化腐食が進行しており、本発明の複層板における多孔質金属焼結層は、耐硫化腐食性に優れているといえる。   1 to 4 showing the porous metal sintered layer in the multilayer plate of the present invention and FIGS. 5 to 8 showing the porous metal sintered layer in the conventional multilayer plate, FIG. 3 and FIG. 4 and the surface of the porous metal sintered layer after being immersed in the lubricating oil containing the extreme pressure additive shown in FIGS. In the porous metal sintered layer in FIG. 1, sulfide (CuS or the like) due to sulfidation corrosion is generated on the surface, but the progress of the sulfidation corrosion into the sintered layer is suppressed. The porous metal sintered layer in the conventional multilayer plate undergoes sulfidation corrosion from the surface to the porous metal sintered layer, and the porous metal sintered layer in the multilayer plate of the present invention is It can be said that it is excellent in sulfidation corrosion resistance.

次に、耐硫化腐食性に優れている上記多孔質金属焼結層の孔隙及び表面に合成樹脂組成物を充填被覆して該多孔質金属焼結層上に該合成樹脂組成物の滑り層を備えた複層摺動部材の摩擦摩耗特性及び耐硫化腐食性について説明する。   Next, the synthetic resin composition is filled and coated on the pores and the surface of the porous metal sintered layer having excellent resistance to sulfidation corrosion, and the synthetic resin composition sliding layer is formed on the porous metal sintered layer. The friction and wear characteristics and the sulfidation corrosion resistance of the multilayer sliding member provided will be described.

<摩擦摩耗特性>
摩擦摩耗特性に供される多孔質金属焼結層は、表1に示す通りである。
<Friction and wear characteristics>
The porous metal sintered layer used for the friction and wear characteristics is as shown in Table 1.

表1に記載の本発明の多孔質金属焼結層を用いた試料No1、試料No3及び従来の多孔質金属焼結層を用いた試料No5は、厚さ0.7mmの鋼板からなる裏金の表面にCuメッキ層を介して各々の多孔質金属焼結層を0.2mmの厚さに一体的に接合した複層板を使用し、また、本発明の多孔質金属焼結層を用いた試料No2と試料No4は、厚さ0.7mmの鋼板からなる裏金の表面にNiメッキ層を介して多孔質金属焼結層を0.2mmの厚さに一体的に接合した複層板を使用した。   Sample No. 1, Sample No. 3 using the porous metal sintered layer of the present invention described in Table 1 and Sample No. 5 using the conventional porous metal sintered layer are the surfaces of the back metal made of a steel plate having a thickness of 0.7 mm. A multilayer plate in which each porous metal sintered layer is integrally bonded to a thickness of 0.2 mm through a Cu plating layer, and a sample using the porous metal sintered layer of the present invention. For No2 and Sample No4, a multilayer plate in which a porous metal sintered layer was integrally joined to a thickness of 0.2 mm via a Ni plating layer on the surface of a backing metal made of a steel plate having a thickness of 0.7 mm was used. .

上記複層板の多孔質金属焼結層の孔隙及び表面に充填被覆して形成される合成樹脂組成物としては、硫酸バリウム15重量%、リン酸塩としてピロリン酸カルシウム10重量%、熱硬化性ポリイミド樹脂2重量%、黒鉛0.5重量%、残部ポリテトラフルオロエチレン樹脂からなる合成樹脂組成物を使用し、前記複層板の多孔質金属焼結層の上に厚さ0.1mmの該合成樹脂組成物からなる滑り層を備えた複層摺動部材を作成し、一辺の長さが30mmの方形状に切断し、これを試験片として使用した。   The synthetic resin composition formed by filling and covering the pores and the surface of the porous metal sintered layer of the multilayer board includes 15% by weight of barium sulfate, 10% by weight of calcium pyrophosphate as a phosphate, and thermosetting polyimide. A synthetic resin composition comprising 2% by weight of resin, 0.5% by weight of graphite, and the balance polytetrafluoroethylene resin is used, and the composite having a thickness of 0.1 mm is formed on the porous metal sintered layer of the multilayer board. A multilayer sliding member having a sliding layer made of a resin composition was prepared and cut into a square shape having a side length of 30 mm, which was used as a test piece.

<スラスト試験1>
以下に記載の条件下で摩擦摩耗特性試験を実施し、摩擦係数及び摩耗量を測定した。摩擦係数については、試験を開始してから1時間経過後から試験終了までの安定時の摩擦係数を示し、また、摩耗量については、試験時間8時間後の摺動面(滑り層)の寸法変化量で示した。
<Thrust test 1>
A friction and wear characteristic test was performed under the conditions described below, and the friction coefficient and the wear amount were measured. The coefficient of friction indicates the coefficient of friction at the time of stability from 1 hour after the start of the test to the end of the test, and the amount of wear is the dimension of the sliding surface (sliding layer) after 8 hours of the test. The amount of change is shown.

滑り速度 20m/min
面圧 20kgf/cm2
試験時間 8時間
相手材 機械構造用炭素鋼(S45C)
潤滑 無潤滑
試験方法 図9に示すように、板状軸受試験片(複層摺動部材)1を固定しておき、相手材となる円筒体2を板状軸受試験片1の上から(矢印A方向から)その表面3に所定の荷重を負荷しながら、円筒体2を矢印B方向に回転させ、板状軸受試験片1と円筒体2との間の摩擦係数及び8時間後の板状軸受試験片1の摺動面の摩耗量を測定した。
Sliding speed 20m / min
Surface pressure 20kgf / cm 2
Test time 8 hours Mating material Carbon steel for machine structure (S45C)
Lubrication Non-lubrication test method As shown in FIG. 9, a plate-shaped bearing test piece (multi-layer sliding member) 1 is fixed, and a cylindrical body 2 as a mating member is placed on the plate-shaped bearing test piece 1 (arrow The cylindrical body 2 is rotated in the direction of arrow B while a predetermined load is applied to the surface 3 thereof (from the direction A), and the friction coefficient between the plate bearing test piece 1 and the cylindrical body 2 and the plate shape after 8 hours. The amount of wear on the sliding surface of the bearing test piece 1 was measured.

<スラスト試験2>
以下に記載の条件下で摩擦係数及び摩耗量を測定した。摩擦係数については、試験を開始してから1時間経過後から試験終了までの安定時の摩擦係数を示し、また、摩耗量については、試験時間8時間後の摺動面(滑り層)の寸法変化量で示した。
<Thrust test 2>
The coefficient of friction and the amount of wear were measured under the conditions described below. The coefficient of friction indicates the coefficient of friction at the time of stability from 1 hour after the start of the test to the end of the test, and the amount of wear is the dimension of the sliding surface (sliding layer) after 8 hours of the test. The amount of change is shown.

滑り速度 10m/min
面圧 100kgf/cm2
試験時間 8時間
相手材 機械構造用炭素鋼(S45C)
潤滑 無潤滑
試験方法 前記試験方法と同じ
Sliding speed 10m / min
Surface pressure 100kgf / cm 2
Test time 8 hours Mating material Carbon steel for machine structure (S45C)
Lubrication Non-lubrication Test method Same as above test method

上記試験結果を表2に示す。
The test results are shown in Table 2.

上記のスラスト試験1及び2の試験は、スラスト試験1は比較的高速低荷重領域を、スラスト試験2は比較的低速高荷重領域を評価したものであり、本試験結果から、本発明の複層摺動部材における多孔質金属焼結層である試料No1乃至試料No4は、従来のCu:90質量%とSn:10質量%の多孔質金属焼結層である試料No5と摩擦係数及び摩耗量とも略々同等の性能を示した。このことは、耐硫化腐食性に優れた多孔質金属焼結層を備えた本発明の複層摺動部材は、摩擦摩耗特性において従来技術と同等であることを示している。   In the above thrust tests 1 and 2, the thrust test 1 was evaluated for a relatively high speed and low load region, and the thrust test 2 was evaluated for a relatively low speed and high load region. Samples No. 1 to No. 4, which are porous metal sintered layers in the sliding member, have the same friction coefficient and wear amount as sample No. 5 which is a conventional porous metal sintered layer of Cu: 90% by mass and Sn: 10% by mass. The performance was almost equivalent. This indicates that the multilayer sliding member of the present invention provided with a porous metal sintered layer having excellent resistance to sulfidation corrosion is equivalent to the prior art in friction and wear characteristics.

次に、上記試料No2の複層摺動部材を極圧添加剤を含む潤滑油中に浸漬し、当該複層摺動部材の滑り層の変化を調べた。極圧添加剤を含む潤滑油は、前記と同様のギヤオイル(新日本石油株式会社製「エネオスツーリングGL−5 75W90」(商品名))を使用した。その結果を図10乃至図12に示す。   Next, the multilayer sliding member of sample No. 2 was immersed in a lubricating oil containing an extreme pressure additive, and the change of the sliding layer of the multilayer sliding member was examined. As the lubricating oil containing the extreme pressure additive, the same gear oil (“ENEO STOOLING GL-5 75W90” (trade name) manufactured by Nippon Oil Corporation) was used. The results are shown in FIGS.

図10は、本発明の複層摺動部材を極圧添加剤を含むギヤオイル中に浸漬した直後の合成樹脂組成物からなる滑り層の表面を示す写真であり、図11は、図10のE−E断面を示す写真であり、図12は、同複層摺動部材を極圧添加剤を含むギヤオイル中に100時間浸漬した後の合成樹脂組成物からなる滑り層の表面を示す写真である。これらの図から分かるように、本発明の複層摺動部材における滑り層は、極圧添加剤を含むギヤオイル中に100時間浸漬した後に、該滑り層の表面に硫化腐食による硫化物(CuS等)がまだら状に生成されていることが認められるが、その量は少なく、滑り層としての機能は充分維持している。   FIG. 10 is a photograph showing the surface of a sliding layer made of a synthetic resin composition immediately after immersing the multilayer sliding member of the present invention in gear oil containing an extreme pressure additive, and FIG. FIG. 12 is a photograph showing a cross section of -E, and FIG. 12 is a photograph showing a surface of a sliding layer made of a synthetic resin composition after the multilayer sliding member is immersed in gear oil containing an extreme pressure additive for 100 hours. . As can be seen from these drawings, the sliding layer in the multi-layer sliding member of the present invention is immersed in gear oil containing an extreme pressure additive for 100 hours, and then sulfide (CuS or the like) caused by sulfidation corrosion is formed on the surface of the sliding layer. ) Is observed to be mottled, but the amount is small and the function as a sliding layer is sufficiently maintained.

以上のように、本発明の複層摺動部材は、従来の青銅粉末(Cu:90質量%とSn:10質量%)からなる多孔質金属焼結層を備えた複層摺動部材に対し、摩擦摩耗特性は略々同等の性能を示すと共に耐硫化腐食性に優れており、極圧添加剤を含む潤滑油での使用においても摺動部材としての機能を充分に発揮するものである。   As described above, the multilayer sliding member of the present invention is compared with the multilayer sliding member including the porous metal sintered layer made of the conventional bronze powder (Cu: 90 mass% and Sn: 10 mass%). In addition, the friction and wear characteristics exhibit substantially the same performance and are excellent in resistance to sulfidation corrosion, and even when used in a lubricating oil containing an extreme pressure additive, the function as a sliding member is sufficiently exhibited.

以下、本発明を実施例により詳細に説明するが、本発明は、その要旨を超えない限り、以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited to a following example, unless the summary is exceeded.

前記した試料No2と同様の複層摺動部材、すなわちCuメッキを施した厚さ0.7mmの鋼板の表面に、Ni:25.5質量%、Sn:10.1質量%、P:0.76質量%、残部Cu:63.54質量%からなる厚さ0.2mmの多孔質金属焼結層が一体的に形成されており、該多孔質金属焼結層の上に、硫酸バリウム15重量%、リン酸塩としてピロリン酸カルシウム10重量%、熱硬化性ポリイミド樹脂2重量%、黒鉛0.5重量%、残部ポリテトラフルオロエチレン樹脂からなる厚さ0.1mmの合成樹脂組成物の滑り層が形成された複層摺動部材を使用した。この複層摺動部材を、滑り層を内側にして捲回し、内径16mm、外径18mm、長さ10mmの円筒状摺動部材、所謂巻きブッシュを作製した。   Ni: 25.5 mass%, Sn: 10.1 mass%, P: 0.00 on the surface of a multilayer sliding member similar to the above-described sample No. 2, that is, a 0.7 mm thick steel plate plated with Cu. A 0.2 mm thick porous metal sintered layer comprising 76% by mass and the balance Cu: 63.54% by mass is integrally formed. On the porous metal sintered layer, barium sulfate 15 wt. A synthetic resin composition having a thickness of 0.1 mm, comprising 10% by weight of calcium pyrophosphate as a phosphate, 2% by weight of a thermosetting polyimide resin, 0.5% by weight of graphite, and the remainder polytetrafluoroethylene resin. The formed multilayer sliding member was used. This multi-layer sliding member was wound with the sliding layer on the inside to produce a cylindrical sliding member having an inner diameter of 16 mm, an outer diameter of 18 mm, and a length of 10 mm, a so-called wound bush.

前記した試料No3と同様の複層摺動部材、すなわちNiメッキを施した厚さ0.7mmの鋼板の表面に、Ni:24.9質量%、Sn:10.0質量%、P:1.05質量%、残部Cu:64.05質量%からなる厚さ0.2mmの多孔質金属焼結層が一体的に形成されており、該多孔質金属焼結層の上に、硫酸バリウム15重量%、リン酸塩としてピロリン酸カルシウム10重量%、熱硬化性ポリイミド樹脂2重量%、黒鉛0.5重量%、残部ポリテトラフルオロエチレン樹脂からなる厚さ0.1mmの合成樹脂組成物の滑り層が形成された複層摺動部材を使用した。この複層摺動部材を、滑り層を内側にして捲回し、内径16mm、外径18mm、長さ10mmの円筒状摺動部材、所謂巻きブッシュを作製した。   Ni: 24.9% by mass, Sn: 10.0% by mass, P: 1. A porous metal sintered layer having a thickness of 0.2 mm consisting of 05% by mass and the balance Cu: 64.05% by mass is integrally formed, and barium sulfate 15% by weight is formed on the porous metal sintered layer. A synthetic resin composition having a thickness of 0.1 mm, comprising 10% by weight of calcium pyrophosphate as a phosphate, 2% by weight of a thermosetting polyimide resin, 0.5% by weight of graphite, and the remainder polytetrafluoroethylene resin. The formed multilayer sliding member was used. This multi-layer sliding member was wound with the sliding layer on the inside to produce a cylindrical sliding member having an inner diameter of 16 mm, an outer diameter of 18 mm, and a length of 10 mm, a so-called wound bush.

比較例Comparative example

前記した試料No5と同様の複層摺動部材、すなわちCuメッキを施した厚さ0.7mmの鋼板の表面に、Sn:10質量%、残部Cu:90質量%からなる厚さ0.2mmの多孔質金属焼結層が一体的に形成されており、該多孔質金属焼結層の上に、硫酸バリウム15重量%、リン酸塩としてピロリン酸カルシウム10重量%、熱硬化性ポリイミド樹脂2重量%、黒鉛0.5重量%、残部ポリテトラフルオロエチレン樹脂からなる厚さ0.1mmの合成樹脂組成物の滑り層が形成された複層摺動部材を使用した。この複層摺動部材を、滑り層を内側にして捲回し、内径16mm、外径18mm、長さ10mmの円筒状摺動部材、所謂巻きブッシュを作製した。   On the surface of a multilayer sliding member similar to Sample No. 5 described above, ie, a 0.7 mm thick steel plate plated with Cu, a thickness of 0.2 mm comprising Sn: 10% by mass and the balance Cu: 90% by mass A porous metal sintered layer is integrally formed. On the porous metal sintered layer, barium sulfate is 15% by weight, calcium pyrophosphate is 10% by weight, and thermosetting polyimide resin is 2% by weight. A multilayer sliding member on which a sliding layer made of a synthetic resin composition having a thickness of 0.1 mm and made of 0.5% by weight of graphite and the remaining polytetrafluoroethylene resin was used. This multi-layer sliding member was wound with the sliding layer on the inside to produce a cylindrical sliding member having an inner diameter of 16 mm, an outer diameter of 18 mm, and a length of 10 mm, a so-called wound bush.

上記した複層摺動部材からなる巻きブッシュについて、該巻きブッシュを複数個準備し、該巻きブッシュをハウジングに圧入固定すると共に、該巻きブッシュの内周面に相手軸を挿入した試料を作製し、これらを極圧添加剤を含有したギヤオイル中に浸漬し、一定期間経過後の巻きブッシュの性状を評価するという試験を行った。   For the wound bush composed of the multilayer sliding member described above, prepare a plurality of the wound bushes, press-fit the wound bushes into the housing, and insert a mating shaft on the inner peripheral surface of the wound bushes. These were immersed in gear oil containing an extreme pressure additive, and a test was conducted to evaluate the properties of the wound bush after a certain period of time.

<試験方法>
巻きブッシュ寸法 内径16mm、外径18mm、長さ10mm
アルミニウム製ハウジング 孔寸法 φ18+0.018/0mm
相手軸 SCM420 外径寸法 φ16−0.025/−0.043mm
クリアランス 0.025〜0.111mm
ギヤオイル(新日本石油株式会社製「エネオスツーリングGL−5 75W90」(商品名))
ギヤオイルの温度 150℃
浸漬時間 50時間、100時間、150時間、250時間
試験方法 巻きブッシュをハウジングの孔内に圧入固定し、該孔内に固定された巻きブッシュの内周面に相手軸を挿入し、この状態でギヤオイル中に浸漬し、一定時間経過後の巻きブッシュの内周面(摺動面)の外観と巻きブッシュの内径寸法を測定した。尚、試験においては、浸漬時間毎に複数個の試料をギヤオイル中に浸漬し、各浸漬時間経過後、そのうちの1個の試料を取り出し、この試料の巻きブッシュの内周面の外観と、巻きブッシュの内径寸法を測定する方法を採用した。
<Test method>
Winding bush dimensions Inner diameter 16mm, outer diameter 18mm, length 10mm
Aluminum housing hole size φ18 + 0.018 / 0mm
Mating shaft SCM420 Outer diameter φ16-0.025 / -0.043mm
Clearance 0.025 to 0.111mm
Gear oil ("Eneos Touring GL-5 75W90" (trade name) manufactured by Nippon Oil Corporation)
Gear oil temperature 150 ℃
Immersion time 50 hours, 100 hours, 150 hours, 250 hours Test method The winding bush is press-fitted and fixed in the hole of the housing, and the mating shaft is inserted into the inner peripheral surface of the winding bush fixed in the hole. After immersing in gear oil, the appearance of the inner peripheral surface (sliding surface) of the wound bush and the inner diameter of the wound bush after a certain period of time were measured. In the test, a plurality of samples are immersed in gear oil at every immersion time, and after each immersion time, one of the samples is taken out and the appearance of the inner peripheral surface of the winding bush of this sample and the winding A method of measuring the inner diameter of the bush was adopted.

図13乃至図18は、ギヤオイル中への浸漬後の巻きブッシュの内周面の外観を示す写真である。尚、後述の通り、比較例の150時間で相手軸が巻きブッシュの内周面から抜き取れない状態であったため、50時間、100時間の状態の外観を示す。図13は、実施例1の巻きブッシュをギアオイル中に50時間浸漬した後の該巻きブッシュの内周面の外観を、図14は、同100時間浸漬した後の該巻きブッシュの内周面の外観を示す写真である。   13 to 18 are photographs showing the appearance of the inner peripheral surface of the wound bush after being immersed in gear oil. As will be described later, since the counterpart shaft was not able to be removed from the inner peripheral surface of the wound bush in 150 hours of the comparative example, the appearance of the state of 50 hours and 100 hours is shown. FIG. 13 shows the appearance of the inner peripheral surface of the wound bush after immersing the wound bush of Example 1 in gear oil for 50 hours, and FIG. 14 shows the outer peripheral surface of the wound bush after immersing in the same 100 hours. It is a photograph which shows an external appearance.

また、図15は、実施例2の巻きブッシュをギアオイル中に50時間浸漬した後の該巻きブッシュの内周面の外観を、図16は、同100時間浸漬した後の該巻きブッシュの内周面の外観を示す写真である。   15 shows the appearance of the inner peripheral surface of the wound bush after the winding bush of Example 2 is immersed in gear oil for 50 hours, and FIG. 16 shows the inner periphery of the wound bush after being immersed in the same 100 hours. It is a photograph which shows the external appearance of a surface.

さらに、図17は、比較例の巻きブッシュをギアオイル中に50時間浸漬した後の該巻きブッシュの内周面の外観を、図18は、同100時間浸漬した後の該巻きブッシュの内周面の外観を示す写真である。   Further, FIG. 17 shows the appearance of the inner peripheral surface of the wound bush after the comparative example of the wound bush is immersed in gear oil for 50 hours, and FIG. 18 shows the inner peripheral surface of the wound bush after being immersed in the same 100 hours. It is a photograph which shows the external appearance.

実施例1及び実施例2の巻きブッシュの内周面(摺動面)の外観を示す写真から分かるように、ギアオイル中に100時間浸漬した後においても、硫化腐食の進行が抑制されているのに対し、比較例の巻きブッシュは、ギヤオイル中に100時間浸漬した後の内周面(摺動面)の略々全面に硫化腐食による硫化物が生成しており、もはや巻きブッシュとしての機能が消失している。   As can be seen from the photographs showing the appearance of the inner peripheral surface (sliding surface) of the wound bushes of Example 1 and Example 2, the progress of sulfide corrosion is suppressed even after being immersed in gear oil for 100 hours. On the other hand, the winding bush of the comparative example has sulfides generated by sulfide corrosion on almost the entire inner peripheral surface (sliding surface) after being immersed in gear oil for 100 hours. Disappeared.

表3は、実施例1の巻きブッシュの内径寸法と相手軸の外径寸法との間のクリアランスのギヤオイル中に各浸漬時間後の変化量を、表4は、実施例2の巻きブッシュの内径寸法と相手軸の外径寸法との間のクリアランスのギヤオイル中に各浸漬時間後の変化量を、表5は、比較例の巻きブッシュの内径寸法と相手軸の外径寸法との間のクリアランスのギヤオイル中に各浸漬時間後の変化量を測定した結果を示す。   Table 3 shows the amount of change after each immersion time in the gear oil of the clearance between the inner diameter of the winding bush of Example 1 and the outer diameter of the mating shaft, and Table 4 shows the inner diameter of the winding bush of Example 2. Table 5 shows the amount of change in the clearance between the outer diameter of the mating shaft and the outer diameter of the mating shaft after each immersion time. Table 5 shows the clearance between the inner diameter of the winding bush of the comparative example and the outer diameter of the mating shaft. The result of having measured the variation | change_quantity after each immersion time in this gear oil is shown.

測定結果から、表3及び表4に示す実施例1及び実施例2の巻きブッシュは、ギヤオイル中への浸漬時間の経過と共に硫化腐食に起因する硫化物の生成は増加しているが、その進行は抑制され、250時間浸漬後においても著しいクリアランスの変化は無く、クリアランスは保持されているのに対し、表5に示す比較例の巻きブッシュは、150時間のギヤオイル中への浸漬により、内周面に硫化腐食に起因する硫化物の生成による著しいクリアランスの変化によりクリアランスが消失し、相手軸が巻きブッシュの内周面から抜き取れない状態(表5において「−」で表示)であった。   From the measurement results, in the wound bushes of Example 1 and Example 2 shown in Tables 3 and 4, the generation of sulfides due to sulfidation corrosion increases with the lapse of time of immersion in gear oil, but the progress thereof Although the clearance is not changed even after 250 hours of immersion and the clearance is maintained, the wound bush of the comparative example shown in Table 5 has an inner circumference that is immersed in gear oil for 150 hours. The clearance disappeared due to a significant change in clearance due to the formation of sulfide due to sulfide corrosion on the surface, and the mating shaft was not able to be pulled out from the inner peripheral surface of the wound bush (indicated by “-” in Table 5).

以上のことから、本発明の複層摺動部材における多孔質金属焼結層は、極圧添加剤を含有する潤滑油が使用される条件下においても硫化腐食の進行を抑制することができ、該硫化腐食に起因する硫化物の生成による多孔質金属焼結層の脱落や、滑り層の剥離を生じることがなく、多孔質金属焼結層としての役割を充分に果たすことができる。また、多孔質金属焼結層は、それ自体が摺動性能に優れているので、該多孔質金属焼結層の孔隙及び表面に充填被覆された樹脂組成物からなる滑り層に摩耗を生じ、滑り層に該多孔質金属焼結層の一部が露出しても、本発明の複層摺動部材は良好な摺動特性を維持することができる。   From the above, the porous metal sintered layer in the multilayer sliding member of the present invention can suppress the progress of sulfidation corrosion even under conditions where lubricating oil containing an extreme pressure additive is used, The porous metal sintered layer does not fall off due to the formation of sulfides due to the sulfide corrosion and the sliding layer does not peel off, and can sufficiently serve as a porous metal sintered layer. Moreover, since the porous metal sintered layer itself is excellent in sliding performance, the porous metal sintered layer is worn out on the sliding layer made of the resin composition filled and coated on the pores and the surface of the porous metal sintered layer, Even if a part of the porous metal sintered layer is exposed to the sliding layer, the multilayer sliding member of the present invention can maintain good sliding characteristics.

以上説明したように、Ni:21〜35質量%、Sn:3〜12質量%、P:0.4〜1.35質量%、残部Cuからなる多孔質金属焼結層を具備した本発明の複層摺動部材は、極圧添加剤を含有する潤滑油の使用される条件下においても硫化腐食の進行を抑制することができ、該硫化腐食に起因する硫化物の生成による多孔質金属焼結層の脱落や、滑り層の剥離を生じることがなく、多孔質金属焼結層としての役割を充分に果たすことができる。また、該多孔質金属焼結層自体の摺動特性も従来と比べて同等であり、該多孔質金属焼結層の孔隙及び表面に充填被覆された樹脂組成物からなる滑り層に摩擦を生じ、滑り層に多孔質金属焼結層の一部が露出して良好な摺動特性を維持することができるので、本発明の複層摺動部材は、乾燥摩擦条件、グリース潤滑条件、油中潤滑条件等幅広い摩擦条件下での使用を可能とする。   As explained above, Ni: 21 to 35% by mass, Sn: 3 to 12% by mass, P: 0.4 to 1.35% by mass, and the porous metal sintered layer comprising the balance Cu. The multi-layer sliding member can suppress the progress of sulfidation corrosion even under the condition where the lubricating oil containing the extreme pressure additive is used, and the porous metal firing due to the formation of sulfide resulting from the sulfidation corrosion. It does not cause the detachment of the binder layer or peels off the sliding layer, and can sufficiently serve as a porous metal sintered layer. In addition, the sliding property of the porous metal sintered layer itself is equivalent to that of the conventional one, and friction is generated in the pores of the porous metal sintered layer and the sliding layer made of the resin composition filled and coated on the surface. Since a part of the porous metal sintered layer is exposed to the sliding layer and good sliding characteristics can be maintained, the multilayer sliding member of the present invention has a dry friction condition, grease lubrication condition, It can be used under a wide range of friction conditions such as lubrication conditions.

1 板状軸受試験片(複層摺動部材)
2 円筒体
3 (板状軸受試験片の)表面
1 Plate bearing test piece (multi-layer sliding member)
2 Cylindrical body 3 (surface of plate bearing test piece)

Claims (3)

鋼板からなる裏金と、該裏金の表面に一体に形成された金属焼結部材からなる多孔質金属焼結層と、該多孔質金属焼結層の孔隙及び表面に充填被覆された樹脂組成物からなる滑り層とを具備した複層摺動部材であって、
該多孔質金属焼結層は、Ni:21質量%以上35質量%以下、Sn:3質量%以上12質量%以下、P:0.4質量%以上1.35質量%以下、残部Cuからなることを特徴とする複層摺動部材。
A backing metal made of a steel plate, a porous metal sintered layer made of a metal sintered member integrally formed on the surface of the backing metal, and a resin composition filled and coated on the pores and the surface of the porous metal sintered layer A multi-layer sliding member comprising a sliding layer comprising:
The sintered porous metal layer is composed of Ni: 21% by mass to 35% by mass, Sn: 3% by mass to 12% by mass, P: 0.4% by mass to 1.35% by mass, and the balance Cu. A multilayer sliding member characterized by that.
前記裏金は、Cuメッキ又はNiメッキが施された鋼板からなることを特徴とする請求項1に記載の複層摺動部材。   2. The multilayer sliding member according to claim 1, wherein the backing metal is made of a steel plate to which Cu plating or Ni plating is applied. 前記樹脂組成物は、フルオロカーボン重合体、ポリアセタール樹脂、ポリアミド樹脂、ポリフェニレンサルファイド樹脂、ポリエーテルエーテルケトン樹脂、ポリアミドイミド樹脂から選択される少なくとも一つの合成樹脂を主成分とし、耐摩耗性向上剤として、ポリイミド樹脂、焼成フェノール樹脂、ポリフェニレンスルホン樹脂及びオキシベンゾイルポリエステル樹脂から選択される少なくとも一つの有機材料を含むことを特徴とする請求項1又は2に記載の複層摺動部材。   The resin composition is mainly composed of at least one synthetic resin selected from a fluorocarbon polymer, a polyacetal resin, a polyamide resin, a polyphenylene sulfide resin, a polyether ether ketone resin, and a polyamideimide resin, The multilayer sliding member according to claim 1 or 2, comprising at least one organic material selected from a polyimide resin, a baked phenol resin, a polyphenylene sulfone resin, and an oxybenzoyl polyester resin.
JP2009232965A 2009-10-07 2009-10-07 Multiple layer sliding member Pending JP2011080525A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009232965A JP2011080525A (en) 2009-10-07 2009-10-07 Multiple layer sliding member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009232965A JP2011080525A (en) 2009-10-07 2009-10-07 Multiple layer sliding member

Publications (1)

Publication Number Publication Date
JP2011080525A true JP2011080525A (en) 2011-04-21

Family

ID=44074783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009232965A Pending JP2011080525A (en) 2009-10-07 2009-10-07 Multiple layer sliding member

Country Status (1)

Country Link
JP (1) JP2011080525A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2012063786A1 (en) * 2010-11-08 2014-05-12 株式会社ダイヤメット Cu-based sintered oil-impregnated bearing
DE102013220820A1 (en) 2012-11-16 2014-05-22 Daido Metal Company Ltd. Multi-layer slider
JP2015147989A (en) * 2014-02-07 2015-08-20 株式会社村田製作所 Porous metal body and method for producing the same
JP2016108600A (en) * 2014-12-04 2016-06-20 大同メタル工業株式会社 Slide member
EP3093136A1 (en) * 2015-05-14 2016-11-16 Daido Metal Company Ltd. Sliding member
WO2017010059A1 (en) * 2015-07-16 2017-01-19 オイレス工業株式会社 Multi-layered sliding member
CN109027006A (en) * 2018-08-06 2018-12-18 长沙理工大学 A kind of composite sliding bearing and preparation method thereof
CN109261956A (en) * 2018-11-07 2019-01-25 山东金麒麟股份有限公司 Adhesives, adhering method and bonding purposes and the friction block containing the adhesives
JP2019168106A (en) * 2018-03-26 2019-10-03 オイレス工業株式会社 Multi-layer sliding member
CN110344769A (en) * 2019-08-21 2019-10-18 郑州新亚复合超硬材料有限公司 High-performance diamond composite sheet and preparation method thereof
CN110805618A (en) * 2019-11-12 2020-02-18 中车大连机车车辆有限公司 Central traction device of locomotive bogie and injection molding nylon bushing used by same
JP2020172997A (en) * 2019-04-12 2020-10-22 大豊工業株式会社 Slide member
CN112555283A (en) * 2019-09-26 2021-03-26 大同金属工业株式会社 Sliding member
CN110344769B (en) * 2019-08-21 2024-06-07 郑州新亚复合超硬材料有限公司 High-performance diamond compact and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5852547B2 (en) * 1979-04-28 1983-11-24 オイレス工業株式会社 Multi-layer sliding member
JPH0693283A (en) * 1992-07-30 1994-04-05 Oiles Ind Co Ltd Double-layered sliding member
JP2002012903A (en) * 2000-06-29 2002-01-15 Oiles Ind Co Ltd Porous backing material, method for production thereof, double-layered sliding member, and its production method
JP2004143580A (en) * 2002-08-28 2004-05-20 Oiles Ind Co Ltd Bearing material for porous hydrostatic gas bearing, and porous hydrostatic gas bearing obtained by using the same
JP2004323789A (en) * 2003-04-28 2004-11-18 Toshiba Corp Composite material for sliding member and method for producing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5852547B2 (en) * 1979-04-28 1983-11-24 オイレス工業株式会社 Multi-layer sliding member
JPH0693283A (en) * 1992-07-30 1994-04-05 Oiles Ind Co Ltd Double-layered sliding member
JP2002012903A (en) * 2000-06-29 2002-01-15 Oiles Ind Co Ltd Porous backing material, method for production thereof, double-layered sliding member, and its production method
JP2004143580A (en) * 2002-08-28 2004-05-20 Oiles Ind Co Ltd Bearing material for porous hydrostatic gas bearing, and porous hydrostatic gas bearing obtained by using the same
JP2004323789A (en) * 2003-04-28 2004-11-18 Toshiba Corp Composite material for sliding member and method for producing the same

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6121164B2 (en) * 2010-11-08 2017-04-26 株式会社ダイヤメット Cu-based sintered oil-impregnated bearing
JP2016056453A (en) * 2010-11-08 2016-04-21 株式会社ダイヤメット METHOD MANUFACTURING Cu-BASED OIL-IMPREGNATED SINTERED BEARING
JPWO2012063786A1 (en) * 2010-11-08 2014-05-12 株式会社ダイヤメット Cu-based sintered oil-impregnated bearing
US9476453B2 (en) 2010-11-08 2016-10-25 Diamet Corporation Cu-based oil-impregnated sintered bearing
DE102013220820A1 (en) 2012-11-16 2014-05-22 Daido Metal Company Ltd. Multi-layer slider
JP2014098467A (en) * 2012-11-16 2014-05-29 Daido Metal Co Ltd Double layer slide member
US9074629B2 (en) 2012-11-16 2015-07-07 Daido Metal Company Ltd. Multi-layer slide member
DE102013220820B4 (en) * 2012-11-16 2016-08-04 Daido Metal Company Ltd. Multi-layer slider
JP2015147989A (en) * 2014-02-07 2015-08-20 株式会社村田製作所 Porous metal body and method for producing the same
JP2016108600A (en) * 2014-12-04 2016-06-20 大同メタル工業株式会社 Slide member
EP3093136A1 (en) * 2015-05-14 2016-11-16 Daido Metal Company Ltd. Sliding member
EP3323536A4 (en) * 2015-07-16 2019-02-27 Oiles Corporation Multi-layered sliding member
JP2017025358A (en) * 2015-07-16 2017-02-02 オイレス工業株式会社 Multiple layer sliding member
CN107848035A (en) * 2015-07-16 2018-03-27 奥依列斯工业株式会社 Multilayer sliding component
US20180200994A1 (en) * 2015-07-16 2018-07-19 Oiles Corporation Multilayered sliding member
WO2017010059A1 (en) * 2015-07-16 2017-01-19 オイレス工業株式会社 Multi-layered sliding member
JP2019168106A (en) * 2018-03-26 2019-10-03 オイレス工業株式会社 Multi-layer sliding member
WO2019187348A1 (en) * 2018-03-26 2019-10-03 オイレス工業株式会社 Mutlilayer sliding member
CN109027006A (en) * 2018-08-06 2018-12-18 长沙理工大学 A kind of composite sliding bearing and preparation method thereof
CN109027006B (en) * 2018-08-06 2020-06-05 长沙理工大学 Composite sliding bearing and preparation method thereof
CN109261956A (en) * 2018-11-07 2019-01-25 山东金麒麟股份有限公司 Adhesives, adhering method and bonding purposes and the friction block containing the adhesives
JP2020172997A (en) * 2019-04-12 2020-10-22 大豊工業株式会社 Slide member
CN110344769A (en) * 2019-08-21 2019-10-18 郑州新亚复合超硬材料有限公司 High-performance diamond composite sheet and preparation method thereof
CN110344769B (en) * 2019-08-21 2024-06-07 郑州新亚复合超硬材料有限公司 High-performance diamond compact and preparation method thereof
CN112555283A (en) * 2019-09-26 2021-03-26 大同金属工业株式会社 Sliding member
CN110805618A (en) * 2019-11-12 2020-02-18 中车大连机车车辆有限公司 Central traction device of locomotive bogie and injection molding nylon bushing used by same

Similar Documents

Publication Publication Date Title
JP2011080525A (en) Multiple layer sliding member
JP6779600B2 (en) Multi-layer sliding member
JP5374722B2 (en) Abrasion-resistant lead-free alloy bushing and method for producing the same
JP2005505688A (en) Bearings that do not contain lead
GB2363433A (en) PTFE based composite sliding material
JP2006194397A (en) Multiple layer sliding member
JPWO2008140100A1 (en) Pb-free copper alloy sliding material and plain bearing
WO2018021122A1 (en) Sintered multilayer plate, multilayer sliding member using same and method for producing sintered multilayer plate
WO2012147780A1 (en) Sliding material, alloy for bearing, and multilayer metal material for bearing
JP5267756B1 (en) Sliding member and bearing
JP4389026B2 (en) Sliding material and manufacturing method thereof
WO2016158373A1 (en) Sintered bearing and method of manufacturing same
JP2009079136A (en) Copper-based, oil-impregnated and sintered sliding member
JP2018048358A (en) Copper-based sintered alloy oil retaining bearing
JP5377557B2 (en) Copper-based sliding material
JP3484444B2 (en) Sliding member
JP6705631B2 (en) Multi-layer sliding member
JP2006062328A (en) Multiple layer sliding member
JPH11293304A (en) Double-layered sintered sliding member and its production
JP3965244B2 (en) Resin composition for sliding member and sliding member using the same
JP2010261077A (en) Sintered machine component
JP2008297361A (en) Copper-based oil-impregnated sintered sliding member
JP2006213013A (en) Multi-layered resin sliding member
JP5261996B2 (en) Multi-layer sliding member
EP3650147B1 (en) Multilayer sintered plate and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120829

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130401

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130529

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131105