JP4489890B2 - Multi-type air conditioner - Google Patents

Multi-type air conditioner Download PDF

Info

Publication number
JP4489890B2
JP4489890B2 JP2000013195A JP2000013195A JP4489890B2 JP 4489890 B2 JP4489890 B2 JP 4489890B2 JP 2000013195 A JP2000013195 A JP 2000013195A JP 2000013195 A JP2000013195 A JP 2000013195A JP 4489890 B2 JP4489890 B2 JP 4489890B2
Authority
JP
Japan
Prior art keywords
oil
pipe
air conditioner
type air
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000013195A
Other languages
Japanese (ja)
Other versions
JP2001201192A (en
Inventor
聖隆 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Carrier Corp
Original Assignee
Toshiba Carrier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2000013195A priority Critical patent/JP4489890B2/en
Application filed by Toshiba Carrier Corp filed Critical Toshiba Carrier Corp
Priority to BRPI0104148-7A priority patent/BR0104148B1/en
Priority to EP01901428A priority patent/EP1166019B1/en
Priority to ES01901428T priority patent/ES2228796T3/en
Priority to US09/937,101 priority patent/US6604371B2/en
Priority to PCT/JP2001/000306 priority patent/WO2001053757A1/en
Priority to CNB018002897A priority patent/CN1165721C/en
Priority to AU27063/01A priority patent/AU2706301A/en
Priority to KR10-2001-7012020A priority patent/KR100405238B1/en
Publication of JP2001201192A publication Critical patent/JP2001201192A/en
Application granted granted Critical
Publication of JP4489890B2 publication Critical patent/JP4489890B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/006Compression machines, plants or systems with reversible cycle not otherwise provided for two pipes connecting the outdoor side to the indoor side with multiple indoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/025Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/075Details of compressors or related parts with parallel compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2105Oil temperatures

Landscapes

  • Air Conditioning Control Device (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、複数台の室外機および複数台の室内機を配管接続して冷凍サイクルを構成したマルチ形空気調和機に関する。
【0002】
【従来の技術】
空気調和機における圧縮機は、ケース内に潤滑用の油を充填している。この潤滑油は、圧縮機が冷媒を吸い込んで吐出するのに伴い、一部が冷媒と共に冷凍サイクル中に流出するため、圧縮機において潤滑油不足を生じることがある。潤滑油が不足すると、ケース内の摺動部が油切れの状態となり、圧縮機の寿命に悪影響を与えてしまう。
【0003】
そこで、圧縮機から冷媒と共に吐出される潤滑油を圧縮機のケース内に戻す手段として、油分離器(オイルセパレータ)が知られている。例えば特開平4-184048号公報に示されるものでは、圧縮機の冷媒吐出側配管に油分離器を設け、冷媒と一緒に吐出される潤滑油を油分離器で捕捉し、圧縮機が潤滑油不足となった場合に油分離器に溜まった潤滑油を圧縮機の冷媒吸込側配管に戻す構成となっている。
【0004】
【発明が解決しようとする課題】
上記の油分離器の例では、油分離器に溜まった潤滑油が圧縮機に一旦戻された後、次に油分離器に所定量(圧縮機の油面保持に必要な油戻し量)の潤滑油が溜まるまでに長い時間がかかり、このため圧縮機での潤滑油不足を迅速に解消することができず、結局は圧縮機の寿命に悪影響を与えてしまう。
圧縮機の油面保持に必要な十分な油戻し量を確保するために油分離器の容量が大きくなってしまい、装置全体の大形化を招くという問題もある。
【0005】
この発明は上記の事情を考慮したもので、その目的とするところは、複数台の圧縮機における油不足を相互補完的にしかも迅速に解消することができ、これにより各圧縮機の寿命向上および信頼性向上が格段に図れるとともに、油分離器の容量の縮小化が図れて装置全体の小形化に寄与し得るマルチ形空気調和機を提供することにある。
【0006】
【課題を解決するための手段】
請求項1に係る発明のマルチ形空気調和機は、ケース内に潤滑用の油を充填してなる圧縮機が搭載された複数台の室外機を備え、これら室外機および複数台の室内機を配管接続して冷凍サイクルを構成したものであって、前記各圧縮機のケースにそれぞれ連通された保油タンクと、前記各圧縮機から吐出される冷媒の一部を前記各保油タンクから油を流出させるための加圧用として同保油タンクにそれぞれ導く加圧管と、これら加圧管に設けられた第一の弁と、前記各保油タンクの油流出口と前記各圧縮機の冷媒吸込側配管との間にそれぞれ接続された油回収管と、これら油回収管に設けられた第二の弁および第三の弁と、前記各油回収管における前記第二の弁と前記第三の弁との間の位置に相互接続された油バランス管と、を備える。
【0007】
請求項2に係る発明のマルチ形空気調和機は、請求項1に係る発明の保油タンクについて次のように限定している。保油タンクは、油移動管を介してケースの適正油面位置に連通されるとともに、圧力バランス管を介してケースの適正油面位置より上方の部位に連通されている。
【0008】
請求項3に係る発明のマルチ形空気調和機は、請求項1および請求項2のいずれかに係る発明において、さらに、各圧縮機のケース内の油量が適正か不足かを検出する検出手段を備えるとともに、制御手段について次のように限定している。制御手段は、この検出手段で油量不足が検出された圧縮機に各保油タンク内の油が流れるよう、各加圧管および前記各油回収管の導通を制御する。
【0009】
請求項4に係る発明のマルチ形空気調和機は、請求項1および請求項2のいずれかに係る発明において、さらに、各室外機の相互間で油量がバランスするよう各加圧管および各油回収管の導通を制御する制御手段を備えている。
【0010】
請求項5に係る発明のマルチ形空気調和機は、請求項4に係る発明の制御手段について次のように限定している。制御手段は、定期的に、運転率の低い側の室外機に存する油が運転率の高い側の室外機に一旦集まり、集まった油が運転率の低い側の室外機に戻るよう、各加圧管および各油回収管の導通を制御する。
【0011】
請求項6に係る発明のマルチ形空気調和機は、請求項1および請求項2のいずれかに係る発明において、さらに、各室外機のうち運転停止の室外機に存する油が運転中の室外機に流れるよう各加圧管および各油回収管の導通を制御する制御手段を備えている。
【0012】
【発明の実施の形態】
以下、本発明のマルチ形空気調和機の一実施形態について図面を参照して説明する。
図1において、1はセンタ室外機で、低圧型の圧縮機10を備えている。圧縮機10は、密閉形のケース10cを有する。このケース10cに、可変速度モータM0および定速度モータM1が収容されるとともに、摺動部の潤滑用として油(以下、潤滑油と称す)が充填されている。
【0013】
四方弁15がオフ(図示の状態)のとき、圧縮機10から吐出される冷媒(ガス)が、2つの冷媒吐出側配管11、逆止弁12、高圧側配管13、油分離器14、および四方弁15を介して室外熱交換器16に流れる。室外熱交換器16に流入した冷媒は、室外空気に熱を放出して液化する。室外熱交換器16を経た冷媒(液冷媒)は、膨張弁17、受液器18、パックドバルブ19、液側配管20、および各流量調整弁21を介して各室内機3に流れる。各室内機3に流入した冷媒は、それぞれ室内空気から熱を奪って気化する。これにより、被空調室内が冷房される。各室内機3を経た冷媒(ガス)は、ガス側配管22、パックドバルブ23、上記四方弁15、液分離器24、および冷媒吸込側配管25を介して圧縮機10に吸い込まれる。
【0014】
四方弁15がオンされると、圧縮機10から吐出される冷媒(ガス)が、各冷媒吐出側配管11、逆止弁12、高圧側配管13、油分離器14、四方弁15、パックドバルブ23、およびガス側配管22を介して各室内機3に流れる。各室内機3に流入した冷媒は、それぞれ室内空気に熱を放出して液化する。これにより、被空調室内が暖房される。各室内機3を経た冷媒(液冷媒)は、各流量調整弁21、液側配管20、パックドバルブ19、受液器18、および膨張弁17を介して室外熱交換器16に流れる。室外熱交換器16に流入した冷媒は、室外空気から熱を汲み上げて気化する。室外熱交換器16を経た冷媒(ガス)は、四方弁15、液分離器24、および冷媒吸込側配管25を介して圧縮機10に吸い込まれる。
【0015】
油分離器14と四方弁15との間の高圧側配管に、高圧冷媒の圧力Pdを検知する圧力センサ(高圧センサ)26が取り付けられている。室外熱交換器16に温度センサ(熱交換器温度センサ)27が取り付けられている。室外熱交換器16の近傍に室外ファン28が設けられている。四方弁15と液分離器24との間の低圧側配管に、低圧冷媒の温度を検知する温度センサ29が取り付けられている。冷媒吸込側配管25に、低圧冷媒の圧力Psを検知する圧力センサ(低圧センサ)30が取り付けられている。
【0016】
油分離器14に溜まった潤滑油は、キャピラリチューブ31を介して冷媒吸込側配管25に流れる。油分離器14と四方弁15との間の高圧側配管から、四方弁15と液分離器24との間の低圧側配管にかけて、開閉弁32を介したレリースバイパスが接続されている。膨張弁17と受液器18との間の液側配管から、四方弁15と液分離器24との間の低圧側配管にかけて、流量調整弁33を介したクーリングバイパスが接続されている。
【0017】
一方、センタ室外機1と並んで複数台のターミナル室外機2が設置されている。各室外機2は、低圧型の圧縮機10を備えている。圧縮機10は、密閉形のケース10cを有する。このケース10cに、2台の定速度モータM1,M2が収容されるとともに、潤滑油が充填されている。
【0018】
各室外機2は、定速度モータM1,M2を有する点、各冷媒吐出側配管11にそれぞれ逆止弁12が設けられている点、各冷媒吐出側配管11から冷媒吸込側配管25にかけて開閉弁34,35を介したガスバランスバイパスがそれぞれ接続されている点を除いて、センタ室外機1と同じ構成である。これら室外機2が、液側配管20およびガス側配管22を介してセンタ室外機1にそれぞれ並列に接続されている。
【0019】
室外機1および各室外機2にそれぞれパックドバルブ51が設けられ、その各パックドバルブ51の相互間に油バランス管50が接続されている。
【0020】
このような配管構成の冷凍サイクルを有するマルチ形空気調和機において、室外機1および各室外機2にそれぞれ油量検出装置が設けられている。油量検出装置は、圧縮機10のケース10c内の潤滑油量を検出する。この油量検出装置の具体的な構成を図2に示している。
【0021】
ケース10c内に潤滑油OILが溜まっている。このケース10cに、油移動管41および圧力バランス管43を介して保油タンク40が連通されている。油移動管41はケース10cの適正油面位置に接続(連通)され、圧力バランス管43は適正油面位置より上方の部位に接続(連通)されている。
ケース10c内の圧力(低圧)と保油タンク40内の圧力とが圧力バランス管43を通じて同じになるので、ケース10c内の潤滑油OILの余剰分が油移動管41を通して保油タンク40に迅速かつスムーズに移動する。また、ケース10cの適正油面位置に油移動管41が接続されているので、ケース10c内の油面が適正油面以下になった場合は、ケース10cから保油タンク40への潤滑油OILの余計な移動が未然に防止される。
【0022】
油移動管41には、保油タンク40からケース10cへの油の逆流を阻止する逆止弁42が設けられている。圧力バランス管43には、保油タンク40からケース10cへの冷媒の流入を阻止する逆止弁44が設けられている。
【0023】
保油タンク40の油流出口に油回収管45の一端が接続され、その油回収管45の他端が吸込側配管25に接続されている。この油回収管45に、開閉弁Va、ケース10cから保油タンク40への逆圧(保油タンク40に油回収管45から圧力が加わること)を阻止する逆止弁46、およびキャピラリチューブ47が順次に設けられている。なお、キャピラリチューブ47に対し、開閉弁Vbおよび開閉弁逆止弁48がそれぞれ並列に接続されている。
【0024】
油回収管45における逆止弁46とキャピラリチューブ47との間に、上記パックドバルブ51を介して上記油バランス管50が接続されている。
【0025】
高圧側配管13と保油タンク40の冷媒流入口との間に加圧管52が接続されている。加圧管52は、圧縮機10から吐出される冷媒の一部を保油タンク40から潤滑油OILを流出させるための加圧用として保油タンク40に導くためのものである。この加圧管52に、開閉弁Vcが設けられている。
【0026】
保油タンク40の油流出口(油回収管45の一端部)に戻し管53の一端が連通され、その戻し管53の他端が上記圧力バランス管43の一部を介してケース10cに連通されている。戻し管53は、保油タンク40から流出する潤滑油OILをケース10cに戻すためのものである。この戻し管53に減圧器たとえばキャピラリチューブ54が設けられている。
【0027】
加圧管52の中途部(開閉弁Vcの下流側)から戻し管53の中途部(キャピラリチューブ54の下流側)にかけてバイパス管55が接続され、そのバイパス管55に減圧器たとえばキャピラリチューブ56が設けられている。加圧管52から保油タンク40への冷媒の流れ込み量が減少しても、加圧管52内の冷媒はバイパス管55を経由して常に流れる。このバイパス管55に温度センサ(第1温度検知手段)61が取り付けられている。温度センサ61は、加圧用の冷媒(ガス)の温度TK1を検知する。
【0028】
戻し管53の一端部に温度センサ(第2温度検知手段)62が取り付けられている。温度センサ62は、保油タンク40から流出する潤滑油OILの温度TK2を検知する。油移動管41に温度センサ63が取り付けられている。温度センサ63は、ケース10cから保油タンク40へ移動する潤滑油OILの温度TK3を検知する。
なお、油量検出装置の配管構成の具体例を図2と同一部分に同一符号を付して図3に示している。
【0029】
また、油量検出装置を含むマルチ形空気調和機全体の制御回路を図4に示している。
図4において、70はセンタ室外機1に搭載された室外制御部、80は各ターミナル室外機2に搭載された室外制御部、90は各室内機3に搭載された室内制御部である。これら室外制御部70,80および室内制御部90がデータ伝送用のバスライン66を介して相互接続されている。
【0030】
室外制御部70は、各室内制御部90からの指令に応じて当該センタ室外機1および各ターミナル室外機2を統括的に制御するもので、CPU71、制御プログラム及びデータを記憶するメモリ72、時間カウント用のタイマ73などを備える。
とくに、CPU71は、油量検出に関する主要な機能として、圧縮機10の運転中に油回収管45の開閉弁Vaを閉じた状態で、加圧管52の開閉弁Vcを定期的に開放し、その開放中の温度センサ61の検知温度TK1と温度センサ62の検知温度TK2との対比により保油タンク40内の潤滑油OILの有無を検知し、その検知結果に基づいてケース10cの潤滑油OILの量が適正か否かを検出する検出手段を備える。具体的には、温度センサ61の検知温度TK1と温度センサ62の検知温度TK2との差の時間的変化に基づいて保油タンク40内の潤滑油OILの実質的な量を液冷媒の混入にかかわらず検知し、その検知結果に基づいてケース10c内の潤滑油OILの量が適正か否かを検出する。要するに、検知温度TK1の立ち上がりから検知温度TK2の立ち上がりまでの時間tnを検出し、その検出時間tnと設定値tnsとの比較により保油タンク40内の潤滑油OILの実質的な量を液冷媒の混入にかかわらず検知し、その検知結果に基づいてケース10c内の潤滑油OILの量が適正か否かを検出するようにしている。
【0031】
保油タンク40内に潤滑油OILが有れば、図5に示すように、検知温度TK1,TK2の両者に温度差が生じる。この温度差がなくなるまでの時間は、保油タンク40内の油量に比例する。この特性を利用して保油タンク40内に潤滑油OILが有ること、あるいは実質的な潤滑油OILの量を液冷媒の混入にかかわらず検知して、ケース10c内に適正油面以上の潤滑油OILが有ると判断する。
【0032】
この室外制御部70に、インバータ74、開閉接点75、開閉弁Va,Vb,Vc、温度センサ61,62,63が接続されている。インバータ74は、商用交流電源65の電圧を直流電圧に変換し、その直流電圧をスイッチングにより室外制御部70からの指令に応じた所定周波数およびレベルの交流電圧に変換し、出力する。この出力が可変速度モータMoに駆動電力として供給される。インバータ74の出力周波数が変化するのに伴い、可変速度モータMoの回転数が変化する。開閉接点75は、商用交流電源65と定速度モータM1との間の通電路に挿接されている。この開閉接点75がオンされると定速度モータM1が一定の回転数で動作し、開閉接点75がオフされると定速度モータM1の動作が停止する。すなわち、可変速度モータMoの回転数変化、および定速度モータM1の運転オン・オフにより、センタ室外機1における圧縮機10の容量が変化する。
【0033】
各室外制御部80は、センタ室外機1からの指令に応じて当該ターミナル室外機2を制御するもので、CPU81、制御プログラム及びデータを記憶するメモリ82などを備える。
とくに、CPU81は、油量検出に関する主要な機能として、圧縮機10の運転中に油回収管45の開閉弁Vaを閉じた状態で、加圧管52の開閉弁Vcを定期的に開放し、その開放中の温度センサ61の検知温度TK1と温度センサ62の検知温度TK2との対比により保油タンク40内の潤滑油OILの有無を検知し、その検知結果に基づいてケース10c内の潤滑油OILの量が適正か否かを検出する検出手段を備える。具体的には、温度センサ61の検知温度TK1と温度センサ62の検知温度TK2との差の時間的変化に基づいて保油タンク40内の潤滑油OILの実質的な量を液冷媒の混入にかかわらず検知し、その検知結果に基づいてケース10c内の潤滑油OILの量が適正か否かを検出する。要するに、検知温度TK1の立ち上がりから検知温度TK2の立ち上がりまでの時間tnを検出し、その検出時間tnと設定値tnsとの比較により保油タンク40内の潤滑油OILの実質的な量を液冷媒の混入にかかわらず検知し、その検知結果に基づいてケース10c内の潤滑油OILの量が適正か否かを検出するようにしている。
【0034】
この室外制御部80に、開閉接点84,85、開閉弁Va,Vb,Vc、温度センサ61,62,63が接続されている。開閉接点84は、商用交流電源65と定速度モータM1との間の通電路に挿接されている。この開閉接点84がオンされると定速度モータM1が一定の回転数で動作し、開閉接点84がオフされると定速度モータM1の動作が停止する。開閉接点85は、商用交流電源65と定速度モータM2との間の通電路に挿接されている。この開閉接点85がオンされると定速度モータM2が一定の回転数で動作し、開閉接点85がオフされると定速度モータM2の動作が停止する。すなわち、定速度モータM1,M2の運転オン・オフにより、ターミナル室外機2における圧縮機10の容量が変化する。
【0035】
各室内制御部90は、当該室内機3を制御するもので、CPU91、制御プログラム及びデータを記憶するメモリ92などを有する。この室内制御部90に、被空調室内の温度Taを検知する室内温度センサ93、上記流量調整弁21、および受光部94が接続されている。受光部94は、リモートコントロール式の操作器(以下、リモコンと略称する)95から発せられる運転条件設定用の赤外線光を受け、その受光データを室内制御部90に入力する。リモコン95は、運転のオン・オフ、運転モード(冷房・除湿・暖房・送風等)および室内温度設定値Tsなどの各種運転条件を設定するための赤外線光を使用者の操作に応じて発する。
【0036】
以下、マルチ形空気調和機の全体的な動作について図6を参照しながら説明する。
各室内機3は、リモコン95で設定される室内温度設定値Tsと室内温度センサ93で検知される室内温度Taとの差を要求能力(空調負荷とも称す)として求め、その要求能力に応じて流量調整弁21の開度を制御するとともに、要求能力および運転モードをセンタ室外機1に知らせる。
【0037】
センタ室外機1は、各室内機3から知らされる運転モードに応じて当該センタ室外機1および各ターミナル室外機2におけるそれぞれ四方弁15を制御するとともに、各室内機3から知らされる要求能力の総和を求め、その総和に応じて当該センタ室外機1および各ターミナル室外機2の運転容量(各圧縮機10の容量)の総和を制御する。すなわち、センタ室外機1の圧縮機10における可変速度モータMoの回転数制御が基礎として実行され、その上で、各圧縮機10における定速度モータM1,M2の運転オン・オフ(運転台数)が制御される。たとえば、要求能力の総和が増えると、室外機1,2の運転容量(各圧縮機10の容量)の総和が増大される。要求能力の総和が減ると、室外機1,2の運転容量(各圧縮機10の容量)の総和が減少される。
【0038】
次に、各室外機1,2の動作について図7のフローチャートを参照しながら説明する。
圧縮機1のケース10c内の油面が移動管41の接続位置より高ければ、その接続位置より高い分の潤滑油OILが移動管41を通って保油タンク40に移動する。
【0039】
各室外機1,2のいずれかの運転が停止すると(ステップ101のYES)、その停止室外機において、レリースバイパスの開閉弁32が開放されるとともに(ステップ102)、開閉弁Vc,Vaが開放される(ステップ103)。開閉弁Vbは閉成されたままである(ステップ104)。
【0040】
開閉弁32が開放すると、レリースバイパスを通して、高圧側配管と低圧側配管との圧力バランスが進行する。この圧力バランスが完了するまでの間、高圧側圧力が開閉弁Vcを通して保油タンク40に加わり、保油タンク40内の潤滑油OILが油回収管45に流出する。流出した潤滑油OILは開閉弁Vaを通り、油バランス管50に流れる。
【0041】
油バランス管50には、運転中の室外機における圧縮機10の吸い込み圧力が冷媒吸込側配管25および油回収管45を通して加わっている。よって、油バランス管50に流れた潤滑油OILは、運転中の室外機における油回収管45に流入し、キャピラリチューブ47および冷媒吸込側配管25を通って圧縮機10に吸い込まれる。
センタ室外機1が運転中、各ターミナル室外機2のいずれかが運転停止、残りのターミナル室外機2が運転中の場合に、停止したターミナル室外機2から運転中のセンタ室外機1およびターミナル室外機2に潤滑油OILが流れる様子を図1に矢印で示している。図1の例では、右側から3台目のターミナル室外機2が運転停止、他の室外機1,2が運転中である。
【0042】
こうして、停止室外機に存する潤滑油OILの余剰分が運転室外機に流れるよう、各加圧管52および各油回収管45の導通が制御されることにより、運転室外機における潤滑油不足が防止される。
【0043】
一方、各室外機1,2における圧縮機10の油量が各油量検出装置によって次のように検出されている。
定期的な油量検出タイミングにおいて、油回収管45の開閉弁Vaが閉成された状態で加圧管52の開閉弁Vcが開放される。この開閉弁Vcの開放により、圧縮機10から吐出される冷媒の一部が保油タンク40に注入される。保油タンク40内に潤滑油OILが溜まっていれば、その潤滑油OILが冷媒の注入に基づく加圧作用を受けて保油タンク40の油流出口から流出する。保油タンク40内に潤滑油OILが溜まっていなければ、注入された冷媒がそのまま保油タンク40の油流出口から流出する。流出する潤滑油OIL(または冷媒)は、油回収管45、戻し管53、および油バランス管43を通ってケース10cに流れる。
【0044】
このとき、保油タンク40に注入される冷媒(ガス)の温度TK1が温度センサ61で検知され、保油タンク40から流出する流体(潤滑油OILまたは冷媒)の温度TK2が温度センサ62で検知される。
【0045】
保油タンク40に潤滑油OILが溜まっていた場合には、図5に示したように、先ずは検知温度TK1が立ち上がり上昇し、その検知温度TK1が安定するころ、今度は検知温度TK2が立ち上がり上昇し、やがて検知温度TK2も安定する。つまり、検知温度TK1と検知温度TK2との差は、一旦は増大方向に変化し、やがて徐々に減少していく形となる。検知温度TK1が立ち上がってから検知温度TK2が立ち上がるまでの時間は、保油タンク40内の潤滑油OILに液冷媒が混じっているかどうかにかかわらず、保油タンク40内の潤滑油OILの実質的な量に対応する。
【0046】
10秒間の検知温度TK1の変化量ΔTK1が逐次に求められ、同じく10秒間の検知温度TK2の変化量ΔTK2が逐次に求められる。そして、求められた変化量ΔTK1が所定値β(例えば3℃)以上になったか否かが判定される。この判定は、検知温度TK1の立ち上がりを検出するためのものである。また、検知温度TK1が検出開始時の初期値TK1(0)より所定値α(例えば10℃)以上高くなったか否か(別の言い方をすれば、検知温度TK1の初期値TK1(0)からの変化量が所定値α以上になったか否か)が判定される。この判定も、検知温度TK1の立ち上がりを検出するためのものである。
【0047】
両判定のいずれか一方が肯定の場合(検知温度TK1の立ち上がり検出タイミング)、タイムカウントtnが開始されるとともに、上記求められた変化量ΔTK2が所定値ΔT以上になったか否かが判定される。この判定は、検知温度TK2の立ち上がりを検出するためのものである。
【0048】
タイムカウントtnが設定値tsに達すると、そのときの検知温度TK1がTK1maxとして記憶される。これ以降、検知温度TK2の初期値TK2(0)からの変化量[=TK2−TK2(0)]が検知温度TK1の初期値TK1(0)と上記TK1maxとの差[=TK1−TK1(0)]以上となったか否かが判定される。この判定も、検知温度TK2の立ち上がりを検出するためのものである。
検知温度TK2の立ち上がりを検出するための両判定のいずれか一方が肯定の場合(検知温度TK2の立ち上がり検出タイミング)、タイムカウントtnが終了される。これまでのタイムカウントtnは、すなわち、検知温度TK1が立ち上がってから検知温度TK2が立ち上がるまでの時間であり、保油タンク40内の実質的な潤滑油OILの量に比例する。
【0049】
このタイムカウントtnと設定値tnsとが比較される。タイムカウントtnが設定値tns以上であれば、ケース10c内の潤滑油OILの量が適正であると判定される。タイムカウントtnが設定値tns未満であれば、ケース10c内の潤滑油OILの量が不足であると判定される。
【0050】
各圧縮機1,2のいずれかで潤滑油不足が検出されると(ステップ105のYES)、その潤滑油不足を生じた室外機において、開閉弁Vbが開放される(ステップ106)。開閉弁Vc,Vaは閉成されたままである(ステップ107)。
【0051】
この潤滑油不足の発生は、センタ室外機1に知らされるとともに、センタ室外機1から他のターミナル室外機2に知らされる。
【0052】
他の室外機での潤滑油不足が知らされた室外機では(ステップ108のYES)、開閉弁Vc,Vaが開放される(ステップ109)。開閉弁Vbは閉成されたままである(ステップ110)。こうして、開閉弁Vc,Vaが開放することにより、保油タンク40内の潤滑油OILが油回収管45に流出する。流出した潤滑油OILは開閉弁Vaを通り、油バランス管50に流れる。
【0053】
油バランス管50には、潤滑油不足の室外機における圧縮機10の吸い込み圧力が冷媒吸込側配管25および油回収管45を通して加わっている。よって、油バランス管50に流れた潤滑油OILは、潤滑油不足の室外機における油回収管45に流入し、開閉弁Vbおよび冷媒吸込側配管25を通って圧縮機10に吸い込まれる。
【0054】
各ターミナル室外機2の1台に潤滑油不足が生じた場合の潤滑油OILの流れを図8に矢印で示している。右端のターミナル室外機2が潤滑油不足で、そこに、他のターミナル室外機2およびセンタ室外機1から潤滑油OILの余剰分が補充されている。
このように、潤滑油不足が検出された圧縮機10に各保油タンク40内の潤滑油OILが流れるよう、各加圧管52および各油回収管45の導通が制御されることにより、潤滑油不足が迅速に解消される。
【0055】
また、各室外制御部70のタイマ73の計時に基づく定期的な均油タイミングにおいて(ステップ111のYES)、各室外機1,2の相互間で油量が適正でバランス状態が継続する場合、具体的には、運転率の低い側の各ターミナル室外機2に存する油が運転率の高い側のセンタ室外機1に一旦集まり、集まった油が各ターミナル室外機2に戻るよう、各加圧管52および各油回収管45の導通が制御される。センタ室外機1は、圧縮機10が常にインバータ駆動されるタイプであるので、運転率がターミナル室外機2よりも高い。
【0056】
すなわち、センタ室外機1では、一定時間だけ、開閉弁Vbが開放され、開閉弁Vc,Vaが閉成される(ステップ113)。その後、開閉弁Vbが閉成され、開閉弁Vc,Vaが開放される(ステップ114)。各ターミナル室外機2では、一定時間だけ、開閉弁Vbが閉成され、開閉弁Vc,Vaが開放される(ステップ115)。その後、開閉弁Vbが開放され、開閉弁Vc,Vaが閉成される(ステップ116)。
【0057】
各ターミナル室外機2の開閉弁Vc,Vaが開放している一定時間において、各ターミナル室外機2の保油タンク40から潤滑油OILが流出し、それが油バランス管50に流れる。このとき、センタ室外機1の開閉弁Vbが開放し、センタ室外機1における圧縮機10の吸い込み圧力が油バランス管50に加わるので、油バランス管50の潤滑油OILが圧縮機10に吸い込まれる。
【0058】
一定時間の経過後、センタ室外機1の開閉弁Vc,Vaが開放することにより、センタ室外機1の保油タンク40から潤滑油OILが流出し、それが油バランス管50に流れる。このとき、ターミナル室外機2の開閉弁Vbが開放し、ターミナル室外機2における圧縮機10の吸い込み圧力が油バランス管50に加わるので、油バランス管50の潤滑油OILがターミナル室外機2の圧縮機10に吸い込まれる。
【0059】
こうして、潤滑油OILの余剰分を各室外機1,2の相互間で交互に移動させる油量バランスの制御が実行されることにより、運転の進行に伴い発生する潤滑油戻りの偏りを補正することができる。
【0060】
上記ステップ101,105,108,111の判定が共に否定(NO)のとき、通常運転が実行されるとともに(ステップ117)、潤滑油が適正か不足かを検出するための油量検出が定期的に実行される(ステップ118)。
【0061】
以上、各圧縮機10での潤滑油不足を相互補完的にしかも迅速に解消することができて、圧縮機10の寿命向上および信頼性向上に大きく寄与することができる。
【0062】
潤滑油OILの余剰分を油分離器14とは別の保油タンク40に常に蓄えておく形となるので、油分離器14の容量の縮小化が図れ、ひいては冷凍装置全体の小形化に寄与することができる。
【0063】
なお、上記実施形態では、保油タンク40を構成要素とする油量検出装置を用いて各圧縮機10の油量を検出したが、フロートスイッチ方式の油量検出器など他の機器を用いてもよい。その他、この発明は上記実施形態に限定されるものではなく、要旨を変えない範囲で種々変形実施可能である。
【0064】
【発明の効果】
以上述べたようにこの発明によれば、複数台の圧縮機における油不足を相互補完的にしかも迅速に解消することができ、これにより各圧縮機の寿命向上および信頼性向上が格段に図れるとともに、油分離器の容量の縮小化が図れて装置全体の小形化に寄与し得るマルチ形空気調和機を提供できる。
【図面の簡単な説明】
【図1】一実施形態の全体的な構成を示す図。
【図2】一実施形態における油量検出装置の構成を示す図。
【図3】一実施形態における油量検出装置の配管構成の具体例を示す図。
【図4】一実施形態の制御回路のブロック図。
【図5】一実施形態における検知温度TK1,TK2の変化の例を示す図。
【図6】一実施形態における各室内機の要求能力と各室外機の運転容量との関係を示す図。
【図7】一実施形態における各室外機の動作を説明するためのフローチャート。
【図8】一実施形態における潤滑油不足が生じた場合の潤滑油の流れを示す図。
【符号の説明】
1…センタ室外機
2…ターミナル室外機
3…室内機
10…圧縮機
10c…ケース
40…保油タンク
41…移動管
43…圧力バランス管
45…油回収管
50…油バランス管
52…加圧管
70,80…室外制御部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a multi-type air conditioner in which a plurality of outdoor units and a plurality of indoor units are connected by piping to constitute a refrigeration cycle.
[0002]
[Prior art]
A compressor in an air conditioner has a case filled with lubricating oil. A part of this lubricating oil flows into the refrigeration cycle together with the refrigerant as the compressor sucks and discharges the refrigerant, so that there may be a shortage of lubricating oil in the compressor. When the lubricating oil is insufficient, the sliding portion in the case is in a state of running out of oil, which adversely affects the life of the compressor.
[0003]
Therefore, an oil separator (oil separator) is known as means for returning the lubricating oil discharged together with the refrigerant from the compressor into the case of the compressor. For example, in the one disclosed in Japanese Patent Laid-Open No. 4-184048, an oil separator is provided in the refrigerant discharge side piping of the compressor, and the lubricant discharged together with the refrigerant is captured by the oil separator, and the compressor When shortage occurs, the lubricating oil collected in the oil separator is returned to the refrigerant suction side piping of the compressor.
[0004]
[Problems to be solved by the invention]
In the above example of the oil separator, after the lubricating oil accumulated in the oil separator is once returned to the compressor, the oil separator is then supplied with a predetermined amount (the amount of oil return necessary for holding the oil level of the compressor). It takes a long time for the lubricating oil to accumulate, so that the shortage of lubricating oil in the compressor cannot be resolved quickly, and eventually the life of the compressor is adversely affected.
There is also a problem that the capacity of the oil separator is increased in order to secure a sufficient oil return amount necessary for maintaining the oil level of the compressor, resulting in an increase in the size of the entire apparatus.
[0005]
The present invention takes the above-mentioned circumstances into consideration, and the object of the present invention is to be able to quickly and easily eliminate oil shortages in a plurality of compressors, thereby improving the life of each compressor and An object of the present invention is to provide a multi-type air conditioner that can greatly improve the reliability and reduce the capacity of the oil separator and contribute to downsizing of the entire apparatus.
[0006]
[Means for Solving the Problems]
A multi-type air conditioner according to a first aspect of the present invention includes a plurality of outdoor units on which a compressor having a case filled with lubricating oil is mounted, and the outdoor unit and the plurality of indoor units are provided. A refrigeration cycle is configured by connecting pipes, and an oil retaining tank communicated with a case of each compressor, and a part of the refrigerant discharged from each compressor is oiled from each oil retaining tank. Pressurizing pipes respectively leading to the oil retaining tanks for pressurizing the oil, first valves provided in the pressure retaining pipes, oil outlets of the oil retaining tanks, and refrigerant suction sides of the compressors Oil recovery pipes respectively connected between the pipes, second and third valves provided in the oil recovery pipes, and the second valve and the third valve in each oil recovery pipe And an oil balance pipe interconnected at a position between.
[0007]
The multi-type air conditioner of the invention according to claim 2 limits the oil retaining tank of the invention according to claim 1 as follows. The oil retaining tank communicates with an appropriate oil level position of the case via an oil moving pipe, and communicates with a portion above the appropriate oil level position of the case via a pressure balance pipe.
[0008]
The multi-type air conditioner according to a third aspect of the present invention is the detection device according to the first or second aspect, further comprising detecting whether the amount of oil in the case of each compressor is appropriate or insufficient. And the control means is limited as follows. The control means controls the conduction of each pressure pipe and each oil recovery pipe so that the oil in each oil retaining tank flows through the compressor in which the oil quantity is detected to be insufficient by the detection means.
[0009]
The multi-type air conditioner according to a fourth aspect of the present invention is the multi-type air conditioner according to the first or second aspect of the present invention, wherein each pressure pipe and each oil is further balanced so that the amount of oil is balanced between the outdoor units. Control means for controlling the conduction of the recovery pipe is provided.
[0010]
The multi-type air conditioner of the invention according to claim 5 limits the control means of the invention according to claim 4 as follows. The control means periodically adds oil so that the oil existing in the outdoor unit on the low operating rate side once gathers in the outdoor unit on the high operating rate side, and the collected oil returns to the outdoor unit on the low operating rate side. The continuity of the pressure pipe and each oil recovery pipe is controlled.
[0011]
A multi-type air conditioner according to a sixth aspect of the present invention is the multi-type air conditioner according to the first or second aspect of the present invention, further comprising an outdoor unit in which the oil existing in the outdoor unit whose operation is stopped is operating among the outdoor units. Control means for controlling conduction of each pressure pipe and each oil recovery pipe so as to flow in
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of a multi-type air conditioner of the present invention will be described with reference to the drawings.
In FIG. 1, reference numeral 1 denotes a center outdoor unit, which includes a low-pressure compressor 10. The compressor 10 has a sealed case 10c. The case 10c accommodates the variable speed motor M0 and the constant speed motor M1 and is filled with oil (hereinafter referred to as lubricating oil) for lubricating the sliding portion.
[0013]
When the four-way valve 15 is off (state shown), the refrigerant (gas) discharged from the compressor 10 includes two refrigerant discharge side pipes 11, a check valve 12, a high pressure side pipe 13, an oil separator 14, and It flows to the outdoor heat exchanger 16 through the four-way valve 15. The refrigerant flowing into the outdoor heat exchanger 16 liquefies by releasing heat to the outdoor air. The refrigerant (liquid refrigerant) that has passed through the outdoor heat exchanger 16 flows to each indoor unit 3 via the expansion valve 17, the liquid receiver 18, the packed valve 19, the liquid side pipe 20, and each flow rate adjustment valve 21. The refrigerant flowing into each indoor unit 3 takes heat from the indoor air and vaporizes. Thereby, the air-conditioned room is cooled. The refrigerant (gas) that has passed through each indoor unit 3 is sucked into the compressor 10 via the gas side pipe 22, the packed valve 23, the four-way valve 15, the liquid separator 24, and the refrigerant suction side pipe 25.
[0014]
When the four-way valve 15 is turned on, the refrigerant (gas) discharged from the compressor 10 is supplied to each refrigerant discharge side pipe 11, check valve 12, high pressure side pipe 13, oil separator 14, four-way valve 15, packed valve. 23 and the gas side pipe 22 to each indoor unit 3. The refrigerant flowing into each indoor unit 3 liquefies by releasing heat into the indoor air. Thereby, the air-conditioned room is heated. The refrigerant (liquid refrigerant) that has passed through each indoor unit 3 flows to the outdoor heat exchanger 16 via each flow rate adjustment valve 21, liquid side pipe 20, packed valve 19, liquid receiver 18, and expansion valve 17. The refrigerant flowing into the outdoor heat exchanger 16 pumps heat from the outdoor air and vaporizes it. The refrigerant (gas) that has passed through the outdoor heat exchanger 16 is sucked into the compressor 10 via the four-way valve 15, the liquid separator 24, and the refrigerant suction side pipe 25.
[0015]
A pressure sensor (high pressure sensor) 26 that detects the pressure Pd of the high-pressure refrigerant is attached to the high-pressure side pipe between the oil separator 14 and the four-way valve 15. A temperature sensor (heat exchanger temperature sensor) 27 is attached to the outdoor heat exchanger 16. An outdoor fan 28 is provided in the vicinity of the outdoor heat exchanger 16. A temperature sensor 29 for detecting the temperature of the low-pressure refrigerant is attached to the low-pressure side pipe between the four-way valve 15 and the liquid separator 24. A pressure sensor (low pressure sensor) 30 for detecting the pressure Ps of the low pressure refrigerant is attached to the refrigerant suction side pipe 25.
[0016]
The lubricating oil accumulated in the oil separator 14 flows into the refrigerant suction side pipe 25 via the capillary tube 31. A release bypass via an on-off valve 32 is connected from the high-pressure side pipe between the oil separator 14 and the four-way valve 15 to the low-pressure side pipe between the four-way valve 15 and the liquid separator 24. A cooling bypass through a flow rate adjusting valve 33 is connected from the liquid side pipe between the expansion valve 17 and the liquid receiver 18 to the low pressure side pipe between the four-way valve 15 and the liquid separator 24.
[0017]
On the other hand, a plurality of terminal outdoor units 2 are installed along with the center outdoor unit 1. Each outdoor unit 2 includes a low-pressure compressor 10. The compressor 10 has a sealed case 10c. Two constant speed motors M1 and M2 are accommodated in the case 10c and filled with lubricating oil.
[0018]
Each outdoor unit 2 has constant speed motors M 1 and M 2, a check valve 12 is provided in each refrigerant discharge side pipe 11, and an open / close valve from each refrigerant discharge side pipe 11 to the refrigerant suction side pipe 25. The configuration is the same as that of the center outdoor unit 1 except that gas balance bypasses via 34 and 35 are respectively connected. These outdoor units 2 are connected in parallel to the center outdoor unit 1 via a liquid side pipe 20 and a gas side pipe 22, respectively.
[0019]
A packed valve 51 is provided in each of the outdoor unit 1 and each outdoor unit 2, and an oil balance pipe 50 is connected between the packed valves 51.
[0020]
In the multi-type air conditioner having a refrigeration cycle having such a piping configuration, the outdoor unit 1 and each outdoor unit 2 are each provided with an oil amount detection device. The oil amount detection device detects the amount of lubricating oil in the case 10 c of the compressor 10. A specific configuration of the oil amount detection device is shown in FIG.
[0021]
Lubricating oil OIL is accumulated in the case 10c. The oil retaining tank 40 is communicated with the case 10 c through the oil moving pipe 41 and the pressure balance pipe 43. The oil moving pipe 41 is connected (communication) to an appropriate oil level position of the case 10c, and the pressure balance pipe 43 is connected (communication) to a portion above the appropriate oil level position.
Since the pressure (low pressure) in the case 10 c and the pressure in the oil retaining tank 40 are the same through the pressure balance pipe 43, the excess amount of the lubricating oil OIL in the case 10 c is quickly transferred to the oil retaining tank 40 through the oil moving pipe 41. And move smoothly. In addition, since the oil moving pipe 41 is connected to the appropriate oil level position of the case 10c, when the oil level in the case 10c becomes equal to or less than the appropriate oil level, the lubricating oil OIL from the case 10c to the oil retaining tank 40 is obtained. Unnecessary movement is prevented in advance.
[0022]
The oil moving pipe 41 is provided with a check valve 42 that prevents backflow of oil from the oil retaining tank 40 to the case 10c. The pressure balance pipe 43 is provided with a check valve 44 that prevents the refrigerant from flowing from the oil retaining tank 40 into the case 10c.
[0023]
One end of an oil recovery pipe 45 is connected to the oil outlet of the oil retaining tank 40, and the other end of the oil recovery pipe 45 is connected to the suction side pipe 25. The oil recovery pipe 45 has an on-off valve Va, a check valve 46 that prevents back pressure from the case 10c to the oil retaining tank 40 (pressure applied from the oil recovery pipe 45 to the oil retaining tank 40), and a capillary tube 47. Are provided sequentially. An on-off valve Vb and an on-off valve check valve 48 are connected in parallel to the capillary tube 47, respectively.
[0024]
The oil balance pipe 50 is connected between the check valve 46 and the capillary tube 47 in the oil recovery pipe 45 via the packed valve 51.
[0025]
A pressurizing pipe 52 is connected between the high-pressure side pipe 13 and the refrigerant inlet of the oil retaining tank 40. The pressurizing pipe 52 is for guiding a part of the refrigerant discharged from the compressor 10 to the oil retaining tank 40 for pressurization for causing the lubricating oil OIL to flow out from the oil retaining tank 40. The pressurizing pipe 52 is provided with an on-off valve Vc.
[0026]
One end of the return pipe 53 communicates with the oil outlet (one end of the oil recovery pipe 45) of the oil retaining tank 40, and the other end of the return pipe 53 communicates with the case 10c via a part of the pressure balance pipe 43. Has been. The return pipe 53 is for returning the lubricating oil OIL flowing out from the oil retaining tank 40 to the case 10c. The return pipe 53 is provided with a decompressor, for example, a capillary tube 54.
[0027]
A bypass pipe 55 is connected from a midway part of the pressurizing pipe 52 (downstream side of the on-off valve Vc) to a midway part of the return pipe 53 (downstream side of the capillary tube 54), and a decompressor, for example, a capillary tube 56 is provided in the bypass pipe 55. It has been. Even if the amount of refrigerant flowing from the pressurization pipe 52 into the oil retaining tank 40 decreases, the refrigerant in the pressurization pipe 52 always flows via the bypass pipe 55. A temperature sensor (first temperature detection means) 61 is attached to the bypass pipe 55. The temperature sensor 61 detects the temperature TK1 of the pressurizing refrigerant (gas).
[0028]
A temperature sensor (second temperature detection means) 62 is attached to one end of the return pipe 53. The temperature sensor 62 detects the temperature TK2 of the lubricating oil OIL flowing out from the oil retaining tank 40. A temperature sensor 63 is attached to the oil moving pipe 41. The temperature sensor 63 detects the temperature TK3 of the lubricating oil OIL moving from the case 10c to the oil retaining tank 40.
A specific example of the pipe configuration of the oil amount detection device is shown in FIG.
[0029]
FIG. 4 shows a control circuit for the entire multi-type air conditioner including the oil amount detection device.
In FIG. 4, 70 is an outdoor control unit mounted on the center outdoor unit 1, 80 is an outdoor control unit mounted on each terminal outdoor unit 2, and 90 is an indoor control unit mounted on each indoor unit 3. The outdoor control units 70 and 80 and the indoor control unit 90 are interconnected via a data transmission bus line 66.
[0030]
The outdoor control unit 70 controls the center outdoor unit 1 and each terminal outdoor unit 2 in response to a command from each indoor control unit 90, and includes a CPU 71, a memory 72 for storing control programs and data, a time A timer 73 for counting is provided.
In particular, the CPU 71 periodically opens the on-off valve Vc of the pressurizing pipe 52 in a state where the on-off valve Va of the oil recovery pipe 45 is closed during the operation of the compressor 10 as a main function relating to the oil amount detection. The presence or absence of the lubricating oil OIL in the oil retaining tank 40 is detected by comparing the detected temperature TK1 of the opened temperature sensor 61 with the detected temperature TK2 of the temperature sensor 62, and based on the detection result, the lubricating oil OIL of the case 10c is detected. Detection means for detecting whether or not the amount is appropriate is provided. Specifically, the substantial amount of the lubricating oil OIL in the oil retaining tank 40 is mixed into the liquid refrigerant based on the temporal change in the difference between the detected temperature TK1 of the temperature sensor 61 and the detected temperature TK2 of the temperature sensor 62. Regardless of the detection, whether or not the amount of the lubricating oil OIL in the case 10c is appropriate is detected based on the detection result. In short, the time tn from the rise of the detection temperature TK1 to the rise of the detection temperature TK2 is detected, and the substantial amount of the lubricating oil OIL in the oil retaining tank 40 is obtained by comparing the detection time tn with the set value tns. The detection is performed regardless of the mixing of the oil, and based on the detection result, it is detected whether the amount of the lubricating oil OIL in the case 10c is appropriate.
[0031]
If the lubricating oil OIL is present in the oil retaining tank 40, a temperature difference occurs between the detected temperatures TK1 and TK2, as shown in FIG. The time until the temperature difference disappears is proportional to the amount of oil in the oil retaining tank 40. Utilizing this characteristic, the lubricating oil OIL is present in the oil retaining tank 40, or the substantial amount of the lubricating oil OIL is detected regardless of the mixture of the liquid refrigerant, so that the lubrication above the appropriate oil level is detected in the case 10c. Judge that there is oil OIL.
[0032]
The outdoor control unit 70 is connected to an inverter 74, an open / close contact 75, open / close valves Va, Vb, Vc, and temperature sensors 61, 62, 63. The inverter 74 converts the voltage of the commercial AC power supply 65 into a DC voltage, converts the DC voltage into an AC voltage having a predetermined frequency and level according to a command from the outdoor control unit 70 by switching, and outputs the AC voltage. This output is supplied as drive power to the variable speed motor Mo. As the output frequency of the inverter 74 changes, the rotation speed of the variable speed motor Mo changes. The open / close contact 75 is inserted into an energization path between the commercial AC power supply 65 and the constant speed motor M1. When the switching contact 75 is turned on, the constant speed motor M1 operates at a constant rotational speed, and when the switching contact 75 is turned off, the operation of the constant speed motor M1 is stopped. That is, the capacity of the compressor 10 in the center outdoor unit 1 is changed by changing the rotational speed of the variable speed motor Mo and turning on / off the constant speed motor M1.
[0033]
Each outdoor control unit 80 controls the terminal outdoor unit 2 in response to a command from the center outdoor unit 1, and includes a CPU 81, a memory 82 for storing control programs and data, and the like.
In particular, the CPU 81 periodically opens the on-off valve Vc of the pressurizing pipe 52 in a state where the on-off valve Va of the oil recovery pipe 45 is closed during the operation of the compressor 10 as a main function relating to the oil amount detection. The presence or absence of the lubricating oil OIL in the oil retaining tank 40 is detected by comparing the detected temperature TK1 of the opened temperature sensor 61 with the detected temperature TK2 of the temperature sensor 62, and based on the detection result, the lubricating oil OIL in the case 10c is detected. Detecting means for detecting whether or not the amount is appropriate. Specifically, the substantial amount of the lubricating oil OIL in the oil retaining tank 40 is mixed into the liquid refrigerant based on the temporal change in the difference between the detected temperature TK1 of the temperature sensor 61 and the detected temperature TK2 of the temperature sensor 62. Regardless of the detection, whether or not the amount of the lubricating oil OIL in the case 10c is appropriate is detected based on the detection result. In short, the time tn from the rise of the detection temperature TK1 to the rise of the detection temperature TK2 is detected, and the substantial amount of the lubricating oil OIL in the oil retaining tank 40 is obtained by comparing the detection time tn with the set value tns. The detection is performed regardless of the mixing of the oil, and based on the detection result, it is detected whether the amount of the lubricating oil OIL in the case 10c is appropriate.
[0034]
To the outdoor control unit 80, switching contacts 84, 85, switching valves Va, Vb, Vc, and temperature sensors 61, 62, 63 are connected. The open / close contact 84 is inserted into an energization path between the commercial AC power supply 65 and the constant speed motor M1. When the switching contact 84 is turned on, the constant speed motor M1 operates at a constant rotational speed, and when the switching contact 84 is turned off, the operation of the constant speed motor M1 is stopped. The open / close contact 85 is inserted into an energization path between the commercial AC power supply 65 and the constant speed motor M2. When the switching contact 85 is turned on, the constant speed motor M2 operates at a constant rotational speed, and when the switching contact 85 is turned off, the operation of the constant speed motor M2 is stopped. That is, the capacity | capacitance of the compressor 10 in the terminal outdoor unit 2 changes with driving | operation ON / OFF of the constant speed motors M1 and M2.
[0035]
Each indoor control unit 90 controls the indoor unit 3, and includes a CPU 91, a memory 92 that stores a control program and data, and the like. An indoor temperature sensor 93 that detects the temperature Ta in the air-conditioned room, the flow rate adjusting valve 21, and the light receiving unit 94 are connected to the indoor control unit 90. The light receiving unit 94 receives infrared light for setting operating conditions emitted from a remote control type operating device (hereinafter abbreviated as “remote control”) 95 and inputs the received light data to the indoor control unit 90. The remote controller 95 emits infrared light for setting various operation conditions such as operation on / off, operation mode (cooling / dehumidification / heating / air blowing, etc.) and room temperature set value Ts in accordance with the operation of the user.
[0036]
Hereinafter, the overall operation of the multi-type air conditioner will be described with reference to FIG.
Each indoor unit 3 obtains the difference between the room temperature set value Ts set by the remote controller 95 and the room temperature Ta detected by the room temperature sensor 93 as a required capacity (also referred to as an air conditioning load), and according to the required capacity While controlling the opening degree of the flow regulating valve 21, the center outdoor unit 1 is notified of the required capacity and the operation mode.
[0037]
The center outdoor unit 1 controls the four-way valve 15 in each of the center outdoor unit 1 and each terminal outdoor unit 2 in accordance with the operation mode notified from each indoor unit 3, and the required capacity notified from each indoor unit 3. And the total of the operating capacities (capacities of the compressors 10) of the center outdoor unit 1 and each terminal outdoor unit 2 is controlled in accordance with the sum. That is, the rotational speed control of the variable speed motor Mo in the compressor 10 of the center outdoor unit 1 is executed as a basis, and then, the operation of the constant speed motors M1 and M2 in each compressor 10 is turned on / off (number of operating units). Be controlled. For example, when the total required capacity increases, the total operating capacity of the outdoor units 1 and 2 (the capacity of each compressor 10) increases. When the total required capacity decreases, the total operating capacity of the outdoor units 1 and 2 (the capacity of each compressor 10) decreases.
[0038]
Next, operations of the outdoor units 1 and 2 will be described with reference to the flowchart of FIG.
If the oil level in the case 10 c of the compressor 1 is higher than the connection position of the moving pipe 41, the lubricating oil OIL that is higher than the connection position moves to the oil retaining tank 40 through the moving pipe 41.
[0039]
When the operation of any of the outdoor units 1 and 2 is stopped (YES in step 101), the release bypass on / off valve 32 is opened (step 102) and the on / off valves Vc and Va are opened in the stopped outdoor unit. (Step 103). The on-off valve Vb remains closed (step 104).
[0040]
When the on-off valve 32 is opened, the pressure balance between the high pressure side pipe and the low pressure side pipe proceeds through the release bypass. Until this pressure balance is completed, the high-pressure side pressure is applied to the oil retaining tank 40 through the on-off valve Vc, and the lubricating oil OIL in the oil retaining tank 40 flows out to the oil recovery pipe 45. The lubricating oil OIL that has flowed out passes through the on-off valve Va and flows into the oil balance pipe 50.
[0041]
The suction pressure of the compressor 10 in the outdoor unit in operation is applied to the oil balance pipe 50 through the refrigerant suction side pipe 25 and the oil recovery pipe 45. Therefore, the lubricating oil OIL that has flowed into the oil balance pipe 50 flows into the oil recovery pipe 45 in the outdoor unit that is in operation, and is sucked into the compressor 10 through the capillary tube 47 and the refrigerant suction side pipe 25.
When the center outdoor unit 1 is in operation, any one of the terminal outdoor units 2 is stopped, and when the remaining terminal outdoor unit 2 is in operation, the center outdoor unit 1 and the terminal outside the terminal are operating from the stopped terminal outdoor unit 2 The state of the lubricating oil OIL flowing through the machine 2 is indicated by arrows in FIG. In the example of FIG. 1, the third terminal outdoor unit 2 from the right is stopped, and the other outdoor units 1 and 2 are operating.
[0042]
In this way, the continuity of each pressurizing pipe 52 and each oil recovery pipe 45 is controlled so that an excess amount of the lubricating oil OIL existing in the stop outdoor unit flows to the operating outdoor unit, thereby preventing a shortage of lubricating oil in the operating outdoor unit. The
[0043]
On the other hand, the oil amount of the compressor 10 in each of the outdoor units 1 and 2 is detected by each oil amount detection device as follows.
At the regular oil amount detection timing, the on-off valve Vc of the pressurizing pipe 52 is opened while the on-off valve Va of the oil recovery pipe 45 is closed. A part of the refrigerant discharged from the compressor 10 is injected into the oil retaining tank 40 by opening the on-off valve Vc. If the lubricating oil OIL is accumulated in the oil retaining tank 40, the lubricating oil OIL receives a pressurizing action based on the injection of the refrigerant and flows out from the oil outlet of the oil retaining tank 40. If the lubricating oil OIL does not accumulate in the oil retaining tank 40, the injected refrigerant flows out from the oil outlet of the oil retaining tank 40 as it is. The lubricating oil OIL (or refrigerant) flowing out flows through the oil recovery pipe 45, the return pipe 53, and the oil balance pipe 43 to the case 10c.
[0044]
At this time, the temperature sensor 61 detects the temperature (TK1) of the refrigerant (gas) injected into the oil retaining tank 40, and the temperature sensor 62 detects the temperature TK2 of the fluid (lubricating oil OIL or refrigerant) flowing out from the oil retaining tank 40. Is done.
[0045]
When the lubricating oil OIL is accumulated in the oil retaining tank 40, as shown in FIG. 5, first, the detected temperature TK1 rises and rises, and when the detected temperature TK1 stabilizes, the detected temperature TK2 rises this time. The detected temperature TK2 becomes stable over time. That is, the difference between the detected temperature TK1 and the detected temperature TK2 once changes in an increasing direction and gradually decreases. The time from when the detected temperature TK1 rises to when the detected temperature TK2 rises is substantially equal to the amount of the lubricating oil OIL in the oil retaining tank 40 regardless of whether or not the liquid refrigerant is mixed in the lubricating oil OIL in the oil retaining tank 40. Corresponding to the amount.
[0046]
The change amount ΔTK1 of the detected temperature TK1 for 10 seconds is sequentially obtained, and the change amount ΔTK2 of the detected temperature TK2 for 10 seconds is also obtained sequentially. Then, it is determined whether or not the obtained change amount ΔTK1 is equal to or greater than a predetermined value β (eg 3 ° C.). This determination is for detecting the rise of the detected temperature TK1. Whether the detected temperature TK1 is higher than the initial value TK1 (0) at the start of detection by a predetermined value α (for example, 10 ° C.) or not (in other words, from the initial value TK1 (0) of the detected temperature TK1). It is determined whether or not the amount of change has reached or exceeded a predetermined value α). This determination is also for detecting the rise of the detected temperature TK1.
[0047]
When either one of the determinations is affirmative (rising detection timing of the detected temperature TK1), the time count tn is started, and it is determined whether or not the obtained change amount ΔTK2 is equal to or greater than a predetermined value ΔT. . This determination is for detecting the rise of the detected temperature TK2.
[0048]
When the time count tn reaches the set value ts, the detected temperature TK1 at that time is stored as TK1max. Thereafter, the amount of change [= TK2−TK2 (0)] from the initial value TK2 (0) of the detected temperature TK2 is the difference between the initial value TK1 (0) of the detected temperature TK1 and the above TK1max [= TK1−TK1 (0). )] Or not is determined. This determination is also for detecting the rise of the detected temperature TK2.
When either one of the determinations for detecting the rising edge of the detected temperature TK2 is affirmative (rising edge detection timing of the detected temperature TK2), the time count tn is ended. The time count tn thus far is the time from when the detected temperature TK1 rises to when the detected temperature TK2 rises, and is proportional to the substantial amount of the lubricating oil OIL in the oil retaining tank 40.
[0049]
The time count tn is compared with the set value tns. If the time count tn is equal to or greater than the set value tns, it is determined that the amount of the lubricating oil OIL in the case 10c is appropriate. If the time count tn is less than the set value tns, it is determined that the amount of the lubricating oil OIL in the case 10c is insufficient.
[0050]
When the lack of lubricating oil is detected in either of the compressors 1 and 2 (YES in step 105), the on-off valve Vb is opened in the outdoor unit that has caused the lack of lubricating oil (step 106). The on-off valves Vc and Va remain closed (step 107).
[0051]
The occurrence of the lack of lubricating oil is notified to the center outdoor unit 1 and from the center outdoor unit 1 to another terminal outdoor unit 2.
[0052]
In the outdoor unit in which the lack of lubricating oil in other outdoor units is informed (YES in step 108), the on-off valves Vc and Va are opened (step 109). The on-off valve Vb remains closed (step 110). Thus, the on-off valves Vc and Va are opened, so that the lubricating oil OIL in the oil retaining tank 40 flows out to the oil recovery pipe 45. The lubricating oil OIL that has flowed out passes through the on-off valve Va and flows into the oil balance pipe 50.
[0053]
The oil balance pipe 50 is applied with the suction pressure of the compressor 10 in the outdoor unit lacking lubricating oil through the refrigerant suction side pipe 25 and the oil recovery pipe 45. Therefore, the lubricating oil OIL that has flowed through the oil balance pipe 50 flows into the oil recovery pipe 45 in the outdoor unit that lacks lubricating oil, and is sucked into the compressor 10 through the on-off valve Vb and the refrigerant suction side pipe 25.
[0054]
The flow of the lubricating oil OIL when a shortage of lubricating oil occurs in one of the terminal outdoor units 2 is indicated by arrows in FIG. The terminal outdoor unit 2 at the right end is short of lubricating oil, and the surplus lubricating oil OIL is replenished from the other terminal outdoor units 2 and the center outdoor unit 1 there.
In this way, the continuity of each pressurizing pipe 52 and each oil recovery pipe 45 is controlled so that the lubricating oil OIL in each oil retaining tank 40 flows to the compressor 10 in which the lack of lubricating oil is detected. The shortage is resolved quickly.
[0055]
In addition, in the periodic oil leveling timing based on the timing of the timer 73 of each outdoor control unit 70 (YES in Step 111), when the oil amount is appropriate between the outdoor units 1 and 2 and the balance state continues, Specifically, each pressurizing pipe is arranged so that oil existing in each terminal outdoor unit 2 on the low operating rate side gathers once in the center outdoor unit 1 on the high operating rate side, and the collected oil returns to each terminal outdoor unit 2. 52 and the conduction of each oil recovery pipe 45 are controlled. Since the center outdoor unit 1 is a type in which the compressor 10 is always driven by an inverter, the operation rate is higher than that of the terminal outdoor unit 2.
[0056]
That is, in the center outdoor unit 1, the on-off valve Vb is opened and the on-off valves Vc, Va are closed for a predetermined time (step 113). Thereafter, the on-off valve Vb is closed and the on-off valves Vc, Va are opened (step 114). In each terminal outdoor unit 2, the on-off valve Vb is closed and the on-off valves Vc, Va are opened for a predetermined time (step 115). Thereafter, the on-off valve Vb is opened, and the on-off valves Vc, Va are closed (step 116).
[0057]
Lubricating oil OIL flows out of the oil retaining tank 40 of each terminal outdoor unit 2 and flows into the oil balance pipe 50 during a certain period of time when the on-off valves Vc, Va of each terminal outdoor unit 2 are open. At this time, the on-off valve Vb of the center outdoor unit 1 is opened, and the suction pressure of the compressor 10 in the center outdoor unit 1 is applied to the oil balance pipe 50, so that the lubricating oil OIL in the oil balance pipe 50 is sucked into the compressor 10. .
[0058]
After a certain period of time, the on-off valves Vc and Va of the center outdoor unit 1 are opened, so that the lubricating oil OIL flows out from the oil retaining tank 40 of the center outdoor unit 1 and flows into the oil balance pipe 50. At this time, the on-off valve Vb of the terminal outdoor unit 2 is opened, and the suction pressure of the compressor 10 in the terminal outdoor unit 2 is applied to the oil balance pipe 50, so that the lubricating oil OIL in the oil balance pipe 50 is compressed in the terminal outdoor unit 2. It is sucked into the machine 10.
[0059]
In this way, the control of the oil amount balance that alternately moves the excess amount of the lubricating oil OIL between the outdoor units 1 and 2 is executed, thereby correcting the bias of the lubricating oil return that occurs as the operation proceeds. be able to.
[0060]
When the determinations in steps 101, 105, 108, and 111 are all negative (NO), normal operation is executed (step 117), and oil amount detection for detecting whether the lubricating oil is appropriate or insufficient is periodically performed. (Step 118).
[0061]
As described above, the shortage of lubricating oil in each compressor 10 can be quickly and complementarily solved, and can greatly contribute to improving the life and reliability of the compressor 10.
[0062]
Since the excess amount of the lubricating oil OIL is always stored in the oil retaining tank 40 separate from the oil separator 14, the capacity of the oil separator 14 can be reduced, and thus contribute to the downsizing of the entire refrigeration apparatus. can do.
[0063]
In the above embodiment, the oil amount of each compressor 10 is detected using the oil amount detection device including the oil retaining tank 40 as a constituent element, but other devices such as a float switch type oil amount detector are used. Also good. In addition, the present invention is not limited to the above embodiment, and various modifications can be made without departing from the scope of the invention.
[0064]
【The invention's effect】
As described above, according to the present invention, the shortage of oil in a plurality of compressors can be quickly and complementarily eliminated, thereby significantly improving the life and reliability of each compressor. Thus, the capacity of the oil separator can be reduced, and a multi-type air conditioner that can contribute to downsizing of the entire apparatus can be provided.
[Brief description of the drawings]
FIG. 1 is a diagram showing an overall configuration of an embodiment.
FIG. 2 is a diagram illustrating a configuration of an oil amount detection device according to an embodiment.
FIG. 3 is a diagram illustrating a specific example of a piping configuration of an oil amount detection device according to an embodiment.
FIG. 4 is a block diagram of a control circuit according to an embodiment.
FIG. 5 is a diagram showing an example of changes in detected temperatures TK1 and TK2 in one embodiment.
FIG. 6 is a diagram showing the relationship between the required capacity of each indoor unit and the operating capacity of each outdoor unit in one embodiment.
FIG. 7 is a flowchart for explaining the operation of each outdoor unit in the embodiment.
FIG. 8 is a diagram illustrating a flow of lubricating oil when a lubricating oil shortage occurs in one embodiment.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Center outdoor unit 2 ... Terminal outdoor unit 3 ... Indoor unit 10 ... Compressor 10c ... Case 40 ... Oil retaining tank 41 ... Moving pipe 43 ... Pressure balance pipe 45 ... Oil recovery pipe 50 ... Oil balance pipe 52 ... Pressure pipe 70 , 80 ... outdoor control unit

Claims (6)

ケース内に潤滑用の油を充填してなる圧縮機が搭載された複数台の室外機を備え、これら室外機および複数台の室内機を配管接続して冷凍サイクルを構成したマルチ形空気調和機において、
前記各圧縮機のケースにそれぞれ連通された保油タンクと、
前記各圧縮機から吐出される冷媒の一部を前記各保油タンクから油を流出させるための加圧用として同保油タンクにそれぞれ導く加圧管と、
これら加圧管に設けられた第一の弁と、
前記各保油タンクの油流出口と前記各圧縮機の冷媒吸込側配管との間にそれぞれ接続された油回収管と、
これら油回収管に設けられた第二の弁および第三の弁と、
前記各油回収管における前記第二の弁と前記第三の弁との間の位置に相互接続された油バランス管と、
を具備したことを特徴とするマルチ形空気調和機。
A multi-type air conditioner comprising a plurality of outdoor units equipped with a compressor filled with lubricating oil in a case, and a refrigeration cycle configured by piping connection of these outdoor units and the plurality of indoor units In
An oil retaining tank communicated with each compressor case;
A pressurizing pipe for guiding a part of the refrigerant discharged from each compressor to the oil retaining tank for pressurizing the oil to flow out from each oil retaining tank;
A first valve provided in these pressure pipes;
An oil recovery pipe connected between the oil outlet of each oil retaining tank and the refrigerant suction side pipe of each compressor;
A second valve and a third valve provided in these oil recovery pipes;
An oil balance pipe interconnected at a position between said second valve and the third valve in the respective oil recovery pipe,
A multi-type air conditioner comprising:
請求項1に記載のマルチ形空気調和機において、
前記保油タンクは、油移動管を介して前記ケースの適正油面位置に連通されているとともに、圧力バランス管を介してケースの適正油面位置より上方の部位に連通されていることを特徴とするマルチ形空気調和機。
The multi-type air conditioner according to claim 1,
The oil retaining tank is communicated with an appropriate oil level position of the case via an oil moving pipe, and is communicated with a portion above the appropriate oil level position of the case via a pressure balance pipe. Multi-type air conditioner.
請求項1および請求項2のいずれかに記載のマルチ形空気調和機において、
前記各圧縮機のケース内の油量が適正か不足かを検出する検出手段と、
この検出手段で油量不足が検出された圧縮機に前記各保油タンク内の油が流れるよう、前記各加圧管および前記各油回収管の導通を制御する制御手段と、
をさらに備えたことを特徴とするマルチ形空気調和機。
The multi-type air conditioner according to any one of claims 1 and 2,
Detecting means for detecting whether the amount of oil in the case of each compressor is appropriate or insufficient;
Control means for controlling conduction of each of the pressure pipes and each of the oil recovery pipes so that the oil in each of the oil retaining tanks flows into the compressor in which the oil amount shortage is detected by the detection means;
A multi-type air conditioner further comprising:
請求項1および請求項2のいずれかに記載のマルチ形空気調和機において、
前記各室外機の相互間で油量がバランスするよう前記各加圧管および前記各油回収管の導通を制御する制御手段、をさらに備えたことを特徴とするマルチ形空気調和機。
The multi-type air conditioner according to any one of claims 1 and 2,
A multi-type air conditioner further comprising control means for controlling conduction between the pressure pipes and the oil recovery pipes so that the amount of oil is balanced between the outdoor units.
請求項4に記載のマルチ形空気調和機において、
前記制御手段は、定期的に、運転率の低い側の室外機に存する油が運転率の高い側の室外機に一旦集まり、集まった油が運転率の低い側の室外機に戻るよう、前記各加圧管および前記各油回収管の導通を制御することを特徴とするマルチ形空気調和機。
The multi-type air conditioner according to claim 4,
The control means periodically, the oil present in the outdoor unit on the low operating rate side gathers once in the outdoor unit on the high operating rate side, and the collected oil returns to the outdoor unit on the low operating rate side. A multi-type air conditioner that controls conduction of each pressure pipe and each oil recovery pipe.
請求項1および請求項2のいずれかに記載のマルチ形空気調和機において、
前記各室外機のうち運転停止の室外機に存する油が運転中の室外機に流れるよう前記各加圧管および前記各油回収管の導通を制御する制御手段、をさらに備えたことを特徴とするマルチ形空気調和機。
The multi-type air conditioner according to any one of claims 1 and 2,
Control means for controlling continuity between the pressurization pipes and the oil recovery pipes so that oil existing in the outdoor units that are stopped among the outdoor units flows to the outdoor units that are in operation. Multi-type air conditioner.
JP2000013195A 2000-01-21 2000-01-21 Multi-type air conditioner Expired - Fee Related JP4489890B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2000013195A JP4489890B2 (en) 2000-01-21 2000-01-21 Multi-type air conditioner
EP01901428A EP1166019B1 (en) 2000-01-21 2001-01-18 Oil amount detector, refrigeration apparatus and air conditioner
ES01901428T ES2228796T3 (en) 2000-01-21 2001-01-18 OIL QUANTITY DETECTOR, REFRIGERATION DEVICE AND AIR CONDITIONER.
US09/937,101 US6604371B2 (en) 2000-01-21 2001-01-18 Oil amount detector, refrigeration apparatus and air conditioner
BRPI0104148-7A BR0104148B1 (en) 2000-01-21 2001-01-18 oil quantity detector, refrigeration apparatus and air conditioner.
PCT/JP2001/000306 WO2001053757A1 (en) 2000-01-21 2001-01-18 Oil amount detector, refrigeration apparatus and air conditioner
CNB018002897A CN1165721C (en) 2000-01-21 2001-01-18 Oil amount detector, refrigeration apparatus and air conditioner
AU27063/01A AU2706301A (en) 2000-01-21 2001-01-18 Oil amount detector, refrigeration apparatus and air conditioner
KR10-2001-7012020A KR100405238B1 (en) 2000-01-21 2001-01-18 Oil amount detector, refrigeration apparatus and air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000013195A JP4489890B2 (en) 2000-01-21 2000-01-21 Multi-type air conditioner

Publications (2)

Publication Number Publication Date
JP2001201192A JP2001201192A (en) 2001-07-27
JP4489890B2 true JP4489890B2 (en) 2010-06-23

Family

ID=18540816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000013195A Expired - Fee Related JP4489890B2 (en) 2000-01-21 2000-01-21 Multi-type air conditioner

Country Status (1)

Country Link
JP (1) JP4489890B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4316933B2 (en) * 2003-06-03 2009-08-19 東芝キヤリア株式会社 Air conditioner
JP4116030B2 (en) 2005-10-06 2008-07-09 三星電子株式会社 Compressor oil leveling device and refrigerator
JP4113221B2 (en) * 2005-11-15 2008-07-09 三星電子株式会社 Compressor oil leveling device and refrigerator
JP2007178029A (en) * 2005-12-27 2007-07-12 Mitsubishi Electric Corp Refrigerating air conditioner
JP5084950B2 (en) * 2009-03-31 2012-11-28 三菱電機株式会社 Refrigeration equipment
JP4920717B2 (en) * 2009-04-21 2012-04-18 三菱電機株式会社 Refrigeration equipment

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6273043A (en) * 1985-09-24 1987-04-03 ダイキン工業株式会社 Refrigerator
JPH04184048A (en) * 1990-11-13 1992-07-01 Sanyo Electric Co Ltd Freezer
JPH04203760A (en) * 1990-11-29 1992-07-24 Daikin Ind Ltd Oil lubricating device for compressor for freezing device
JPH05164417A (en) * 1991-12-12 1993-06-29 Sanyo Electric Co Ltd Oil level regulator of refrigerator
JPH06347110A (en) * 1993-06-07 1994-12-20 Sanyo Electric Co Ltd Air conditioner
WO1996000872A1 (en) * 1994-06-29 1996-01-11 Daikin Industries, Ltd. Oil balancing operation control device for an air conditioner
JPH10238881A (en) * 1997-02-20 1998-09-08 Mitsubishi Heavy Ind Ltd Multi-type heat pump system air conditioner and oil equilibrium operation of the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6273043A (en) * 1985-09-24 1987-04-03 ダイキン工業株式会社 Refrigerator
JPH04184048A (en) * 1990-11-13 1992-07-01 Sanyo Electric Co Ltd Freezer
JPH04203760A (en) * 1990-11-29 1992-07-24 Daikin Ind Ltd Oil lubricating device for compressor for freezing device
JPH05164417A (en) * 1991-12-12 1993-06-29 Sanyo Electric Co Ltd Oil level regulator of refrigerator
JPH06347110A (en) * 1993-06-07 1994-12-20 Sanyo Electric Co Ltd Air conditioner
WO1996000872A1 (en) * 1994-06-29 1996-01-11 Daikin Industries, Ltd. Oil balancing operation control device for an air conditioner
JPH10238881A (en) * 1997-02-20 1998-09-08 Mitsubishi Heavy Ind Ltd Multi-type heat pump system air conditioner and oil equilibrium operation of the same

Also Published As

Publication number Publication date
JP2001201192A (en) 2001-07-27

Similar Documents

Publication Publication Date Title
EP1166019B1 (en) Oil amount detector, refrigeration apparatus and air conditioner
EP0692683B1 (en) Air conditioning apparatus having an outdoor unit to which a plurality of indoor units are connected
KR100516381B1 (en) Freezer
US8353180B2 (en) Refrigerating apparatus
AU2005264480B2 (en) Air conditioner
JPH11108485A (en) Method for controlling air conditioner and outlet temperature of refrigerant heater
JP4402234B2 (en) Oil quantity detection device and refrigeration device
JP4489890B2 (en) Multi-type air conditioner
JP4499863B2 (en) Multi-type air conditioner
JP2001133056A (en) Air conditioner
JP2014119154A (en) Air conditioner
JP3290251B2 (en) Air conditioner
JP2748801B2 (en) Air conditioner
KR20100064836A (en) Air conditioner
KR100395920B1 (en) Control system for starting of air conditioner and control method thereof
JP3322758B2 (en) Air conditioner
JP3550772B2 (en) Refrigeration equipment
JPH11101495A (en) Fan controller and controlling method for multiroom air conditioner
JP2020148405A (en) Refrigeration cycle device and abnormality determination method for four-way changeover valve
JPH0776640B2 (en) Method of starting refrigeration system using scroll compressor
JPH0634224A (en) Room heater/cooler
JP2004317034A (en) Refrigerating device
JPH02150664A (en) Air conditioner
JPH0395338A (en) Device for controlling defrosting in air conditioner
JPH07120090A (en) Air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060728

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090825

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091023

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100330

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100401

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140409

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees