JPH0634224A - Room heater/cooler - Google Patents

Room heater/cooler

Info

Publication number
JPH0634224A
JPH0634224A JP4190452A JP19045292A JPH0634224A JP H0634224 A JPH0634224 A JP H0634224A JP 4190452 A JP4190452 A JP 4190452A JP 19045292 A JP19045292 A JP 19045292A JP H0634224 A JPH0634224 A JP H0634224A
Authority
JP
Japan
Prior art keywords
compressor
refrigerant
current
heat exchanger
current value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4190452A
Other languages
Japanese (ja)
Other versions
JP2914020B2 (en
Inventor
Satoshi Imabayashi
敏 今林
Tatsunori Otake
達規 桜武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP4190452A priority Critical patent/JP2914020B2/en
Publication of JPH0634224A publication Critical patent/JPH0634224A/en
Application granted granted Critical
Publication of JP2914020B2 publication Critical patent/JP2914020B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To prevent an abnormal temperature rise of a refrigerant heater by detecting an operating current of a compressor, detecting an overcurrent from the detected current, detecting a locking current when the compressor is stopped, and controlling the operation of the compressor based on the detected results. CONSTITUTION:At the time of room cooling of a room heater/cooler, a refrigerant circuit is formed of a compressor 1, an outdoor heat exchanger 3, a throttling mechanism 4, an indoor heat exchanger 6, etc., and at the time of room heating, a refrigerant is formed of refrigerant conveying means 14 having a liquid reservoir 20, a refrigerant heater 12, an indoor heat exchanger 6, etc. The heater/cooler comprises a current sensor 36 for detecting a current of the compressor. When a first current comparator 38 detects that a current value of the compressor is a first predetermined value or more by an operation controller 37, an operation in which the compressor 1 is once stopped and restarted after a predetermined time is repeated several times, and then it is entirely stopped. When a second current comparator 45 detects that the current value of the compressor is a second predetermined value or more only at the time of room cooling, solenoid valves 16, 17 are opened, and the mechanism 4, and a throttling mechanism 5 are opened.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は冷房時は圧縮機を利用
し、暖房時は圧縮機以外の冷媒搬送手段と冷媒加熱器を
利用する暖冷房機に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heating / cooling machine which uses a compressor during cooling and uses a refrigerant conveying means and a refrigerant heater other than the compressor during heating.

【0002】[0002]

【従来の技術】従来この種の暖冷房機は、例えば特開昭
57−101263号公報に示されているように、図3
のような構成になっている。
2. Description of the Related Art Conventionally, a heating / cooling machine of this type is shown in FIG. 3 as disclosed in Japanese Patent Laid-Open No. 57-101263.
It is structured like.

【0003】すなわち、圧縮機1、四方弁3、室外熱交
換器4、第1電磁弁6、キャピラリチューブ7、室内熱
交換器8、第2電磁弁10、逆止弁11、第3電磁弁1
3、冷媒ポンプ14、冷媒加熱器15、バーナ16の構
成において、冷房時は室外熱交換器4を凝縮器とし、室
内熱交換器8を蒸発器として圧縮機1の運転による冷房
サイクルを構成し、暖房運転は冷媒加熱器15をバーナ
16で加熱することにより蒸発器とし、室内熱交換器8
を凝縮器として、冷媒ポンプ14を冷媒搬送手段として
暖房サイクルを構成している。
That is, the compressor 1, the four-way valve 3, the outdoor heat exchanger 4, the first solenoid valve 6, the capillary tube 7, the indoor heat exchanger 8, the second solenoid valve 10, the check valve 11, the third solenoid valve. 1
In the configuration of 3, the refrigerant pump 14, the refrigerant heater 15, and the burner 16, during cooling, the outdoor heat exchanger 4 is used as a condenser, and the indoor heat exchanger 8 is used as an evaporator to form a cooling cycle by operating the compressor 1. In the heating operation, the refrigerant heater 15 is heated by the burner 16 to be an evaporator, and the indoor heat exchanger 8
Is used as a condenser, and the refrigerant pump 14 is used as a refrigerant conveying means to configure a heating cycle.

【0004】以上の構成で、暖房運転開始時には第1電
磁弁6を閉成し、四方弁3を圧縮機1の吐出冷媒ガスが
室内熱交換器8へ流れるように切換え、圧縮機1を所定
時間運転することで暖房時に使用しない室外熱交換器4
内の冷媒を室内熱交換器8側へ汲み上げるいわゆるポン
プダウン運転を行なった後冷媒ポンプ14、冷媒加熱器
15の運転を開始することにより暖房運転を行なわせ
る。冷房運転時には第1電磁弁6を開成し、四方弁3を
圧縮機1の吐出冷媒ガスが室外熱交換器4へ流れるよう
に切換え、室外熱交換器4を凝縮器とし、室内熱交換器
を蒸発器として冷房が行なわれる。また、図4に示すご
とく、圧縮機1の過負荷保護用として、圧縮機1の運転
スイッチ1Sと直列に自動復帰式の電流又は温度又は電
流と温度の組み合わせにより作動する過負荷継電器2S
が用いられている。
With the above construction, the first solenoid valve 6 is closed at the start of heating operation, the four-way valve 3 is switched so that the refrigerant gas discharged from the compressor 1 flows to the indoor heat exchanger 8, and the compressor 1 is set to a predetermined position. Outdoor heat exchanger 4 that is not used during heating by operating for 4 hours
The heating operation is performed by starting the operation of the refrigerant pump 14 and the refrigerant heater 15 after performing a so-called pump down operation of pumping the refrigerant inside to the indoor heat exchanger 8 side. During the cooling operation, the first solenoid valve 6 is opened, the four-way valve 3 is switched so that the refrigerant gas discharged from the compressor 1 flows to the outdoor heat exchanger 4, the outdoor heat exchanger 4 is used as a condenser, and the indoor heat exchanger is Cooling is performed as an evaporator. Further, as shown in FIG. 4, an overload relay 2S which is operated in series with an operation switch 1S of the compressor 1 by an automatic recovery type current or temperature or a combination of current and temperature is provided for overload protection of the compressor 1.
Is used.

【0005】[0005]

【発明が解決しようとする課題】しかしながら上記のよ
うな構成では、圧縮機1の過負荷継電器2Sは圧縮機単
独の入切スイッチのみで他の運転制御系へのフィードバ
ックがないため、例えば暖房運転開始時のポンプダウン
運転時に圧縮機の過電流等で過負荷継電器2Sが作動し
圧縮機1が停止しても所定時間後には冷媒加熱による暖
房運転が開始されることになり、圧縮機運転により、室
外熱交換器より冷媒を汲み上げるべきポンプダウン運転
が不足し、暖房回路側の冷媒量が不足して冷媒加熱器の
異常温度上昇による暖房運転不可能又は冷媒加熱器の耐
久性の課題があった。また、過負荷継電器2Sは自動復
帰式のため、冷房運転の場合、圧縮機1の運転スイッチ
1SがONのまゝであるため、過負荷継電器2Sが無限
にON、OFFを繰り返えし、過負荷継電器の選定及び
使用条件によっては、圧縮機の巻線温度の異常上昇によ
り、巻線の絶縁劣化等の圧縮機損傷が生じたり、また冷
房運転時、圧縮機1の過負荷継電器2Sが作動し、すな
わち接点が開となり、圧縮機1が停止された時には、運
転制御回路側では圧縮機の運転指令のままであり、それ
に連動している上記第1電磁弁6への指令信号もそのま
ゝであるために、圧縮機の停止に連動して、動作すべき
第1電磁弁6が開のまゝであるため、冷房運転で冷却さ
れている室内熱交換器8内へ高圧側の室外熱交換器4等
の冷媒が第1電磁弁6を通して移動し、多量に冷媒が溜
り込むため、過負荷継電器2Sが復帰し、圧縮機1が再
始動する際に圧縮機1への多量の液戻り、液圧縮現象が
生じ、圧縮機破損の原因となる危険性があるという課題
を有していた。
However, in the above-mentioned configuration, the overload relay 2S of the compressor 1 has only an on / off switch of the compressor alone and has no feedback to other operation control systems. Even if the overload relay 2S operates and the compressor 1 stops due to the overcurrent of the compressor during the pump down operation at the start, the heating operation by the refrigerant heating is started after the predetermined time. However, pump down operation for pumping refrigerant from the outdoor heat exchanger is insufficient, and there is a problem of heating operation impossible or durability of the refrigerant heater due to abnormal temperature rise of the refrigerant heater due to insufficient refrigerant amount on the heating circuit side. It was Further, since the overload relay 2S is an automatic reset type, in the cooling operation, the operation switch 1S of the compressor 1 remains ON, so the overload relay 2S repeats ON and OFF indefinitely. Depending on the selection and usage conditions of the overload relay, abnormal temperature rise of the winding of the compressor may cause damage to the compressor such as insulation deterioration of the winding, and during cooling operation, the overload relay 2S of the compressor 1 When the compressor 1 is operated, that is, the contacts are opened and the compressor 1 is stopped, the operation control circuit side keeps the operation command of the compressor, and the command signal to the first solenoid valve 6 interlocked with the operation command is also the same. Therefore, since the first solenoid valve 6 to be operated is kept open in conjunction with the stop of the compressor, the high-pressure side of the indoor heat exchanger 8 cooled in the cooling operation is maintained. Refrigerant such as the outdoor heat exchanger 4 moves through the first solenoid valve 6, Since the refrigerant accumulates in the amount, the overload relay 2S recovers, and when the compressor 1 restarts, a large amount of liquid returns to the compressor 1 and a liquid compression phenomenon occurs, which may cause damage to the compressor. There was a problem that there is.

【0006】本発明はかかる従来の課題を解消するもの
で、圧縮機異常時においても圧縮機の電気的、機械的保
護を目的とするものである。
The present invention solves the above-mentioned conventional problems, and has an object to protect the compressor electrically and mechanically even when the compressor is abnormal.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
に、本発明の暖冷房機は、圧縮機の運転電流検知部と過
電流検知用の第1の電流値比較部と圧縮機停止検知用の
第2の電流値比較部とを有する制御部を備え、第1の電
流値比較部により圧縮機電流値が第1所定値以上を第1
の設定時間継続したら圧縮機を一旦停止し、圧縮機停止
後第2の所定時間経過後圧縮機の再始動を行ない、上記
同じ動作を所定回数繰り返えしたら全運転停止を行な
い、第2の電流値比較部により冷房運転時のみ圧縮機電
流値が第2の所定値以上の時絞り機構の通路を開閉する
電磁弁を開とし、第2所定値以下の時上記電磁弁を閉と
する運転制御部を構成したものである。
In order to solve the above-mentioned problems, a heating / cooling machine according to the present invention comprises a compressor operating current detecting section, a first current value comparing section for detecting overcurrent, and a compressor stop detection. A control unit having a second current value comparison unit for use with the first current value comparison unit, and the first current value comparison unit causes the compressor current value to be a first predetermined value or more.
When the set time is continued, the compressor is temporarily stopped, and after the compressor is stopped, the compressor is restarted after a second predetermined time has elapsed, and when the same operation is repeated a predetermined number of times, the entire operation is stopped. An operation in which the solenoid valve that opens and closes the passage of the throttle mechanism is opened when the compressor current value is equal to or greater than the second predetermined value by the current value comparison unit, and the solenoid valve is closed when the compressor current value is equal to or less than the second predetermined value. The control unit is configured.

【0008】[0008]

【作用】本発明は上記した構成によって、暖房運転開始
時のポンプダウン運転時に、圧縮機吐出吸入の圧力バラ
ンス不足または圧縮機内への冷媒寝込み等による始動負
荷増大で圧縮機へ電源が印加されても圧縮機が回転せず
に大電流のロック電流が流れると運転電流検知により、
圧縮機運転を一旦停止し、所定時間後再度圧縮機運転を
行なわせる信号を出すことにより、所定回数同じ動作を
繰り返えすと暖房運転をOFFすることによりポンプダ
ウン運転不良による冷媒回収不足時の冷媒加熱器運転を
防止することによって、冷媒加熱器の異常温度上昇を防
止できる。また、冷房運転時においても圧縮機へのロッ
ク電流を無限に繰り返すことがないため、圧縮機の巻線
温度の異常上昇による巻線の絶縁劣化等の圧縮機損傷を
未然に防止できる。
According to the present invention, the power supply is applied to the compressor during the pump down operation at the start of the heating operation due to insufficient pressure balance of the compressor discharge suction or increase of the starting load due to refrigerant stagnation in the compressor. Even if the compressor does not rotate and a large lock current flows, the operating current detection
When the compressor operation is temporarily stopped and a signal for restarting the compressor operation is output after a predetermined time, the same operation is repeated a predetermined number of times, the heating operation is turned off, and when the refrigerant recovery is insufficient due to poor pump down operation, By preventing the refrigerant heater from operating, it is possible to prevent an abnormal temperature rise of the refrigerant heater. Further, even during the cooling operation, the lock current to the compressor is not repeated indefinitely, so that the compressor damage such as the insulation deterioration of the winding due to the abnormal increase of the winding temperature of the compressor can be prevented.

【0009】さらに、冷房運転時に、過負荷継電器が作
動し、圧縮機が停止した場合、圧縮機の運転電流検知回
路により圧縮機の運転電流が所定値以下であることを検
知し、制御回路により絞り機構の通路を開閉する電磁弁
を閉とすることで室内熱交換器への冷媒の溜り込みを防
止する。次に過負荷継電器が復帰して圧縮機が再運転さ
れると、圧縮機の運転電流検知回路により圧縮機の運転
電流が所定値以上であることを検知し、制御回路により
絞り機構の通路を開閉する電磁弁を開とすることで通常
の冷房運転を行なわせるために、圧縮機の再始動時の液
戻り、液圧縮を防止し、圧縮機の破損の危険を無くすこ
とができる。
Further, when the overload relay operates and the compressor stops during cooling operation, the operating current detection circuit of the compressor detects that the operating current of the compressor is below a predetermined value, and the control circuit By closing the solenoid valve that opens and closes the passage of the throttle mechanism, the refrigerant is prevented from accumulating in the indoor heat exchanger. Next, when the overload relay is restored and the compressor is restarted, the operating current detection circuit of the compressor detects that the operating current of the compressor is above a predetermined value, and the control circuit opens the passage of the throttle mechanism. Since the normal cooling operation is performed by opening the solenoid valve that opens and closes, it is possible to prevent liquid return and liquid compression when the compressor is restarted, and eliminate the risk of damage to the compressor.

【0010】[0010]

【実施例】以下、本発明の一実施例について図面にもと
づいて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.

【0011】図1は本発明の一実施例のシステムブロッ
ク図を示す。図1において、1は圧縮機、2は四方弁、
3は室外熱交換器、4は第1絞り機構、5は第2絞り機
構、6は室内熱交換器、7はアキュムレータで順次接続
される。8は室外熱交換器3用の送風機、9は室内熱交
換器6用の送風機、10は第1逆止弁で、圧縮機1の吐
出管11と四方弁2の間に配設される。第1絞り機構4
と第2絞り機構5との間に冷媒加熱器12、気液セパレ
ータ13、冷媒搬送手段14を有する冷媒回路ブロック
15を配設し、冷媒回路ブロック15は第1電磁弁16
を介して第1絞り機構4と接続し、第2電磁弁17を介
して第2絞り機構5と接続される。気液セパレータ13
は加熱器12の上方に設けられ、ガス吐出管18と液戻
り管19によってループ状に接続される。冷媒搬送手段
14は受液器20、第4電磁弁21、第3逆止弁22、
第4逆止弁23で構成され、第4電磁弁21は気液セパ
レータ13上部と受液器20の上部を接続する蒸気導入
管24に配設され、第3逆止弁22は受液器20の底部
と気液セパレータ13との間に配設され、第4逆止弁2
3の出口側を受液器20の上部に入口側を第2絞り機構
5と室内熱交換器6を接続する冷媒配管25より分岐し
た配管26に接続する。気液セパレータ13の出口ガス
管27は第2逆止弁28を介して第1逆止弁10と四方
弁2の間の冷媒配管29と接続される。蒸気導入管24
と冷媒加熱器には配管30で接続され、この配管30と
第1電磁弁16が接続される。また、第2電磁弁17は
液戻り管19に接続される。31は第3電磁弁で圧縮機
1の吐出管11と吸入管32の間に配したバイパス管3
3に配設される。34は圧縮機1の下部に設けられた圧
縮機加熱用ヒータで、圧縮機1の温度を検知する温度検
知手段35の検知温度により設定温度に制御される。3
6は圧縮機1の運転電流検知部、37は運転制御部で、
第1の電流比較部38、第1タイマ39、第2タイマ4
0、カウンタ41、圧縮機駆動制御部42、暖冷運転制
御部43、異常表示制御部44、第2の電流値比較部4
5、電磁弁駆動制御部46を有し、圧縮機1の運転電流
検知部36の信号を受け、第1の電流値比較部38であ
らかじめ設定された第1の所定値(圧縮機通常最高運転
電流値以上でロック電流値以下、例えば、定格750W
出力圧縮機で定格電圧100Vの場合20A前後)と比
較し、圧縮機運転電流値が第1の所定値以上の場合、第
1タイマ39がタイムカウントをスタートし、第1タイ
マ39で設定された第1の設定時間の間圧縮機運転電流
値が所定電流値以上を継続したら、圧縮機駆動制御部4
2により圧縮機1の運転を一旦停止し、カウンタ41に
よりカウントし、第2タイマ40により圧縮機運転停止
後の時間を第2の設定時間カウントし、第2の設定時間
経過したら圧縮機駆動制御部42により圧縮機1の再始
動を行ない、上記動作を所定回数カウンタ41でカウン
トしたら暖冷運転制御部43により暖冷運転を全運転停
止を行ない、異常表示制御部44により異常表示を行な
う。また、冷房運転モード時は、上記制御に加え、第2
の電流値比較部45であらかじめ設定された第2の所定
値(圧縮機の通常最低運転電流以下で限りなく0に近い
値)と比較し、圧縮機運転電流値が第2の所定値以上の
時には第1絞り機構4の通路を開閉する第1電磁弁16
と第2絞り機構5の通路を開閉する第2電磁弁17を開
とし、第3電磁弁31を閉とし、圧縮機運転電流値が上
記第2の所定値以下の時には第1電磁弁16と第2電磁
弁17を閉とし、第3電磁弁31を開とする。
FIG. 1 shows a system block diagram of an embodiment of the present invention. In FIG. 1, 1 is a compressor, 2 is a four-way valve,
3 is an outdoor heat exchanger, 4 is a first throttle mechanism, 5 is a second throttle mechanism, 6 is an indoor heat exchanger, and 7 is an accumulator, which are sequentially connected. 8 is a blower for the outdoor heat exchanger 3, 9 is a blower for the indoor heat exchanger 6, and 10 is a first check valve, which is arranged between the discharge pipe 11 of the compressor 1 and the four-way valve 2. First diaphragm mechanism 4
The refrigerant circuit block 15 having the refrigerant heater 12, the gas-liquid separator 13, and the refrigerant conveying means 14 is disposed between the second throttle mechanism 5 and the second throttle mechanism 5, and the refrigerant circuit block 15 includes the first solenoid valve 16
It is connected to the first throttle mechanism 4 via the, and is connected to the second throttle mechanism 5 via the second solenoid valve 17. Gas-liquid separator 13
Is provided above the heater 12 and is connected in a loop by a gas discharge pipe 18 and a liquid return pipe 19. The refrigerant transfer means 14 includes a liquid receiver 20, a fourth solenoid valve 21, a third check valve 22,
A fourth check valve 23 is provided, the fourth electromagnetic valve 21 is arranged in a vapor introducing pipe 24 that connects the upper part of the gas-liquid separator 13 and the upper part of the liquid receiver 20, and the third check valve 22 is the liquid receiver. 20 is disposed between the bottom portion of 20 and the gas-liquid separator 13, and the fourth check valve 2
The outlet side of 3 is connected to the upper part of the liquid receiver 20, and the inlet side is connected to a pipe 26 branched from a refrigerant pipe 25 connecting the second throttle mechanism 5 and the indoor heat exchanger 6. The outlet gas pipe 27 of the gas-liquid separator 13 is connected to the refrigerant pipe 29 between the first check valve 10 and the four-way valve 2 via the second check valve 28. Steam inlet pipe 24
Is connected to the refrigerant heater by a pipe 30, and the pipe 30 and the first solenoid valve 16 are connected. Further, the second solenoid valve 17 is connected to the liquid return pipe 19. Reference numeral 31 denotes a third solenoid valve, which is a bypass pipe 3 arranged between the discharge pipe 11 and the suction pipe 32 of the compressor 1.
3 are arranged. Reference numeral 34 denotes a compressor heating heater provided in the lower part of the compressor 1, which is controlled to a set temperature by a temperature detected by a temperature detecting means 35 which detects the temperature of the compressor 1. Three
6 is an operation current detection unit of the compressor 1, 37 is an operation control unit,
First current comparison unit 38, first timer 39, second timer 4
0, counter 41, compressor drive control unit 42, warming / cooling operation control unit 43, abnormality display control unit 44, second current value comparison unit 4
5. Having a solenoid valve drive control unit 46, receiving a signal from the operating current detection unit 36 of the compressor 1, a first predetermined value preset by the first current value comparison unit 38 (compressor normal maximum operation) Above the current value but below the lock current value, for example, rated 750W
If the compressor operating current value is equal to or higher than the first predetermined value, the first timer 39 starts the time count and is set by the first timer 39. When the compressor operating current value continues to be equal to or more than the predetermined current value for the first set time, the compressor drive control unit 4
2, the operation of the compressor 1 is temporarily stopped, the counter 41 counts, the time after the compressor operation is stopped is counted by the second timer 40 for a second set time, and the compressor drive control is performed when the second set time elapses. When the compressor 1 is restarted by the section 42 and the above operation is counted by the counter 41 a predetermined number of times, the warming / cooling operation control section 43 stops all the warming / cooling operations, and the abnormality display control section 44 displays an abnormality. In addition, in the cooling operation mode, in addition to the above control, the second
Is compared with a second predetermined value (a value that is not more than the normal minimum operating current of the compressor and is as close to 0 as possible) preset by the current value comparing unit 45 of Sometimes the first solenoid valve 16 that opens and closes the passage of the first throttle mechanism 4
And the second solenoid valve 17 for opening and closing the passage of the second throttle mechanism 5 is opened, the third solenoid valve 31 is closed, and when the compressor operating current value is equal to or less than the second predetermined value, the first solenoid valve 16 and The second solenoid valve 17 is closed and the third solenoid valve 31 is opened.

【0012】上記制御構成により、暖房運転開始のスイ
ッチがONされると、室外熱交換器3内の冷媒を室内熱
交換器6へ汲み上げるためのポンプダウン運転として圧
縮機1が所定時間運転される制御指令が出され、圧縮機
1が運転スタートする。通常正常に圧縮機1が起動する
場合は大電流の突入電流がごく短時間流れ圧縮機の回転
によりすぐに通常運転電流値となるため、上記所定電流
値以上が第1の所定時間以上継続することがなく、圧縮
機1は所定のポンプダウン時間連続運転する。しかし圧
縮機吐出吸入の圧力バランス不足とか圧縮機内への多量
の冷媒寝込みとかで圧縮機起動負荷が大きすぎて、圧縮
機1への電源投入が行なわれてもモータのトルク不足の
ために圧縮機1が回転できずに、電流値比較部38で設
定された所定値以上の大電流のロック電流が継続して流
れ、第1タイマ39で設定された第1の設定時間経過し
たら圧縮機駆動制御部42により圧縮機1への電源をO
FFする。電流検知により圧縮機1がOFFされた回数
をカウンタ41によりカウントし、回数が所定回数未満
の時は第2タイマの第2の設定時間経過後圧縮機駆動制
御部42により圧縮機1を再始動させる。カウント回数
が所定回数に達したら暖冷運転制御部43により暖房運
転の全停止を行ない、異常表示制御部44により異常表
示が行なわれる。
With the above control configuration, when the heating operation start switch is turned on, the compressor 1 is operated for a predetermined time as a pump down operation for pumping up the refrigerant in the outdoor heat exchanger 3 to the indoor heat exchanger 6. A control command is issued and the compressor 1 starts operation. When the compressor 1 normally starts up normally, a large current inrush current flows for a very short time, and the normal operating current value is immediately reached due to the rotation of the compressor. Therefore, the predetermined current value or more continues for the first predetermined time or more. Therefore, the compressor 1 continuously operates for a predetermined pump down time. However, the compressor starting load is too large due to insufficient pressure balance of the compressor discharge suction or a large amount of refrigerant stagnation in the compressor, and even if the power of the compressor 1 is turned on, the torque of the motor is insufficient and the compressor is still insufficient. 1 cannot rotate, a large current lock current of a predetermined value or more set by the current value comparison unit 38 continues to flow, and the compressor drive control is performed when the first set time set by the first timer 39 elapses. The power to the compressor 1 is turned on by the section 42.
FF. The counter 41 counts the number of times the compressor 1 is turned off by the current detection. When the number is less than the predetermined number, the compressor drive control unit 42 restarts the compressor 1 after the second set time of the second timer has elapsed. Let When the number of counts reaches a predetermined number, the heating / cooling operation control unit 43 completely stops the heating operation, and the abnormality display control unit 44 displays an abnormality.

【0013】上記のごとく、圧縮機運転不良の時に電流
検知と第1タイマ39によって圧縮機通電をOFFし、
カウンタ41と第2タイマ40により圧縮機運転の再ト
ライ及び全運転停止を行なわせることにより、圧縮機モ
ータへの過電流の連続及び断続の無限運転を行なわせな
いため、圧縮機巻線の異常温度上昇の防止を行なう効果
があり、また、全運転停止を行なわせることで、ポンプ
ダウン運転不能で冷媒回収のできないまゝ冷媒加熱運転
に入ることを防止するため冷媒不足による冷媒加熱器1
2の異常温度上昇防止が可能となり冷媒加熱器の耐久性
向上に大きな効果を有する。冷房運転時においても上記
同様で圧縮機の連続および断続の無限運転を行なわせな
いために、圧縮機の保護として大きな効果を有する。上
記第1の設定時間と第2の設定時間を所定回数繰り返え
した総時間は、暖房時のポンプダウン運転時間よりも十
分短かく設定しておく。また、冷房運転中は第2の電流
値比較部45での判定による制御も加える。通常の運転
中は圧縮機運転電流値は第2の所定値以上であるため、
第1電磁弁16と第2電磁弁17は開となっており通常
の冷房運転を行なう。例えば、過負荷継電器が作動し、
過負荷継電器の接点が開となり圧縮機1の運転が停止さ
れると、圧縮機電流値が0となり、運転電流検知部36
の電流値は0となり、第2の電流値比較部45により設
定された第2の所定値以下であることを判定し、電磁弁
駆動制御部46により第1電磁弁16と第2電磁弁17
を閉とし、第3電磁弁31を開とする。このことにより
冷房運転中高圧であった室外熱交換器3は四方弁2と第
1電磁弁16により他の冷媒回路部と絶縁され、中間圧
部であった冷媒加熱器12、気液セパレータ13、冷媒
搬送手段14を有する冷媒回路ブロック15は第1電磁
弁16、第2電磁弁17、四方弁2、第1逆止弁10、
第4逆止弁23により高圧部、低圧部と絶縁され第3電
磁弁31が開くことで圧縮機1の吐出管11と吸入管3
2が導通される。したがって、冷房運転中に過負荷継電
器38が作動して圧縮機1が停止した時でも圧縮機1の
吐出吸入の圧力差を0に保つことにより過負荷継電器3
8が復帰して圧縮機1が再運転する時に吐出吸入の圧力
差による負荷がまったくないために始動が確実になる。
また、圧縮機1の停止中に高圧部、中圧部の高温の冷媒
が低圧部で温度の低い室内熱交換器6へ流入することが
なく、圧縮機1が再運転する時の冷風立ち上げが早く、
サイクルの安定も早く、さらに圧縮機再運転時に多量の
液冷媒が圧縮機1の吸入側へ流入することもないため、
液圧縮現象も防止できる。
As described above, when the operation of the compressor is defective, the current detection and the first timer 39 turn off the energization of the compressor,
By causing the counter 41 and the second timer 40 to retry the compressor operation and stop all operations, the continuous and intermittent operation of the overcurrent to the compressor motor is not performed, and the compressor winding is abnormal. The refrigerant heater 1 has an effect of preventing a temperature rise, and by stopping all operations, the refrigerant heater 1 due to insufficient refrigerant is prevented in order to prevent the refrigerant heating operation from being started until the refrigerant cannot be recovered because the pump down operation cannot be performed.
It is possible to prevent the abnormal temperature rise of No. 2, which has a great effect on improving the durability of the refrigerant heater. Even during the cooling operation, the continuous and intermittent infinite operation of the compressor is not performed in the same manner as described above, so that it has a great effect as protection of the compressor. The total time obtained by repeating the first set time and the second set time a predetermined number of times is set sufficiently shorter than the pump down operation time during heating. In addition, during the cooling operation, control based on the determination by the second current value comparison unit 45 is also added. During normal operation, the compressor operating current value is greater than or equal to the second predetermined value,
The first solenoid valve 16 and the second solenoid valve 17 are open to perform normal cooling operation. For example, the overload relay is activated,
When the contact of the overload relay is opened and the operation of the compressor 1 is stopped, the compressor current value becomes 0, and the operating current detection unit 36
Of the first solenoid valve 16 and the second solenoid valve 17 are determined by the solenoid valve drive control unit 46 to be 0 or less than the second predetermined value set by the second current value comparison unit 45.
Is closed and the third solenoid valve 31 is opened. As a result, the outdoor heat exchanger 3, which was at a high pressure during the cooling operation, is insulated from other refrigerant circuit parts by the four-way valve 2 and the first solenoid valve 16, and the refrigerant heater 12 and the gas-liquid separator 13 which are intermediate pressure parts. The refrigerant circuit block 15 having the refrigerant transfer means 14 includes a first solenoid valve 16, a second solenoid valve 17, a four-way valve 2, a first check valve 10,
The fourth check valve 23 insulates the high pressure part and the low pressure part from each other and opens the third solenoid valve 31 to open the discharge pipe 11 and the suction pipe 3 of the compressor 1.
2 is conducted. Therefore, even when the overload relay 38 is activated during the cooling operation and the compressor 1 is stopped, the pressure difference between the discharge and suction of the compressor 1 is kept at 0 to thereby prevent the overload relay 3 from operating.
When the compressor 8 is restored and the compressor 1 is restarted, there is no load due to the pressure difference between the discharge and suction, so that the start is reliable.
Further, the high-temperature refrigerant in the high-pressure portion and the medium-pressure portion does not flow into the indoor heat exchanger 6 having a low temperature in the low-pressure portion while the compressor 1 is stopped, and the cold air is started when the compressor 1 is restarted. Is early,
The cycle is stable quickly, and a large amount of liquid refrigerant does not flow into the suction side of the compressor 1 when the compressor is restarted.
The liquid compression phenomenon can also be prevented.

【0014】また、冷房運転中のルームサーモON/O
FF、冷房運転ON/OFFの時には圧縮機運転スイッ
チ1Sが開閉して圧縮機1の運転のON/OFFを行な
わせるが、上記動作と同じように、圧縮機運転電流検知
回路の電流検知により同じ作用効果を有する。
Room thermo ON / O during cooling operation
When the FF and the cooling operation are ON / OFF, the compressor operation switch 1S is opened / closed to turn on / off the operation of the compressor 1. However, like the above operation, the same is detected by the current detection of the compressor operation current detection circuit. Has an effect.

【0015】以上の処理の流れをマイクロコンピュータ
で実施した場合のフローチャートを図2に示す。
FIG. 2 shows a flow chart when the above-described processing flow is carried out by a microcomputer.

【0016】[0016]

【発明の効果】以上のように本発明の暖冷房機によれば
次の効果が得られる。 (1)圧縮機の運転電流検知部と過電流検知用の第1の
電流値比較部と圧縮機停止検知用の第2の電流値比較部
とを有する制御回路構成とすることで、圧縮機動作異常
の過電流検知と圧縮機停止検知を行なうのに電流検知部
17で可能となり部品点数を少なくできるコスト的効果
がある。 (2)圧縮機運転電流検知部を設け、第1の電流比較部
により圧縮機運転電流値が所定値以上を第1の設定時間
継続したら圧縮機を一旦停止し、圧縮機停止後第2の設
定時間後圧縮機の再始動を行ない、上記同じ動作を所定
回数繰り返えしたら、全運転停止を行なう運転制御部を
構成することにより、圧縮機吐出吸入圧力バランス不足
とか圧縮機内への多量の冷媒寝込み等で圧縮機起動不良
による圧縮機への過電流の継続又は断続の印加を最低限
に抑制することで圧縮機モータ巻線の異常昇温を防止
し、巻線劣化、断線等の損傷を未然に防止できる。 (3)また、暖房運転開始時のポンプダウン運転時にお
いて圧縮機起動不良により冷媒回収できない事態が生じ
ても、所定のポンプダウン時間以内に暖冷運転制御部に
より暖房運転全停止を行なわせることで、冷媒加熱運転
に入ることを防止し、冷媒不足による冷媒加熱器の異常
温度上昇防止が可能となり冷媒加熱器の耐久性向上に大
きな効果を有する。 (4)冷房運転時に圧縮機運転電流検知回路による運転
電流値が所定時以上の時絞り機構の通路を開閉する電磁
弁(第1電磁弁、第2電磁弁)を開とし、圧縮機の運転
電流値が所定値以下の時上記電磁弁を閉とすることで、
圧縮機の過負荷継電器が作動した時又は冷房停止時とも
に冷房運転時と同じ冷媒分布状態を保持することができ
ることで、過負荷継電器が復帰した圧縮機再始動時又は
冷房運転再開時にサイクルの安定が早く冷風立ち上げが
早い。また室内熱交換器への冷媒の多量の溜り込みがな
いため、圧縮機再始動時に液圧縮の発生を防止できる。
As described above, according to the heating / cooling machine of the present invention, the following effects can be obtained. (1) A compressor having a control circuit configuration including a compressor operating current detection unit, an overcurrent detection first current value comparison unit, and a compressor stop detection second current value comparison unit. The current detection unit 17 can perform overcurrent detection of the operation abnormality and the compressor stop detection, which has a cost effect of reducing the number of parts. (2) A compressor operating current detection unit is provided, and when the compressor operating current value exceeds the predetermined value by the first current comparison unit for the first set time, the compressor is temporarily stopped, and then the second current after the compressor is stopped. When the compressor is restarted after the set time and the same operation as above is repeated a predetermined number of times, the operation control unit is configured to stop all the operations, so that the compressor discharge suction pressure balance is insufficient or a large amount of air enters the compressor. Abnormal temperature rise of the compressor motor winding is prevented by minimizing the application of continuous or intermittent overcurrent to the compressor due to defective compressor startup due to refrigerant stagnation, etc., and winding deterioration, disconnection, etc. damage Can be prevented. (3) In addition, even if the refrigerant cannot be collected due to a defective compressor start-up during the pump-down operation at the start of the heating operation, the heating / cooling operation control unit should completely stop the heating operation within the predetermined pump-down time. Thus, it is possible to prevent the refrigerant heating operation from being started, and it is possible to prevent an abnormal temperature rise of the refrigerant heater due to the shortage of the refrigerant, which has a great effect on improving the durability of the refrigerant heater. (4) When the operation current value by the compressor operation current detection circuit during the cooling operation is more than a predetermined time, the solenoid valve (first solenoid valve, second solenoid valve) that opens and closes the passage of the throttle mechanism is opened to operate the compressor. By closing the solenoid valve when the current value is below the specified value,
Since the same refrigerant distribution state as during cooling operation can be maintained both when the compressor overload relay is activated or when cooling is stopped, the cycle is stable when the compressor restarts after the overload relay is restored or when cooling operation is restarted. The cold air starts up quickly. In addition, since a large amount of refrigerant does not accumulate in the indoor heat exchanger, it is possible to prevent liquid compression from occurring when the compressor is restarted.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例における暖冷房機のシステム
ブロック図
FIG. 1 is a system block diagram of a heating / cooling machine according to an embodiment of the present invention.

【図2】本発明に用いるマイクロコンピュータの処理の
流れを示すフローチャート
FIG. 2 is a flowchart showing a flow of processing of a microcomputer used in the present invention.

【図3】従来の暖冷房機の構成を説明するシステムブロ
ック図
FIG. 3 is a system block diagram illustrating the configuration of a conventional heating / cooling machine.

【図4】従来の電気回路図FIG. 4 is a conventional electric circuit diagram.

【符号の説明】[Explanation of symbols]

1 圧縮機 2 四方弁 3 室外熱交換器 4 第1絞り機構 5 第2絞り機構 6 室内熱交換器 12 冷媒加熱器 14 冷媒搬送手段 16 第1電磁弁 17 第2電磁弁 36 運転電流検知部 37 運転制御部 38 第1の電流値比較部 39 第1タイマ 40 第2タイマ 41 カウンタ 42 圧縮機駆動制御部 43 暖冷運転制御部 45 第2の電流値比較部 46 電磁弁駆動制御部 DESCRIPTION OF SYMBOLS 1 Compressor 2 Four-way valve 3 Outdoor heat exchanger 4 1st throttling mechanism 5 2nd throttling mechanism 6 Indoor heat exchanger 12 Refrigerant heater 14 Refrigerant conveyance means 16 1st solenoid valve 17 2nd solenoid valve 36 Operating current detection part 37 Operation control unit 38 First current value comparison unit 39 First timer 40 Second timer 41 Counter 42 Compressor drive control unit 43 Warm / cool operation control unit 45 Second current value comparison unit 46 Electromagnetic valve drive control unit

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】冷房時は圧縮機、室外熱交換器、絞り機
構、室内熱交換器、上記絞り機構の通路を開閉する電磁
弁により冷媒回路を構成し、暖房時は圧縮機以外の冷媒
搬送手段、冷媒加熱器、前記室内熱交換器とにより冷媒
回路を構成した暖冷房機において、前記圧縮機の運転電
流を検知する運転電流検知部を設け、この運転電流検知
部からの信号が入力される過電流検知用の第1の電流値
比較部と圧縮機停止検知用の第2の電流値比較部とを有
し、前記運転電流検知部からの信号にもとづき前記圧縮
機の運転を制御する制御部を備えた暖冷房機。
1. A refrigerant circuit is constituted by a compressor, an outdoor heat exchanger, a throttling mechanism, an indoor heat exchanger, and an electromagnetic valve that opens and closes a passage of the throttling mechanism at the time of cooling, and at the time of heating, a refrigerant transport other than the compressor is carried out. In the heating / cooling machine that forms a refrigerant circuit with the means, the refrigerant heater, and the indoor heat exchanger, an operating current detection unit that detects the operating current of the compressor is provided, and a signal from this operation current detection unit is input. Has a first current value comparison unit for detecting overcurrent and a second current value comparison unit for detection of compressor stop, and controls the operation of the compressor based on a signal from the operation current detection unit. A heating / cooling machine equipped with a control unit.
【請求項2】制御部は、第1の電流値比較部により圧縮
機電流値が第1の所定値以上を第1の設定時間継続した
ら圧縮機を一旦停止し、圧縮機停止後第2の所定時間経
過後圧縮機の再始動を行ない、上記同じ動作を所定回数
繰り返えしたら全運転停止を行ない、第2の電流値比較
部により冷房運転時のみ圧縮機電流値が第2の所定値以
上の時絞り機構の通路を開閉する電磁弁を開とし、第2
の所定値以下の時上記電磁弁を閉とする構成とした請求
項1記載の暖冷房機。
2. The control unit temporarily stops the compressor when the first current value comparison unit keeps the compressor current value at or above a first predetermined value for a first set time, and then stops the compressor for a second time. After the lapse of a predetermined time, the compressor is restarted, and when the same operation is repeated a predetermined number of times, the entire operation is stopped, and the second current value comparison unit causes the compressor current value to be the second predetermined value only during the cooling operation. When the solenoid valve that opens and closes the passage of the throttle mechanism is opened,
The heating / cooling machine according to claim 1, wherein the solenoid valve is closed when the value is less than a predetermined value.
JP4190452A 1992-07-17 1992-07-17 Heating and cooling machine Expired - Fee Related JP2914020B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4190452A JP2914020B2 (en) 1992-07-17 1992-07-17 Heating and cooling machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4190452A JP2914020B2 (en) 1992-07-17 1992-07-17 Heating and cooling machine

Publications (2)

Publication Number Publication Date
JPH0634224A true JPH0634224A (en) 1994-02-08
JP2914020B2 JP2914020B2 (en) 1999-06-28

Family

ID=16258368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4190452A Expired - Fee Related JP2914020B2 (en) 1992-07-17 1992-07-17 Heating and cooling machine

Country Status (1)

Country Link
JP (1) JP2914020B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100509017B1 (en) * 1999-10-16 2005-08-18 주식회사 엘지이아이 Inverter air conditioner power device protection method
JP2007212023A (en) * 2006-02-08 2007-08-23 Matsushita Electric Ind Co Ltd Air conditioning system
KR100795604B1 (en) * 2006-11-09 2008-01-21 삼성전자주식회사 Air conditioner and control method thereof
JP2013002719A (en) * 2011-06-15 2013-01-07 Mitsubishi Heavy Ind Ltd Air conditioner
WO2019155527A1 (en) * 2018-02-06 2019-08-15 三菱電機株式会社 Inverter control device
WO2021095237A1 (en) 2019-11-15 2021-05-20 三菱電機株式会社 Cold heat source unit and refrigeration circuit device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100509017B1 (en) * 1999-10-16 2005-08-18 주식회사 엘지이아이 Inverter air conditioner power device protection method
JP2007212023A (en) * 2006-02-08 2007-08-23 Matsushita Electric Ind Co Ltd Air conditioning system
KR100795604B1 (en) * 2006-11-09 2008-01-21 삼성전자주식회사 Air conditioner and control method thereof
JP2013002719A (en) * 2011-06-15 2013-01-07 Mitsubishi Heavy Ind Ltd Air conditioner
WO2019155527A1 (en) * 2018-02-06 2019-08-15 三菱電機株式会社 Inverter control device
JPWO2019155527A1 (en) * 2018-02-06 2020-09-17 三菱電機株式会社 Inverter controller
WO2021095237A1 (en) 2019-11-15 2021-05-20 三菱電機株式会社 Cold heat source unit and refrigeration circuit device
JPWO2021095237A1 (en) * 2019-11-15 2021-05-20
EP4060250A4 (en) * 2019-11-15 2022-10-26 Mitsubishi Electric Corporation Cold heat source unit and refrigeration circuit device

Also Published As

Publication number Publication date
JP2914020B2 (en) 1999-06-28

Similar Documents

Publication Publication Date Title
KR950014469B1 (en) Multi-system air-conditioning machine in which outdoor unit isconnected to a plurality of indoor units
KR100505231B1 (en) A compressor driving method of air-conditioner having multi-compressor
JPH04208368A (en) Air conditioner
GB2227577A (en) Air conditioning cooling-cum-heating system
JP2002106980A (en) Refrigerating device
JP2914020B2 (en) Heating and cooling machine
JPH04251158A (en) Operation control device for refrigerating device
JP2003139418A (en) Air conditioner
JPH09170828A (en) Oil recovery controller of multiple type air conditioner
JP3175706B2 (en) Binary refrigeration equipment
JP3290251B2 (en) Air conditioner
JPH07120091A (en) Air conditioner
JP4499863B2 (en) Multi-type air conditioner
JP3284588B2 (en) Operation control device for refrigeration equipment
JP2500520B2 (en) Refrigerator protection device
JPH11264620A (en) Expansion valve controller of multiple air conditioner
JP3087306B2 (en) Heating and cooling machine
JP2910408B2 (en) Heating and cooling machine
JP2669069B2 (en) Heating and cooling machine
JPH0828982A (en) Air conditioner
JPH10132406A (en) Refrigerating system
JP2867794B2 (en) Heating and cooling machine
JPH0233110Y2 (en)
JPH0688647A (en) Operation controler for refrigeration device
JP2765729B2 (en) Heating and cooling machine

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees