JP4487492B2 - Treatment method for fluorine-containing wastewater - Google Patents

Treatment method for fluorine-containing wastewater Download PDF

Info

Publication number
JP4487492B2
JP4487492B2 JP2003080542A JP2003080542A JP4487492B2 JP 4487492 B2 JP4487492 B2 JP 4487492B2 JP 2003080542 A JP2003080542 A JP 2003080542A JP 2003080542 A JP2003080542 A JP 2003080542A JP 4487492 B2 JP4487492 B2 JP 4487492B2
Authority
JP
Japan
Prior art keywords
reaction
fluorine
added
excess
caf
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003080542A
Other languages
Japanese (ja)
Other versions
JP2004283759A (en
Inventor
勇 加藤
謙太朗 桃井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2003080542A priority Critical patent/JP4487492B2/en
Publication of JP2004283759A publication Critical patent/JP2004283759A/en
Application granted granted Critical
Publication of JP4487492B2 publication Critical patent/JP4487492B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Removal Of Specific Substances (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はフッ素含有排水にカルシウム(Ca)塩として水酸化カルシウム(Ca(OH))を添加してフッ素をフッ化カルシウム(CaF)として固液分離する方法に係り、特に、排水中のフッ素に対してCa(OH)を有効に作用させて、高水質の処理水を得るフッ素含有排水の処理方法に関する。
【0002】
【従来の技術】
半導体部品製造におけるシリコンウェハ製造工程から排出されるフッ素含有廃水、ステンレス鋼板製造工程から排出される酸洗廃水、アルミニウム表面処理廃水、フッ酸製造廃水、肥料製造廃水、ゴミ焼却廃水等のフッ素含有排水は、一般に、次のような二段処理で処理されている。即ち、まず、一段目でフッ素含有排水にCa塩を添加して排水中のフッ素の大部分をCaFとして沈殿分離し、次に二段目でアルミニウム(Al)塩を添加して残留するフッ素を共沈させて分離する二段沈殿法、或いは、二段目でキレート樹脂で残留フッ素を吸着除去する方法が採用されている。
【0003】
このうち、一段目のCa塩によるCaFの沈殿除去は、図3に示す如く、反応中和槽11において、原水に一定量のCa(OH)又は鉱酸を添加し、これに対して鉱酸又はCa(OH)でpH6〜8に調整する方法と、図4に示す如く、反応槽12で原水のFに対して過剰となるようにCa(OH)を添加し、その後中和槽13で鉱酸を添加してpH6〜8に調整する方法とがある。図3,4のいずれの方法においても、Ca(OH)及び鉱酸を添加してCaFを析出させた後は、凝集槽14で高分子凝集剤(ポリマー)を添加して凝集処理し、その後沈殿槽15で固液分離して処理水を得る。
【0004】
図3,4のいずれの方法でも、処理水をそのまま放流することができるように、鉱酸でpH6〜8にpH調整している。このpH調整のための鉱酸としては、通常、操作性やコストの面から硫酸(HSO)が使用されている。
【0005】
また、図3,4のいずれの方法でも、次の理由により原水中のFに対してCa(OH)が過剰添加されている。即ち、フッ素含有排水中には、通常、フッ酸(HF)以外に、硝酸(HNO)、塩酸(HCl)、硫酸(HSO)、リン酸(HPO)などの1種又は2種以上が含まれており、これらはCa(OH)で中和することにより、以下のように反応する。
【0006】
2HF+Ca(OH)→CaF(沈殿)+2HO ……(1)
2HNO+Ca(OH)→Ca2++2NO3−+2HO ……(2)
2HCl+Ca(OH)→Ca2++2Cl+2HO ……(3)
SO+Ca(OH)→Ca2++SO 2−+2HO ……(4)
2HPO+3Ca(OH)→Ca(PO(沈殿)+3HO……(5)
【0007】
従って、pH中性の時点で原水中のFをCaFとして沈殿させるためのCa(OH)は確保されている。
【0008】
しかし、上記(1)式の反応で原水中のフッ素含有排水をCaFとして完全に沈殿させるためには、溶解性のCa2+を系内に200〜300mg/L程度存在させる必要があると考えられていた。この過剰分のCa2+を確保するために、従来においては、原水中のHCl,HNO,HSO等の共存量が少ない場合には、図3に示す如く、原水に鉱酸として安価なHSOを予め添加するかCa(OH)と共に添加し、これをCa(OH)で中和する。即ち、図3の中和槽11へのHSO添加分に対応するCa(OH)が200〜300mg/Lの過剰のCa2+に相当するようにしていた。また、図4に示す方法では、反応槽14でCa(OH)を過剰添加してその後HSOで中和することにより、200〜300mg/Lの過剰のCa2+を確保している。
【0009】
なお、従来において、Ca(OH)の添加量の決定方法としては、原水の水質変動の範囲において、F濃度が最大となる濃度に対応して所定のCa(OH)添加量を決定して定量注入する方法と、Ca(OH)添加後のpHが11〜12となるようにCa(OH)添加量を制御する方法とがあるが、このうち、原水の水質変動にかかわらず、Ca(OH)を定量注入する方法は、常にCa(OH)が過剰注入されることとなり、薬注量の無駄が発生する。従って、Ca(OH)はpHに基いて薬注制御する方法が好ましい。
【0010】
これら、図3,4の方法は、一般的にはその処理水の水質に大差はないが、図4に示す方法で処理した方が良好な水質の処理水が得られる場合がある。この水質の差と原水の水質との関係は明確には解明されていないが、原水のF濃度が数百ppm以下の場合に、図4に示す方法の方が図3に示す方法よりも良好な水質の処理水が得られる傾向にある。
【0011】
この処理水の水質の差が起こる原因は定かではないが、図3に示す如く、鉱酸とCa(OH)を同時に添加してpHを6〜8に調整する方法では、添加したCa(OH)が急速に溶解してCa2+イオンになると同時にFイオンと反応し、CaFの沈殿が生成するが、系内に沈殿の核となる懸濁物質が存在しないため、一部溶解性のコロイダルCaFが生成し、このコロイダルCaFのために処理水の水質が悪くなるためと考えられる。
【0012】
一方、図4に示す如く、Ca(OH)を先に添加する方法では、Ca(OH)の添加によりアルカリ性となるためCa(OH)の溶解速度が遅くなり、溶解過程のCa(OH)粒子の表面にCaFが析出する。そして、析出したCaFが結晶の核となって逐次初期析出CaFの表面に新たなCaFが析出することで、溶解性のコロイダルCaFの発生を制御することができ、このために、処理水質が良好なものになるものと推定される。
【0013】
このようなことから、Ca(OH)によるフッ素含有排水の処理法としては、図4に示す如く、Ca(OH)を過剰添加し、その際、反応槽12におけるpHが11〜12となるように薬注制御し、その後中和槽13でHSOにより中和する方法が有望であると考えられる。
【0014】
ところで、フッ素含有排水については、その排水基準が平成13年度にF濃度15mg/Lから8mg/Lに強化されたことに伴い、前述のフッ素含有排水の二段処理における一段目におけるCaFの沈殿除去を効果的に行い、二段目におけるフッ素含有排水負荷をできるかぎり軽減する処理システムの開発が望まれている。
【0015】
【発明が解決しようとする課題】
従って、本発明はフッ素含有排水にCa(OH)を添加して排水中のフッ素をCaFとして沈殿除去するに当たり、Ca(OH)を有効に作用させてフッ素を効率的に除去するフッ素含有排水の処理方法を提供することを目的とする。
【0016】
【課題を解決するための手段】
請求項1のフッ素含有排水の処理方法は、アンモニアを含むフッ素含有排水に水酸化カルシウムを添加してフッ化カルシウムを生成させ、これを固液分離して処理する方法において、該排水に水酸化カルシウムを添加してpHを10〜11にする第1反応工程と、該第1反応工程の反応液に従来より少ない過剰分のカルシウムイオン120〜250mg/Lに相当する水酸化カルシウム220〜460mg/Lを注入すると共に、塩酸を添加してpHを5.8〜8.6にする第2反応兼中和工程と、該第2反応兼中和工程の液を固液分離して処理水を得る工程とを有することを特徴とする。
【0017】
請求項2のフッ素含有排水の処理方法は、アンモニアを含むフッ素含有排水に水酸化カルシウムを添加してフッ化カルシウムを生成させ、これを固液分離して処理する方法において、該排水に水酸化カルシウムを添加してpHを10〜11にする第1反応工程と、該第1反応工程の反応液に過剰分のカルシウムイオン120〜250mg/Lに相当する水酸化カルシウム220〜460mg/Lを注入する第2反応工程と、該第2反応工程の反応液に塩酸を添加してpHを5.8〜8.6にする中和工程と、該中和工程の液を固液分離して処理水を得る工程とを有することを特徴とする。
【0018】
なお、本発明において、過剰分のカルシウムイオン(Ca2+)とは、原水中のFをCaFとする場合に必要な理論Ca2+量に対して過剰分となるCa2+に相当し、従来法において、この過剰分のCa2+は前述の如く200〜300mg/Lが適当であるとされていた。
【0019】
本発明者らは、図4に示す従来法において、処理水の水質を向上させるべく、次のような検討を行った。
【0020】
即ち、図4に示す従来法においては、Ca(OH)の過剰添加のために、反応槽12におけるpHが11〜12、一般的には11.5となるようにCa(OH)の薬注制御が行われているが、pH11を超えるアルカリ性では、Ca(OH)と空気中の二酸化炭素(CO)とが反応して炭酸カルシウム(CaCO)が析出する傾向が著しくなる。そして、このCaCOスケールがpH計電極等に析出し、pH制御が困難になったり、煩雑なpH計の洗浄を頻繁に行う必要が生じる。また、高アルカリ側では、Ca(OH)の溶解が遅くなり、Ca(OH)注入量が多くなる傾向にある。従って、pH11以下での薬注制御が好ましい。
【0021】
ところで、原水中にアンモニアのようなpH緩衝性の化合物が存在した場合、薬注量に対するpH変化が緩慢となるため、pH制御に基く薬注制御が困難となるが、最近の半導体部品製造工場では、バッファードフッ酸と称されるエッチング力の弱いフッ酸が使用されている。このバッファードフッ酸には多量のフッ化アンモニウム(NHF)が含まれているが、NHFはpH中性であるため、前述のHNOやHCl等の酸のようにCa(OH)によりpH中性にするのみでは、原水中のFをCaFにするためのCa(OH)を確保し得ず、従って、過剰の溶解性Ca2+も確保し得ない場合がある。
【0022】
アンモニアの解離特性は、下記(6)式で示され、
pH9.2では NH/NH =1/1、
pH10.2では NH/NH =10/1、
pH10.5では NH/NH =15/1、
pH11では NH/NH =60/1
となり、pH10〜11の範囲で大部分のアンモニアはNHの形となる。
【0023】
NH+H⇔NH (pK=9.2) …(6)
このpH10〜11の範囲での状態を、NHFとCa(OH)との反応で表すと、下記(7),(8)式の通りである。
2NHF+Ca(OH)→CaF+2NHOH …(7)
NHOH⇔NH+HO …(8)
【0024】
上記(6),(7),(8)式より、NHFがNHになるpH、即ち、pH10〜11、好ましくはpH10.2〜10.5の範囲で制御することにより、NHFがCaFとなるCa(OH)が確保されること、そして、この状態から更に過剰のCa(OH)を添加すると、CaFを完全に沈殿させるための過剰の溶解性Ca2+を確保することができることが明らかである。
【0025】
このようなことから、本発明においては、原水にCa(OH)を添加してpH10〜11とし、その後、所定量の溶解性Ca2+が存在するように過剰分のCa(OH)を更に添加する。
【0026】
また、本発明者らの検討により、このように、Ca(OH)を添加した後の中和のための鉱酸としてHClを用いることにより、HSOを用いる場合に比べて、処理水の水質を大幅に向上させることができることが見出された。これは、HClとHSOとの中和機能に差異はないが、Ca2+とClの反応性と、Ca2+とSO 2−との反応性には次のように差異があることによる。
【0027】
即ち、HSOの添加で生成するCaSOの溶解度は約2000mg/Lであるが、溶解度以下のCa2+,SO 2−濃度でもCa2+とSO 2−は溶解状態で結合していると考えられ、分子状のCaSOとなっていると推察される。このため過剰のCa(OH)を添加してもCa2+はSO 2−と結合することにより、溶解性Ca2+としてCaFの沈殿に有効に作用しないものと考えられる。このことは、原水中のNaSO濃度が高いと、処理水のF濃度が高くなることからも裏付けられる。
【0028】
一方、HClの添加で生成するCaClはCa2+とClに解離しており、過剰添加されたCa(OH)のCa2+は溶解性Ca2+としてCaFの沈殿に有効に作用する。
【0029】
【発明の実施の形態】
以下に図面を参照して本発明のフッ素含有排水の処理方法の実施の形態を詳細に説明する。
【0030】
図1,2は本発明のフッ素含有排水の処理方法の実施の形態を示す系統図である。
【0031】
図1の方法では、原水を反応槽1に導入してCa(OH)をpH10〜11となるように添加して反応させた後、反応中和槽2において、過剰分のCa(OH)を添加すると共に、HClを添加してpH5.8〜8.6に中和する。この反応中和槽2の液は、次いで凝集槽4に導入してポリマーを添加して凝集処理した後、沈殿槽5で固液分離して処理水を得る。
【0032】
図2の方法では、原水を第1反応槽1Aに導入してCa(OH)をpH10〜11となるように添加して反応させた後、第2反応槽2Bにおいて更に過剰分のCa(OH)を添加して反応させ、その後中和槽3でHClを添加してpH5.8〜8.6に中和する。この中和槽3の液は、次いで凝集槽4に導入してポリマーを添加して凝集処理した後、沈殿槽5で固液分離して処理水を得る。
【0033】
本発明において、このように、Ca(OH)を2回に分けて分割添加する際に、前段におけるCa(OH)の添加でpHを10〜11に調整することは極めて重要であり、このpHが11を超えると、前述の如く、CaCOスケールの問題が生起する。また、このpHが10未満であればNHF由来のFをCaFとして十分に沈殿させることができなくなる。特に、この調整pHは10.2〜10.5とすることが好ましい。
【0034】
本発明においては、このように、pH10〜11となるようにCa(OH)を添加して反応させた後、更に過剰分のCa(OH)を添加する。この過剰分の添加は、従来においては、Ca2+として200〜300mg/Lが好ましいとされていたが、本発明においては、pH調整にHClを用いたことによる前述の効果から、この過剰分のCa2+は、200mg/Lよりも少なく、120mg/L程度でも処理水中のFを大幅に改善することができた。
【0035】
HClによる中和pHは、処理水の放流、或いは後段の処理の点から、pH5.8〜8.6、特に6.0〜7.5とすることが好ましい。
【0036】
各反応槽における反応時間は、CaFが十分に析出するような時間であれば良く、通常、図1の方法における反応槽1、反応中和槽2、図2の方法における第1反応槽、第2反応槽の滞留時間はいずれも20〜30分程度とするのが好ましい。
【0037】
なお、図1,2において、沈殿槽5の代りに膜分離装置や遠心分離装置を用いても良い。
【0038】
本発明の方法は、各種のフッ素含有排水に適用可能であるが、特にpH制御が困難なアンモニアを含有する排水、とりわけNHFを50mg/L以上含有する排水の処理に好適である。
【0039】
【実施例】
以下に比較例及び実施例を挙げて本発明をより具体的に説明する。
【0040】
なお、以下の実施例及び比較例においては、下記水質のアルミニウム表面処理工場排水を原水として処理した。
【0041】
[原水水質]
pH:6.8
SS:29mg/L
COD:6mg/L
F:160mg/L
SiO:22.4mg/L
PO−P:4.6mg/L
SO 2−:56mg/L
NH−N:55.4mg/L
【0042】
この原水に必要なCa2+は従来法では次の通り(1)(2)(3)の合計の約370mg/Lであり、Ca(OH)として約685mg/Lに相当する。なお、理論量は(1)(2)の合計の約177mg/LでありCa(OH)として約327mg/Lである。
【0043】
Fと当量分のCa2+=160×40/38=168mg/L …(1)
PO−Pと当量分のCa2+=4.6×40×3/(31×2)=9mg/L…(2)
過剰分のCa2+=200mg/L …(3)
【0044】
比較例1(実験No.1〜3)
図3の方法に準じて原水の処理を行った。
【0045】
原水にHSOを表1に示す量添加すると共に、Ca(OH)を表1に示す量添加してpHが6.5となるように添加して10分間反応させた後、反応液を濾紙(No.5A)で濾過し、濾液(処理水)の分析を行い、結果を表1に示した。
【0046】
【表1】

Figure 0004487492
【0047】
表1より、この方法では、Ca(OH)添加量が685mg/L以上となるNo.2,3でも、処理水の水質は殆ど改善されず、Ca(OH)の過剰添加を行っても良好な処理水は得られないことが分かる。
【0048】
比較例2(実験No.4〜6)
図4の方法に準じて原水の処理を行った。
【0049】
原水にCa(OH)を表2に示すpHとなるように添加して10分間反応させた後、pH6.5となるようにHSOを添加して10分間反応させた。反応液を濾紙(No.5A)で濾過し、濾液(処理水)の分析を行い、結果を表2に示した。
【0050】
【表2】
Figure 0004487492
【0051】
表2より明らかなように、この方法では、比較例1の場合よりも改善され、Ca(OH)の過剰添加で処理水F濃度は低減されるが、次の実施例には及ばない。
【0052】
実施例1(実験No.7〜9)
図1の方法に準じて原水の処理を行った。
【0053】
原水にpH10.2となるようにCa(OH)を添加して10分間反応させた。このときのCa(OH)添加量は310mg/Lであった。その後、表3に示す量のCa(OH)を添加すると同時にHCl(35%HCl)を添加してpH6.5に調整して10分間反応させた。
【0054】
このときの35%HCl添加量は表3に示す通りであった。この反応液を濾紙(No.5A)で濾過し、濾液(処理水)の分析を行い、結果を表3に示した。
【0055】
【表3】
Figure 0004487492
【0056】
表3より明らかなように、この方法では、Ca(OH)をpH10〜11となるように添加した後、過剰分のCa(OH)を添加することにより、良好な水質の処理水を得ることができる。
【0057】
なお、図2に示すフローに従って、第1反応槽及び第2反応槽で各々上記と同量のCa(OH)を添加しても、同様の結果が得られた。このとき、第2反応槽におけるpHは、過剰分Ca(OH)を160mg/L添加した場合は11.3、過剰分Ca(OH)を250mg/L添加した場合は11.6、過剰分Ca(OH)を500mg/L添加した場合は11.9であった。
【0058】
【発明の効果】
以上詳述した通り、本発明のフッ素含有排水の処理方法によれば、フッ素含有排水にCa(OH)を添加して排水中のフッ素をCaFとして沈殿除去するに当たり、Ca(OH)を有効に作用させてフッ素を効率的に除去することができ、これにより高水質処理水を得ることができる。
【図面の簡単な説明】
【図1】本発明のフッ素含有排水の処理方法の実施の形態を示す系統図である。
【図2】本発明のフッ素含有排水の処理方法の別の実施の形態を示す系統図である。
【図3】従来法を示す系統図である。
【図4】従来法を示す系統図である。
【符号の説明】
1 反応槽
1A 第1反応槽
1B 第2反応槽
2 反応中和槽
3 中和槽
4 凝集槽
5 沈殿槽[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for solid-liquid separation of fluorine as calcium fluoride (CaF 2 ) by adding calcium hydroxide (Ca (OH) 2 ) as calcium (Ca) salt to fluorine-containing waste water. The present invention relates to a method for treating fluorine-containing wastewater that effectively causes Ca (OH) 2 to act on fluorine to obtain high-quality treated water.
[0002]
[Prior art]
Fluorine-containing wastewater such as fluorine-containing wastewater discharged from the silicon wafer manufacturing process in semiconductor component manufacturing, pickling wastewater discharged from the stainless steel plate manufacturing process, aluminum surface treatment wastewater, hydrofluoric acid manufacturing wastewater, fertilizer manufacturing wastewater, and waste incineration wastewater Is generally processed by the following two-stage process. That is, first, fluorine most of the fluorine in the waste water by adding Ca salt fluorine-containing waste water in the first stage to precipitate separated as CaF 2, then the residue was added aluminum (Al) salt in the second stage A two-stage precipitation method for co-precipitation and separation, or a method for adsorbing and removing residual fluorine with a chelate resin in the second stage is employed.
[0003]
Among these, the precipitation removal of CaF 2 by the first-stage Ca salt is performed by adding a certain amount of Ca (OH) 2 or mineral acid to the raw water in the reaction neutralization tank 11 as shown in FIG. a method of adjusting the with a mineral acid or Ca (OH) 2 pH 6-8, as shown in FIG. 4, the addition of Ca (OH) 2 so as to be excessive with respect to the raw water in F in the reaction vessel 12, then in There is a method of adjusting the pH to 6 to 8 by adding a mineral acid in the Japanese tank 13. 3 and 4, after adding Ca (OH) 2 and mineral acid to precipitate CaF 2 , the polymer flocculant (polymer) is added in the agglomeration tank 14 and agglomeration treatment is performed. Thereafter, solid-liquid separation is performed in the precipitation tank 15 to obtain treated water.
[0004]
3 and 4, the pH is adjusted to 6 to 8 with mineral acid so that the treated water can be discharged as it is. As the mineral acid for adjusting the pH, sulfuric acid (H 2 SO 4 ) is usually used in terms of operability and cost.
[0005]
3 and 4, Ca (OH) 2 is excessively added to F in the raw water for the following reason. That is, in fluorine-containing wastewater, one type such as nitric acid (HNO 3 ), hydrochloric acid (HCl), sulfuric acid (H 2 SO 4 ), and phosphoric acid (H 3 PO 4 ) is usually used in addition to hydrofluoric acid (HF). Or 2 or more types are contained and these react as follows by neutralizing with Ca (OH) 2 .
[0006]
2HF + Ca (OH) 2 → CaF 2 (precipitation) + 2H 2 O (1)
2HNO 3 + Ca (OH) 2 → Ca 2+ + 2NO 3 − + 2H 2 O (2)
2HCl + Ca (OH) 2 → Ca 2+ + 2Cl + 2H 2 O (3)
H 2 SO 4 + Ca (OH) 2 → Ca 2+ + SO 4 2− + 2H 2 O (4)
2H 3 PO 4 + 3Ca (OH) 2 → Ca 3 (PO 4 ) 2 (precipitation) + 3H 2 O (5)
[0007]
Therefore, Ca (OH) 2 for precipitating F in the raw water as CaF 2 at a pH neutral point is secured.
[0008]
However, in order to completely precipitate the fluorine-containing wastewater in the raw water as CaF 2 in the reaction of the above formula (1), it is considered necessary to make soluble Ca 2+ present in the system at about 200 to 300 mg / L. It was done. In order to secure this excess Ca 2+ , conventionally, when the coexistence amount of HCl, HNO 3 , H 2 SO 4, etc. in the raw water is small, as shown in FIG. H 2 SO 4 is added in advance or with Ca (OH) 2 , which is neutralized with Ca (OH) 2 . That is, Ca (OH) 2 corresponding to the amount of H 2 SO 4 added to the neutralization tank 11 of FIG. 3 was made to correspond to an excess of Ca 2+ of 200 to 300 mg / L. In the method shown in FIG. 4, by neutralization with subsequent over-addition of Ca (OH) 2 H 2 SO 4 in reaction vessel 14 so as to ensure an excess of Ca 2+ of 200-300 mg / L .
[0009]
Conventionally, as a method for determining the addition amount of Ca (OH) 2 , a predetermined Ca (OH) 2 addition amount is determined corresponding to the concentration at which the F concentration becomes maximum within the range of the water quality fluctuation of the raw water. There is a method of injecting quantitatively, and a method of controlling the addition amount of Ca (OH) 2 so that the pH after addition of Ca (OH) 2 is 11 to 12, but among these, regardless of the water quality fluctuation of the raw water a method for quantifying injecting Ca (OH) 2 is always the Ca (OH) 2 is excessively injected waste is generated in the chemical feeding, chemical dosing quantity. Therefore, it is preferable that Ca (OH) 2 is controlled by chemical injection based on pH.
[0010]
These methods shown in FIGS. 3 and 4 generally do not differ greatly in the quality of the treated water, but there are cases in which treated water with better water quality can be obtained if the method shown in FIG. 4 is used. Although the relationship between the difference in water quality and the quality of raw water is not clearly understood, the method shown in FIG. 4 is better than the method shown in FIG. 3 when the F concentration of raw water is several hundred ppm or less. There is a tendency to obtain high quality treated water.
[0011]
The cause of the difference in the water quality of the treated water is not clear, but as shown in FIG. 3, in the method of adding mineral acid and Ca (OH) 2 at the same time to adjust the pH to 6-8, the added Ca ( OH) 2 rapidly dissolves into Ca 2+ ions and simultaneously reacts with F ions to form CaF 2 precipitates. However, since there is no suspended solids in the system as the core of precipitation, there is partial dissolution. sexual colloidal CaF 2 is produced, the water quality of treated water for the colloidal CaF 2 is considered to become worse.
[0012]
On the other hand, as shown in FIG. 4, in the method of adding Ca (OH) 2 first, the addition of Ca (OH) 2 makes it alkaline, so the dissolution rate of Ca (OH) 2 becomes slow, and Ca (OH) 2 in the dissolution process OH) CaF 2 is deposited on the surface of the two particles. Then, the precipitated CaF 2 becomes the nucleus of the crystal and new CaF 2 is sequentially deposited on the surface of the initial precipitated CaF 2 , so that the generation of soluble colloidal CaF 2 can be controlled. It is estimated that the quality of treated water will be good.
[0013]
For this reason, the treatment of waste water containing fluorine by Ca (OH) 2, as shown in FIG. 4, was added an excess of Ca (OH) 2, this time, pH of the reaction vessel 12 and 11 to 12 It is considered promising to carry out the chemical injection control so that it is neutralized with H 2 SO 2 in the neutralization tank 13.
[0014]
By the way, with regard to fluorine-containing wastewater, as the wastewater standard was strengthened from 15 mg / L to 8 mg / L in 2001, CaF 2 precipitation in the first stage in the above-described two-stage treatment of fluorine-containing wastewater. It is desired to develop a treatment system that effectively removes the fluorine-containing wastewater load in the second stage as much as possible.
[0015]
[Problems to be solved by the invention]
Accordingly, in the present invention, when Ca (OH) 2 is added to fluorine-containing wastewater and the fluorine in the wastewater is precipitated and removed as CaF 2 , fluorine that effectively removes fluorine by effectively acting Ca (OH) 2. It aims at providing the processing method of contained wastewater.
[0016]
[Means for Solving the Problems]
The method for treating fluorine-containing wastewater according to claim 1 is a method of adding calcium hydroxide to a fluorine-containing wastewater containing ammonia to produce calcium fluoride, and separating and treating the calcium fluoride. A first reaction step in which the pH is adjusted to 10 to 11 by adding calcium, and a calcium hydroxide 220 to 460 mg / L equivalent to 120 to 250 mg / L of excess calcium ions in the reaction solution of the first reaction step. L is injected, and hydrochloric acid is added to adjust the pH to 5.8 to 8.6, and the solution of the second reaction / neutralization step is separated into solid and liquid to obtain treated water. And obtaining a process .
[0017]
The method for treating fluorine-containing wastewater according to claim 2 is a method in which calcium hydroxide is added to fluorine-containing wastewater containing ammonia to produce calcium fluoride, and this is treated by solid-liquid separation. A first reaction step of adding calcium to adjust the pH to 10-11, and injecting a calcium hydroxide 220-460 mg / L corresponding to an excess of calcium ions 120-250 mg / L into the reaction solution of the first reaction step A second reaction step, a neutralization step of adding hydrochloric acid to the reaction solution of the second reaction step to adjust the pH to 5.8 to 8.6, and a solution obtained by solid-liquid separation of the solution of the neutralization step And a step of obtaining water .
[0018]
In the present invention, the excess calcium ion (Ca 2+ ) corresponds to Ca 2+ that is excessive with respect to the theoretical Ca 2+ amount required when F in the raw water is CaF 2. In the method, the excess Ca 2+ was considered to be appropriate to be 200 to 300 mg / L as described above.
[0019]
In order to improve the quality of treated water in the conventional method shown in FIG.
[0020]
That is, in the conventional method shown in FIG. 4, due to the excessive addition of Ca (OH) 2 , the pH of the reaction vessel 12 is adjusted to 11-12, generally 11.5 so that the pH of the Ca (OH) 2 is 11.5. Although chemical injection control is performed, in the case of alkalinity exceeding pH 11, the tendency of Ca (OH) 2 and carbon dioxide (CO 2 ) in the air to react and calcium carbonate (CaCO 3 ) to precipitate becomes significant. Then, the CaCO 3 scale is deposited on the pH meter electrode, etc., it may become difficult pH control, frequently it is necessary to clean the complicated pH meter. On the high alkali side, the dissolution of Ca (OH) 2 is delayed, and the amount of Ca (OH) 2 injection tends to increase. Therefore, chemical injection control at pH 11 or less is preferable.
[0021]
By the way, when a pH buffering compound such as ammonia is present in the raw water, the pH change with respect to the chemical injection amount becomes slow, so that the chemical injection control based on the pH control becomes difficult. Then, hydrofluoric acid having a weak etching power called buffered hydrofluoric acid is used. Although this buffered hydrofluoric acid contains a large amount of ammonium fluoride (NH 4 F), since NH 4 F is pH neutral, Ca (OH) like acids such as HNO 3 and HCl described above. ) only in the neutral pH by 2, the raw water F - the securing of Ca (OH) 2 to the CaF 2 Eze, therefore, there is a case where an excess of soluble Ca 2+ also not be ensured .
[0022]
The dissociation characteristics of ammonia are shown by the following formula (6)
At pH 9.2, NH 3 / NH 4 + = 1/1,
At pH 10.2, NH 3 / NH 4 + = 10/1,
At pH 10.5, NH 3 / NH 4 + = 15/1,
At pH 11, NH 3 / NH 4 + = 60/1
In the range of pH 10-11, most of the ammonia is in the form of NH 3 .
[0023]
NH 3 + H + ⇔NH 4 + (pK = 9.2) (6)
When this state in the range of pH 10-11 is represented by the reaction of NH 4 F and Ca (OH) 2 , the following formulas (7) and (8) are obtained.
2NH 4 F + Ca (OH) 2 → CaF 2 + 2NH 4 OH (7)
NH 4 OH⇔NH 3 + H 2 O (8)
[0024]
(6), (7) and (8), pH of NH 4 F is NH 3, i.e., pH 10-11, preferably by controlling the range of pH10.2~10.5, NH 4 When Ca (OH) 2 in which F becomes CaF 2 is secured, and when excess Ca (OH) 2 is further added from this state, excess soluble Ca 2+ for completely precipitating CaF 2 is obtained. It is clear that it can be secured.
[0025]
For this reason, in the present invention, a pH10~11 by adding Ca (OH) 2 in the raw water, then the excess so that a predetermined amount of soluble Ca 2+ is present of Ca (OH) 2 Add more.
[0026]
In addition, as a result of the study by the present inventors, treatment with HCl as a mineral acid for neutralization after addition of Ca (OH) 2 is performed as compared with the case of using H 2 SO 4. It has been found that the water quality can be greatly improved. Although there is no difference in the neutralization function between HCl and H 2 SO 4 , the reactivity between Ca 2+ and Cl − and the reactivity between Ca 2+ and SO 4 2− are as follows. It depends.
[0027]
That is, the solubility of the CaSO 4 generated in the addition of H 2 SO 4 is approximately 2000 mg / L, the solubility following Ca 2+, in Ca 2+ and SO 4 2-also SO 4 2-density bonded in solution It is thought that it is molecular CaSO 4 . For this reason, even if an excess of Ca (OH) 2 is added, it is considered that Ca 2+ binds to SO 4 2− and thus does not effectively act on CaF 2 precipitation as soluble Ca 2+ . This is supported by the fact that when the concentration of Na 2 SO 4 in the raw water is high, the F concentration of the treated water increases.
[0028]
On the other hand, CaCl 2 generated in the addition of HCl is Ca 2+ and Cl - are dissociated in excess the added Ca (OH) 2 in the Ca 2+ acts effectively on the precipitation of CaF 2 as a soluble Ca 2+.
[0029]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of a method for treating fluorine-containing wastewater according to the present invention will be described below in detail with reference to the drawings.
[0030]
1 and 2 are system diagrams showing an embodiment of a method for treating fluorine-containing wastewater according to the present invention.
[0031]
In the method of FIG. 1, after raw water is introduced into the reaction tank 1 and Ca (OH) 2 is added and reacted so as to have a pH of 10 to 11, in the reaction neutralization tank 2, excess Ca (OH) is added. 2 and add HCl to neutralize to pH 5.8-8.6. The liquid in the reaction neutralization tank 2 is then introduced into the coagulation tank 4 and added with a polymer for coagulation treatment, and then subjected to solid-liquid separation in the precipitation tank 5 to obtain treated water.
[0032]
In the method of FIG. 2, raw water is introduced into the first reaction tank 1A, Ca (OH) 2 is added and reacted so as to have a pH of 10 to 11, and then excess Ca ( OH) 2 is added for reaction, and then HCl is added in neutralization tank 3 to neutralize to pH 5.8 to 8.6. The liquid in the neutralization tank 3 is then introduced into the coagulation tank 4 and added with a polymer for coagulation treatment, followed by solid-liquid separation in the precipitation tank 5 to obtain treated water.
[0033]
In the present invention, when Ca (OH) 2 is added in two portions in this way, it is extremely important to adjust the pH to 10 to 11 by adding Ca (OH) 2 in the previous stage. When this pH exceeds 11, the problem of CaCO 3 scale occurs as described above. Further, the NH 4 F derived if the pH is less than 10 F - to can not be sufficiently precipitated as CaF 2. In particular, the adjusted pH is preferably 10.2 to 10.5.
[0034]
In this invention, after adding Ca (OH) 2 and making it react so that it may become pH 10-11 in this way, excess Ca (OH) 2 is further added. In the past, the addition of this excess was considered to be preferably 200 to 300 mg / L as Ca 2+ , but in the present invention, from the above-mentioned effect due to the use of HCl for pH adjustment, this excess was added. Ca 2+ was less than 200 mg / L, and F in the treated water could be greatly improved even at about 120 mg / L.
[0035]
The neutralization pH with HCl is preferably pH 5.8 to 8.6, particularly 6.0 to 7.5, from the viewpoint of the discharge of treated water or the subsequent treatment.
[0036]
The reaction time in each reaction tank may be a time such that CaF 2 is sufficiently precipitated. Usually, the reaction tank 1, the reaction neutralization tank 2 in the method of FIG. 1, the first reaction tank in the method of FIG. The residence time in the second reaction tank is preferably about 20 to 30 minutes.
[0037]
In FIGS. 1 and 2, a membrane separator or a centrifugal separator may be used instead of the sedimentation tank 5.
[0038]
The method of the present invention can be applied to various fluorine-containing wastewaters, but is particularly suitable for treatment of wastewater containing ammonia that is difficult to control pH, especially wastewater containing 50 mg / L or more of NH 4 F.
[0039]
【Example】
Hereinafter, the present invention will be described more specifically with reference to comparative examples and examples.
[0040]
In the following Examples and Comparative Examples, the following water quality aluminum surface treatment factory effluent was treated as raw water.
[0041]
[Raw water quality]
pH: 6.8
SS: 29 mg / L
COD: 6mg / L
F: 160 mg / L
SiO 2 : 22.4 mg / L
PO 4 -P: 4.6 mg / L
SO 4 2− : 56 mg / L
NH 4 -N: 55.4mg / L
[0042]
The Ca 2+ required for this raw water is about 370 mg / L of the total of (1) , (2) and (3) as follows in the conventional method, and corresponds to about 685 mg / L as Ca (OH) 2 . The theoretical amount is about 177 mg / L of the total of (1) and (2) , and about 327 mg / L as Ca (OH) 2 .
[0043]
Ca2 + equivalent to F2 + = 160 × 40/38 = 168 mg / L (1)
The equivalent amount of Ca 2+ with PO 4 -P = 4.6 × 40 × 3 / (31 × 2) = 9 mg / L (2)
Excess Ca 2+ = 200 mg / L (3)
[0044]
Comparative Example 1 (Experiment Nos. 1-3)
The raw water was treated according to the method of FIG.
[0045]
After adding H 2 SO 4 to the raw water in the amount shown in Table 1 and adding Ca (OH) 2 in the amount shown in Table 1 so that the pH is 6.5, the reaction is performed for 10 minutes. The liquid was filtered through filter paper (No. 5A), and the filtrate (treated water) was analyzed. The results are shown in Table 1.
[0046]
[Table 1]
Figure 0004487492
[0047]
From Table 1, in this method, even if No. 2 and 3 in which the added amount of Ca (OH) 2 is 685 mg / L or more, the quality of the treated water is hardly improved, and Ca (OH) 2 is excessively added. It can be seen that good treated water cannot be obtained.
[0048]
Comparative Example 2 (Experiment Nos. 4-6)
The raw water was treated according to the method of FIG.
[0049]
Ca (OH) 2 was added to the raw water so as to have the pH shown in Table 2 and allowed to react for 10 minutes, and then H 2 SO 4 was added to make the pH 6.5 and reacted for 10 minutes. The reaction solution was filtered through a filter paper (No. 5A), and the filtrate (treated water) was analyzed. The results are shown in Table 2.
[0050]
[Table 2]
Figure 0004487492
[0051]
As is clear from Table 2, this method is improved over the case of Comparative Example 1 and the concentration of treated water F is reduced by excessive addition of Ca (OH) 2 , but it does not reach the next example.
[0052]
Example 1 (Experiment Nos. 7 to 9)
Raw water was treated according to the method of FIG.
[0053]
Ca (OH) 2 was added to the raw water so that the pH was 10.2 and allowed to react for 10 minutes. At this time, the addition amount of Ca (OH) 2 was 310 mg / L. Thereafter, the amount of Ca (OH) 2 shown in Table 3 was added, and at the same time, HCl (35% HCl) was added to adjust the pH to 6.5 and allowed to react for 10 minutes.
[0054]
The amount of 35% HCl added at this time was as shown in Table 3. The reaction solution was filtered through a filter paper (No. 5A), and the filtrate (treated water) was analyzed. The results are shown in Table 3.
[0055]
[Table 3]
Figure 0004487492
[0056]
As is apparent from Table 3, in this method, Ca (OH) 2 is added so as to have a pH of 10 to 11, and then an excess amount of Ca (OH) 2 is added to obtain treated water with good water quality. Obtainable.
[0057]
In addition, even if the same amount of Ca (OH) 2 was added to each of the first reaction tank and the second reaction tank according to the flow shown in FIG. 2, the same result was obtained. At this time, pH of the second reaction vessel, excess Ca (OH) 2 is when added 160 mg / L 11.3, excess Ca (OH) 2 If the added 250 mg / L 11.6, excess When 500 mg / L of minute Ca (OH) 2 was added, it was 11.9.
[0058]
【The invention's effect】
As described above in detail, according to the method for treating fluorine-containing wastewater of the present invention, when Ca (OH) 2 is added to fluorine-containing wastewater and fluorine in the wastewater is precipitated and removed as CaF 2 , Ca (OH) 2 Can be effectively removed to efficiently remove fluorine, thereby obtaining high quality treated water.
[Brief description of the drawings]
FIG. 1 is a system diagram showing an embodiment of a method for treating fluorine-containing wastewater according to the present invention.
FIG. 2 is a system diagram showing another embodiment of the method for treating fluorine-containing wastewater according to the present invention.
FIG. 3 is a system diagram showing a conventional method.
FIG. 4 is a system diagram showing a conventional method.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Reaction tank 1A 1st reaction tank 1B 2nd reaction tank 2 Reaction neutralization tank 3 Neutralization tank 4 Coagulation tank 5 Precipitation tank

Claims (2)

アンモニアを含むフッ素含有排水に水酸化カルシウムを添加してフッ化カルシウムを生成させ、これを固液分離して処理する方法において、
該排水に水酸化カルシウムを添加してpHを10〜11にする第1反応工程と、
該第1反応工程の反応液に過剰分のカルシウムイオン120〜250mg/Lに相当する水酸化カルシウム220〜460mg/Lを注入すると共に、塩酸を添加してpHを5.8〜8.6にする第2反応兼中和工程と
該第2反応兼中和工程の液を固液分離して処理水を得る工程と
を有することを特徴とするフッ素含有排水の処理方法。
In a method of adding calcium hydroxide to fluorine-containing wastewater containing ammonia to produce calcium fluoride, and separating and processing this,
A first reaction step of adding calcium hydroxide to the waste water to bring the pH to 10-11;
Into the reaction solution of the first reaction step, 220 to 460 mg / L of calcium hydroxide corresponding to an excess of calcium ions of 120 to 250 mg / L is injected, and hydrochloric acid is added to adjust the pH to 5.8 to 8.6. A second reaction and neutralization step ,
And a step of solid-liquid separation of the liquid in the second reaction / neutralization step to obtain treated water .
アンモニアを含むフッ素含有排水に水酸化カルシウムを添加してフッ化カルシウムを生成させ、これを固液分離して処理する方法において、
該排水に水酸化カルシウムを添加してpHを10〜11にする第1反応工程と、
該第1反応工程の反応液に過剰分のカルシウムイオン120〜250mg/Lに相当する水酸化カルシウム220〜460mg/Lを注入する第2反応工程と、
該第2反応工程の反応液に塩酸を添加してpHを5.8〜8.6にする中和工程と
該中和工程の液を固液分離して処理水を得る工程と
を有することを特徴とするフッ素含有排水の処理方法。
In a method of adding calcium hydroxide to fluorine-containing wastewater containing ammonia to produce calcium fluoride, and separating and processing this,
A first reaction step of adding calcium hydroxide to the waste water to bring the pH to 10-11;
A second reaction step of injecting 220 to 460 mg / L of calcium hydroxide corresponding to an excess of calcium ions of 120 to 250 mg / L into the reaction solution of the first reaction step;
A neutralization step of adding hydrochloric acid to the reaction solution of the second reaction step to adjust the pH to 5.8 to 8.6 ,
And a step of solid-liquid separation of the liquid in the neutralization step to obtain treated water .
JP2003080542A 2003-03-24 2003-03-24 Treatment method for fluorine-containing wastewater Expired - Lifetime JP4487492B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003080542A JP4487492B2 (en) 2003-03-24 2003-03-24 Treatment method for fluorine-containing wastewater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003080542A JP4487492B2 (en) 2003-03-24 2003-03-24 Treatment method for fluorine-containing wastewater

Publications (2)

Publication Number Publication Date
JP2004283759A JP2004283759A (en) 2004-10-14
JP4487492B2 true JP4487492B2 (en) 2010-06-23

Family

ID=33294366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003080542A Expired - Lifetime JP4487492B2 (en) 2003-03-24 2003-03-24 Treatment method for fluorine-containing wastewater

Country Status (1)

Country Link
JP (1) JP4487492B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4858449B2 (en) * 2008-01-18 2012-01-18 栗田工業株式会社 Treatment method for fluorine-containing wastewater
JP6513540B2 (en) * 2015-09-28 2019-05-15 水ing株式会社 Method and apparatus for treating fluorine-containing wastewater
KR102112112B1 (en) * 2019-11-19 2020-05-18 에코매니지먼트코리아홀딩스 주식회사 Process for recycling wasteacid
CN112573693A (en) * 2020-11-20 2021-03-30 济南联合制罐有限公司 Fluorine-containing wastewater treatment system for aluminum pop-top can

Also Published As

Publication number Publication date
JP2004283759A (en) 2004-10-14

Similar Documents

Publication Publication Date Title
JP4650384B2 (en) Treatment method for fluorine-containing wastewater
WO2015198438A1 (en) Method and device for treating fluoride-containing water
JP4584185B2 (en) Method and apparatus for treating wastewater containing boron
JP5692278B2 (en) Method and apparatus for treating fluoride-containing water
JPS60117B2 (en) How to treat fluoride-containing water
JP3112613B2 (en) Treatment of wastewater containing fluorine and phosphorus
JP4572812B2 (en) Fluorine-containing water treatment method
JP4487492B2 (en) Treatment method for fluorine-containing wastewater
JP2006218354A (en) Method for treating fluorine-containing waste water
JP3399276B2 (en) Treatment method for fluorine-containing wastewater
JPS59373A (en) Treatment of fluorine-contg. waste water
JP2006167631A (en) Treatment method and treatment equipment for fluorine-containing waste water including phosphoric acid
JP4350078B2 (en) Treatment method for fluorine-containing wastewater
JP2001219177A (en) Method and apparatus for treating fluorine-containing water
JP4543482B2 (en) Fluorine-containing water treatment method
JP3157347B2 (en) Treatment of wastewater containing fluorine compounds
JP4136194B2 (en) Fluorine-containing wastewater treatment method
JP4169996B2 (en) Method and apparatus for treating fluorine-containing wastewater
JP3918294B2 (en) Method and apparatus for treating fluorine-containing wastewater
JP4583786B2 (en) Treatment method for boron-containing wastewater
JP3622407B2 (en) Water treatment method
JPH0315512B2 (en)
JP2001137864A (en) Method for treating waste water containing hydrofluoric acid
KR20030074424A (en) Method and apparatus for treating fluorine-containing waste water
JPH10128344A (en) Apparatus and method for treating fluorine-containing drainage

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100309

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100322

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4487492

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140409

Year of fee payment: 4

EXPY Cancellation because of completion of term