JP4485613B2 - Polymer electrolyte fuel cell - Google Patents

Polymer electrolyte fuel cell Download PDF

Info

Publication number
JP4485613B2
JP4485613B2 JP05820399A JP5820399A JP4485613B2 JP 4485613 B2 JP4485613 B2 JP 4485613B2 JP 05820399 A JP05820399 A JP 05820399A JP 5820399 A JP5820399 A JP 5820399A JP 4485613 B2 JP4485613 B2 JP 4485613B2
Authority
JP
Japan
Prior art keywords
polymer electrolyte
fuel cell
conductive particles
carbon
electrolyte fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP05820399A
Other languages
Japanese (ja)
Other versions
JP2000260441A (en
Inventor
久朗 行天
和史 西田
一仁 羽藤
輝壽 神原
英夫 小原
順二 新倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP05820399A priority Critical patent/JP4485613B2/en
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to KR10-2004-7001021A priority patent/KR100453597B1/en
Priority to DE69933566T priority patent/DE69933566T2/en
Priority to CNB998080349A priority patent/CN1151573C/en
Priority to KR10-2000-7014997A priority patent/KR100426094B1/en
Priority to PCT/JP1999/003464 priority patent/WO2000001025A1/en
Priority to US09/719,832 priority patent/US6660419B1/en
Priority to EP99926831A priority patent/EP1094535B1/en
Publication of JP2000260441A publication Critical patent/JP2000260441A/en
Application granted granted Critical
Publication of JP4485613B2 publication Critical patent/JP4485613B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

【0001】
【発明の属する技術分野】
本発明は、民生用コジェネレーションや移動体用の発電器として有用な燃料電池、特に高分子電解質を用いた高分子電解質型燃料電池に関する
【0002】
【従来の技術】
燃料電池は、水素などの燃料と空気などの酸化剤ガスとを、ガス拡散電極において電気化学的に反応させ、電気と熱とを同時に供給取り出すものである。この燃料電池には、用いる電解質の種類により、異なるタイプがある。電解質がリン酸型の場合、実際にはSiCマトリックスに含浸したリン酸が用いられる。また、高分子電解質型の場合には、側鎖末端基としてスルホン酸が導入されたフッ素樹脂ポリマー膜が主流となっている。
【0003】
電池の構成では、こられの電解質に、白金系の金属触媒を担持したカーボン粉末を主成分とする、電極反応層を密着させる。さらに電極反応層の外面には、ガス通気性と導電性を兼ね備えた一対の電極基材を密着させ、電極反応層と合わせてガス拡散電極とする。電極の外側には、これらの電極および電解質の接合体を機械的に固定するとともに、隣接する接合体を互いに電気的に直列に接続するための導電性のセパレータ板が配される。実際のセパレーター板は、電極と接触する部分には、電極面に反応ガスを供給し、生成ガスや余剰ガスを運び去るためのガス流路を形成する。このため、セパレーター板をガス流路板という実施運転するためには、電解質層、電極反応層、ガス流路板を積層した単セルを、数十から数百を積層し、それぞれのガス流路にマニホルドを通じて外部から水素などの燃料ガスと空気を供給する構造をとる。
【0004】
【発明が解決しようとする課題】
通常、ガス拡散層を形成する電極は、カーボン繊維やカーボン粒子粉末で構成する。また、ガス流路板を構成する材料は、カーボンや耐食性金属を用いる。カーボンは耐久性に優れるが、ガス流路の整形加工や材料の低コスト化が課題となる。一方、ガス流路板に金属材料をもちいると、素材自体が比較的低コストであり、またプレス成形などで流路成型が容易である。しかし、長時間にわたり高加湿ガスにさらされるため強い耐食性を必要とする。これに加えて、電極との接触抵抗を抑制することが、電池の発電効率を高くするためには重要となる。
【0005】
例えば、代表的な耐食性金属であるステンレスは、表面に形成された主として酸化クロムからなる不動態被膜によって耐食性を保持している。しかし、不動態被膜が不安定になりやすい合金組成や腐食条件下では、長時間の運転中に鉄をはじめニッケルやクロム等がイオンとなって徐々に溶出し、高分子電解質内部に沈積したり、電極触媒の働きを抑制するように働くので電池性能は低下する。一方不動態被膜が安定で長時間運転中も金属イオンの溶出の少ない合金組成では、不動態被膜が電気抵抗となって接触抵抗が増大し、高い電池性能を得ることができない。このような状況は軽量化を企図してアルマイト処理を施したアルミニウムを用いた時も同様で耐食性と接触抵抗の低減を両立させることが困難だった。金属表面を金などの耐食性金属を化学メッキや蒸着などによってコートする方法も検討されているが、低コスト化は困難であった。
【0006】
【課題を解決するための手段】
以上の課題を解決するため、本発明の高分子型燃料電池は、水素イオン伝導性高分子電解質膜と、前記水素イオン伝導性高分子電解質膜を挟んだ一対の電極と、前記電極を挟んだ一対の多孔性拡散層と、前記多孔性拡散層を挟んだ一対のガス流路板とを具備した燃料電池において、前記ガス流路板は、前記多孔性拡散層と接する側の表面に酸化被膜層を有する金属材料であり、前記酸化被膜層と前記多孔性拡散層との接合部分に前記金属材料よりも硬度が高い導電性粒子が配置されており、前記導電性粒子は、ガラス状カーボン、シリコンカーバイドおよび窒化チタンからなる群より選ばれる少なくとも1種であることを特徴とする。
【0009】
また、多孔質拡散層カーボン繊維を有することが有効である。
【0010】
また、導電性粒子の粒径カーボン繊維の直径以下であることが有効である。
【0012】
このとき、金属材料は、pH3以上の酸性雰囲気中で表面に不動態被膜を生成することが望ましい。
【0013】
また、導電性粒子を含む有機バインダーが、ガス流路板における酸化被膜層側の表面に塗着されていることが有効である。
【0014】
【発明の実施の形態】
本発明は、金属セパレータの表面形状の改善や通電部に導電性粒子を配することによって、金属セパレータ表面上で耐食性を保持する被膜を貫いて接触部分における導電パスを確保すること手段を提供するものである。
【0015】
例えば、金属セパレータの通電部の表面形状として凹凸を設け、電極を構成するカーボン繊維やカーボン粉末が圧接してきた際に凸部が変形することによって耐食被膜が破れ、金属セパレータの金属部分と電極のカーボン素材とが直接新たに接触する部分の面積が増大する。
【0016】
また、金属セパレータとの接合面に、金属セパレータを構成する金属より硬度の高い導電性粒子を配すると電極の圧接時に導電性粒子が金属セパレータ表面の耐食被膜を貫いて導電パスが形成される。
【0017】
具体的には表面の凹凸処理の凸部の幅が、電極に含まれるカーボン粉末あるいはカーボン繊維の直径より小さくすること、凸部がくさび形状であり、その先端角が90度より小さくすることが凸部の変形を大きくし、接触面積を増大することによって接触抵抗の低減を図る。凹凸処理としてサンドブラスト法を用いることが簡便低コストな製造技術である。
【0018】
また、電極を構成するカーボン繊維やカーボン粉末が金属セパレータに圧接された時に生じる金属セパレータ表面の変形は接触する圧力が大きいほど大きくなるから、金属セパレータの表面凸部が電極内部にくさび形に貫入し、接触面積を増大させると同時に実質的な圧接圧を増大させる構造が望ましい。表面凸部の高さとしては電極を構成するガス拡散層の厚みの50%〜10%が実際的であった。
【0019】
一方、金属セパレータ表面に金属セパレータより硬い導電性粒子もしくは導電性粉末を配する方法では、金属粒子や粉末以外としてガラス状カーボンの粉砕粉が好適である。金属粒子ではそれ自身からの金属イオンの溶出による影響への配慮が必要である。ガラス状カーボンの他にも、窒化チタンやシリコンカーバイトなどのカーバイト類、さらには酸化ルテニウムなどの導電性酸化物も有効性が高い。導電性粒子の粒径としては電極を構成するカーボン繊維の直径(〜10μm)と同等か、それより小さい粒径の粉が良かった。粒径が300μmより大きくなると金属セパレータの接合面への保持が困難となった。逆に粒径が0.01μmより小さいと耐食被膜の貫通ができなくなる。導電性粒子の形状としてはガラス状カーボンの粉砕粉のように鋭利な角を保持しているものの方が、表面が滑らかな球状粉より有効性が高かった。
【0020】
金属セパレータの接触部位への導電性粒子の保持構造としては、導電性粒子が有機バインダーとともに金属セパレータやガス拡散電極の通電表面に塗着されている構成で、塗着膜の導電性を高く維持するために導電性フィラーや分散剤の添加が望ましい。また、より塗着性を高くするために金属表面の凹凸処理も可能である。
【0021】
高硬度の導電性粒子の構成法の別の実施形態としては、導電性粒子を金属セパレータに高速で衝突させて打ち込み、あるいはプレスして機械的に押し込む方法や、内部に前記導電性粒子を分散させた金属セパレータ表面の、導電性粒子以外の部分を除去することによって導電性粒子が金属セパレータ表面に一部分が埋め込まれた形態がある。
【0022】
本発明は、金属部材の電気接点を介して外部に電力を取り出す発電装置に対して有効なものと考えられるが、接触面の電流密度が大きいことから、ジュール損の発電効率へ及ぼす影響が大きい燃料電池、特に固体高分子型燃料電池へ適用した例で具体的に説明する。
【0023】
参考例1)
アセチレンブラック系カ−ボン粉末に、平均粒径約30Åの白金粒子を25重量%担持したものを電極の触媒とした。この触媒粉末をイソプロパノ−ルに分散した溶液に、高分子電解質であるパーフルオロカーボンスルホン酸の粉末をエチルアルコールに分散したディスパージョン溶液を混合し、ペースト状にした。一方、電極のベースとなる厚さ400μmのカーボンペーパーをフッ素樹脂の水性ディスパージョン(ダイキン工業(株)製のネオフロンND1)に含浸して乾燥後、400℃で30分熱処理して撥水性を付与した。
【0024】
撥水処理を施したカーボンペーパー電極の片面に、前記の触媒ペーストを均一に塗布して触媒層を形成した。形成後の反応電極中に含まれる白金量は0.5mg/cm2、パーフルオロカーボンスルホン酸の量は1.2mg/cm2となるよう調整した。触媒層を形成した2枚のカーボンペーパー電極によって水素イオン伝導性を有するパーフルオロカーボンスルホン酸の高分子電解質膜(デュポン社製、ナフィオン膜、膜厚25μm)を挟んで重ね合わせた後、これを乾燥してMEA(電極・電解質接合体)を得た。
【0025】
ガス拡散層としてはカーボンペーパーの他にも、可撓性を有する素材としてカーボン繊維を織ったカーボンクロス、さらにはカーボン繊維とカーボン粉末を混合し有機バインダーを加えて成型したカーボンフェルトを用いてもよい。これらのガス拡散層に用いるカーボン繊維やカーボン粉末の直径は5〜20μmとした。
【0026】
次に、電極に活物質となる水素ガスと空気を供給し、生成した水蒸気やドレインガスを排出するガス流路板をそれぞれのカーボンペーパー電極に沿わせて2枚構成した。ガス流路板は厚さ2mmのグラファイト板を用い、電極に接する面にガス流路となる溝を切削によって形成した。セパレータ板として厚さ4mmのステンレス板(SUS316)、或いはアルミニウム板を2枚用意した。セパレータ板には外部から活物質となるガスを供給し、ドレインガスを排出するためのマニホルド孔を形成した。MEAの周囲は厚さを調整したシリコンゴム製のシール材を配してガスが漏れないようにした。
【0027】
電解質層と電極からなる電気発生部で発生した電気は、グラファイト製のガス流路板を経て、金属セパレータ板から外部へ取り出すことができる。また、ガス流路板を用いずに金属セパレータ上に切削加工、或いはプレス成形によってガス流路を構成した燃料電池でも試験を行った。
【0028】
ローラープレスにより表面を様々な微細形状にエンボス加工した金属板から作成したセパレータを用いて、凹凸処理の効果を調べた。エンボス加工はアルミニウムセパレータでは容易であったが、ステンレスセパレータでは大きい凹凸の形成は困難だったので、凸部の高さが100μmを越えるものについては、切削加工で凹凸を形成した。逆に凸部の高さが10μmより小さいものについてはサンドペーパーによる研磨、もしくはサンドブラスト法におけるサンド粒子の粗さを調整することによっても得た。凹凸処理した表面形状は、光学実体顕微鏡や電子顕微鏡、あるいは触針法によって観察・同定した。
【0029】
電池に組んでの試験に先立って、ガス拡散層として用いているカーボンペーパーと金属テストピース(ステンレス、アルミニウム)との間の接触電気抵抗を、圧接圧をパラメータにして測定・評価した。SUS316製テストピースの圧接圧を25kgf/cm2印加した状態での接触抵抗の平均値を表1に表した。
【0030】
【表1】

Figure 0004485613
【0031】
表1において、SUS316板の表面凹凸処理を行わないものが120mΩ・cm2であるのに対し、表面に凹凸処理を施したものは10〜50mΩ・cm2と接触抵抗が改善されることがわかった。アルミニウムについては凹凸処理を行った後、陽極酸化法によってアルマイト処理を行った。アルミニウム板で凹凸処理を行わないものは530mΩ・cm2と高かったが、凹凸処理を行ったものは50〜300mΩ・cm2と接触抵抗が低くなった。アルミニウム板の場合、陽極酸化をやりすぎるとアルマイト被膜層が厚くなり、凹凸処理しても接触抵抗の著しい改善は見られなかった。以上の結果から、凸部の高さが小さくなるにつれて接触抵抗が小さくなる傾向があったが全体としては、凹凸処理することによって飛躍的に接触抵抗が改善されることが分かった。
【0032】
また、表1に示した他にも接触抵抗の測定をおこなった。例えば、表面凹凸の形状と接触抵抗の改善性について追求するため、エンボスプレス成形のプレス型やプレス圧を変えて測定を行った。その結果、プレス圧が小さく、凸部の頂点部に平らな部分が多く残っているような場合は、接触抵抗の改善があまり見られなかった。また、凸部の形状と接触抵抗の関連については一般的に凸部のくさび形状の角度が鋭いほど接触抵抗が小さくなり、同じ接触抵抗を選るのにも少ない圧接圧となることが分かった。この効果はくさび形状の角度が90度より小さくなると顕著だった。
【0033】
また、触針法によって凸部が同程度である金属板でも接触抵抗の挙動に大きく差があることが分かったので、原因を追求した。顕微鏡による観察による接触部の微細構造の模式図を図1に示した。カーボン繊維1がステンレスセパレータ2に圧接されており、表面の酸化被膜3を通して導電パスが形成されていると考えられる。凸部の幅4が広いものより、狭いものの方が接触抵抗の改善が大きく、20μmより狭くなると接触抵抗が特に小さくなった。図1に示したように凸部の幅がカーボンペーパーのカーボン繊維の断面5の径(5〜20μm)と同程度になると、圧接圧による凸部の変形が大きくなり、カーボン材料と金属材料との実質的な接触面6の面積が増大するものと考える。
【0034】
このような凹凸処理した金属セパレータを用いて単電池を構成し、電池試験を行った。電池試験は次のような構成で行った。まず、空気を60〜70℃の温水バブラーに潜らせて加湿し、水素は80℃の温水バブラーを潜らせてそれぞれの電極に通じるマニホルドへ供給した。この時の電池温度は75℃で一定とし、供給した活物質ガスに対する、電極反応で消費されるガスの割合をあらわすガス利用率としては、水素側が70%、空気側が20%として試験を行った。負荷電流密度として0.5A/cm2取ったときの出力電圧で電池性能を評価した。
【0035】
凸部の平均高さと幅が20μmのステンレスセパレータを用いた電池の性能を、凹凸処理を施していないステンレスセパレータを用いた電池の性能、および従来のカーボン切削によるセパレータを用いた電池の性能と比較して、図2に表した。その結果、凹凸処理をするとカーボン切削セパレータに迫る性能が得られることが分かった。さらに、表1に示した様々な凹凸処理を施した金属セパレータについても電池試験を行った結果、接触抵抗が小さいものほど電池性能が高いという相関性を得た。アルミニウムセパレータについても、接触抵抗が大きい分ステンレスに比べて電池性能は低かったが表面の凹凸処理で電池性能が改善されることが分かった。
【0036】
次に、凹凸処理の凸部を高くしていった時の電池性能を評価した。凸部の高さとして100μm,200μm,300μm,500μmのステンレス製セパレータをプレス成形、あるいは切削加工によって試作した。いずれのセパレータを用いた電池も性能は良好だったが、凸部が300μm以上のセパレータの電池では、カーボンペーパーが破壊され試験中に急激に性能が低下するものもあった。したがって、凸部の高さはガス拡散層の50%以下が好適といえる。
【0037】
さらに、凹凸処理をした金属セパレータの耐食性と接触抵抗との相関について調べた。ステンレスなどの鉄を主成分として表面の酸化クロムからなる不動態皮膜によって耐食性を保持する合金からなるセパレータをいくつか用意した。主としてクロムの含有率を変えることによって、不動態皮膜が安定に存在するpH領域を変化させた。電池試験の結果、pHが2より低い雰囲気においても高い耐食性が維持できる合金のセパレータでは、凹凸処理をしたものでも電池性能はあまり高くなかった。一方、pHが2より高い雰囲気でないと不動態被膜が安定に存在できない合金組成のセパレータでは凹凸処理をすると電池性能が著しく改善された。これは表面の耐食性被膜がある程度薄いほど、凹凸処理の効果が大きくなることによるものと考える。
【0038】
(実施例
次に、ガス拡散電極と金属セパレータとの通電接点に、金属セパレータを構成する金属より硬度が高い導電性粒子を配した燃料電池について説明する。実施例1と同様に、電池試験に先だってカーボンペーパーと金属テストピースとの間の接触電気抵抗の評価を行った。金属製導電粒子としてアルミニウム粉末とステンレス(SUS316)粉末、コバルト粉末を選び、カーボン系の導電性粒子として、結晶性黒鉛、ガラス状カーボンを、また、セラミック系導電粒子として窒化チタン、シリコンカーバイト、酸化鉛を選んだ。これらの粉末をめのう製乳鉢にて1時間粉砕・微粉化した後、有機溶剤にてスラリー化してテストピースの通電接触面にコーティング・乾燥固化した。
【0039】
カーボンペーパーとステンレス(SUS316)製テストピースを用い、圧接圧を25kgf/cm2印加した状態での接触抵抗の平均値を表2に表した。
【0040】
【表2】
Figure 0004485613
【0041】
アルミニウム粉末と酸化鉛粉末をのぞいて、いずれの粉末においても接触抵抗の改善が見られた。特にステンレス粉末、コバルト粉末、ガラス状カーボン、窒化チタンにおいては、どんな粉末も用いない時の接触抵抗が130mΩ・cm2に対して、15〜40mΩ・cm2と接触抵抗の改善が著しかった。
【0042】
接触抵抗改善の原因を解明するため、試験後のステンレス製テストピースの表面を顕微鏡観察した。その結果、ガラス状カーボンや窒化チタン粉末では表面に無数の傷が観察できた。一方、アルミニウム粉末や酸化鉛粉末ではそのような傷は見出せなかった。これらの結果から、導電性微粒子がステンレスの表面被膜を突き破る形で接触面に存在し、カーボンペーパーを構成するカーボン繊維とステンレス製テストピースとの間の電気導電性を確保したと考える。
【0043】
同じカーボン系導電粒子でもステンレスのビッカース硬度(180〜220HV)より小さい結晶性黒鉛では、接触抵抗の改善が小さかった。また、カーバイトはビッカース硬度は高いので、実験に用いたシリコンカーバイトより導電性のより高いカーバイトを用いると、接触抵抗は大きく改善できた。また、アルミニウムや酸化鉛では硬度もステンレスに比べて低く、表面の酸化被膜やそれ自身の導電率が低いために接触抵抗が改善できなかった。
【0044】
つぎにこれらの硬度の高い導電性粉末の中から、ガラス状カーボン粉末とステンレス粉末を用いて電池試験を行った。電解質膜、ガス拡散電極など電池の基本構成とその製造・組立手順は参考例1とほぼ同様にした。ビッカース硬度が550HVのガラス状カーボン粉末は、熱硬化性樹脂の長時間にわたる熱処理によって得たガラス状カーボンのブロックをボールミルを用いて粉砕して得た。このカーボン粉末の平均粒子径は30μmであった。また、ステンレス粉末はSUS304製の平均粒径30μmのものを用いた。燃料電池の組立時に、エタノールを用いてスラリー化したガラス状カーボン粉末をステンレス(SUS316)セパレータのガス拡散電極との接触面に塗布・乾燥した。セパレータと電極の接触圧は25kgf/cm2に調整した。
【0045】
電池試験は参考例1と同様な条件で、空気を60〜70℃の温水バブラーに潜らせて加湿し、水素は80℃の温水バブラーを潜らせて供給した。電池温度は75℃とし、水素側ガス利用率は70%、空気側ガス利用率を20%として試験を行った。図3にガラス状カーボン粉末やステンレス粉末を用いた電池の性能を、従来の圧接による電池の性能と比較して表した。その結果、これらの粉末を配した電池では、電流密度が0.5A/cm2のときの出力電圧が0.63〜0.65Vと従来の構成の電池の値0.50Vと比較し大きく改善されたことが分かった。
【0046】
ガラス状カーボン粉末をステンレスセパレータ上に塗着した電池では、そのガス拡散電極との接触面では図4に示したように、有機バインダー7に固着されたガラス状カーボン粒子8が、ガス拡散電極のカーボン繊維1と接しながら、一方で表面の酸化被膜層3を貫いてステンレス金属部分2に達している。このガラス状カーボン粒子8により導電パスが形成されているために接触抵抗が大幅に改善されたものと推察する。
【0047】
また、結晶性カーボンを用いた電池でも0.57Vと若干の改善が確認できた。このように、それぞれの接触抵抗値に対応してほぼ電池性能が改善されていることが分かった。今回はステンレス粉末としてセパレータ材料のSUS316と同等か少し柔らかいSUS304粉末を用いたが、より硬いステンレス材や金属粉末を用いることによって、さらに電池性能が向上することを確認した。
【0048】
つぎに、ガラス状カーボンの粉砕条件を変えて、種々の平均粒径の粉末(5μm,10μm,20μm,35μm,60μm)を調整し、粒子径と電池性能の関係を調べた。いずれの電池も運転初期には性能の改善が見られたが、粒径が20μmより大きい電池では200時間を超える電池試験中に性能が徐々に低下していく傾向が見られた。この原因は、カーボン粒子の径が、ガス拡散電極の多孔質カーボン素材であるカーボン繊維の径(5〜20μm)より大きいとカーボン粒子が接合面に保持されにくいことによると考える。
【0049】
これまでの構成はカーボン粒子を有機溶剤でスラリー化して金属セパレータの導電面に塗布したものであったが、カーボン粒子の付着強度が弱く、電池の組立時に脱落する場合があった。ポリビニルブチラールの2重量%エタノール溶液で分散し、スラリー化して塗着・乾燥した。さらに塗膜の導電性を高めるために結晶性炭素粉末を5〜50重量%添加し、界面活性剤で分散性を付与したスラリーも調整し、電池試験を行った。エタノールのみでスラリー化して導電面に塗布した電池に比べて、単にポリビニルブチラールを添加したものでは若干性能が低下したが、結晶性カーボンの添加によって塗膜の導電性を高めた電池では、性能が高くなった。いずれの場合も電池組立時のカーボン粉末の脱落が防止できた。また、塗膜の導電性向上による性能改善の試みを通じて、硬度の高い導電性粒子は5重量%程度含まれていれば接触抵抗の改善効果があることも分かった。
【0050】
さらに塗膜の付着性と接触面積を増大する目的で、サンドブラストによって凹凸処理したステンレスセパレータを用いて電池試験を行った結果、サンドブラスト処理をしないものに比べて明らかに電池性能が向上した。エタノールの蒸発・固化時にポリビニルブチラールが収縮し、ガラス状カーボン粒子のステンレス表面への圧接力が増したためと考える。
【0051】
さらに硬度の高い導電性粒子の接合導電面への別の構成法として、次の方法を検討した。すなわち、ガラス状カーボンの粉末を金属表面へ分散させた後、ローラープレスにて機械的に押し込んだ。表面を顕微鏡で観察すると多くのカーボン粒子が金属表面に埋め込まれている状態が確認された。アルミニウムなどの柔らかい金属では50kg重/cm2のプレス圧力で良かったが、ステンレスでは100kg重/cm2以上のプレス圧力が必要だった。また、200μm程度の比較的粗いガラス状カーボンの粒子を圧力空気によって金属表面に衝突させた実験でも、ガラス状カーボンの破片が一部金属表面に留まっていることが確認された。
【0052】
また、粒径10〜100μm程度に粉砕したガラス状カーボンを、融解したアルミニウム中に10wt%程度混入し、分散させた。凝固時に偏析しないように超音波振動を与えながら冷却し、ガラス状カーボン粉とアルミニウムのコンポジットブロックを得た。接触電気抵抗の測定用に金属テストピースを切り出し、塩酸に1〜5分浸積した。その後、陽極酸化法によって表面をアルマイト処理して耐食性を付与した後、接触抵抗を測定した。接触抵抗は10〜30mΩ・cm2と十分小さかった。表面を顕微鏡観察すると、陽極酸化法によって形成したアルミナ被膜を貫通して、数多くのガラス状カーボン粒子が表面に露出していた。アルミニウム以外の金属、例えばステンレスなどにおいても同様な方法によって、接触抵抗の小さい高耐食性金属を得ることができた。
【0053】
これらのガラス状カーボン粒子を電極との接触表面に機械的に埋め込んだステンレス製セパレータを用いて電池試験を行ったが、結果はスラリーの塗工によるものと同様に良好だった。
【0054】
これらの硬度の高い導電性粒子を含むスラリーの塗布・乾燥による方法や機械的な押し込みによる方法はガラス状カーボンの微粒子を用いて行った例を示したが、ガラス状カーボン以外の硬度の高い導電性粒子の場合も同様に有効であることはいうまでもない。また、本発明はそのメカニズムにから本質的に、金属酸化物の不動態被膜やアルミナ被膜などの導電性が低い被膜によって、耐食性を保持している金属に対し、特に有効性が高いと考えられる。
【0055】
以上の参考例1及び実施例の電池試験は基本的に単電池を用いて実施したが、積層電池においては生成したジュール熱を回収し、積層電池を一定の温度に保つために、2〜3電池毎に冷却水部を構成する。その際には金属セパレータと金属セパレータとの接触部の電気抵抗についても抑制する必要がある。そこで、金属セパレータの表面を凹凸処理したり、セパレータより硬度の高い導電性粒子を金属セパレータの表面に配した積層電池についても性能評価し、本発明が金属と金属との接触面においても接触抵抗を抑制する効果があることがわかった。
【0056】
【発明の効果】
本発明によると、電池などの電気発生装置の接触抵抗の増大による出力低下を長期間にわたって抑制することができるので実用性は大きい。
【図面の簡単な説明】
【図1】本発明の参考で用いたセパレータ表面の模式図
【図2】本発明の参考1の電池の出力性能を示した図
【図3】本発明の実施例1の電池の出力性能を示した図
【図4】本発明の実施例で用いたセパレータ表面の模式図
【符号の説明】
1 カーボン繊維
2 ステンレスセパレータ
3 酸化被膜層
4 凸部の幅
5 カーボン繊維の断面
6 接触面
7 有機バインダー
8 ガラス状カーボン粒子[0001]
BACKGROUND OF THE INVENTION
TECHNICAL FIELD The present invention relates to a fuel cell useful as a consumer cogeneration system or a power generator for a mobile body, and more particularly to a polymer electrolyte fuel cell using a polymer electrolyte.
[0002]
[Prior art]
In a fuel cell, a fuel such as hydrogen and an oxidant gas such as air are electrochemically reacted in a gas diffusion electrode, and electricity and heat are supplied and taken out simultaneously. There are different types of fuel cells depending on the type of electrolyte used. When the electrolyte is a phosphoric acid type, phosphoric acid impregnated in a SiC matrix is actually used. In the case of a polymer electrolyte type, a fluororesin polymer film into which sulfonic acid is introduced as a side chain end group has become the mainstream.
[0003]
In the configuration of the battery, an electrode reaction layer mainly composed of carbon powder carrying a platinum-based metal catalyst is adhered to the electrolyte. Further, a pair of electrode base materials having both gas permeability and conductivity are brought into close contact with the outer surface of the electrode reaction layer to form a gas diffusion electrode together with the electrode reaction layer. On the outside of the electrode, a conductive separator plate for mechanically fixing the joined body of these electrodes and electrolyte and electrically connecting adjacent joined bodies to each other in series is disposed. In an actual separator plate, a reaction gas is supplied to the electrode surface and a gas flow path for carrying away the generated gas and surplus gas is formed at a portion in contact with the electrode. For this reason, in order to perform the operation of the separator plate as a gas flow path plate, a single cell in which an electrolyte layer, an electrode reaction layer, and a gas flow path plate are stacked is stacked with several tens to several hundreds. A fuel gas such as hydrogen and air is supplied from the outside through a manifold.
[0004]
[Problems to be solved by the invention]
Usually, the electrode forming the gas diffusion layer is composed of carbon fiber or carbon particle powder. Moreover, carbon and a corrosion-resistant metal are used for the material which comprises a gas flow-path board. Carbon is excellent in durability, but shaping the gas flow path and reducing the cost of materials are problems. On the other hand, when a metal material is used for the gas flow path plate, the material itself is relatively low cost, and the flow path molding is easy by press molding or the like. However, since it is exposed to highly humid gas for a long time, strong corrosion resistance is required. In addition to this, it is important to suppress the contact resistance with the electrode in order to increase the power generation efficiency of the battery.
[0005]
For example, stainless steel, which is a typical corrosion-resistant metal, retains corrosion resistance due to a passive film made mainly of chromium oxide formed on the surface. However, under alloy compositions and corrosion conditions where the passive film tends to become unstable, iron, nickel, chromium, etc., gradually elute as ions during long hours of operation and deposit inside the polymer electrolyte. The battery performance is lowered because it works to suppress the action of the electrode catalyst. On the other hand, with an alloy composition in which the passive film is stable and the metal ions are not easily eluted even during long-time operation, the passive film becomes an electric resistance and the contact resistance increases, so that high battery performance cannot be obtained. This situation is the same when using anodized aluminum in an attempt to reduce the weight, and it is difficult to achieve both corrosion resistance and reduced contact resistance. A method of coating a metal surface with a corrosion-resistant metal such as gold by chemical plating or vapor deposition has been studied, but cost reduction has been difficult.
[0006]
[Means for Solving the Problems]
  In order to solve the above problems, the polymer fuel cell of the present invention is a hydrogen ion conductive polymer electrolyte membrane.And the hydrogen ion conductive polymer electrolyte membraneA fuel cell comprising: a pair of electrodes sandwiching a pair of electrodes; a pair of porous diffusion layers sandwiching the electrodes; and a pair of gas passage plates sandwiching the porous diffusion layer.IsThe porous diffusion layerA conductive material having an oxide film layer on the surface in contact with the conductive material, and conductive particles having a hardness higher than that of the metal material are disposed at a joint portion between the oxide film layer and the porous diffusion layer. The particles are at least one selected from the group consisting of glassy carbon, silicon carbide and titanium nitride.It is characterized by that.
[0009]
  Porous diffusion layerButIt is effective to have carbon fibers.
[0010]
  The particle size of the conductive particlesButCarbon fiber diameterIsIt is effective.
[0012]
At this time, it is desirable that the metallic material forms a passive film on the surface in an acidic atmosphere having a pH of 3 or higher.
[0013]
  Also,Contains conductive particlesOrganic binderIs the oxide film layer side of the gas flow path platePainted on the surface ofHas beenIt is effective.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
The present invention provides means for securing a conductive path at the contact portion through a coating that retains corrosion resistance on the surface of the metal separator by improving the surface shape of the metal separator and arranging conductive particles in the current-carrying portion. Is.
[0015]
  For exampleThe surface of the current-carrying part of the metal separator is uneven, and when the carbon fiber or carbon powder constituting the electrode comes into pressure contact, the corrosion-resistant coating is broken by deformation of the convex part, and the metal part of the metal separator and the carbon of the electrode Increases the area of direct contact with the materialThe
[0016]
Further, when conductive particles having a hardness higher than that of the metal constituting the metal separator are arranged on the joint surface with the metal separator, the conductive particles penetrate through the corrosion-resistant film on the surface of the metal separator when the electrodes are pressed to form a conductive path.
[0017]
Specifically, the width of the convex part of the surface irregularity treatment should be smaller than the diameter of the carbon powder or carbon fiber contained in the electrode, the convex part should have a wedge shape, and the tip angle should be smaller than 90 degrees. The contact resistance is reduced by increasing the deformation of the convex portion and increasing the contact area. The use of a sandblasting method for the uneven treatment is a simple and low-cost manufacturing technique.
[0018]
In addition, the deformation of the surface of the metal separator that occurs when the carbon fiber or carbon powder that constitutes the electrode is pressed against the metal separator increases as the contact pressure increases, so that the convex portion of the surface of the metal separator penetrates into the electrode in a wedge shape. A structure that increases the contact area and at the same time increases the substantial pressure contact pressure is desirable. As the height of the surface protrusion, 50% to 10% of the thickness of the gas diffusion layer constituting the electrode was practical.
[0019]
On the other hand, in the method of arranging conductive particles or conductive powder harder than the metal separator on the surface of the metal separator, glassy carbon pulverized powder other than the metal particles and powder is suitable. In the case of metal particles, it is necessary to consider the influence of the elution of metal ions from itself. Besides glassy carbon, carbides such as titanium nitride and silicon carbide, and conductive oxides such as ruthenium oxide are also highly effective. As the particle diameter of the conductive particles, a powder having a particle diameter equal to or smaller than the diameter (-10 μm) of the carbon fiber constituting the electrode was good. When the particle size was larger than 300 μm, it was difficult to hold the metal separator on the joint surface. Conversely, if the particle size is smaller than 0.01 μm, the corrosion-resistant coating cannot be penetrated. As the shape of the conductive particles, those having a sharp corner like the pulverized powder of glassy carbon were more effective than the spherical powder having a smooth surface.
[0020]
As a structure for holding conductive particles to the contact part of the metal separator, the conductive particles are coated on the current-carrying surface of the metal separator and gas diffusion electrode together with the organic binder, and the conductivity of the coating film is kept high. Therefore, it is desirable to add a conductive filler or a dispersant. In addition, in order to further improve the coatability, it is possible to treat the metal surface with unevenness.
[0021]
As another embodiment of the method for constructing the conductive particles having high hardness, there are a method in which the conductive particles collide with a metal separator at a high speed and are driven or pressed and mechanically pressed, or the conductive particles are dispersed inside. There is a form in which conductive particles are partially embedded in the surface of the metal separator by removing portions other than the conductive particles on the surface of the metal separator.
[0022]
Although the present invention is considered to be effective for a power generation apparatus that extracts electric power to the outside through an electrical contact of a metal member, since the current density at the contact surface is large, the effect of Joule loss on power generation efficiency is large. A specific description will be given with reference to an example applied to a fuel cell, particularly a polymer electrolyte fuel cell.
[0023]
  (referenceExample 1)
  An electrode catalyst comprising 25% by weight of platinum particles having an average particle diameter of about 30 mm supported on acetylene black carbon powder was used. A dispersion solution in which a powder of perfluorocarbon sulfonic acid, which is a polymer electrolyte, was dispersed in ethyl alcohol was mixed with a solution in which the catalyst powder was dispersed in isopropanol to obtain a paste. On the other hand, 400 μm thick carbon paper, which is the base of the electrode, is impregnated with an aqueous dispersion of fluororesin (Neoflon ND1 manufactured by Daikin Industries, Ltd.), dried, and then heat treated at 400 ° C. for 30 minutes to impart water repellency. did.
[0024]
The catalyst paste was uniformly applied to one side of a carbon paper electrode subjected to water repellent treatment to form a catalyst layer. The amount of platinum contained in the reaction electrode after formation is 0.5 mg / cm.2The amount of perfluorocarbon sulfonic acid is 1.2 mg / cm2It adjusted so that it might become. Two carbon paper electrodes on which a catalyst layer is formed are stacked with a perfluorocarbon sulfonic acid polymer electrolyte membrane (DuPont, Nafion membrane, film thickness 25 μm) having hydrogen ion conductivity, and then dried. Thus, MEA (electrode / electrolyte assembly) was obtained.
[0025]
As the gas diffusion layer, in addition to carbon paper, carbon cloth woven with carbon fiber as a flexible material, or carbon felt formed by mixing carbon fiber and carbon powder and adding an organic binder may be used. Good. The diameters of carbon fibers and carbon powder used for these gas diffusion layers were 5 to 20 μm.
[0026]
Next, two gas flow path plates for supplying hydrogen gas and air as active materials to the electrodes and discharging the generated water vapor and drain gas were formed along each carbon paper electrode. The gas channel plate was a graphite plate having a thickness of 2 mm, and a groove serving as a gas channel was formed by cutting on the surface in contact with the electrode. Two stainless steel plates (SUS316) or aluminum plates having a thickness of 4 mm were prepared as separator plates. The separator plate was supplied with a gas as an active material from the outside, and formed a manifold hole for discharging the drain gas. Around the MEA, a silicon rubber sealing material with an adjusted thickness was arranged to prevent gas from leaking.
[0027]
The electricity generated in the electricity generating section composed of the electrolyte layer and the electrode can be taken out from the metal separator plate through the graphite gas flow path plate. The test was also conducted on a fuel cell in which the gas flow path was formed by cutting or press molding on a metal separator without using the gas flow path plate.
[0028]
Using a separator made of a metal plate whose surface was embossed into various fine shapes by a roller press, the effect of the uneven treatment was examined. Although embossing was easy with an aluminum separator, it was difficult to form large irregularities with a stainless steel separator, so that irregularities were formed by cutting when the height of the convexes exceeded 100 μm. On the other hand, those having a height of the convex portion smaller than 10 μm were obtained by polishing with sandpaper or adjusting the roughness of sand particles in the sandblasting method. The surface shape subjected to the concavo-convex treatment was observed and identified by an optical stereoscopic microscope, an electron microscope, or a stylus method.
[0029]
Prior to the test assembled in the battery, the contact electrical resistance between the carbon paper used as the gas diffusion layer and the metal test piece (stainless steel, aluminum) was measured and evaluated using the pressure contact pressure as a parameter. The pressure contact pressure of the SUS316 test piece is 25 kgf / cm.2The average value of the contact resistance in the applied state is shown in Table 1.
[0030]
[Table 1]
Figure 0004485613
[0031]
In Table 1, the surface of the SUS316 plate that is not subjected to surface unevenness treatment is 120 mΩ · cm.2In contrast, 10 to 50 mΩ · cm is applied to the surface.2It was found that the contact resistance was improved. About aluminum, after performing the uneven | corrugated process, the alumite process was performed by the anodic oxidation method. 530mΩ · cm for aluminum plate that does not have unevenness treatment2However, it was 50 to 300 mΩ · cm that was processed with unevenness.2And the contact resistance was low. In the case of an aluminum plate, when anodizing was performed excessively, the alumite coating layer became thick, and no significant improvement in contact resistance was observed even when the unevenness treatment was performed. From the above results, it was found that the contact resistance tended to decrease as the height of the convex portion decreased, but as a whole, it was found that the contact resistance was drastically improved by the unevenness treatment.
[0032]
In addition to those shown in Table 1, contact resistance was also measured. For example, in order to pursue the improvement of the surface irregularities and the contact resistance, the measurement was performed by changing the embossing press mold and the pressing pressure. As a result, when the press pressure was small and many flat portions remained at the apex portions of the convex portions, the contact resistance was not improved so much. In addition, regarding the relationship between the convex shape and the contact resistance, it was found that generally the sharper the wedge-shaped angle of the convex portion, the smaller the contact resistance, and the smaller the pressure contact pressure for selecting the same contact resistance. . This effect was remarkable when the wedge-shaped angle was smaller than 90 degrees.
[0033]
In addition, we found that there was a big difference in the behavior of contact resistance even with metal plates with the same convexity by the stylus method. A schematic diagram of the fine structure of the contact portion observed by a microscope is shown in FIG. It is considered that the carbon fiber 1 is pressed against the stainless steel separator 2 and a conductive path is formed through the oxide film 3 on the surface. A narrower one has a greater improvement in contact resistance than a wide one having a convex width 4 and the contact resistance is particularly small when the width is smaller than 20 μm. As shown in FIG. 1, when the width of the convex portion is approximately the same as the diameter (5 to 20 μm) of the cross section 5 of the carbon fiber of the carbon paper, the deformation of the convex portion due to the pressure contact increases, and the carbon material and the metal material It is considered that the substantial area of the contact surface 6 increases.
[0034]
A cell was constructed by using such a metal separator subjected to uneven treatment, and a battery test was conducted. The battery test was conducted with the following configuration. First, air was submerged in a 60-70 ° C. hot water bubbler and humidified, and hydrogen was supplied to a manifold leading to each electrode through a 80 ° C. hot water bubbler. At this time, the battery temperature was fixed at 75 ° C., and the gas utilization ratio representing the ratio of the gas consumed in the electrode reaction to the supplied active material gas was 70% on the hydrogen side and 20% on the air side. . 0.5A / cm as load current density2The battery performance was evaluated by the output voltage when it was taken.
[0035]
Comparison of battery performance using a stainless steel separator with an average height and width of 20 μm, compared with battery performance using a stainless steel separator that has not been subjected to uneven treatment, and battery performance using a conventional carbon cutting separator This is shown in FIG. As a result, it was found that the performance close to that of a carbon cutting separator can be obtained when the unevenness treatment is performed. Furthermore, as a result of conducting a battery test on metal separators subjected to various unevenness treatments shown in Table 1, a correlation was obtained that the smaller the contact resistance, the higher the battery performance. As for the aluminum separator, the battery performance was lower than that of stainless steel due to the large contact resistance, but it was found that the battery performance was improved by the surface unevenness treatment.
[0036]
Next, the battery performance when the convex part of the uneven treatment was increased was evaluated. Stainless steel separators having a convex portion height of 100 μm, 200 μm, 300 μm, and 500 μm were manufactured by press molding or cutting. The battery using any of the separators showed good performance. However, in the separator battery having a convex portion of 300 μm or more, the carbon paper was broken and the performance suddenly decreased during the test. Therefore, it can be said that the height of the convex portion is preferably 50% or less of the gas diffusion layer.
[0037]
Furthermore, the correlation between the corrosion resistance and the contact resistance of the metal separator subjected to the unevenness treatment was examined. Several separators made of an alloy that retains corrosion resistance with a passive film made of chromium oxide on the surface, mainly made of iron such as stainless steel, were prepared. The pH region where the passive film stably exists was changed mainly by changing the chromium content. As a result of the battery test, in the case of an alloy separator that can maintain high corrosion resistance even in an atmosphere having a pH lower than 2, the battery performance was not so high even when the unevenness treatment was performed. On the other hand, in the case of a separator having an alloy composition in which a passive film cannot exist stably unless the atmosphere has a pH higher than 2, the battery performance was remarkably improved by the uneven treatment. This is considered to be due to the fact that the effect of the unevenness treatment increases as the surface corrosion-resistant film becomes thinner to some extent.
[0038]
  (Example1)
  Next, a fuel cell will be described in which conductive particles having hardness higher than that of the metal constituting the metal separator are arranged at the current-carrying contact between the gas diffusion electrode and the metal separator. Similar to Example 1, the electrical contact resistance between the carbon paper and the metal test piece was evaluated prior to the battery test. Aluminum powder and stainless steel as metal conductive particlessteel(SUS316) Powder and cobalt powder were selected, crystalline graphite and glassy carbon were selected as carbon-based conductive particles, and titanium nitride, silicon carbide and lead oxide were selected as ceramic-based conductive particles. These powders were pulverized and pulverized for 1 hour in an agate mortar, then slurried with an organic solvent, and coated and dried and solidified on the current contact surface of the test piece.
[0039]
Using carbon paper and a stainless steel (SUS316) test piece, the pressure contact pressure is 25 kgf / cm.2The average value of the contact resistance in the applied state is shown in Table 2.
[0040]
[Table 2]
Figure 0004485613
[0041]
With the exception of aluminum powder and lead oxide powder, improvement in contact resistance was observed in all powders. Especially for stainless steel powder, cobalt powder, glassy carbon, and titanium nitride, the contact resistance when no powder is used is 130 mΩ · cm.215 to 40 mΩ · cm2And the improvement of contact resistance was remarkable.
[0042]
In order to elucidate the cause of contact resistance improvement, the surface of the test piece made of stainless steel after the test was observed with a microscope. As a result, countless scratches could be observed on the surface of the glassy carbon or titanium nitride powder. On the other hand, such scratches were not found with aluminum powder or lead oxide powder. From these results, it is considered that the conductive fine particles are present on the contact surface in a form that breaks through the surface coating of stainless steel, and the electrical conductivity between the carbon fiber constituting the carbon paper and the stainless steel test piece is ensured.
[0043]
Even with the same carbon-based conductive particles, crystalline graphite with a lower Vickers hardness (180-220 HV) of stainless steel showed little improvement in contact resistance. Further, since the carbide has a high Vickers hardness, the contact resistance can be greatly improved by using a carbide having higher conductivity than the silicon carbide used in the experiment. Also, the hardness of aluminum and lead oxide is lower than that of stainless steel, and the contact resistance cannot be improved because the oxide film on the surface and the conductivity of itself are low.
[0044]
  Next, from these highly conductive powders, glassy carbon powder and stainless steelsteelA battery test was conducted using the powder. The basic structure of the battery, such as the electrolyte membrane and gas diffusion electrode, and its manufacturing and assembly proceduresreferenceSame as Example 1. A glassy carbon powder having a Vickers hardness of 550 HV was obtained by pulverizing a glassy carbon block obtained by heat treatment of a thermosetting resin for a long time using a ball mill. The average particle size of this carbon powder was 30 μm. Also stainlesssteelAs the powder, SUS304 having an average particle size of 30 μm was used. When assembling the fuel cell, the glassy carbon powder slurried with ethanol is made of stainless steel.steel(SUS316) It applied and dried to the contact surface with the gas diffusion electrode of a separator. The contact pressure between the separator and the electrode is 25 kgf / cm2Adjusted.
[0045]
  Battery testreferenceUnder the same conditions as in Example 1, air was submerged in a hot water bubbler at 60 to 70 ° C. and humidified, and hydrogen was supplied under a hot water bubbler at 80 ° C. The test was conducted at a battery temperature of 75 ° C., a hydrogen side gas utilization rate of 70%, and an air side gas utilization rate of 20%. Figure 3 shows glassy carbon powder and stainless steelsteelThe performance of the battery using the powder is shown in comparison with the performance of the battery by conventional pressure welding. As a result, in the battery in which these powders are arranged, the current density is 0.5 A / cm.2It was found that the output voltage at this time was greatly improved from 0.63 to 0.65 V compared to the value of 0.50 V for the battery of the conventional configuration.
[0046]
In the battery in which the glassy carbon powder is coated on the stainless steel separator, the glassy carbon particles 8 fixed to the organic binder 7 are formed on the contact surface with the gas diffusion electrode as shown in FIG. While contacting the carbon fiber 1, it reaches the stainless steel metal portion 2 through the oxide film layer 3 on the surface. It is inferred that the contact resistance is greatly improved because a conductive path is formed by the glassy carbon particles 8.
[0047]
A slight improvement of 0.57 V was confirmed even in a battery using crystalline carbon. Thus, it was found that the battery performance was substantially improved corresponding to each contact resistance value. This time, SUS304 powder that is equivalent to or slightly softer than SUS316 as the separator material was used as the stainless steel powder, but it was confirmed that the battery performance was further improved by using a harder stainless steel material or metal powder.
[0048]
Next, by changing the pulverization conditions of glassy carbon, powders having various average particle diameters (5 μm, 10 μm, 20 μm, 35 μm, and 60 μm) were prepared, and the relationship between the particle diameter and battery performance was examined. All the batteries showed an improvement in performance at the initial stage of operation, but in the batteries having a particle size of more than 20 μm, the performance gradually decreased during the battery test exceeding 200 hours. The reason for this is considered to be that the carbon particles are difficult to be held on the bonding surface when the diameter of the carbon particles is larger than the diameter (5 to 20 μm) of the carbon fiber that is the porous carbon material of the gas diffusion electrode.
[0049]
In the configuration so far, the carbon particles are slurried with an organic solvent and applied to the conductive surface of the metal separator. However, the adhesion strength of the carbon particles is weak, and the carbon particles may fall off during battery assembly. It was dispersed in a 2% by weight ethanol solution of polyvinyl butyral, slurried, applied and dried. Further, 5-50% by weight of crystalline carbon powder was added in order to increase the conductivity of the coating film, and a slurry provided with dispersibility with a surfactant was also prepared, and a battery test was conducted. Compared to a battery that was slurried with ethanol alone and applied to the conductive surface, the performance was slightly reduced with the addition of polyvinyl butyral. It became high. In either case, it was possible to prevent the carbon powder from falling off during battery assembly. Further, through an attempt to improve the performance by improving the conductivity of the coating film, it was also found that if the conductive particles having high hardness are contained in an amount of about 5% by weight, there is an effect of improving the contact resistance.
[0050]
Further, in order to increase the adhesion and the contact area of the coating film, a battery test was performed using a stainless steel separator that was unevenly processed by sandblasting. As a result, the battery performance was clearly improved as compared with the case without sandblasting. This is thought to be because polyvinyl butyral contracted during the evaporation and solidification of ethanol, and the pressure of the glassy carbon particles on the stainless steel surface increased.
[0051]
Furthermore, the following method was examined as another configuration method of the conductive particles having high hardness on the bonding conductive surface. That is, after the glassy carbon powder was dispersed on the metal surface, it was mechanically pressed with a roller press. When the surface was observed with a microscope, it was confirmed that many carbon particles were embedded in the metal surface. 50kg weight / cm for soft metals such as aluminum2Press pressure was good, but for stainless steel, 100kg weight / cm2The above press pressure was necessary. Further, even in an experiment in which relatively coarse glassy carbon particles of about 200 μm were made to collide with the metal surface with pressurized air, it was confirmed that some pieces of glassy carbon remained on the metal surface.
[0052]
Further, about 10 wt% of glassy carbon pulverized to a particle size of about 10 to 100 μm was mixed and dispersed in molten aluminum. Cooling was performed while applying ultrasonic vibration so as not to segregate during solidification, and a composite block of glassy carbon powder and aluminum was obtained. A metal test piece was cut out for measurement of contact electric resistance and immersed in hydrochloric acid for 1 to 5 minutes. Thereafter, the surface was anodized by anodization to give corrosion resistance, and then contact resistance was measured. Contact resistance is 10-30mΩ · cm2And it was small enough. When the surface was observed with a microscope, many glassy carbon particles were exposed on the surface through the alumina coating formed by the anodic oxidation method. A metal other than aluminum, such as stainless steel, could be obtained by a similar method to obtain a highly corrosion-resistant metal with low contact resistance.
[0053]
A battery test was conducted using a stainless steel separator in which these glassy carbon particles were mechanically embedded in the contact surface with the electrode, and the result was as good as that obtained by applying the slurry.
[0054]
Examples of the method of applying and drying the slurry containing conductive particles with high hardness and the method of mechanical indentation were performed using fine particles of glassy carbon. Needless to say, it is also effective in the case of the particles. Further, the present invention is considered to be particularly effective for a metal having corrosion resistance due to a film having low conductivity such as a passive film of metal oxide or an alumina film because of its mechanism. .
[0055]
  More thanreferenceExample 1 and Examples1The battery test was basically carried out using a single cell. However, in order to recover the generated Joule heat in the laminated battery and keep the laminated battery at a constant temperature, a cooling water section was constructed for every two to three batteries. To do. In that case, it is necessary to suppress also the electrical resistance of the contact part of a metal separator and a metal separator. Therefore, the performance of the laminated battery in which the surface of the metal separator is processed to be uneven or the conductive particles having hardness higher than that of the separator are arranged on the surface of the metal separator is evaluated. It was found that there is an effect of suppressing.
[0056]
【The invention's effect】
According to the present invention, output reduction due to an increase in contact resistance of an electric generator such as a battery can be suppressed over a long period of time, so that practicality is great.
[Brief description of the drawings]
FIG. 1 of the present inventionreferenceExample1Schematic diagram of the separator surface used in
FIG. 2 of the present inventionreferenceExample1'sDiagram showing battery output performance
FIG. 3 shows the present invention.The fruitExamples1'sDiagram showing battery output performance
FIG. 4 shows the present invention.The fruitExamples1Schematic diagram of the separator surface used in
[Explanation of symbols]
  1 Carbon fiber
  2 StainlesssteelSeparator
  3 Oxide coating layer
  4 Width of convex part
  5 Cross section of carbon fiber
  6 Contact surface
  7 Organic binder
  8 Glassy carbon particles

Claims (9)

水素イオン伝導性高分子電解質膜と、前記水素イオン伝導性高分子電解質膜を挟んだ一対の電極と、前記電極を挟んだ一対の多孔性拡散層と、前記多孔性拡散層を挟んだ一対のガス流路板とを具備した燃料電池において、
前記ガス流路板は、前記多孔性拡散層と接する側の表面に酸化被膜層を有する金属材料であり、
前記酸化被膜層と前記多孔性拡散層との接合部分に前記金属材料よりも硬度が高い導電性粒子配置されており、
前記導電性粒子は、ガラス状カーボン、シリコンカーバイドおよび窒化チタンからなる群より選ばれる少なくとも1種である高分子電解質型燃料電池。
A hydrogen ion conductive polymer electrolyte membrane , a pair of electrodes sandwiching the hydrogen ion conductive polymer electrolyte membrane , a pair of porous diffusion layers sandwiching the electrodes, and a pair of sandwiching the porous diffusion layers In a fuel cell comprising a gas flow path plate,
The gas flow path plate is a metal material having an oxide film layer on the surface in contact with the porous diffusion layer,
Conductive particles having a hardness higher than that of the metal material are disposed at a joint portion between the oxide film layer and the porous diffusion layer ,
The polymer electrolyte fuel cell, wherein the conductive particles are at least one selected from the group consisting of glassy carbon, silicon carbide, and titanium nitride .
前記導電性粒子がガラス状カーボンである請求項1に記載の高分子電解質型燃料電池。The polymer electrolyte fuel cell according to claim 1, wherein the conductive particles are glassy carbon. 前記導電性粒子がシリコンカーバイドおよび窒化チタンからなる群より選ばれる少なくとも1種である請求項1に記載の高分子電解質型燃料電池。The polymer electrolyte fuel cell according to claim 1, wherein the conductive particles are at least one selected from the group consisting of silicon carbide and titanium nitride. 前記導電性粒子が前記酸化被膜層を貫通している請求項1〜3のいずれか1項に記載の高分子電解質型燃料電池。The polymer electrolyte fuel cell according to any one of claims 1 to 3, wherein the conductive particles penetrate the oxide film layer. 前記金属材料がステンレス鋼またはアルミニウムである請求項1〜4のいずれか1項に記載の高分子電解質型燃料電池。The polymer electrolyte fuel cell according to any one of claims 1 to 4, wherein the metal material is stainless steel or aluminum. 前記多孔質拡散層カーボン繊維を有する請求項1〜5のいずれか1項に記載の高分子電解質型燃料電池。Polymer electrolyte fuel cell according to any one of Motomeko 1-5 wherein the porous diffusion layer is that having a carbon fiber. 前記導電性粒子の粒径が前記カーボン繊維の直径以下である請求項6記載の高分子電解質型燃料電池。Polymer electrolyte fuel cell according to claim 6 the particle size of the conductive particles is less than the diameter of the carbon fibers. 前記金属材料は、pH3以上の酸性雰囲気中で表面に不動態被膜を生成することを特徴とする請求項1〜7のいずれか1項に記載の高分子電解質型燃料電池。The polymer electrolyte fuel cell according to any one of claims 1 to 7, wherein the metal material generates a passive film on a surface in an acidic atmosphere having a pH of 3 or higher. 前記導電性粒子を含む有機バインダーが、前記ガス流路板における前記酸化被膜層側の表面に塗着されていることを特徴とする請求項1〜8のいずれか1項に記載の高分子電解質型燃料電池。 The organic binder containing conductive particles, a polymer electrolyte according to any one of claims 1-8, characterized in that it is coated on the surface of the oxide film layer side of the gas flow path plate Type fuel cell.
JP05820399A 1998-06-30 1999-03-05 Polymer electrolyte fuel cell Expired - Fee Related JP4485613B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP05820399A JP4485613B2 (en) 1999-03-05 1999-03-05 Polymer electrolyte fuel cell
DE69933566T DE69933566T2 (en) 1998-06-30 1999-06-28 FUEL CELL WITH SOLID POLYMER ELECTROLYTES
CNB998080349A CN1151573C (en) 1998-06-30 1999-06-28 Solid polymer electrolyte fuel cell
KR10-2000-7014997A KR100426094B1 (en) 1998-06-30 1999-06-28 Solid polymer electrolyte fuel cell
KR10-2004-7001021A KR100453597B1 (en) 1998-06-30 1999-06-28 Solid polymer electrolyte fuel cell
PCT/JP1999/003464 WO2000001025A1 (en) 1998-06-30 1999-06-28 Solid polymer electrolyte fuel cell
US09/719,832 US6660419B1 (en) 1998-06-30 1999-06-28 Solid polymer electrolyte fuel cell
EP99926831A EP1094535B1 (en) 1998-06-30 1999-06-28 Solid polymer electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05820399A JP4485613B2 (en) 1999-03-05 1999-03-05 Polymer electrolyte fuel cell

Publications (2)

Publication Number Publication Date
JP2000260441A JP2000260441A (en) 2000-09-22
JP4485613B2 true JP4485613B2 (en) 2010-06-23

Family

ID=13077487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05820399A Expired - Fee Related JP4485613B2 (en) 1998-06-30 1999-03-05 Polymer electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP4485613B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6793544B2 (en) * 2003-02-05 2004-09-21 General Motors Corporation Corrosion resistant fuel cell terminal plates
JP5345870B2 (en) * 2009-02-18 2013-11-20 本田技研工業株式会社 Method for producing membrane-electrode assembly
KR101209685B1 (en) 2010-11-17 2012-12-10 기아자동차주식회사 Metal separator for fuel cell and method for treatmenting surface of the same
KR101316529B1 (en) * 2011-07-06 2013-10-08 기아자동차주식회사 Fuel Cell Stack Structure
JP5454744B2 (en) 2011-11-30 2014-03-26 Jfeスチール株式会社 Stainless steel for fuel cell separator
JP2015520294A (en) * 2012-03-28 2015-07-16 ナムローゼ・フェンノートシャップ・ベーカート・ソシエテ・アノニムN V Bekaert Societe Anonyme Bonded porous metal diffusion substrate and polymer separation membrane
JP6163934B2 (en) 2013-07-18 2017-07-19 トヨタ車体株式会社 Manufacturing method of fuel cell separator
JP6137042B2 (en) * 2014-04-28 2017-05-31 トヨタ車体株式会社 Fuel cell separator manufacturing method and thermocompression bonding apparatus
JP6287721B2 (en) * 2014-09-17 2018-03-07 トヨタ車体株式会社 Polymer electrolyte fuel cell and separator
JP7375721B2 (en) * 2020-10-09 2023-11-08 トヨタ自動車株式会社 Separator and separator manufacturing method
KR20230168370A (en) * 2022-06-07 2023-12-14 현대제철 주식회사 Coating material and coating method for fuel cell separator with high corrosion resistance and high conductivity

Also Published As

Publication number Publication date
JP2000260441A (en) 2000-09-22

Similar Documents

Publication Publication Date Title
KR100426094B1 (en) Solid polymer electrolyte fuel cell
US6238534B1 (en) Hybrid membrane electrode assembly
JP5069927B2 (en) Membrane electrode assembly for fuel cell and method for producing the same
US8168025B2 (en) Methods of making components for electrochemical cells
JP4485613B2 (en) Polymer electrolyte fuel cell
Gago et al. Low cost bipolar plates for large scale PEM electrolyzers
JP4367062B2 (en) Fuel cell separator
JP3711545B2 (en) Polymer electrolyte fuel cell
CA2649903A1 (en) Methods of making components for electrochemical cells
JP2003109606A (en) High molecular electrolyte fuel cell and method of manufacturing the same
JP4047265B2 (en) Fuel cell and cooling separator used therefor
US7741243B2 (en) Production method of catalyst layer
JP5292578B2 (en) Metal separator for fuel cell, method for producing metal separator for fuel cell, and fuel cell
JP3711546B2 (en) Fuel cell electrode structure and manufacturing method thereof
JP2006318717A (en) Polyelectrolyte fuel cell and its manufacturing method
EP3525274B1 (en) Electrode structure and redox flow battery comprising same
US7687100B2 (en) Method of dry coating flow field plates for increased durability
JP2006066139A (en) Fuel cell separator and fuel cell using it
GB2386467A (en) Bipolar plates
JP5397725B2 (en) Conductive member for fuel cell
JP2005302610A (en) Fuel cell, and manufacturing method for metal diffusion layers therefor
KR20100027622A (en) Bipolar plate for polymer electrolyte membrane fuel cells and preparing process thereof
CN117832533A (en) Metal bipolar plate of fuel cell and preparation method thereof
JP2004146239A (en) Solid polymer electrolyte fuel cell
Chun et al. Electrocatalyst deposition and electrode formation

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20051227

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100225

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100325

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees