JP4485570B2 - Barrier film for flexible copper substrate and sputtering target for barrier film formation - Google Patents

Barrier film for flexible copper substrate and sputtering target for barrier film formation Download PDF

Info

Publication number
JP4485570B2
JP4485570B2 JP2007503590A JP2007503590A JP4485570B2 JP 4485570 B2 JP4485570 B2 JP 4485570B2 JP 2007503590 A JP2007503590 A JP 2007503590A JP 2007503590 A JP2007503590 A JP 2007503590A JP 4485570 B2 JP4485570 B2 JP 4485570B2
Authority
JP
Japan
Prior art keywords
film
target
barrier
thickness
barrier layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007503590A
Other languages
Japanese (ja)
Other versions
JPWO2006087873A1 (en
Inventor
修一 入間田
康廣 山越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Mining Holdings Inc
Original Assignee
Nippon Mining and Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining and Metals Co Ltd filed Critical Nippon Mining and Metals Co Ltd
Publication of JPWO2006087873A1 publication Critical patent/JPWO2006087873A1/en
Application granted granted Critical
Publication of JP4485570B2 publication Critical patent/JP4485570B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/20Metallic material, boron or silicon on organic substrates
    • C23C14/205Metallic material, boron or silicon on organic substrates by cathodic sputtering
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/388Improvement of the adhesion between the insulating substrate and the metal by the use of a metallic or inorganic thin film adhesion layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/2855Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table by physical means, e.g. sputtering, evaporation
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0393Flexible materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physical Vapour Deposition (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Laminated Bodies (AREA)

Description

本発明は、ポリイミド等の樹脂フィルムへの銅の拡散を効果的に抑制することのできるフレキシブル銅基板用バリア膜及びバリア膜形成用スパッタリングターゲットに関する。   The present invention relates to a barrier film for a flexible copper substrate and a sputtering target for forming a barrier film that can effectively suppress the diffusion of copper into a resin film such as polyimide.

従来、フレキシブル銅基板の製造に際し、ベースフィルムとなるポリイミド等の樹脂フィルム上に銅層を形成することが行なわれている。具体的には、ポリイミドフィルムにスパッタリング法や無電解めっき法により銅のシード層を形成し、さらにこの上に銅の厚めっき層を形成することが行われている。この後、銅のエッチング工程を経て、銅配線回路パターンが形成される。
こうして形成したフレキシブル基板を使用する際に、前記ポリイミドフィルム上に形成した銅が化学的に活発な金属であるために、ポリイミドフィルム中で容易に拡散し(マイグレーション)、回路基板の相互が短絡するという問題が発生した。
Conventionally, in the production of a flexible copper substrate, a copper layer is formed on a resin film such as polyimide as a base film. Specifically, a copper seed layer is formed on a polyimide film by a sputtering method or an electroless plating method, and a thick copper plating layer is further formed thereon. Thereafter, a copper wiring circuit pattern is formed through a copper etching process.
When using the flexible substrate thus formed, since the copper formed on the polyimide film is a chemically active metal, it easily diffuses in the polyimide film (migration) and the circuit boards are short-circuited. The problem that occurred.

このようなCuのポリイミドフィルムへの拡散を抑制するために、ポリイミドフィルム上に予めCuの拡散を防止するためのバリア層を形成し、その上にCuのシード層及びCuの厚付けめっき層を形成することが提案されている。
その代表的なものとして、Ni−Cr合金のバリア層を形成したものがある(特許文献1参照)。しかし、このNi−Cr合金のバリア層を形成したものでは、200〜300°C程度の温度上昇があると、依然としてCuのポリイミドフィルムへの拡散が認められる。また、特に配線ピッチが30μmより狭くなると、従来のバリア層ではポリイミド層への拡散を防ぐことができず、必ずしも効果的でないことが分かった。
In order to suppress such diffusion of Cu into the polyimide film, a barrier layer for preventing diffusion of Cu is previously formed on the polyimide film, and a Cu seed layer and a Cu thick plating layer are formed thereon. It has been proposed to form.
A typical example is a Ni-Cr alloy barrier layer formed (see Patent Document 1). However, in the case where this Ni—Cr alloy barrier layer is formed, if there is a temperature rise of about 200 to 300 ° C., diffusion of Cu into the polyimide film is still recognized. Further, it has been found that when the wiring pitch is narrower than 30 μm, the conventional barrier layer cannot prevent diffusion to the polyimide layer and is not necessarily effective.

これを防ぐ手段として、従来のバリア層の厚さを厚くすることで、バリア特性を向上させることも考えられる。しかし、一定値以上に厚さを厚くすると、膜が剥がれてしまうという問題が発生した。したがって、これも根本的な解決手段とは言えなかった。
その他の提案として、熱硬化性ポリイミドベースフィルムに熱可塑性ポリイミド層を形成し、さらにNi、Cr、Co、Moから選んだ少なくとも1種の金属からなるバリアメタルを被覆し、熱可塑性樹脂を加熱して流動化させ、熱可塑性ポリイミドとバリアメタルとの結合力を増加させるという提案もある(特許文献2参照)。
しかし、この場合は、バリアメタルの拡散というものの根本的なものを解決するものではないので、依然として問題は残っている。
このようなことから、本発明者らはCoをベースにCrを添加するものを提案した(特許文献3)。この材料は特性的には優れているが、Coの価格がNiの2〜3倍となり、コストの上昇を招くという問題がある。
特開2002−252257号公報 特開2002−280684号公報 特願2004−232872号公報
As a means for preventing this, it is conceivable to improve the barrier characteristics by increasing the thickness of the conventional barrier layer. However, when the thickness is increased beyond a certain value, there is a problem that the film is peeled off. Therefore, this was not a fundamental solution.
As another proposal, a thermoplastic polyimide layer is formed on a thermosetting polyimide base film, and a barrier metal composed of at least one metal selected from Ni, Cr, Co, and Mo is coated, and the thermoplastic resin is heated. There is also a proposal to increase the bonding force between the thermoplastic polyimide and the barrier metal (see Patent Document 2).
However, in this case, the problem remains because it does not solve the fundamental barrier metal diffusion.
In view of the above, the present inventors have proposed the addition of Cr based on Co (Patent Document 3). Although this material is excellent in characteristics, there is a problem that the price of Co is two to three times that of Ni, which causes an increase in cost.
JP 2002-252257 A JP 2002-280684 A Japanese Patent Application No. 2004-2322872

以上の従来技術の問題点から、ポリイミド等の樹脂フィルムへの銅の拡散を抑制するに際し、膜剥離を生じさせない程度の薄い膜厚で、また細かい配線ピッチでも十分なバリア効果を得ることができ、さらに熱処理等により温度上昇があっても、バリア特性に変化がないフレキシブル銅基板用バリア膜及びバリア膜形成用スパッタリングターゲット得ることを課題とする。   Due to the above-mentioned problems of the prior art, a sufficient barrier effect can be obtained with a thin film thickness that does not cause film peeling and a fine wiring pitch when suppressing the diffusion of copper into a resin film such as polyimide. Another object of the present invention is to obtain a barrier film for a flexible copper substrate and a sputtering target for forming a barrier film that do not change in barrier characteristics even when the temperature is increased by heat treatment or the like.

本発明者らは鋭意研究を行った結果、効果的なバリア特性を有する合金を使用し、バリア膜をできる限り薄くして剥離を防止すると共に、成膜した膜の均一性を高めることにより、上記の課題を解決することができるとの知見を得た。   As a result of diligent research, the present inventors have used an alloy having effective barrier properties, made the barrier film as thin as possible to prevent peeling, and by improving the uniformity of the film formed, The knowledge that said subject can be solved was acquired.

本発明はこの知見に基づき、
(1)Cr:5〜30wt%、Ti及び/又はZr:1〜10wt%含有し、残部が不可避的不純物及びNiからなるNi−Cr系合金膜からなり、膜厚が3〜150nm、膜厚均一性が1σで10%以下であることを特徴とするフレキシブル銅基板用バリア膜
(2)Cr:5〜30wt%、Ti及び/又はZr:1〜10wt%含有し、残部が不可避的不純物及びNiからなるNi−Cr系合金であって、スパッタ面の面内方向の比透磁率が100以下であることを特徴とするバリア膜形成用スパッタリングターゲット
を提供する。
The present invention is based on this finding,
(1) Cr: 5 to 30 wt%, Ti and / or Zr: 1 to 10 wt%, the balance is made of an Ni—Cr alloy film made of inevitable impurities and Ni, the film thickness is 3 to 150 nm, the film thickness Uniformity is 1σ at 10% or less barrier film for flexible copper substrate (2) Cr: 5 to 30 wt%, Ti and / or Zr: 1 to 10 wt%, the balance being inevitable impurities and There is provided a sputtering target for forming a barrier film, which is a Ni—Cr alloy made of Ni and has a relative magnetic permeability of 100 or less in the in-plane direction of the sputtering surface.

本発明のフレキシブル銅基板用バリア膜は、膜剥離を生じさせない程度の薄い膜厚とし、また細かい配線ピッチでも十分なバリア効果を得ることができ、さらに熱処理等により温度上昇があっても、バリア特性に変化がないという優れた特徴を有している。本発明は、ポリイミド等の樹脂フィルムへの銅の拡散を効果的に抑制する著しい特性を有する。  The barrier film for a flexible copper substrate of the present invention has a thin film thickness that does not cause film peeling, and a sufficient barrier effect can be obtained even with a fine wiring pitch. It has an excellent feature that there is no change in characteristics. The present invention has remarkable characteristics that effectively suppress the diffusion of copper into a resin film such as polyimide.

実施例1のNi−20wt%Cr−4.9wt%Ti合金のバリア膜を使用した場合の、Cu拡散の分析(AES)結果を示す図である。It is a figure which shows the analysis (AES) result of Cu diffusion at the time of using the barrier film | membrane of the Ni-20 wt% Cr-4.9 wt% Ti alloy of Example 1. FIG. 実施例9のNi−19.6wt%Cr−5.1wt%Zr合金のバリア膜を使用した場合の、Cu拡散の分析(AES)結果を示す図である。It is a figure which shows the analysis (AES) result of Cu diffusion at the time of using the barrier film of the Ni-19.6wt% Cr-5.1wt% Zr alloy of Example 9. FIG. 比較例1のNi−19.7wt%Cr合金のバリア膜を使用した場合の、Cu拡散の分析(AES)結果を示す図である。It is a figure which shows the analysis (AES) result of Cu diffusion at the time of using the barrier film of the Ni-19.7 wt% Cr alloy of the comparative example 1.

本発明のフレキシブル銅基板用バリア膜は、Cr:5〜30wt%、Ti及び/又はZr:1〜10wt%含有し、残部が不可避的不純物及びNiからなるNi−Cr系合金膜である。
膜組成において、Crが5wt%に満たない場合はバリア性が十分でなく、従来のバリア膜に比べ優位性が無い。また、Crが30wt%を超えるとCu層をエッチングして回路を形成する際に、このバリア膜がエッチングを阻害するので、除去するのに非常に時間がかかり過ぎ、実用に向かない。したがって、上記のCrの範囲とする。
また、Ti及び/又はZrの添加は、後述する実施例に示すように、バリア特性を著しく向上させて膜の耐久性を上げ、膜の均一性を確保するのに有効である。その添加量は1〜10wt%とするのが良い。Ti及び/又はZrの含有量が1wt%未満であると、膜の耐久性向上の効果が少なく、膜均一性の向上が期待できない。逆に、Ti及び/又はZrの含有量が10wt%を超えると、膜の剥離を発生し易くなるので、上記の範囲とする。
The barrier film for a flexible copper substrate of the present invention is a Ni—Cr-based alloy film containing Cr: 5 to 30 wt%, Ti and / or Zr: 1 to 10 wt%, with the balance being inevitable impurities and Ni.
In the film composition, when Cr is less than 5 wt%, the barrier property is not sufficient, and there is no advantage over the conventional barrier film. On the other hand, if Cr exceeds 30 wt%, this barrier film hinders etching when the Cu layer is etched to form a circuit, so that it takes too much time to remove and is not suitable for practical use. Therefore, the Cr range is set.
Further, the addition of Ti and / or Zr is effective for significantly improving the barrier characteristics and increasing the durability of the film and ensuring the uniformity of the film, as shown in the examples described later. The addition amount is preferably 1 to 10 wt%. When the content of Ti and / or Zr is less than 1 wt%, the effect of improving the durability of the film is small, and improvement in film uniformity cannot be expected. On the other hand, if the content of Ti and / or Zr exceeds 10 wt%, film peeling is likely to occur, so the above range is set.

本発明のフレキシブル銅基板用バリア膜の膜厚は、3〜150nmとする。膜厚が3nm未満の場合:充分なバリア性を持たない。また、膜厚が150nmを超えると膜剥がれを生じ易くなるので、上記の範囲とする。
本発明のフレキシブル銅基板用バリア膜の膜厚は、膜厚均一性が1σで10%以下とする。この膜均一性を適切な値を維持することは均一幅の配線を形成する上で極めて重要である。膜厚均一性(1σ)が、10%を超えると、パターニングの際のエッチング時に、バリア膜の厚い部分を除去するまでエッチングした場合、バリア膜が薄かった部分では、除去しようとした部分より広くエッチングされ、その部分の配線幅が狭くなり、耐久性が低下するという問題がある。したがって、上記の膜厚均一性(1σ)を10%以下とする。
The film thickness of the barrier film for a flexible copper substrate of the present invention is 3 to 150 nm. When the film thickness is less than 3 nm: it does not have sufficient barrier properties. Moreover, since it will become easy to produce film peeling when a film thickness exceeds 150 nm, it is set as said range.
The film thickness of the barrier film for a flexible copper substrate of the present invention is 10% or less when the film thickness uniformity is 1σ. Maintaining this film uniformity at an appropriate value is extremely important in forming a wiring having a uniform width. When the film thickness uniformity (1σ) exceeds 10%, when etching is performed until the thick part of the barrier film is removed during the patterning, the thin part of the barrier film is wider than the part to be removed. Etching results in a problem that the wiring width of the portion is narrowed and durability is lowered. Therefore, the film thickness uniformity (1σ) is set to 10% or less.

本発明のバリア膜形成用スパッタリングターゲットについては、Crを5〜30wt%、Ti及び/又はZr:1〜10wt%含有し、残部が不可避的不純物及びNiからなるNi−Cr系合金ターゲットを用いる。本発明のNi−Cr系合金ターゲットの組成は、バリア膜の組成に直接反映される。すなわち、ターゲット組成のCrが5wt%に満たない場合、5wt%Cr以上のNi−Cr系合金膜が成膜できない。一方、Crが30wt%を超えると、Cr量が30%以下となるNi合金の膜が成膜できない。
同様に、Ti及び/又はZrが1wt%に満たない含有量では、Ti及び/又はZrが1wt%以上のNi−Cr系合金膜が成膜できない。また、Ti及び/又はZrが10wt%を超える含有量では、Ti及び/又はZrが10wt%以下のNi−Cr系合金膜が成膜できない。したがって、Ni−Cr系合金ターゲットの組成は、上記の範囲とする。
また、本発明のバリア膜形成用スパッタリングターゲットの、スパッタ面の面内方向の比透磁率が100以下とする。比透磁率が100を超えると、スパッタ膜の膜厚均一性が1σで10%を超えてしまうからである。
For the sputtering target for forming a barrier film of the present invention, a Ni—Cr based alloy target containing 5 to 30 wt% of Cr, Ti and / or Zr: 1 to 10 wt%, and the balance of inevitable impurities and Ni is used. The composition of the Ni—Cr alloy target of the present invention is directly reflected in the composition of the barrier film. That is, when the target composition Cr is less than 5 wt%, a Ni—Cr alloy film of 5 wt% Cr or more cannot be formed. On the other hand, when Cr exceeds 30 wt%, a Ni alloy film having a Cr content of 30% or less cannot be formed.
Similarly, when the content of Ti and / or Zr is less than 1 wt%, a Ni—Cr alloy film with Ti and / or Zr of 1 wt% or more cannot be formed. Further, when the content of Ti and / or Zr exceeds 10 wt%, a Ni—Cr-based alloy film having Ti and / or Zr of 10 wt% or less cannot be formed. Therefore, the composition of the Ni—Cr-based alloy target is within the above range.
Further, the relative permeability in the in-plane direction of the sputtering surface of the sputtering target for forming a barrier film of the present invention is set to 100 or less. This is because when the relative magnetic permeability exceeds 100, the film thickness uniformity of the sputtered film exceeds 10% at 1σ.

本発明のNi−Cr系合金ターゲットは、平均結晶粒径が500μm以下、特に100μm以下が望ましい。平均結晶粒径が500μmを超えると、パーティクル発生量多くなり、ピンホールと呼ばれる膜欠陥が増加し、製品収率が低下するからである。
また、本発明のNi−Cr系合金ターゲットは、ターゲット内の平均結晶粒径のバラツキが30%以内のものが望ましい。平均粒径のばらつきが30%を超えると、スパッタ成膜した膜の膜厚均一性が1σで10%を超えるおそれがあるからである。
本発明のターゲットを製造するに際しては、700〜1280°Cの熱間における鍛造と、圧延の組み合わせにより、ターゲット板に加工するのが望ましい。
さらに、前記熱間鍛造・圧延後、大気中、真空中又は不活性ガス雰囲気中で、保持温度:300〜950°Cの熱処理を行うのが良い。これによって得たターゲットは、スパッタリングされる部分の平均粗さ (Ra) が、0.01〜5μmとする。
The Ni—Cr-based alloy target of the present invention preferably has an average crystal grain size of 500 μm or less, particularly 100 μm or less. This is because when the average crystal grain size exceeds 500 μm, the amount of particles generated increases, film defects called pinholes increase, and the product yield decreases.
Further, the Ni—Cr alloy target of the present invention desirably has an average crystal grain size variation within 30% within the target. This is because if the variation in average particle diameter exceeds 30%, the film thickness uniformity of the sputtered film may exceed 10% at 1σ.
When manufacturing the target of the present invention, it is desirable to process the target plate by a combination of hot forging at 700 to 1280 ° C. and rolling.
Further, after the hot forging / rolling, heat treatment at a holding temperature of 300 to 950 ° C. may be performed in the air, in a vacuum, or in an inert gas atmosphere. The target thus obtained has an average roughness (Ra) of a portion to be sputtered of 0.01 to 5 μm.

また、ターゲットの側面やバッキングフレートなどの非スパッタ面、すなわちスパッタされた物質が付着する部分を、サンドブラスト処理、エッチング処理又は溶射被膜層の形成等によって、表面の平均粗さ (Ra)を1〜50μmに表面粗化して、付着した被膜が再剥離するのを防止することが望ましい。再剥離してスパッタ雰囲気中に浮遊する物質は、基板へのパーティクル発生の原因となるからである。
本発明のターゲットは、Al合金、Cu、 Cu合金、Ti、Ti合金などのバッキングプレートへロウ付け若しくは高出力スパッタに耐えられるように、拡散接合法の金属結合によってボンディングしたり、バッキングプレート部をターゲット材と同じ材料を使用して一体成形して用いられる。
また、ターゲットに含有される不純物として、Na、Kの濃度がそれぞれ5ppm以下(以降ppmは、wtppmを示す)、U、Thの濃度がそれぞれ0.05ppm以下、さらには主元素、添加元素以外の金属元素の総計が0.5wt%以下、かつ酸素濃度が0.5%以下であることが望ましい。
Further, the average roughness (Ra) of the surface of the non-sputtered surface such as the side surface of the target or the backing freight, that is, the portion to which the sputtered material adheres is reduced by sandblasting, etching, or formation of a sprayed coating layer. It is desirable to roughen the surface to 50 μm to prevent the attached film from peeling again. This is because the substance that re-peels and floats in the sputtering atmosphere causes generation of particles on the substrate.
The target of the present invention can be bonded to the backing plate of Al alloy, Cu, Cu alloy, Ti, Ti alloy or the like by brazing or metal bonding of the diffusion bonding method so that it can withstand high power sputtering, or the backing plate portion can be The same material as the target material is used for integral molding.
Further, as impurities contained in the target, the concentrations of Na and K are each 5 ppm or less (hereinafter, ppm indicates wtppm), the concentrations of U and Th are each 0.05 ppm or less, and other than the main elements and additive elements It is desirable that the total amount of metal elements is 0.5 wt% or less and the oxygen concentration is 0.5% or less.

次に、実施例に基づいて本発明を説明する。以下に示す実施例は、理解を容易にするためのものであり、これらの実施例によって本発明を制限するものではない。すなわち、本発明の技術思想に基づく変形及び他の実施例は、当然本発明に含まれる。  Next, the present invention will be described based on examples. The following examples are for ease of understanding, and the present invention is not limited by these examples. That is, modifications and other embodiments based on the technical idea of the present invention are naturally included in the present invention.

(実施例1−9)
表1に示すターゲットを製造するために、Ni、Cr、Ti及び/又はZrの組成を溶解・鋳造し、各種Ni−Cr系インゴットを作製した。これを、1100°Cで熱間鍛造・熱間圧延し、冷却後500°Cで2時間熱処理を行い、ターゲットに加工した。このターゲットの結晶粒径はターゲットにより80〜250μmの範囲であった。これを、さらに表面粗さRa0.14μmに仕上げた。
ターゲット中のCr濃度は10.2〜29.5wt%の範囲、Tiの濃度は1.5〜9.5wt%の範囲、Zrの濃度は5.3wt%であった。なお、実施例でZrを添加した例は少ないが、ZrはTiと実質的に同効の材料であり、煩雑になるので省略した。
その他、不純物成分は、Na:0.2ppm、K:0.1wtppm、U:0.02ppm、Th:0.03ppm、 金属成分の総計が250〜470ppm、 酸素が10〜20ppmであった。
このターゲットをバッキングプレートにインジウムをロウ材としてボンディングして、ターゲットの側面とターゲット近傍のバッキングプレート部をサンドブラストで、Ra=7.5μmに粗化した。
(Example 1-9)
In order to manufacture the target shown in Table 1, the composition of Ni, Cr, Ti and / or Zr was melted and cast to prepare various Ni—Cr ingots. This was hot forged and hot rolled at 1100 ° C., and after cooling, heat-treated at 500 ° C. for 2 hours to be processed into a target. The crystal grain size of this target was in the range of 80 to 250 μm depending on the target. This was further finished to a surface roughness Ra of 0.14 μm.
The Cr concentration in the target was in the range of 10.2 to 29.5 wt%, the Ti concentration was in the range of 1.5 to 9.5 wt%, and the Zr concentration was 5.3 wt%. In addition, although there are few examples which added Zr in the Example, since Zr is a material substantially the same effect as Ti and becomes complicated, it was omitted.
In addition, the impurity components were Na: 0.2 ppm, K: 0.1 wtppm, U: 0.02 ppm, Th: 0.03 ppm, the total of metal components was 250 to 470 ppm, and oxygen was 10 to 20 ppm.
This target was bonded to a backing plate using indium as a brazing material, and the side surface of the target and the backing plate near the target were roughened to Ra = 7.5 μm by sandblasting.

表1に示す本発明の範囲にある合金組成及び比透磁率のターゲットを用いて、38μm厚のポリイミドシート上に、膜厚:3〜140nmのバリア層を作製した。
さらに、このバリア層の各添加成分の組成(wt%)、バリア層の膜厚(nm)、バリア層の膜厚を49点測定し、その膜厚の均一性(%)を調べた結果、及び耐久試験の結果(時間)を、同様に表1に示す。実施例1〜9のバリア膜の膜組成(wt%)、膜厚(nm)、膜厚の均一性(%)はいずれも、本願発明の範囲に入るものである。
なお、ターゲット組成と膜組成に若干の差異が認められるが、その量はわずかであり、ターゲット組成が膜に反映されていることが分かる。
さらに、このバリア層の上にスパッタ法でCuシード層を20nm成膜後、電気めっきにより8μmのCu層を形成した。そして、これらを30μmピッチ(配線幅15μm、配線間距離15μm)で作製した配線パターンについて、これに+60Vの電圧をかけて、85°C、湿度85%の雰囲気で保持する耐久試験を行った。これらの結果を同様に、表1に示す。
以上の結果、実施例1〜9は、いずれも各配線の短絡は見られなかった。耐久試験によると表1に示す通り、いずれの合金膜も耐久時間が1000時間を越えていた。
A barrier layer having a film thickness of 3 to 140 nm was formed on a polyimide sheet having a thickness of 38 μm using a target having an alloy composition and a relative magnetic permeability within the range of the present invention shown in Table 1.
Further, the composition of each additive component of the barrier layer (wt%), the thickness of the barrier layer (nm), the thickness of the barrier layer was measured at 49 points, and the uniformity of the thickness (%) was examined. The results (time) of the durability test are also shown in Table 1. The film compositions (wt%), film thickness (nm), and film thickness uniformity (%) of the barrier films of Examples 1 to 9 all fall within the scope of the present invention.
Although a slight difference is observed between the target composition and the film composition, the amount is slight and it can be seen that the target composition is reflected in the film.
Further, a Cu seed layer having a thickness of 20 nm was formed on the barrier layer by sputtering, and then an 8 μm Cu layer was formed by electroplating. And about the wiring pattern produced by these with a 30 micrometer pitch (wiring width of 15 micrometers, distance between wirings of 15 micrometers), the voltage of + 60V was applied to this and the endurance test which hold | maintains in an atmosphere of 85 degreeC and a humidity of 85% was done. These results are similarly shown in Table 1.
As a result, in all of Examples 1 to 9, no short circuit of each wiring was observed. According to the durability test, as shown in Table 1, all the alloy films had a durability time exceeding 1000 hours.

このCu/Ni−Cr系合金膜について、成膜したままの試料と、真空中で300°C×2時間の熱処理を行った試料について、AES(オージェ電子分光法)で深さ方向にプロファイルをとり、Cuのバリア層への拡散を評価した。
図1〜2に、AESの結果を示す。本実施例におけるNi−Cr系合金をバリア膜としたものでは、300°Cで熱処理したものでも、Cuのプロファイルは熱処理を行わなかったものと同様のプロファイルを示しており、バリア層への拡散が認められなかった。下記に示す比較例1と比較すると、Ti及び/又はZrの添加により、バリア特性の著しい向上が確認できた。
About this Cu / Ni-Cr-based alloy film, a profile was formed in the depth direction by AES (Auger Electron Spectroscopy) for the as-deposited sample and the sample that was heat-treated in vacuum at 300 ° C for 2 hours. Then, the diffusion of Cu into the barrier layer was evaluated.
1 and 2 show the results of AES. In the case where the Ni—Cr alloy in this example is used as a barrier film, the Cu profile shows the same profile as that without heat treatment even when heat-treated at 300 ° C., and diffusion into the barrier layer Was not recognized. When compared with Comparative Example 1 shown below, it was confirmed that the barrier properties were significantly improved by the addition of Ti and / or Zr.

Figure 0004485570
Figure 0004485570

(比較例1)
従来のバリア材であるNi−19.80wt%Crの組成を有する材料を、溶解・鋳造し、Ni−Crインゴットを作製した。これを、1100°Cで熱間鍛造・熱間圧延し、冷却後500°Cで2時間の熱処理を行い、ターゲットに加工した。
このターゲットの結晶粒径は300μmで、表面粗さをRaで0.15μmに仕上げた。ターゲット中のCr濃度は19.7wt%、不純物成分は、Na:0.1ppm、K:0.3ppm、U:0.02ppm、Th:0.04ppm、 不純物金属成分の総計が510ppm、 酸素が10ppmであった。
(Comparative Example 1)
A material having a composition of Ni-19.80 wt% Cr, which is a conventional barrier material, was melted and cast to prepare a Ni-Cr ingot. This was hot forged and hot rolled at 1100 ° C., and after cooling, heat-treated at 500 ° C. for 2 hours to be processed into a target.
The crystal grain size of this target was 300 μm, and the surface roughness was finished to 0.15 μm with Ra. Cr concentration in the target is 19.7 wt%, impurity components are Na: 0.1 ppm, K: 0.3 ppm, U: 0.02 ppm, Th: 0.04 ppm, total of impurity metal components is 510 ppm, oxygen is 10 ppm Met.

ターゲットをバッキングプレートにインジウムでボンディングして、ターゲットの側面とターゲット近傍のバッキングプレート部をサンドブラストで、Ra=7.0μmで粗化した。ターゲットの面内方向の比透磁率は30であった。
このターゲットを使って、バリア膜が剥離しないようにSiO基板を用い、その上に膜厚:140nmのバリア層を作製した。
このバリア層の各添加成分の組成を分析したところ、Cr:19.7wt%と、若干Crが少ない組成となった。このバリア層の膜厚を49点測定し、その膜厚均一性を調べたところ、1σで6.5%であった。以上の結果を同様に、表1に示す。
The target was bonded to the backing plate with indium, and the side surface of the target and the backing plate portion in the vicinity of the target were roughened by sand blasting at Ra = 7.0 μm. The relative permeability in the in-plane direction of the target was 30.
Using this target, a SiO 2 substrate was used so that the barrier film was not peeled off, and a barrier layer having a thickness of 140 nm was formed thereon.
When the composition of each additive component in the barrier layer was analyzed, Cr was 19.7 wt%, and the composition was slightly less Cr. When the film thickness of this barrier layer was measured at 49 points and the film thickness uniformity was examined, it was 6.5% at 1σ. The above results are similarly shown in Table 1.

このバリア層の上にスパッタ法でCu膜を200nm成膜した。このCu/Ni−Cr膜について、成膜したままの試料と、真空中で300°C×2時間の熱処理を行った試料について、AES(オージェ電子分光法)で深さ方向にプロファイルをとり、Cuのバリア層への拡散の評価した。図3に、AESの結果を示す。
300°Cで熱処理したもののCuのプロファイルが、熱処理していないものよりも、バリア層に入り込んでいる。すなわち、バリア層としての機能が低いことが分かった。
A Cu film having a thickness of 200 nm was formed on the barrier layer by sputtering. About this Cu / Ni-Cr film, about the sample as it was formed and the sample which performed heat processing for 300 ° C x 2 hours in a vacuum, take a profile in the depth direction by AES (Auger electron spectroscopy), The diffusion of Cu into the barrier layer was evaluated. FIG. 3 shows the results of AES.
The Cu profile that was heat-treated at 300 ° C. entered the barrier layer more than the one that was not heat-treated. That is, it turned out that the function as a barrier layer is low.

(比較例2)
比較例1と同様の操作により、表1に示すターゲットを製造し、このターゲットを用いて、38μm厚のポリイミドシート上に、表1に示す膜厚2.5nmのNi−Cr−Ti合金バリア層を形成した。ターゲットの面内方向の比透磁率は35であった。このバリア層の各添加成分の組成(wt%)、バリア層の膜厚(nm)、バリア層の膜厚を49点測定し、膜厚の均一性(%)を調べた結果、及び耐久試験の結果(時間)を、同様に表1に示す。
比較例2のバリア膜の膜厚が2.5nmと薄く、本願発明のターゲットと成分組成は同じであるが、膜厚が異なるものである。さらに、このバリア層の上にCuシード層を20nm成膜後、電気めっきにより8μmのCu層を形成した。そして、これらを30μmピッチで作製した配線パターンについて、これに+60Vの電圧をかけて、85°C、湿度85%の雰囲気で保持する耐久試験を行った。これらの結果を同様に、表1に示す。以上の耐久試験の結果、比較例2は120時間持続したが、その後配線の短絡を生じた。
(Comparative Example 2)
The target shown in Table 1 was manufactured by the same operation as Comparative Example 1, and a Ni—Cr—Ti alloy barrier layer having a thickness of 2.5 nm shown in Table 1 was formed on a 38 μm-thick polyimide sheet using this target. Formed. The relative permeability in the in-plane direction of the target was 35. The composition of each additive component of the barrier layer (wt%), the thickness of the barrier layer (nm), the thickness of the barrier layer was measured at 49 points, and the uniformity of the thickness (%) was examined, and the durability test The results (time) are also shown in Table 1.
The film thickness of the barrier film of Comparative Example 2 is as thin as 2.5 nm, and the target composition of the present invention is the same as the component composition, but the film thickness is different. Further, after forming a Cu seed layer on the barrier layer to a thickness of 20 nm, an 8 μm Cu layer was formed by electroplating. And about the wiring pattern which produced these with the 30 micrometer pitch, the durability test which applied the voltage of + 60V to this and hold | maintains in the atmosphere of 85 degreeC and 85% of humidity was done. These results are similarly shown in Table 1. As a result of the above durability test, Comparative Example 2 lasted for 120 hours, but then a short circuit occurred in the wiring.

(比較例3)
比較例1と同様の操作により、表1に示すターゲットを製造し、このターゲットを用いて、38μm厚のポリイミドシート上に、表1に示す膜厚170nmのNi−Cr−Ti合金バリア層を形成した。ターゲットの面内方向の比透磁率は32であった。このバリア層の各添加成分の組成(wt%)、バリア層の膜厚(nm)、バリア層の膜厚を49点測定し、膜厚の均一性(%)を調べた結果、及び耐久試験の結果(時間)を、同様に表1に示す。
比較例3のバリア膜の膜厚が170nmと厚く、本願発明のターゲットと成分組成は同じであるが、膜厚が異なるものである。さらに、このバリア層の上にCuシード層を20nm成膜後、電気めっきにより8μmのCu層を形成した。
そして、これらを30μmピッチで作製した配線パターンについて、これに+60Vの電圧をかけて、85°C、湿度85%の雰囲気で保持する耐久試験を行った。
これらの結果を同様に、表1に示す。以上の耐久試験開始直後、比較例3は膜の剥離を生じた。その結果膜の耐久性の試験を続けることができなかった。以上から、バリア層の過剰な膜厚は、適切でないことが分かった。
(Comparative Example 3)
A target shown in Table 1 was manufactured in the same manner as in Comparative Example 1, and a 170 nm thick Ni—Cr—Ti alloy barrier layer shown in Table 1 was formed on a 38 μm thick polyimide sheet using this target. did. The relative permeability in the in-plane direction of the target was 32. The composition of each additive component of the barrier layer (wt%), the thickness of the barrier layer (nm), the thickness of the barrier layer was measured at 49 points, and the uniformity of the thickness (%) was examined, and the durability test The results (time) are also shown in Table 1.
The film thickness of the barrier film of Comparative Example 3 is as thick as 170 nm, and the target composition of the present invention is the same as the component composition, but the film thickness is different. Further, after forming a Cu seed layer on the barrier layer to a thickness of 20 nm, an 8 μm Cu layer was formed by electroplating.
And about the wiring pattern which produced these with the 30 micrometer pitch, the voltage of + 60V was applied to this, and the durability test hold | maintained at 85 degreeC and 85% of humidity atmosphere was done.
These results are similarly shown in Table 1. Immediately after the start of the above durability test, Comparative Example 3 caused film peeling. As a result, the durability test of the film could not be continued. From the above, it was found that an excessive film thickness of the barrier layer is not appropriate.

(比較例4)
比較例1と同様の操作により、表1に示すターゲットを製造し、このターゲットを用いて、38μm厚のポリイミドシート上に、表1に示す膜厚10nmのNi−Cr−Ti合金バリア層を形成した。ターゲットの面内方向の比透磁率は25であった。このバリア層の各添加成分の組成(wt%)、バリア層の膜厚(nm)、バリア層の膜厚を49点測定し、膜厚の均一性(%)を調べた結果、及び耐久試験の結果(時間)を、同様に表1に示す。
比較例4のバリア膜は、Tiが12.0と過剰に添加されたものである。さらに、このバリア層の上にCuシード層を20nm成膜後、電気めっきにより8μmのCu層を形成した。そして、これらを30μmピッチで作製した配線パターンについて、これに+60Vの電圧をかけて、85°C、湿度85%の雰囲気で保持する耐久試験を行った。
これらの結果を同様に、表1に示す。以上の耐久試験の結果、比較例4は試験の途中で、膜の剥離を生じた。その結果膜の耐久性の試験を続けることができなかった。以上から、バリア層のTiの過剰な添加は、適切でないことが分かった。
(Comparative Example 4)
A target shown in Table 1 was manufactured in the same manner as in Comparative Example 1, and a Ni—Cr—Ti alloy barrier layer having a thickness of 10 nm shown in Table 1 was formed on a 38 μm-thick polyimide sheet using this target. did. The relative permeability in the in-plane direction of the target was 25. The composition of each additive component of the barrier layer (wt%), the thickness of the barrier layer (nm), the thickness of the barrier layer was measured at 49 points, and the uniformity of the thickness (%) was examined, and the durability test The results (time) are also shown in Table 1.
In the barrier film of Comparative Example 4, Ti is excessively added at 12.0. Further, after forming a Cu seed layer on the barrier layer to a thickness of 20 nm, an 8 μm Cu layer was formed by electroplating. And about the wiring pattern which produced these with the 30 micrometer pitch, the voltage of + 60V was applied to this, and the durability test hold | maintained at 85 degreeC and 85% of humidity atmosphere was done.
These results are similarly shown in Table 1. As a result of the above durability test, Comparative Example 4 caused film peeling during the test. As a result, the durability test of the film could not be continued. From the above, it was found that excessive addition of Ti in the barrier layer is not appropriate.

(比較例5)
比較例1と同様の操作により、表1に示すターゲットを製造し、このターゲットを用いて、38μm厚のポリイミドシート上に、表1に示す膜厚10nmのNi−Cr−Ti合金バリア層を形成した。ターゲットの面内方向の比透磁率は60であった。このバリア層の各添加成分の組成(wt%)、バリア層の膜厚(nm)、バリア層の膜厚を49点測定し、膜厚の均一性(%)を調べた結果、及び耐久試験の結果(時間)を、同様に表1に示す。
比較例5のバリア膜は、Tiが0.9と添加量が本発明の規定に達しないものである。さらに、このバリア層の上にCuシード層を20nm成膜後、電気めっきにより8μmのCu層を形成した。そして、これらを30μmピッチで作製した配線パターンについて、これに+60Vの電圧をかけて、85°C、湿度85%の雰囲気で保持する耐久試験を行った。
これらの結果を同様に、表1に示す。以上の耐久試験の結果、比較例5は膜厚の均一性が15.3%と悪く、耐久試験の結果、230時間でバリア効果が低下し、耐久性が悪いという結果になった。したがって、バリア層に十分な量のTiがない場合には、耐久性が劣ることが分かった。
(Comparative Example 5)
A target shown in Table 1 was manufactured in the same manner as in Comparative Example 1, and a Ni—Cr—Ti alloy barrier layer having a thickness of 10 nm shown in Table 1 was formed on a 38 μm-thick polyimide sheet using this target. did. The relative permeability in the in-plane direction of the target was 60. The composition of each additive component of the barrier layer (wt%), the thickness of the barrier layer (nm), the thickness of the barrier layer was measured at 49 points, and the uniformity of the thickness (%) was examined, and the durability test The results (time) are also shown in Table 1.
The barrier film of Comparative Example 5 has a Ti content of 0.9 and the amount added does not meet the requirements of the present invention. Further, after forming a Cu seed layer on the barrier layer to a thickness of 20 nm, an 8 μm Cu layer was formed by electroplating. And about the wiring pattern which produced these with the 30 micrometer pitch, the voltage of + 60V was applied to this, and the durability test hold | maintained at 85 degreeC and 85% of humidity atmosphere was done.
These results are similarly shown in Table 1. As a result of the above durability test, the uniformity of the film thickness of Comparative Example 5 was as bad as 15.3%, and as a result of the durability test, the barrier effect was lowered after 230 hours and the durability was poor. Therefore, it was found that the durability is inferior when there is not a sufficient amount of Ti in the barrier layer.

(比較例6)
比較例1と同様の操作により、表1に示すターゲットを製造し、このターゲットを用いて、38μm厚のポリイミドシート上に、表1に示す膜厚10nmのNi−Cr−Ti合金バリア層を形成した。ターゲットの面内方向の比透磁率は30であった。このバリア層の各添加成分の組成(wt%)、バリア層の膜厚(nm)、バリア層の膜厚を49点測定し、膜厚の均一性(%)を調べた結果、及び耐久試験の結果(時間)を、同様に表1に示す。
比較例6のバリア膜は、Crが33.2wt%と添加量が本発明の規定量を超えるものである。さらに、このバリア層の上にCuシード層を20nm成膜後、電気めっきにより8μmのCu層を形成した。そして、これらを30μmピッチで配線パターンを作製しようとしたが、バリア層のエッチングに時間がかかり過ぎ、Cu部が過剰にエッチングされて配線パターンが形成できなかった。以上から、バリア層のCrの過剰な添加は、適切でないことが分かった。
(Comparative Example 6)
A target shown in Table 1 was manufactured in the same manner as in Comparative Example 1, and a Ni—Cr—Ti alloy barrier layer having a thickness of 10 nm shown in Table 1 was formed on a 38 μm-thick polyimide sheet using this target. did. The relative permeability in the in-plane direction of the target was 30. The composition of each additive component of the barrier layer (wt%), the thickness of the barrier layer (nm), the thickness of the barrier layer was measured at 49 points, and the uniformity of the thickness (%) was examined, and the durability test The results (time) are also shown in Table 1.
The barrier film of Comparative Example 6 has a Cr content of 33.2 wt% and an added amount exceeding the specified amount of the present invention. Further, after forming a Cu seed layer on the barrier layer to a thickness of 20 nm, an 8 μm Cu layer was formed by electroplating. Then, although an attempt was made to produce a wiring pattern with a pitch of 30 μm, it took too much time to etch the barrier layer, and the Cu part was excessively etched, so that the wiring pattern could not be formed. From the above, it was found that excessive addition of Cr in the barrier layer is not appropriate.

(比較例7)
比較例1と同様の操作により、表1に示すターゲットを製造し、このターゲットを用いて、38μm厚のポリイミドシート上に、表1に示す膜厚10nmのNi−Cr−Ti合金バリア層を形成した。ターゲットの面内方向の比透磁率は30であった。
このバリア層の各添加成分の組成(wt%)、バリア層の膜厚(nm)、バリア層の膜厚を49点測定し、膜厚の均一性(%)を調べた結果、及び耐久試験の結果(時間)を、同様に表1に示す。
比較例7のバリア膜は、Crが9.2wt%と添加量が本発明の規定量に達しないものである。さらに、このバリア層の上にCuシード層を20nm成膜後、電気めっきにより8μmのCu層を形成した。そして、これらを30μmピッチ(配線幅15μm、配線間距離15μm)で作製した配線パターンについて、これに+60Vの電圧をかけて、85°C、湿度85%の雰囲気で保持する耐久試験を行った。
これらの結果を同様に、表1に示す。以上の耐久試験の結果、比較例7は、耐久試験の結果、100時間でバリア効果が低下し、耐久性が悪いという結果になった。したがって、バリア層に十分な量のCrがない場合には、耐久性が劣ることが分かった。
(Comparative Example 7)
A target shown in Table 1 was manufactured in the same manner as in Comparative Example 1, and a Ni—Cr—Ti alloy barrier layer having a thickness of 10 nm shown in Table 1 was formed on a 38 μm-thick polyimide sheet using this target. did. The relative permeability in the in-plane direction of the target was 30.
The composition of each additive component of the barrier layer (wt%), the thickness of the barrier layer (nm), the thickness of the barrier layer was measured at 49 points, and the uniformity of the thickness (%) was examined, and the durability test The results (time) are also shown in Table 1.
The barrier film of Comparative Example 7 has a Cr content of 9.2 wt% and does not reach the specified amount of the present invention. Further, after forming a Cu seed layer on the barrier layer to a thickness of 20 nm, an 8 μm Cu layer was formed by electroplating. And about the wiring pattern produced by these with a 30 micrometer pitch (wiring width of 15 micrometers, distance between wirings of 15 micrometers), the voltage of + 60V was applied to this and the endurance test which hold | maintains in an atmosphere of 85 degreeC and a humidity of 85% was done.
These results are similarly shown in Table 1. As a result of the above durability test, Comparative Example 7 resulted in the result that the barrier effect was lowered and the durability was poor in 100 hours as a result of the durability test. Therefore, it was found that the durability is poor when there is not a sufficient amount of Cr in the barrier layer.

(比較例8)
比較例1と同様の操作で溶解し、1100°Cで熱間鍛造・圧延して、表1に示すターゲットを製造した。ターゲットの面内方向の比透磁率は120であったこのターゲットを用いて、38μm厚のポリイミドシート上に、表1に示す膜厚10nmのNi−Cr−Ti合金バリア層を形成した。
このバリア層の各添加成分の組成(wt%)、バリア層の膜厚(nm)、バリア層の膜厚を49点測定し、膜厚の均一性(%)を調べた結果、及び耐久試験の結果(時間)を、同様に表1に示す。
比較例8のターゲットは比透磁率は120であり、本発明の規定に達しないものである。さらに、このバリア層の上にCuシード層を20nm成膜後、電気めっきにより8μmのCu層を形成した。そして、これらを30μmピッチ(配線幅15μm、配線間距離15μm)で作製した配線パターンについて、これに+60Vの電圧をかけて、85°C、湿度85%の雰囲気で保持する耐久試験を行った。
これらの結果を同様に、表1に示す。以上の耐久試験の結果、比較例8は、耐久試験の結果、膜厚の均一性が13.1%と悪く、620時間でバリア効果が低下し、耐久性が悪いという結果になった。したがって、比透磁率が高すぎる場合には、膜厚の均一性が悪く、耐久性が劣ることが分かった。
(Comparative Example 8)
It melt | dissolved by the same operation as the comparative example 1, and hot forged and rolled at 1100 degreeC, and produced the target shown in Table 1. Using this target having a relative permeability of 120 in the in-plane direction, a 10 nm thick Ni—Cr—Ti alloy barrier layer shown in Table 1 was formed on a 38 μm thick polyimide sheet.
The composition of each additive component of the barrier layer (wt%), the thickness of the barrier layer (nm), the thickness of the barrier layer was measured at 49 points, and the uniformity of the thickness (%) was examined, and the durability test The results (time) are also shown in Table 1.
The target of Comparative Example 8 has a relative magnetic permeability of 120 and does not meet the definition of the present invention. Further, after forming a Cu seed layer on the barrier layer to a thickness of 20 nm, an 8 μm Cu layer was formed by electroplating. And about the wiring pattern produced by these with a 30 micrometer pitch (wiring width of 15 micrometers, distance between wirings of 15 micrometers), the voltage of + 60V was applied to this and the endurance test which hold | maintains in an atmosphere of 85 degreeC and a humidity of 85% was done.
These results are similarly shown in Table 1. As a result of the above durability test, Comparative Example 8 resulted in a poor uniformity of film thickness of 13.1% as a result of the durability test, and the barrier effect decreased in 620 hours, resulting in poor durability. Therefore, it was found that when the relative permeability is too high, the uniformity of the film thickness is poor and the durability is inferior.

(比較例9)
比較例1と同様の操作で溶解し、1100°Cで熱間鍛造のみを行い、表1に示すターゲットを製造し、ターゲットの面内方向の比透磁率は150であったこのターゲットを用いて、38μm厚のポリイミドシート上に、表1に示す膜厚10nmのNi−Cr−Ti合金バリア層を形成した。
比較例9のターゲットの比透磁率は150と、上記比較例8よりもさらに高い比透磁率を示すものであった。これをスパッタリングにより成膜しようとしたが、成膜不能であった。したがって、比透磁率が高すぎる場合には、成膜すら不能であり、適切でないことが分かった。
(Comparative Example 9)
It melt | dissolved by the same operation as the comparative example 1, only hot forging was performed at 1100 degreeC, the target shown in Table 1 was manufactured, and the relative permeability of the in-plane direction of the target was 150 using this target A Ni—Cr—Ti alloy barrier layer having a thickness of 10 nm shown in Table 1 was formed on a 38 μm thick polyimide sheet.
The relative magnetic permeability of the target of Comparative Example 9 was 150, which was higher than that of Comparative Example 8 above. An attempt was made to form a film by sputtering, but film formation was impossible. Therefore, it was found that when the relative magnetic permeability is too high, even film formation is impossible and not appropriate.

以上から、本発明のNi−Cr系合金膜及びターゲットは、適切な量のCr、Ti及び/又はZrを含有することが重要である。特に、Ti及び/又はZrの添加は、バリア特性を著しく向上させて膜の耐久性を上げ、膜の均一性を確保するのに有効である。
また、本発明のフレキシブル銅基板用バリア膜の膜厚は3〜150nmとすることが必要である。膜厚が3nm未満の場合は充分なバリア性を持たない。また、膜厚が150nmを超えると膜剥がれを生じ易くなるので、上記の範囲とする。
さらに、本発明のフレキシブル銅基板用バリア膜の膜厚は、膜厚均一性が1σで10%以下とすることが必要である。この膜均一性を適切な値を維持することは均一幅の配線を形成する上で極めて重要である。
本発明のバリア膜形成用スパッタリングターゲットにおいては、スパッタ面の面内方向の比透磁率が100以下とすることが必要である。比透磁率が100を超えると、スパッタ膜の膜厚均一性が1σで10%を超えてしまい、場合によっては、スパッタリング不能となることがあるからである。
From the above, it is important that the Ni—Cr alloy film and the target of the present invention contain an appropriate amount of Cr, Ti and / or Zr. In particular, the addition of Ti and / or Zr is effective in remarkably improving the barrier properties, increasing the durability of the film, and ensuring the uniformity of the film.
Moreover, the film thickness of the barrier film for flexible copper substrates of this invention needs to be 3-150 nm. When the film thickness is less than 3 nm, it does not have sufficient barrier properties. Moreover, since it will become easy to produce film peeling when a film thickness exceeds 150 nm, it is set as said range.
Furthermore, the film thickness of the barrier film for a flexible copper substrate of the present invention needs to have a film thickness uniformity of 10% or less at 1σ. Maintaining this film uniformity at an appropriate value is extremely important in forming a wiring having a uniform width.
In the sputtering target for forming a barrier film of the present invention, the relative permeability in the in-plane direction of the sputtering surface needs to be 100 or less. When the relative magnetic permeability exceeds 100, the film thickness uniformity of the sputtered film exceeds 10% at 1σ, and in some cases, sputtering may not be possible.

本発明は、細かい配線ピッチでも十分なバリア効果を得ることができ、さらに熱処理等により温度上昇があっても、バリア特性に変化がないという優れた特徴を有している。このように、ポリイミド等の樹脂フィルムへの銅の拡散を効果的に抑制する著しい特性を有するので、フレキシブル銅基板用バリア膜として有用である。
The present invention has an excellent feature that a sufficient barrier effect can be obtained even with a fine wiring pitch, and even if the temperature rises due to heat treatment or the like, the barrier characteristics do not change. Thus, since it has the remarkable characteristic which suppresses the spreading | diffusion of copper to resin films, such as a polyimide, it is useful as a barrier film for flexible copper substrates.

Claims (2)

Cr:5〜30wt%、Ti及び/又はZr:1〜10wt%含有し、残部が不可避的不純物及びNiからなるNi−Cr系合金膜からなり、膜厚が3〜150nm、膜厚均一性が1σで10%以下であることを特徴とするフレキシブル銅基板用バリア膜。  Cr: 5 to 30 wt%, Ti and / or Zr: 1 to 10 wt%, the balance is made of an inevitable impurity and Ni—Cr alloy film made of Ni, the film thickness is 3 to 150 nm, and the film thickness uniformity is A barrier film for a flexible copper substrate, which is 10% or less at 1σ. Cr:5〜30wt%、Ti及び/又はZr:1〜10wt%含有し、残部が不可避的不純物及びNiからなるNi−Cr系合金であって、スパッタ面の面内方向の比透磁率が100以下であることを特徴とするバリア膜形成用スパッタリングターゲット。  Cr: 5 to 30 wt%, Ti and / or Zr: 1 to 10 wt%, the balance being a Ni—Cr alloy composed of unavoidable impurities and Ni, and the relative permeability in the in-plane direction of the sputtering surface is 100 The sputtering target for barrier film formation characterized by the following.
JP2007503590A 2005-02-17 2005-12-27 Barrier film for flexible copper substrate and sputtering target for barrier film formation Expired - Fee Related JP4485570B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005039979 2005-02-17
JP2005039979 2005-02-17
PCT/JP2005/023866 WO2006087873A1 (en) 2005-02-17 2005-12-27 Barrier film for flexible copper substrate and sputtering target for barrier film formation

Publications (2)

Publication Number Publication Date
JPWO2006087873A1 JPWO2006087873A1 (en) 2008-07-03
JP4485570B2 true JP4485570B2 (en) 2010-06-23

Family

ID=36916284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007503590A Expired - Fee Related JP4485570B2 (en) 2005-02-17 2005-12-27 Barrier film for flexible copper substrate and sputtering target for barrier film formation

Country Status (3)

Country Link
JP (1) JP4485570B2 (en)
TW (1) TW200637928A (en)
WO (1) WO2006087873A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101904228B (en) 2007-12-21 2014-01-01 Jx日矿日石金属株式会社 Copper foil for printed wiring board
JP2010133001A (en) * 2008-12-08 2010-06-17 Hitachi Metals Ltd METHOD FOR PRODUCING Ni ALLOY TARGET MATERIAL
JP5373453B2 (en) * 2009-03-31 2013-12-18 Jx日鉱日石金属株式会社 Copper foil for printed wiring boards
CN102150479B (en) * 2009-06-30 2013-03-27 Jx日矿日石金属株式会社 Copper foil for printed wiring boards
JP2013219150A (en) * 2012-04-06 2013-10-24 National Institute Of Advanced Industrial & Technology Manufacturing method of ohmic electrode of silicon carbide semiconductor device
KR20170038894A (en) * 2014-08-07 2017-04-07 쓰리엠 이노베이티브 프로퍼티즈 컴파니 Reflection sheet and method of manufacturing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05299820A (en) * 1992-04-22 1993-11-12 Toyo Metaraijingu Kk Flexible printed wiring board
JPH116061A (en) * 1997-06-17 1999-01-12 Toray Eng Co Ltd Production of two-layer flexible circuit substrate
JP2006073766A (en) * 2004-09-01 2006-03-16 Sumitomo Metal Mining Co Ltd Two layer flexible board and its manufacturing method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09260812A (en) * 1996-03-18 1997-10-03 Toyo Metallizing Co Ltd Printed circuit board for radio ic card
US6171714B1 (en) * 1996-04-18 2001-01-09 Gould Electronics Inc. Adhesiveless flexible laminate and process for making adhesiveless flexible laminate
JP4593808B2 (en) * 2001-02-22 2010-12-08 京セラ株式会社 Multilayer wiring board

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05299820A (en) * 1992-04-22 1993-11-12 Toyo Metaraijingu Kk Flexible printed wiring board
JPH116061A (en) * 1997-06-17 1999-01-12 Toray Eng Co Ltd Production of two-layer flexible circuit substrate
JP2006073766A (en) * 2004-09-01 2006-03-16 Sumitomo Metal Mining Co Ltd Two layer flexible board and its manufacturing method

Also Published As

Publication number Publication date
JPWO2006087873A1 (en) 2008-07-03
WO2006087873A1 (en) 2006-08-24
TW200637928A (en) 2006-11-01
TWI296657B (en) 2008-05-11

Similar Documents

Publication Publication Date Title
JP4466925B2 (en) Barrier film for flexible copper substrate and sputtering target for barrier film formation
US10665462B2 (en) Copper alloy sputtering target and semiconductor element wiring
CN110622243B (en) Aluminum alloy substrate for magnetic disk, method for producing same, and magnetic disk using same
JP4485570B2 (en) Barrier film for flexible copper substrate and sputtering target for barrier film formation
JP5937652B2 (en) Rolled copper foil or electrolytic copper foil for electronic circuit and method for forming electronic circuit using these
KR100638977B1 (en) Ag-BASE ALLOY WIRING/ELECTRODE FILM FOR FLAT PANEL DISPLAY, Ag-BASE ALLOY SPUTTERING TARGET, AND FLAT PANEL DISPLAY
CN111164228B (en) Aluminum alloy substrate for magnetic disk, method for producing same, and magnetic disk using same
CN111771241A (en) Aluminum alloy substrate for magnetic disk, method for producing same, and magnetic disk using same
JP2008045204A (en) Copper alloy sheet for electrical/electronic part with excellent oxide film adhesion
JP4022891B2 (en) Al alloy film for wiring film and sputtering target material for forming wiring film
CN103958727A (en) Silver-alloy sputtering target for conductive-film formation, and method for producing same
JP5638697B2 (en) High purity copper chrome alloy sputtering target
TWI730280B (en) Copper foil for flexible printed circuit boards, copper-clad laminates using the same, flexible printed circuit boards and electronic devices
WO2014021173A1 (en) SPUTTERING TARGET FOR FORMING Cu ALLOY THIN FILM, AND METHOD FOR MANUFACTURING SAME
TWI602931B (en) Aluminum sputtering target
US7166921B2 (en) Aluminum alloy film for wiring and sputter target material for forming the film
CN112840399B (en) Aluminum alloy plate for magnetic disk, method for producing same, and magnetic disk using same
JP2007242947A (en) Barrier film for semiconductor wiring, copper wiring for semiconductor, manufacturing method of this wiring, and sputtering target for forming semiconductor barrier film
JP4103067B2 (en) Ag alloy reflective film for flat panel display
JP2001262328A (en) Ni-Nb BASED TARGET MATERIAL AND SUBSTRATE FILM FOR BRAZING FILLER METAL
KR100826480B1 (en) Barrier film for flexible copper substrate and sputtering target for forming barrier film
JP6492216B1 (en) Aluminum alloy substrate for magnetic disk, method of manufacturing the same, and magnetic disk using the aluminum alloy substrate for magnetic disk
JP2005029826A (en) Method for manufacturing copper alloy foil for electronic component
JP2004193546A (en) Copper alloy sputtering target for forming semiconductor device interconnect line seed layer
JP2007242951A (en) Barrier film for semiconductor wiring, copper wiring for semiconductor, manufacturing method of this wiring, and sputtering target for forming semiconductor barrier film

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100323

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100324

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees