JP4485014B2 - Overflow prevention valve - Google Patents

Overflow prevention valve Download PDF

Info

Publication number
JP4485014B2
JP4485014B2 JP2000149143A JP2000149143A JP4485014B2 JP 4485014 B2 JP4485014 B2 JP 4485014B2 JP 2000149143 A JP2000149143 A JP 2000149143A JP 2000149143 A JP2000149143 A JP 2000149143A JP 4485014 B2 JP4485014 B2 JP 4485014B2
Authority
JP
Japan
Prior art keywords
valve
valve body
valve seat
fluid
overflow prevention
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000149143A
Other languages
Japanese (ja)
Other versions
JP2001330163A (en
Inventor
信一 秋山
智之 南
崇朗 吉井
崇明 猪谷
健 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Tokyo Gas Co Ltd
Original Assignee
Hitachi Metals Ltd
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd, Tokyo Gas Co Ltd filed Critical Hitachi Metals Ltd
Priority to JP2000149143A priority Critical patent/JP4485014B2/en
Publication of JP2001330163A publication Critical patent/JP2001330163A/en
Application granted granted Critical
Publication of JP4485014B2 publication Critical patent/JP4485014B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Safety Valves (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はガス輸送管の折損あるいは焼失等によってガスが過流出状態で通流した際に、弁体がばね等の弾性力で弁座から離れて流通状態であった弁体が、上流側と下流側の圧力差や流体の流通圧力等により、弁座に着座して閉止し、下流側に流体が流出するのを防止する過流出防止弁に関するものである。
【0002】
【従来の技術】
従来例えば実公昭62−8704号公報に開示された過流出防止弁がある。この弁装置は、図で示すように、一端部に弁座2を有して外筒1内に固着された弁座2に、コイルスプリング8を外嵌し、球弁6に一体的に連接した支持竿9を、弁筺7に軸方向に設けられた両側1対のスリット10,10を介して該弁筺7の外部に軸方向移動可能に突出させ、コイルスプリング8を支持竿9と弁筺7の下流端との間に介装してなるものである。これによれば、過流出状態に置いて球弁6に作用するガス流によって生じる押圧力が支持竿9を介してコイルスプリング8に作用し、このスプリング8に作用してスプリングを圧縮し球弁6が点線のごとく弁座2に当接して閉止するようになっている。この様に従来の過流出防止弁では、正常な流体の流通時において、球弁6は弁座2から大きく離れた状態で設けられるものが一般的であった。例えばガス輸送用管に用いられる過流出防止弁は、管端部に封入あるいは配管を接続する管継手内に封入して配管された状態で使用される。
【0003】
【発明が解決しようとする課題】
これら過流出防止弁に求められる性能の一つは、通常使用時の流れ抵抗を極力小さくすることである。例えば過流出防止弁の弁体形状は、球形、ニードル形、流線形、弁軸一体形などがあるが、流体が整流を保ちやすい流線形を除き、上記従来技術のように球状弁体が管路内の軸に設置された場合、この弁体後方において流体が剥離し、渦が発生する場合が多々見られる。この渦の発生は管路系全体からみると損失エネルギ−が大で、存在しないのが望ましい。
また、この過流出防止弁は配管の地中埋設位置に装着されていることが多く、数十年に渡りメンテナンスなしで使用され、可動状態におかれる。それが故に、長年月の間も正常に作動する必要があり、過流出防止弁の各部材は摩耗等によって寸法が変動してはならない。さらに過流出防止弁はその設置方向やガス消費量の変動等によって誤作動を起こしてはならない。
【0004】
ところで緊急時にガス流通を遮断せしめるには主に2つの駆動力がある。ひとつは破損流出時の過大なガス流が弁体に作用する押圧力であり、もう一つは下流側での配管の破損が大気開放された際に発生する上流側と下流側での圧力差である。この内、上下流の圧力差は急峻な閉弁動作に利用できる利点がある。すなわち過流出防止弁にはもっとも狭い流体が通過する断面積箇所(これ以降オリフィスと呼ぶ)を有し、このオリフィスを境に上流側と下流側との圧力差を生じさせているが、オリフィス面積が小さい程急峻で応答性に優れた閉弁特性を得ることができる。しかしながらオリフィス面積が小さければ小さい程、正常流れ時には圧力損失が大きくなるという弊害を伴う。
【0005】
本発明はこのような上記の課題を解消するためになされたものであり、正常な流れ状態では流過抵抗を極力すくなく保ち、弁体の誤作動を伴うことなく長期使用可能であって、管破損などの緊急時には遅延することなく流体の流れを遮断することができる過流出防止弁を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明は上記目的を達成するために、筒状体ケース内に形成された弁座と、該弁座に当接、離間する弁体とを有し、下流側の圧力が異常に低下した際に該弁体が該弁座に当接して流体の通過を閉止する過流出防止弁であって、前記弁体は、正常な流通時において前記弁体の一部が弁座テーパ透視断面にかかるように、前記弁座から離れる方向にスプリングで付勢され、かつ前記筒状体ケースに連結された放射状の弁体支持部で支持された球状体であり弁体と管内壁とで囲まれた流体の通過断面積と、弁体と弁座間の流体の通過断面積の関係は、ほぼ同じかプラスマイナス10%内に設けたことを特徴とする過流出防止弁である。

【0007】
また前記弁座のテーパ面に通過溝を設け、弁体が弁座に着座した場合に流体が弁体の上流側より下流側に少しずつ流れるように弁座に通過溝を設ける等の構造とすることができる。
【0008】
【作用】
流体が正常に流れている時、管軸方向の弁体の少なくとも一部が弁座の透視断面にかかることの結果として、弁座を形成するテ−パ面あるいは曲面部が流体通過時の案内面の役目をして、剥離や渦の発生が抑制されて弁座部を通過し、流体通過時の圧力損失を著しく減少させることができる。
また正常な流れ時において、弁体周りを通過する流体の通過オリフィス部の面積を流体の許容圧力損失以内になるように弁体と弁座の大きさを設定しておき、また弁体が振動しない適切な弾性力で弁座から離れる方向に弁体に付勢させておくことにより、正常流れ時の流過特性を安定に得ることができる。また長年月に渡ってメンテナンスなしで、さらには弁体が不安定な挙動をすることがなく、誤作動がない過流出防止弁が可能となる。
【0009】
弁体周りを通過する流体の通過オリフィス面積が、過流出防止弁内を流体が通過する最も狭い断面積となるように構成され、弁体の一部が弁座テーパ部の透視断面にかかっている。その結果として例えば下流側で管が破損して流体が噴出した緊急時に、一旦弁体がバネの付勢力に逆らって弁座方向へ移動され、弁体周りの流体が通過するオリフィス面積が連続的に減少し、上流側と下流側の圧力差が連続的に増し、弁体が閉止する方向へさらに移動し弁座面に当接し着座して、急峻な閉弁特性が得られることが可能となる。
【0010】
この場合、管内が正常に流れている状態で、管内面と弁体との間の流体通過断面積と、弁体と弁座との間の流体通過断面積とが大きくかけ離れていない方が、弁体周りを通過する流体の流れがスムースに流れ、弁座面による案内作用が有効に働いて弁体を通過する際の渦の発生が抑制され、弁体の流体圧や流体押圧力による挙動が安定して行われ、弁体が振動したり異常音を発生することがない。
【0011】
弁体を放射状支持物で支持させることにより、弁体周りの流体の流過抵抗が少ないものにできる。また網状態で弁体を支持した場合は、網部を通過する際に流体が整流化して弁体と弁座を通過する際の流体の乱流現象を抑制する効果がある。
また弁体が弁座に着座した際に流体が上流側から下流側へ微少漏れするような構造にしておくことができ、この場合は下流側配管のガス噴出箇所の復旧修理が完了した際、弁体が閉止状態であっても下流側配管へ流体が流れるので、下流側圧力が少しずつ増し、弁体の上流側と下流側間の圧力差が減少して、ある圧力差になったら自動的にバネの弾性力で閉止状態の弁体が弁座から離れて弁が開かれる。従って埋設状態で装着されていた過流出防止弁の遮断機構を手動操作する必要がなく、自動的に遮断弁機構が流通状態に復旧される。
【0012】
【発明の実施形態】
以下、本発明の実施例を図1から図の図面に基づいて説明する。図1〜図3は本発明の一実施例を示す過流出防止弁が配管内に封入された状態を示す断面図であり、図1は正常な流れ時の状態を示す縦断面図と管軸方向から見た側面図である。図2は下流側配管の配管に破損等流体が異常に噴出した緊急時に弁体14が弁座方向に動き始めた状態を示す縦断面図である。図3は同じく下流側の異常噴出時に弁体が弁座に着座した状態を示す縦断面図である。図1ないし図3において、過流出防止弁11は例えばガス等が流通する流通管10内に装着して、流通管10内を上流側流路12と下流側流路13に区分けし、管10内面との間をOリング24で密封保持して装着され、使用される。
【0013】
過流出防止弁11は、弁座15を構成する円筒体ケース11aと弁体14と弁座から所定の距離に保持する弁体支持部17と球形状の弁体14と円筒体ケース11aに係止して弁体を弁座から離れる方向に付勢するスプリング18から構成される。
管10内を流体が正常に流れている状態を示す図1において、球状弁体14は弁体支持部17で弁座から所定の距離に保持され、この所定距離は最大でも球状弁体14の一部が弁座15を形成する弁座テーパ透視断面21にかかる状態位置で支持されている。またスプリング18の付勢力で弁座15との間で所定の距離を保って流体が通過する流通断面のオリフィス32を形成している。弁体14にスプリングの付勢力に勝る押圧力が働くと、弁体が弁座15との間で自由に遊動可能である。
【0014】
弁体支持部17はケース11aと連結しており、ケース11a内にスプリング18と弁体14を装着して支持部17をケース11aに連結する。支持部17は管軸の中心から放射状に拡がる支持体23で設けてあり、支持体23の太さは強度上問題がない必要最小限の形状大きさ本数に設け、本実施例では流れ方向に垂直な支持体23を三脚状に構成して流体の通過断面積に影響を及ぼさない投影面積にしている。
この支持体23は流体が通過する流過抵抗に影響がないように四脚形状にしてもよく、また網状の支持体で設けて弁体14を弁座から所定の距離に保持しても良い。網状の支持体で設けた場合は網部を通過する際に流体が整流化して弁体と弁座を通過する際の流体の渦流現象を抑制する付随効果がある。
【0015】
流体が正常に流れている状態での過流出防止弁11におけるオリフィスは、図1の場合、最も狭い通過断面の個所は弁体14と管10内壁とで囲まれたオリフィス31であって、弁体14が振動しない適切なスプリング18の弾性力で付勢され、流過抵抗が最小限に収まるオリフィス断面31となるように弁体外径、スプリング力、弁座15との距離に設定してある。
尚、このオリフィスは、正常な流れ時での流過抵抗を最小に保った状態で弁体と弁座との間の通過断面個所32部で設けても良い。この弁体と管内の通過断面積31と、弁体と弁座間の通過断面積32の関係は、ほぼ同じかプラスマイナス10%内に設けることが望ましい。プラスマイナス10%以内であれば、断面積の差が大きくないので弁体周りを流体が通過時に乱流現象が抑制される。
【0016】
正常な通流時弁体が振動しないで弁体を弁座から離れるように押し圧する適切なスプリング力によって、振動によるオリフィス面積の変動を防止し正常な流過性能が得られる。また弁体14が振動することによる弁体支持部17等の摩耗を防止し、長期にわたり、安定した動作性能が保たれる。
このような正常流れ時において、弁体14の一部が弁座テ−パ部透視断面21に常にかかるような位置に保持されているので、弁座面15が弁体周りを通過する流体の通過案内面の役目を果たす。このため弁体14背後の渦流の発生を抑制し正常な流れ時における流体の圧力損失を抑制する。
【0017】
図2は、下流側流路13の管路が破断して流体が噴出した際に弁体14が弁体支持部17を離れ始めた状態を示す。
この時過流出防止弁11内の最も流路が狭いオリフィス位置は、弁体14と弁座15テーパ面で囲まれたオリフィス32位置であって、図1の正常な流れ時でのオリフィス31位置での面積よりも小さくなる。オリフィス面積は狭くなるに連れて上流側流路12と下流側流路13の圧力差は次第に大きくなるので、更なる弁体14の閉止側への移動を助長する。このため、弁体14の弁座15方向への移動量が少なくても、下流側で過流出が発生した場合に急峻な閉弁挙動に至ることができる。
【0018】
図3は弁体14が弁座15に着座した状態を示す。弁座15のテーパ面に通過溝33を数個設けてあり、弁体14が弁座15に当接しても完全に閉止しないように、流体が上流側流路12から下流側流路13へ少しずつ流れるようにしてある。
微少漏れを生じさせる他の手法として、弁体14の表面をゴルフボール状のディンプル表面とすることや弁座15に下流側流路へ通じる***を設けることも有効である。
この様に弁体が弁座に着座しても少しずつ流れるようにすることによって、例えば下流側配管の異常状態の復旧工事が完了して異常漏れ箇所がなくなると、弁座15に施した通過溝33の周囲から少しずつ上流側流体が下流側流路13へ流れ、次第に下流側配管13内の圧力が上昇し、上流側配管12の圧力と均衡する。上流側と下流側の圧力差が所定圧内になると、スプリング18の反発力によって弁体14が弁座15から離れ、図1の通常の流通状態に復帰する。
【0019】
【発明の効果】
以上の説明の通り、本発明の過流出防止弁は、正常な流れ状態では弁体直下の渦流の発生を防止して流過抵抗を極力少なく保ち、弁体の振動や誤作動を伴うことなく長期使用が可能であって、管破損などの緊急時には弁体が遅延することなく流体の流れを遮断することができる過流出防止弁を提供する。
【図面の簡単な説明】
【図1】 本発明の一実施例を示す、正常流れ時の縦断面図及び横断面図である。
【図2】 本発明の一実施例を示す、弁体移動時の断面図である。
【図3】 本発明の一実施例を示す、弁体着座時の断面図である。
【図4】 従来の過流出防止弁を示す断面図である。
【符号の説明】
10 管 11 過流出防止弁
12 上流側流路 13 下流側流路
14 弁体 15 弁座テーパ部
16 弁体着座状態 17 弁体支持部
18 スプリング 19 ケース
21 弁座テーパ透視断面 22 スプリング受け
23 支持体 24 Oリング
31 オリフィス 32 オリフィス
33 通過溝
[0001]
BACKGROUND OF THE INVENTION
In the present invention, when the gas flows in an excessive outflow state due to breakage or burning of the gas transport pipe, the valve body is in a state of being separated from the valve seat by the elastic force of a spring or the like, The present invention relates to an overflow prevention valve that seats on a valve seat and closes due to a pressure difference on the downstream side, a fluid circulation pressure, and the like, and prevents fluid from flowing out downstream.
[0002]
[Prior art]
Conventionally, for example, there is an overflow prevention valve disclosed in Japanese Utility Model Publication No. 62-8704. As shown in FIG. 4 , this valve device has a valve seat 2 at one end and a coil spring 8 fitted on the valve seat 2 fixed in the outer cylinder 1 so as to be integrated with the ball valve 6. The connected support rod 9 is projected to the outside of the valve rod 7 through a pair of slits 10 and 10 provided in the axial direction on the valve rod 7 so as to be movable in the axial direction, and the coil spring 8 is supported by the support rod 9. And a downstream end of the valve rod 7. According to this, the pressing force generated by the gas flow acting on the ball valve 6 in the overflow state acts on the coil spring 8 via the support rod 9, acts on this spring 8, compresses the spring, and the ball valve 6 contacts the valve seat 2 as indicated by the dotted line and closes. As described above, in the conventional overflow prevention valve, the ball valve 6 is generally provided in a state of being largely separated from the valve seat 2 during normal fluid flow. For example, an excessive outflow prevention valve used for a gas transport pipe is used in a state of being piped by being sealed in a pipe joint that is sealed in a pipe end or connected to a pipe.
[0003]
[Problems to be solved by the invention]
One of the performances required for these overflow prevention valves is to minimize the flow resistance during normal use. For example, there are spherical, needle-shaped, streamlined, and valve-shaft-integrated valve element shapes for the overflow prevention valve. When installed on a shaft in a passage, fluid often peels behind the valve body and vortices are often generated. The generation of this vortex has a large loss energy when viewed from the entire pipeline system, and it is desirable that the vortex is not present.
In addition, this overflow prevention valve is often mounted at an underground position of piping, and has been used without maintenance for several decades and is in a movable state. Therefore, it is necessary to operate normally for many years, and the size of each member of the overflow prevention valve should not change due to wear or the like. Furthermore, the overflow prevention valve must not malfunction due to changes in the installation direction or gas consumption.
[0004]
By the way, there are mainly two driving forces for shutting off the gas flow in an emergency. One is the pressing force that acts on the valve body due to excessive gas flow at the time of breakage outflow, and the other is the pressure difference between the upstream side and the downstream side that occurs when the downstream pipe breakage is released to the atmosphere. It is. Among these, the pressure difference between the upstream and downstream has the advantage that it can be used for a steep valve closing operation. In other words, the overflow prevention valve has a cross-sectional area (hereinafter referred to as an orifice) through which the narrowest fluid passes, and a pressure difference between the upstream side and the downstream side is caused by this orifice. The smaller the value is, the steeper and better valve closing characteristics can be obtained. However, the smaller the orifice area, the greater the pressure loss during normal flow.
[0005]
The present invention has been made in order to solve the above-described problems. In a normal flow state, the flow resistance is kept as low as possible and can be used for a long time without causing malfunction of the valve body. An object of the present invention is to provide an overflow prevention valve capable of interrupting a fluid flow without delay in an emergency such as breakage.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the present invention has a valve seat formed in a cylindrical body case and a valve body that comes into contact with and separates from the valve seat, and the downstream pressure is abnormally reduced. The valve body abuts against the valve seat and closes the passage of fluid, and the valve body has a part of the valve body on the valve seat taper perspective section during normal flow . as is urged by a spring in a direction away from said valve seat, and a supported spheroids in the tubular body case linked radial valve body support portion, surrounded by the valve body and the inner wall The relationship between the cross-sectional area of the fluid and the cross-sectional area of the fluid between the valve body and the valve seat is approximately the same or within plus or minus 10% .

[0007]
Also , a passage groove is provided on the taper surface of the valve seat, and a passage groove is provided on the valve seat so that fluid flows little by little from the upstream side of the valve body when the valve body is seated on the valve seat. can do.
[0008]
[Action]
When the fluid is flowing normally, the taper surface or curved surface forming the valve seat guides when the fluid passes as a result of at least a part of the valve body in the tube axis direction being placed on the transparent section of the valve seat. By acting as a surface, it is possible to suppress the occurrence of separation and vortex and pass through the valve seat portion, thereby significantly reducing the pressure loss when the fluid passes.
Also, during normal flow, set the size of the valve body and valve seat so that the area of the passage orifice of the fluid that passes around the valve body is within the allowable pressure loss of the fluid, and the valve body vibrates. By allowing the valve body to be biased in a direction away from the valve seat with an appropriate elastic force not to flow, the flow-through characteristic during normal flow can be stably obtained. In addition, it is possible to provide an overflow prevention valve without maintenance for many years and without causing the valve body to behave in an unstable manner and causing no malfunction.
[0009]
The passage orifice area of the fluid passing around the valve body is configured to be the narrowest cross-sectional area through which the fluid passes through the overflow prevention valve, and a part of the valve body covers the perspective section of the valve seat taper part. Yes. As a result, for example, in the event of an emergency in which the pipe is broken downstream and fluid is ejected, the valve element is once moved in the valve seat direction against the urging force of the spring, and the orifice area through which the fluid around the valve element passes is continuous. The pressure difference between the upstream side and the downstream side continuously increases, the valve body moves further in the closing direction, contacts and seats on the valve seat surface, and a steep valve closing characteristic can be obtained. Become.
[0010]
In this case, in a state where the inside of the pipe is flowing normally, the fluid passage cross-sectional area between the pipe inner surface and the valve body and the fluid passage cross-sectional area between the valve body and the valve seat are not greatly separated from each other. The flow of fluid that passes around the valve body flows smoothly, the guide action by the valve seat surface works effectively, the generation of vortices when passing through the valve body is suppressed, and the behavior of the valve body due to fluid pressure and fluid pressure Is performed stably, and the valve body does not vibrate or generate abnormal noise.
[0011]
By supporting the valve body with a radial support, the flow resistance of the fluid around the valve body can be reduced. Further, when the valve body is supported in a net state, the fluid is rectified when passing through the net portion, and there is an effect of suppressing the turbulent flow phenomenon of the fluid when passing through the valve body and the valve seat.
Also, when the valve element is seated on the valve seat, it can be structured so that the fluid slightly leaks from the upstream side to the downstream side.In this case, when the repair and repair of the gas ejection point of the downstream pipe is completed, Even if the valve body is closed, fluid flows to the downstream piping, so the downstream pressure increases little by little, and the pressure difference between the upstream and downstream sides of the valve body decreases. Therefore, the closed valve body is separated from the valve seat by the elastic force of the spring, and the valve is opened. Therefore, it is not necessary to manually operate the shutoff mechanism of the overflow prevention valve that is mounted in the embedded state, and the shutoff valve mechanism is automatically restored to the flow state.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to FIGS. 1 to 3 . 1 to 3 are sectional views showing a state in which an overflow prevention valve according to an embodiment of the present invention is enclosed in a pipe, and FIG. 1 is a longitudinal sectional view showing a state during normal flow and a pipe shaft. It is the side view seen from the direction. FIG. 2 is a longitudinal sectional view showing a state in which the valve body 14 starts to move in the valve seat direction in an emergency in which a fluid such as breakage is abnormally ejected into the piping of the downstream side pipe. FIG. 3 is a longitudinal sectional view showing a state in which the valve body is seated on the valve seat during abnormal ejection on the downstream side. 1 to 3, the overflow prevention valve 11 is mounted in, for example, a flow pipe 10 through which gas or the like flows, and the flow pipe 10 is divided into an upstream flow path 12 and a downstream flow path 13. The inner surface is sealed and held with an O-ring 24 and used.
[0013]
The overflow prevention valve 11 is related to the cylindrical body 11a constituting the valve seat 15, the valve body 14, the valve body support portion 17 that is held at a predetermined distance from the valve seat, the spherical valve body 14 and the cylindrical body 11a. The spring 18 is configured to stop and bias the valve body in a direction away from the valve seat.
In FIG. 1 showing a state in which the fluid normally flows in the pipe 10, the spherical valve body 14 is held at a predetermined distance from the valve seat by the valve body support portion 17, and this predetermined distance is at most of the spherical valve body 14. A part of the valve seat 15 is supported at a position corresponding to the valve seat taper perspective section 21 forming the valve seat 15. Further, an orifice 32 having a flow cross section through which a fluid passes with a predetermined distance between the valve seat 15 and the biasing force of the spring 18 is formed. When a pressing force that exceeds the urging force of the spring acts on the valve body 14, the valve body can freely move between the valve seat 15.
[0014]
The valve body support portion 17 is connected to the case 11a, and a spring 18 and a valve body 14 are mounted in the case 11a to connect the support portion 17 to the case 11a. The support portion 17 is provided by a support body 23 that radially expands from the center of the tube axis, and the thickness of the support body 23 is set to the minimum number of shapes and sizes that do not cause a problem in strength. The vertical support 23 is formed in a tripod shape so that the projected area does not affect the cross sectional area of the fluid.
The support 23 may be formed in a quadruped shape so as not to affect the flow resistance through which the fluid passes, or may be provided with a net-like support to hold the valve body 14 at a predetermined distance from the valve seat. . In the case where it is provided by a net-like support, there is an accompanying effect that the fluid is rectified when passing through the net and suppresses the vortex phenomenon of the fluid when passing through the valve body and the valve seat.
[0015]
In the case of FIG. 1, the orifice in the overflow prevention valve 11 in a state where the fluid normally flows is the orifice 31 surrounded by the valve body 14 and the inner wall of the pipe 10 in the case of FIG. The outer diameter of the valve body, the spring force, and the distance from the valve seat 15 are set so that the orifice cross section 31 is urged by an appropriate elastic force of the spring 18 that does not vibrate and the flow resistance is minimized. .
The orifice may be provided at the passage cross section 32 portion between the valve body and the valve seat in a state where the flow resistance during normal flow is kept to a minimum. It is desirable that the relationship between the cross sectional area 31 in the valve body and the pipe and the cross sectional area 32 between the valve body and the valve seat be substantially the same or within ± 10%. If the difference is within plus or minus 10%, the difference in cross-sectional area is not so large that the turbulence phenomenon is suppressed when the fluid passes around the valve body.
[0016]
The proper spring force that presses the valve body away from the valve seat without vibrating the valve body during normal flow prevents fluctuations in the orifice area due to vibration and normal flow performance is obtained. Further, wear of the valve body support portion 17 and the like due to vibration of the valve body 14 is prevented, and stable operation performance is maintained over a long period of time.
During such a normal flow, a part of the valve body 14 is held at such a position that the valve seat taper section is always applied to the see-through section 21 of the valve seat taper. It plays the role of a passing guide. For this reason, generation | occurrence | production of the vortex | eddy_current behind the valve body 14 is suppressed, and the pressure loss of the fluid at the time of normal flow is suppressed.
[0017]
FIG. 2 shows a state in which the valve body 14 starts to leave the valve body support portion 17 when the pipe of the downstream side flow path 13 is broken and fluid is ejected.
At this time, the position of the orifice having the narrowest flow path in the overflow prevention valve 11 is the position of the orifice 32 surrounded by the tapered surface of the valve body 14 and the valve seat 15, and the position of the orifice 31 in the normal flow of FIG. It becomes smaller than the area at. As the orifice area becomes narrower, the pressure difference between the upstream flow path 12 and the downstream flow path 13 gradually increases, which facilitates further movement of the valve body 14 toward the closing side. For this reason, even if the amount of movement of the valve body 14 in the direction of the valve seat 15 is small, a steep valve closing behavior can be achieved when excessive outflow occurs on the downstream side.
[0018]
FIG. 3 shows a state in which the valve body 14 is seated on the valve seat 15. Several passage grooves 33 are provided on the taper surface of the valve seat 15, and fluid flows from the upstream flow path 12 to the downstream flow path 13 so that the valve body 14 does not completely close even if it contacts the valve seat 15. It is made to flow little by little.
As other methods for causing minute leakage, it is also effective to make the surface of the valve body 14 a golf ball-like dimple surface or to provide a small hole in the valve seat 15 leading to the downstream channel.
By allowing the valve body to flow little by little even if it sits on the valve seat in this way, for example, when the restoration work for the abnormal condition of the downstream piping is completed and there is no abnormal leak location, the passage made to the valve seat 15 The upstream fluid gradually flows from the periphery of the groove 33 to the downstream flow path 13, and the pressure in the downstream pipe 13 gradually increases and balances with the pressure in the upstream pipe 12. When the pressure difference between the upstream side and the downstream side falls within a predetermined pressure, the valve element 14 is separated from the valve seat 15 by the repulsive force of the spring 18 and returns to the normal flow state of FIG.
[0019]
【The invention's effect】
As described above, the overflow prevention valve of the present invention prevents the occurrence of vortex flow directly under the valve body in a normal flow state and keeps the flow resistance as low as possible without causing vibration or malfunction of the valve body. Provided is an overflow prevention valve that can be used for a long time and can shut off the flow of fluid without delaying the valve body in an emergency such as a broken tube.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view and a transverse sectional view showing a normal flow according to an embodiment of the present invention.
FIG. 2 is a cross-sectional view of the valve body moving according to an embodiment of the present invention.
FIG. 3 is a cross-sectional view of a valve body seated according to an embodiment of the present invention.
FIG. 4 is a cross-sectional view showing a conventional overflow prevention valve.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Pipe | tube 11 Overflow prevention valve 12 Upstream flow path 13 Downstream flow path 14 Valve body 15 Valve seat taper part 16 Valve body seating state 17 Valve body support part 18 Spring 19 Case 21 Valve seat taper see-through section 22 Spring receiver 23 Support Body 24 O-ring 31 Orifice 32 Orifice 33 Passing groove

Claims (2)

筒状体ケース内に形成された弁座と、該弁座に当接、離間する弁体とを有し、下流側の圧力が異常に低下した際に該弁体が該弁座に当接して流体の通過を閉止する過流出防止弁であって、
前記弁体は、正常な流通時において前記弁体の一部が弁座テーパ透視断面にかかるように、前記弁座から離れる方向にスプリングで付勢され、かつ前記筒状体ケースに連結された放射状の弁体支持部で支持された球状体であり
弁体と管内壁とで囲まれた流体の通過断面積と、弁体と弁座間の流体の通過断面積の関係は、ほぼ同じかプラスマイナス10%内に設けたことを特徴とする過流出防止弁。
The valve body has a valve seat formed in the cylindrical body case and a valve body that contacts and separates from the valve seat, and the valve body contacts the valve seat when the downstream pressure is abnormally reduced. An overflow prevention valve for closing the passage of fluid,
The valve body is biased by a spring in a direction away from the valve seat and connected to the cylindrical body case so that a part of the valve body covers a perspective view of the valve seat taper during normal circulation . A spherical body supported by a radial valve body support ,
The relationship between the cross-sectional area of the fluid surrounded by the valve body and the inner wall of the pipe and the cross-sectional area of the fluid between the valve body and the valve seat is approximately the same or within plus or minus 10%. Prevention valve.
前記弁座のテーパ面に通過溝を設け、前記弁体が弁座に着座状態で上流側から下流側へ微少流体が流れるようにしたことを特徴とする請求項1記載の過流出防止弁。 The overflow prevention valve according to claim 1 , wherein a passage groove is provided in a tapered surface of the valve seat so that a minute fluid flows from the upstream side to the downstream side when the valve body is seated on the valve seat.
JP2000149143A 2000-05-22 2000-05-22 Overflow prevention valve Expired - Lifetime JP4485014B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000149143A JP4485014B2 (en) 2000-05-22 2000-05-22 Overflow prevention valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000149143A JP4485014B2 (en) 2000-05-22 2000-05-22 Overflow prevention valve

Publications (2)

Publication Number Publication Date
JP2001330163A JP2001330163A (en) 2001-11-30
JP4485014B2 true JP4485014B2 (en) 2010-06-16

Family

ID=18655044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000149143A Expired - Lifetime JP4485014B2 (en) 2000-05-22 2000-05-22 Overflow prevention valve

Country Status (1)

Country Link
JP (1) JP4485014B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002310314A (en) * 2001-04-10 2002-10-23 Hitachi Metals Ltd Excessive flow-preventing valve
AUPR870201A0 (en) * 2001-11-07 2001-11-29 Borg, Joseph Upgrading and testing automatic transmissions

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51141821U (en) * 1975-05-09 1976-11-15
JPS62122968U (en) * 1986-01-27 1987-08-04
JPS63187783U (en) * 1987-05-26 1988-12-01
US5613518A (en) * 1995-02-21 1997-03-25 Dresser Industries, Inc. Device for restricting excess flow
JPH11132181A (en) * 1997-10-31 1999-05-18 Shin Meiwa Ind Co Ltd Back flow preventing device, and underwater pump unit equipped with it

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51141821U (en) * 1975-05-09 1976-11-15
JPS62122968U (en) * 1986-01-27 1987-08-04
JPS63187783U (en) * 1987-05-26 1988-12-01
US5613518A (en) * 1995-02-21 1997-03-25 Dresser Industries, Inc. Device for restricting excess flow
JPH11132181A (en) * 1997-10-31 1999-05-18 Shin Meiwa Ind Co Ltd Back flow preventing device, and underwater pump unit equipped with it

Also Published As

Publication number Publication date
JP2001330163A (en) 2001-11-30

Similar Documents

Publication Publication Date Title
US8381764B2 (en) Check valve
EP2752605B1 (en) Four-function anti-water hammer air valve set
US3735777A (en) Automatic valve
JP2683880B2 (en) Combined actuation non-water hammer check valve device
US20040007271A1 (en) Check valve
US9068660B2 (en) Valve device with a flow guiding device
JP5921185B2 (en) Swing check valve
JP2872985B2 (en) Low noise ball valve assembly with downstream airfoil insert
JP4485014B2 (en) Overflow prevention valve
JPS5918588B2 (en) Vibration resistant valve
JP2004108409A (en) Check valve
JP2005069366A (en) Valve
KR100857304B1 (en) Aperture type active control variable valve
JPWO2008120349A1 (en) Check valve
JP3969107B2 (en) Check valve
JP2011069235A5 (en)
JP3121546B2 (en) Dual plate check valve
JPH0868469A (en) Control valve
KR101935682B1 (en) Butterfly valve
JP4245189B2 (en) Check valve
JP5047767B2 (en) Pilot valve structure of pressure reducing valve
WO2007135744A1 (en) Check valve
CN216158378U (en) Improved low-resistance backflow preventer
JP4262634B2 (en) Check valve water hammer prevention device
JP2568326Y2 (en) Overflow shutoff valve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100323

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100324

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140402

Year of fee payment: 4