JP4482945B2 - Electronic component module - Google Patents

Electronic component module Download PDF

Info

Publication number
JP4482945B2
JP4482945B2 JP2007512411A JP2007512411A JP4482945B2 JP 4482945 B2 JP4482945 B2 JP 4482945B2 JP 2007512411 A JP2007512411 A JP 2007512411A JP 2007512411 A JP2007512411 A JP 2007512411A JP 4482945 B2 JP4482945 B2 JP 4482945B2
Authority
JP
Japan
Prior art keywords
electronic component
electrode
work function
component module
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007512411A
Other languages
Japanese (ja)
Other versions
JPWO2006109369A1 (en
Inventor
昭博 野村
章彦 川上
隆司 大沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Publication of JPWO2006109369A1 publication Critical patent/JPWO2006109369A1/en
Application granted granted Critical
Publication of JP4482945B2 publication Critical patent/JP4482945B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/321Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/40Structural combinations of fixed capacitors with other electric elements, the structure mainly consisting of a capacitor, e.g. RC combinations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C1/00Details
    • H01C1/14Terminals or tapping points or electrodes specially adapted for resistors; Arrangements of terminals or tapping points or electrodes on resistors
    • H01C1/148Terminals or tapping points or electrodes specially adapted for resistors; Arrangements of terminals or tapping points or electrodes on resistors the terminals embracing or surrounding the resistive element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G2/00Details of capacitors not covered by a single one of groups H01G4/00-H01G11/00
    • H01G2/02Mountings
    • H01G2/06Mountings specially adapted for mounting on a printed-circuit support
    • H01G2/065Mountings specially adapted for mounting on a printed-circuit support for surface mounting, e.g. chip capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/228Terminals
    • H01G4/252Terminals the terminals being coated on the capacitive element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10613Details of electrical connections of non-printed components, e.g. special leads
    • H05K2201/10621Components characterised by their electrical contacts
    • H05K2201/10636Leadless chip, e.g. chip capacitor or resistor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/12Using specific substances
    • H05K2203/122Organic non-polymeric compounds, e.g. oil, wax, thiol
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Conductive Materials (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Wire Bonding (AREA)
  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Structures For Mounting Electric Components On Printed Circuit Boards (AREA)

Description

本発明は電子部品モジュールに関し、より詳しくは電子部品同士が接合材を介して電気的に接続された電子部品モジュールに関する。   The present invention relates to an electronic component module, and more particularly to an electronic component module in which electronic components are electrically connected via a bonding material.

積層セラミックコンデンサや半導体素子などの電子部品は、回路基板などの他の電子部品と電気的に接続するための外部電極を有し、外部電極に塗布されたはんだや導電性樹脂材料などの接合材を介して他の電子部品と電気的に接続される。   Electronic components such as multilayer ceramic capacitors and semiconductor elements have external electrodes to be electrically connected to other electronic components such as circuit boards, and bonding materials such as solder and conductive resin material applied to the external electrodes It is electrically connected to other electronic components via

そして近年では、環境面等への配慮から鉛の使用を低減することが要請されており、斯かる観点から、上記接合材としては、従来、使用されてきたはんだの代替材料として導電性樹脂材料などの導電性接着剤が注目を集めている。   In recent years, it has been requested to reduce the use of lead from the viewpoint of the environment and the like. From such a viewpoint, as the bonding material, a conductive resin material can be used as an alternative to the conventionally used solder. Such conductive adhesives are attracting attention.

電気的接続の信頼性向上のためには、電子部品自体の信頼性向上が重要であるが、それとともに他の電子部品との接続部分の信頼性向上が重要である。電子部品間の接続部分の信頼性は、導電性樹脂材料などの接続材料自体の抵抗値や耐湿性などの信頼性に加えて、接続材料と電極との接触部分の接続抵抗や接続強度などの信頼性から影響を受ける。   In order to improve the reliability of the electrical connection, it is important to improve the reliability of the electronic component itself, and at the same time, it is important to improve the reliability of the connection part with other electronic components. The reliability of the connection part between electronic components includes the resistance value and moisture resistance of the connection material itself such as conductive resin material, as well as the connection resistance and connection strength of the contact part between the connection material and the electrode. Influenced by reliability.

そこで,従来から、電極表面に対して何らかの表面処理を行うことによって接続信頼性の向上を図ろうとした技術が知られている。例えば特許文献1には、金属表面を予めシラン系などのカップリング剤で処理した後に導電性ペーストを塗布または印刷するようにした電子回路基板の製造方法が提案されている。   Therefore, conventionally, there has been known a technique for improving the connection reliability by performing some kind of surface treatment on the electrode surface. For example, Patent Document 1 proposes a method for manufacturing an electronic circuit board in which a metal surface is previously treated with a coupling agent such as a silane, and then a conductive paste is applied or printed.

特許文献1によれば、金属表面を予めシラン系などのカップリング剤で処理することにより金属表面と導電性ペースト硬化塗膜との密着性が高まるとされている。   According to Patent Document 1, it is said that the adhesion between the metal surface and the conductive paste cured coating film is enhanced by treating the metal surface with a silane-based coupling agent in advance.

特開平6−61602号公報JP-A-6-61602

電極間の電気的接続を導電性樹脂材料によって行った場合、導電性樹脂材料と電極との間の導通はショットキー電流によって通電される。ショットキー電流は、金属表面の仕事関数に依存し、仕事関数が小さくなるとショットキー電流の値が大きくなることが知られている。また、物質表面の仕事関数は、表面に他の物質を吸着させることによって大小さまざまに変化することが知られている。   When electrical connection between the electrodes is performed using a conductive resin material, conduction between the conductive resin material and the electrodes is performed by a Schottky current. It is known that the Schottky current depends on the work function of the metal surface, and that the value of the Schottky current increases as the work function decreases. Further, it is known that the work function of the material surface varies in various sizes by adsorbing other materials on the surface.

しかしながら、特許文献1に記載された発明は、シラン系などのカップリング剤で表面処理することによって密着性を高めるものであり、仕事関数やショットキー電流に着目したものではない。むしろ、特許文献1において具体的に例示されているシラン系カップリング剤は分子骨格中に電子吸引性の強い酸素原子を有するため、電極表面の仕事関数が増大してショットキー電流が低下すると考えられる。   However, the invention described in Patent Document 1 improves adhesion by surface treatment with a silane-based coupling agent, and does not focus on the work function or Schottky current. Rather, since the silane coupling agent specifically exemplified in Patent Document 1 has a highly electron withdrawing oxygen atom in the molecular skeleton, the work function of the electrode surface is increased and the Schottky current is decreased. It is done.

本発明は、電極表面の仕事関数を低減させてショットキー電流を増加させることにより、電極と接続材料との接続抵抗値を低下させて、電気的な接続信頼性が高い電子部品モジュールを提供することを目的とする。   The present invention provides an electronic component module with high electrical connection reliability by reducing the connection resistance value between the electrode and the connection material by reducing the work function of the electrode surface and increasing the Schottky current. For the purpose.

上記目的を達成するために本発明に係る電子部品モジュールは、外部電極を有する第1の電子部品と、外部電極を有する第2の電子部品とが接合材を介して電気的に接続された電子部品モジュールであって、前記接合材が導電性接着剤からなると共に、前記第1および第2の電子部品のそれぞれの前記外部電極のうちの少なくともいずれか一方の外部電極の表面に、電極表面の仕事関数を低下させる有機化合物が吸着されていることを特徴とする。   In order to achieve the above object, an electronic component module according to the present invention is an electronic device in which a first electronic component having an external electrode and a second electronic component having an external electrode are electrically connected via a bonding material. In the component module, the bonding material is made of a conductive adhesive, and on the surface of at least one of the external electrodes of each of the first and second electronic components, An organic compound that lowers the work function is adsorbed.

また、本発明の電子部品モジュールは、前記有機化合物が、分子骨格中に酸素原子を有さず、且つ窒素原子を有するアミン化合物であることを特徴とし、具体的には、テトラエチレンペンタミン、トリエチルアミン、トリ−n−ブチルアミン、1−アミノデカンを好適に使用することができる。   In the electronic component module of the present invention, the organic compound is an amine compound having no nitrogen atom and having a nitrogen atom in the molecular skeleton, specifically, tetraethylenepentamine, Triethylamine, tri-n-butylamine and 1-aminodecane can be preferably used.

さらに、本発明の電子部品モジュールは、前記電極表面が、Au、Ag、Sn、及びこれらの合金の中から選択された一種を含むことを特徴とする。   Furthermore, the electronic component module of the present invention is characterized in that the electrode surface includes one selected from Au, Ag, Sn, and alloys thereof.

また、本発明の電子部品モジュールは、前記導電性接着剤は、導電性樹脂材料及び導電性接着シートのいずれかで形成されていることを特徴とする。   The electronic component module of the present invention is characterized in that the conductive adhesive is formed of any one of a conductive resin material and a conductive adhesive sheet.

本発明の電子部品モジュールによれば、第1の電子部品と第2の電子部品とを電気的に接続する接合材が導電性接着剤からなると共に、前記第1および第2の電子部品のそれぞれの前記外部電極のうちの少なくともいずれか一方の外部電極の表面に、電極表面の仕事関数を低下させる有機化合物が吸着されているので、電極表面の仕事関数が低下してショットキー電流が増加し、これにより電極と導電性接着剤との間の接続抵抗を低下させることができ 第1の電子部品と第2の電子部品との間の電気的接続の信頼性を向上させることができる。   According to the electronic component module of the present invention, the bonding material for electrically connecting the first electronic component and the second electronic component is made of a conductive adhesive, and each of the first and second electronic components is provided. Since the organic compound that lowers the work function of the electrode surface is adsorbed on the surface of at least one of the external electrodes, the work function of the electrode surface is lowered and the Schottky current is increased. Thus, the connection resistance between the electrode and the conductive adhesive can be reduced, and the reliability of the electrical connection between the first electronic component and the second electronic component can be improved.

また、前記有機化合物として、分子骨格中に酸素原子を有さず、且つ窒素原子を有するアミン化合物、具体的には、テトラエチレンペンタミン、トリエチルアミン、トリ−n−ブチルアミン、1−アミノデカンを使用することにより、電極表面の仕事関数を効果的に低下させることができる。   As the organic compound, an amine compound having no oxygen atom in the molecular skeleton and having a nitrogen atom, specifically, tetraethylenepentamine, triethylamine, tri-n-butylamine, or 1-aminodecane is used. As a result, the work function of the electrode surface can be effectively reduced.

また、前記外部電極の表面が、Au、Ag、Sn、及びこれらの合金の中から選択された少なくとも一種を含むので、外部電極として通常使用される金属材料を使用した場合に電極と導電性接着剤との間の接続抵抗を効果的に低下させることができ 第1の電子部品と第2の電子部品との間の電気的接続の信頼性を向上させることができる。   Further, since the surface of the external electrode contains at least one selected from Au, Ag, Sn, and alloys thereof, when the metal material normally used as the external electrode is used, the electrode and the conductive adhesive are bonded. The connection resistance between the agents can be effectively reduced, and the reliability of the electrical connection between the first electronic component and the second electronic component can be improved.

また、前記導電性接着剤は、導電性樹脂材料及び導電性接着シートのいずれかで形成されているので、非鉛系の接合材を使用した場合であっても、電気的接続の信頼性が向上した電子部品モジュールを実現することが可能となる。   In addition, since the conductive adhesive is formed of either a conductive resin material or a conductive adhesive sheet, the reliability of electrical connection is ensured even when a lead-free bonding material is used. An improved electronic component module can be realized.

本発明の電子部品モジュールを示す断面図である。It is sectional drawing which shows the electronic component module of this invention. 試験用基板の平面図である。It is a top view of the board | substrate for a test. 図2のA−A断面図である。It is AA sectional drawing of FIG.

符号の説明Explanation of symbols

10 積層セラミック電子部品(第1の電子部品)
12 外部電極
20 回路基板(第2の電子部品)
22 電極パッド(外部電極)
30 接合材
10 Multilayer ceramic electronic component (first electronic component)
12 External electrode 20 Circuit board (second electronic component)
22 Electrode pad (external electrode)
30 Bonding material

次に、本発明の実施の形態を図面を参照しながら詳説する。   Next, embodiments of the present invention will be described in detail with reference to the drawings.

図1は本発明に係る電子部品モジュールの一実施の形態を模式的に示す断面図である。   FIG. 1 is a sectional view schematically showing one embodiment of an electronic component module according to the present invention.

該電子部品モジュールは、第1の電子部品としての積層セラミック電子部品10と第2の電子部品としての回路基板20とが導電性樹脂材料からなる接合材30を介して電気的に接続されている。   In the electronic component module, a multilayer ceramic electronic component 10 as a first electronic component and a circuit board 20 as a second electronic component are electrically connected via a bonding material 30 made of a conductive resin material. .

積層セラミック電子部品10は、電子部品本体としてのセラミック基体11と、該セラミック基体11の表面に形成された外部電極12とを備えている。セラミック基体11は誘電体セラミックスや磁性体セラミックスなどのセラミック材料からなり、内部電極が内蔵されているが、本実施の形態では図示を省略している。   The multilayer ceramic electronic component 10 includes a ceramic base 11 as an electronic component main body and an external electrode 12 formed on the surface of the ceramic base 11. The ceramic substrate 11 is made of a ceramic material such as dielectric ceramics or magnetic ceramics, and has internal electrodes built-in, but is not shown in the present embodiment.

外部電極12の表層は、Ag、Au、Snまたはこれらの合金が含有されると共に、該外部電極12の表面における仕事関数を低下させる有機化合物、例えばテトラエチレンペンタミン、トリエチルアミン、トリ−n−ブチルアミン、1−アミノデカンなどの分枝骨格中に酸素原子を有さず、窒素原子を有するアミン化合物が予め吸着されている。   The surface layer of the external electrode 12 contains Ag, Au, Sn or an alloy thereof, and an organic compound that lowers the work function on the surface of the external electrode 12, such as tetraethylenepentamine, triethylamine, tri-n-butylamine. An amine compound having no nitrogen atom and having a nitrogen atom in a branched skeleton such as 1-aminodecane is adsorbed in advance.

すなわち、接合材30である導電性樹脂材料が外部電極12と電極パッド22との間に塗布される前に前記積層セラミック電子部品10は表面処理され、これにより前記有機化合物が外部電極12の表層(表面)に吸着されている。   That is, before the conductive resin material that is the bonding material 30 is applied between the external electrode 12 and the electrode pad 22, the multilayer ceramic electronic component 10 is subjected to a surface treatment, whereby the organic compound becomes a surface layer of the external electrode 12. (Surface) is adsorbed.

回路基板20は樹脂材料や酸化アルミニウムなどで形成された基板本体21と、基板本体21の主面上に形成された電極パッド(外部電極)22とを有している。電極パッド22の表層は、前記外部電極12と同様、Ag、Au、Snまたはこれらの合金が含有されると共に、該電極パッド22の表面における仕事関数を低下させる有機化合物、例えばテトラエチレンペンタミン、トリエチルアミン、トリ−n−ブチルアミン、1−アミノデカンなどの分枝骨格中に酸素原子を有さず、窒素原子を有するアミン化合物が予め吸着されている。   The circuit board 20 includes a substrate body 21 formed of a resin material or aluminum oxide, and electrode pads (external electrodes) 22 formed on the main surface of the substrate body 21. Similar to the external electrode 12, the surface layer of the electrode pad 22 contains Ag, Au, Sn, or an alloy thereof, and an organic compound that lowers the work function on the surface of the electrode pad 22, such as tetraethylenepentamine, A branched skeleton such as triethylamine, tri-n-butylamine, 1-aminodecane or the like has no oxygen atom and an amine compound having a nitrogen atom is adsorbed in advance.

すなわち、接合材30である導電性樹脂材料が外部電極12と電極パッド22との間に塗布される前に前記回路基板20は表面処理され、これにより前記有機化合物が電極パッド22の表層(表面)に吸着されている。   That is, before the conductive resin material as the bonding material 30 is applied between the external electrode 12 and the electrode pad 22, the circuit board 20 is subjected to a surface treatment, whereby the organic compound is applied to the surface layer (surface) of the electrode pad 22. ).

これらの有機化合物を外部電極12や電極パッド22の表層に吸着させる方法としては、これらの有機化合物を必要に応じてエタノールなどの溶剤で希釈した上で、浸漬(ディッピング)、吹き付け(スプレー)、転写、刷毛などを用いた塗布などの方法で外部電極12及び電極パッド22の表層に付与し、溶剤を乾燥させる方法があるが、これに限定されるものではない。   As a method of adsorbing these organic compounds to the surface layer of the external electrode 12 or the electrode pad 22, after diluting these organic compounds with a solvent such as ethanol as necessary, immersion (dipping), spraying (spraying), Although there is a method of applying to the surface layer of the external electrode 12 and the electrode pad 22 by a method such as transfer or application using a brush, and drying the solvent, it is not limited to this.

接合材30を形成する導電性樹脂材料は、エポキシ樹脂などの樹脂とAgなどからなる導電性粉末とを含み、外部電極12と電極パッド22との間に塗布された後に、熱硬化や紫外線硬化などの方法で硬化される。   The conductive resin material forming the bonding material 30 includes a resin such as an epoxy resin and a conductive powder made of Ag or the like, and is applied between the external electrode 12 and the electrode pad 22 and then thermally cured or ultraviolet cured. It is cured by such a method.

このように本電子部品モジュールは、仕事関数を低下させる有機化合物が外部電極12および電極パッド22の表層に予め吸着されているので、外部電極12または電極パッド33と接合材30との間の導通を担うショットキー電流の値が増加する。そしてこれにより、外部電極12と導電性樹脂材料30との間の接続抵抗および電極パッド22と接合材30との間の接続抵抗の各々が低下し、その結果外部電極12と電極パッド22との間の接続抵抗が低下し、セラミック電子部品10と回路基板20との間の電気的接続の信頼性が向上する。   As described above, in the electronic component module, since the organic compound that lowers the work function is adsorbed in advance on the surface layers of the external electrode 12 and the electrode pad 22, conduction between the external electrode 12 or the electrode pad 33 and the bonding material 30 is performed. Increases the value of the Schottky current that bears. As a result, each of the connection resistance between the external electrode 12 and the conductive resin material 30 and the connection resistance between the electrode pad 22 and the bonding material 30 are reduced. As a result, the connection between the external electrode 12 and the electrode pad 22 is reduced. The connection resistance between them is reduced, and the reliability of the electrical connection between the ceramic electronic component 10 and the circuit board 20 is improved.

なお、本発明は上記実施の形態に限定されるものではない。上記実施の形態では外部電極12と電極パッド22の両方の表層に仕事関数を低下させる有機化合物を吸着させているが、外部電極12及び電極パッド22のいずれか一方の表層のみに仕事関数を低下させる有機化合物を吸着させても同様の効果を得ることができる。   The present invention is not limited to the above embodiment. In the above embodiment, the organic compound that lowers the work function is adsorbed on the surface layers of both the external electrode 12 and the electrode pad 22, but the work function is reduced only on the surface layer of either the external electrode 12 or the electrode pad 22. The same effect can be obtained even if the organic compound to be adsorbed is adsorbed.

また、上記実施の形態では、電極表面に吸着させる好適な有機化合物として、テトラエチレンペンタミン、トリエチルアミン、トリ−n−ブチルアミン、1−アミノデカンを例示したが、これらに限定されるものではない。すなわち、分子骨格中に酸素原子を有さず、且つ分子骨格中に窒素原子を有するアミン化合物であれば好適に使用することが可能であり、例えば、アリルアミン、メチルアミン、エチルアミン、アミノペンタン、プロピルアミン、ブチルアミン、i−ブチルアミン、t−ブチルアミン、ペンチルアミン、シクロヘキシルアミン、オクチルアミン、デシルアミン、デシルアミン、ラウリルアミン、フェネチルアミン、ジアミノペンタン、ドデカメチレンジアミン、メチルベンジルアミン、エチルベンジルアミン、メチルシクロヘキシルアミン、エチレンジアミン、ヘプチルアミン、ヘキサメチレンジアミン、ヘキシルアミン、ノナメチレンジアミン、オクタメチレンジアミン、フェニレンジアミン、フェニルメチルアミン、フェニルエチルアミン、フェニルナフチルアミン、ジアミノブタン、テトラメチルエチレンジアミン、テトラメチルフェニレンジアミン、テトラメチレンプロパンジアミン、キシレンジアミンなどの第1級アミン、ジシクロヘキシルアミン、ジアリルアミン、ジメチルアミン、ジエチレントリアミン、ジプロピルアミン、ジプロピルエチルアミン、ジブチルアミン、ジヘキシルアミン、ジメチルフェニレンジアミン、ジメチルベンジルアミン、ジメチルエチレンジアミン、ジメチルオクチルアミン、ジメチルプロパンジアミン、ジプロピルアミン、ジプロピレントリアミンなどの第2級アミン、トリメチルアミン、トリエチルアミン、トリプロピルアミン、トリブチルアミン、トリフェニルアミン、トリオクチルアミン、トリメチレンジアミン、トリエチレンジアミンなどの第3級アミンなどを使用することができる。さらに、電極表面に吸着させる有機化合物としては、上述した有機化合物を2種類以上混合させたものであってもよく、また、電極表面の材質も上記に限定されるものではない。   Moreover, in the said embodiment, although the tetraethylenepentamine, the triethylamine, the tri-n-butylamine, and 1-aminodecane were illustrated as a suitable organic compound adsorb | sucked on the electrode surface, it is not limited to these. That is, any amine compound having no oxygen atom in the molecular skeleton and having a nitrogen atom in the molecular skeleton can be preferably used. For example, allylamine, methylamine, ethylamine, aminopentane, propyl Amine, butylamine, i-butylamine, t-butylamine, pentylamine, cyclohexylamine, octylamine, decylamine, decylamine, laurylamine, phenethylamine, diaminopentane, dodecamemethylenediamine, methylbenzylamine, ethylbenzylamine, methylcyclohexylamine, ethylenediamine , Heptylamine, hexamethylenediamine, hexylamine, nonamethylenediamine, octamethylenediamine, phenylenediamine, phenylmethylamine, phenylethylamine , Phenyl naphthylamine, diaminobutane, tetramethylethylenediamine, tetramethylphenylenediamine, tetramethylenepropanediamine, xylenediamine and other primary amines, dicyclohexylamine, diallylamine, dimethylamine, diethylenetriamine, dipropylamine, dipropylethylamine, dibutylamine , Secondary amines such as dihexylamine, dimethylphenylenediamine, dimethylbenzylamine, dimethylethylenediamine, dimethyloctylamine, dimethylpropanediamine, dipropylamine, dipropylenetriamine, trimethylamine, triethylamine, tripropylamine, tributylamine, triphenyl Amine, trioctylamine, trimethylenediamine, triethylenedi And the like can be used tertiary amines such as Min. Furthermore, the organic compound adsorbed on the electrode surface may be a mixture of two or more of the above-described organic compounds, and the material of the electrode surface is not limited to the above.

また、上記実施の形態では、接合材30として導電性樹脂材料を使用したが、導電性接着剤であればよく、導電性接着シートなどを用いた場合でも同様の効果を得ることができる。   In the above embodiment, a conductive resin material is used as the bonding material 30. However, any conductive adhesive may be used, and the same effect can be obtained even when a conductive adhesive sheet or the like is used.

また、第1の電子部品と第2の電子部品の形態は上記の積層セラミック電子部品と回路基板に限定されるものではなく、多層基板、半導体素子などいかなる電子部品にも適用することができるのはいうまでもない。   Further, the form of the first electronic component and the second electronic component is not limited to the above-mentioned multilayer ceramic electronic component and circuit board, but can be applied to any electronic component such as a multilayer substrate and a semiconductor element. Needless to say.

次に、本発明の具体的な実施例を説明する。   Next, specific examples of the present invention will be described.

図2は本実施例に使用した試験用基板を示す平面図であり、図3は図2のA−A断面図である。   FIG. 2 is a plan view showing a test substrate used in this example, and FIG. 3 is a cross-sectional view taken along the line AA of FIG.

該試験用基板は、ガラス−エポキシ複合材料からなる基板本体41と、基板本体41に形成された貫通孔42a、42bと、該貫通孔42a、42bを介して基板本体41の両主面に及ぶように形成された電極43a、43bと、該電極43a、43b間を接続するように塗布された接合材としての導電性樹脂材料44とからなる。電極43a、43bは厚さ10μmのCuからなる下地層と、該下地層を覆って形成された厚さ1μmの表層とからなる二層構造とされている。   The test substrate extends to both main surfaces of the substrate body 41 through a substrate body 41 made of a glass-epoxy composite material, through holes 42a and 42b formed in the substrate body 41, and the through holes 42a and 42b. The electrodes 43a and 43b formed as described above and the conductive resin material 44 as a bonding material applied so as to connect the electrodes 43a and 43b. The electrodes 43a and 43b have a two-layer structure including a base layer made of Cu having a thickness of 10 μm and a surface layer having a thickness of 1 μm formed so as to cover the base layer.

尚、電極の表層材料としては、各試料によって異なる材料、具体的にはSn、Ag、Au、及びSn−37Pbのいずれか一種を使用した。   In addition, as the surface layer material of the electrode, a material different depending on each sample, specifically, any one of Sn, Ag, Au, and Sn-37Pb was used.

次に、上記試験用基板を使用して以下の実験を行った。   Next, the following experiment was performed using the test substrate.

(1)電極表面の仕事関数の測定
表層材料の異なる上記試験用基板を用意し、表面の酸化膜を除去するために0.1mol/Lの塩酸水溶液に1時間浸漬した後、流水(純水)で10分間表面洗浄し、エタノールですすいだ後、24時間以上風乾させてエタノールを揮発させた。そしてその後、大気雰囲気型紫外光電子分析装置(理研計器製AC−2)を使用して各試料の電極43a、43b表面における仕事関数を測定した。
(1) Measurement of work function of electrode surface Prepare the above-mentioned test substrate having a different surface layer material and immerse it in a 0.1 mol / L hydrochloric acid aqueous solution for 1 hour to remove the oxide film on the surface. ) For 10 minutes, rinsed with ethanol, and then air-dried for 24 hours or more to volatilize ethanol. Thereafter, the work function on the surfaces of the electrodes 43a and 43b of each sample was measured using an atmospheric-type ultraviolet photoelectron analyzer (AC-2 manufactured by Riken Keiki Co., Ltd.).

(2)電極の表面処理(有機化合物の吸着処理)
有機化合物としてテトラエチレンペンタミン[NH(C24NHC24NH22]、トリエチルアミン[(C253N]、トリ−n−ブチルアミン[(CH3(CH233N]、1−アミノデカン[CH3(CH29NH2]、トリエタノールアミン[(C24OH)3N]、デカン酸[C919COOH]を用意し、これら有機化合物の含有量が0.5wt%となるようにエタノールで希釈し、表面処理剤としてのエタノール溶液を調製した。
(2) Electrode surface treatment (adsorption treatment of organic compounds)
Tetraethylenepentamine as the organic compound [NH (C 2 H 4 NHC 2 H 4 NH 2) 2], triethylamine [(C 2 H 5) 3 N], tri -n- butylamine [(CH 3 (CH 2) 3 ) 3 N], 1-aminodecane [CH 3 (CH 2 ) 9 NH 2 ], triethanolamine [(C 2 H 4 OH) 3 N], decanoic acid [C 9 H 19 COOH] It diluted with ethanol so that content of a compound might be 0.5 wt%, and prepared the ethanol solution as a surface treating agent.

次いで、上記(1)で表面洗浄を行った試験用基板を、上記エタノール溶液に浸漬し、10分間超音波分散を行った後、24時間風乾した。   Next, the test substrate subjected to surface cleaning in (1) above was immersed in the ethanol solution, subjected to ultrasonic dispersion for 10 minutes, and then air-dried for 24 hours.

(3)電極表面の仕事関数の測定
上記(2)で表面処理を行った試験用基板について、各試料の電極43a、43b表面における仕事関数を大気雰囲気型紫外光電子分析装置(理研計器製AC−2)を使用して測定した。そして、測定された仕事関数値から、上記(1)で測定した表面処理前の仕事関数値を減じ、有機化合物の吸着による仕事関数の変化量を求めた。
(3) Measurement of work function of electrode surface For the test substrate subjected to the surface treatment in (2) above, the work function on the surface of the electrode 43a, 43b of each sample was measured using an atmospheric pressure ultraviolet photoelectron analyzer (AC-manufactured by Riken Keiki Co., Ltd.). 2). Then, the work function value before the surface treatment measured in the above (1) was subtracted from the measured work function value, and the change amount of the work function due to the adsorption of the organic compound was obtained.

(4)導電性樹脂材料の調製
ビスフェノールF型液状エポキシ樹脂、2−フェニル−4−メチルジヒドロキシメチルイミダゾール、および平均粒径1.9μmの球状Ag粉末を重量比で100:10:578となるように配合して乳鉢で混合し、これにより導電性樹脂材料(接合材)を得た。
(4) Preparation of conductive resin material Bisphenol F-type liquid epoxy resin, 2-phenyl-4-methyldihydroxymethylimidazole, and spherical Ag powder having an average particle diameter of 1.9 μm in a weight ratio of 100: 10: 578 And mixed in a mortar, thereby obtaining a conductive resin material (bonding material).

(5)接続抵抗値の測定
上記(2)で表面処理を行った各試験用基板の電極43a、43bが電気的に接続するように、上記導電性樹脂材料44をメタルマスクを使用した印刷法によって塗布し、150℃で60分間加熱して硬化させた。
(5) Measurement of connection resistance value Printing method using the conductive resin material 44 using a metal mask so that the electrodes 43a and 43b of the test substrates subjected to the surface treatment in (2) are electrically connected. And cured by heating at 150 ° C. for 60 minutes.

その後、電極43a、43b間の抵抗値Rを4端子法によって測定した。   Thereafter, the resistance value R between the electrodes 43a and 43b was measured by a four-terminal method.

また、表面処理を行っていない試験用基板についても、上述と同様の方法・手順で導電性樹脂材料(接合材)を塗布、硬化させて電極43a、43b間の抵抗値R0を4端子法によって測定した。そして、下記数式(A)に基づいて有機化合物の吸着による接続抵抗値の変化率ΔR(%)を求めた。   In addition, for a test substrate that has not been surface-treated, a conductive resin material (bonding material) is applied and cured by the same method and procedure as described above, and the resistance value R0 between the electrodes 43a and 43b is determined by the four-terminal method. It was measured. And based on the following numerical formula (A), change rate (DELTA) R (%) of the connection resistance value by adsorption | suction of an organic compound was calculated | required.

ΔR={(R−R0)/R0}×100 …(A)   ΔR = {(R−R0) / R0} × 100 (A)

上記(1)〜(5)の方法によって作製および測定した各試料について、組成と測定結果を表1に示す。表1には比較のために表面処理を行わない試料(試料番号17〜20)も示した。なお、表1中、*を付した試料番号は、比較例を示している。   Table 1 shows the composition and measurement results for each sample prepared and measured by the methods (1) to (5). Table 1 also shows samples (sample numbers 17 to 20) that are not subjected to surface treatment for comparison. In Table 1, sample numbers marked with * indicate comparative examples.

Figure 0004482945
Figure 0004482945

試料番号1〜4及び17は電極の表層がSnで形成されている。これら各試料番号を対比すると、表面処理を行わなかった試料番号17は抵抗値Rが128mΩであったのに対し、試料番号1〜4は、分子骨格中に酸素原子を有さず窒素原子を有する有機化合物(以下、「特定有機化合物」という。)を含有したエタノール溶液で表面処理を行い、これにより該特定有機化合物を電極43a、43bの表層に吸着させているので、仕事関数の変化量が−0.05〜−0.16eVとなって試料番号17に比べて仕事関数が減少し、その結果抵抗値Rが94〜108mΩと低下した。   In sample numbers 1 to 4 and 17, the surface layer of the electrode is formed of Sn. When comparing these sample numbers, the sample number 17 that was not subjected to the surface treatment had a resistance value R of 128 mΩ, whereas the sample numbers 1 to 4 had no oxygen atoms in the molecular skeleton and no nitrogen atoms. The surface treatment is performed with an ethanol solution containing the organic compound (hereinafter referred to as “specific organic compound”), and the specific organic compound is adsorbed on the surface layers of the electrodes 43a and 43b. Was -0.05 to -0.16 eV, and the work function was reduced as compared with Sample No. 17, and as a result, the resistance value R was lowered to 94 to 108 mΩ.

試料番号5〜8及び18は電極の表層がAgで形成されている。これら各試料番号を対比すると、表面処理を行わなかった試料番号18は抵抗値Rが59mΩであったのに対し、試料番号5〜8は特定有機化合物を電極43a、43bの表層に吸着させているので、仕事関数の変化量が−0.01〜−0.33eVとなって試料番号18に比べて仕事関数が減少し、その結果抵抗値Rが48〜55mΩと低下した。   In sample numbers 5 to 8 and 18, the surface layer of the electrode is made of Ag. When comparing these sample numbers, the sample number 18 that was not subjected to the surface treatment had a resistance value R of 59 mΩ, whereas the sample numbers 5 to 8 were made to adsorb specific organic compounds to the surface layers of the electrodes 43a and 43b. Therefore, the amount of change in work function was −0.01 to −0.33 eV, and the work function was reduced as compared with Sample No. 18. As a result, the resistance value R was lowered to 48 to 55 mΩ.

試料番号9、10及び19は電極の表層がAuで形成されている。これら各試料番号を対比すると、表面処理を行わなかった試料番号19は抵抗値Rが38mΩであったのに対し、試料番号9、10は特定有機化合物を電極43a、43bの表層に吸着させているので、仕事関数の変化量がそれぞれ−0.46、−0.25eVとなって試料番号19に比べて仕事関数が減少し、その結果抵抗値Rがそれぞれ33、34mΩと低下した。   In sample numbers 9, 10 and 19, the surface layer of the electrode is made of Au. When comparing these sample numbers, the sample number 19 that was not subjected to the surface treatment had a resistance value R of 38 mΩ, while the sample numbers 9 and 10 had the specific organic compound adsorbed on the surface layers of the electrodes 43a and 43b. Therefore, the amount of change in the work function was −0.46 and −0.25 eV, respectively, and the work function was decreased as compared with Sample No. 19, and as a result, the resistance value R was reduced to 33 and 34 mΩ, respectively.

試料番号11及び20は電極の表層がSn−37Pbで形成されている。これら各試料番号を対比すると、表面処理を行わなかった試料番号20は抵抗値Rが165mΩであったのに対し、試料番号11は特定有機化合物を電極43a、43bの表層に吸着させているので、仕事関数の変化量が−0.03eVとなって試料番号11に比べて仕事関数が減少し、その結果抵抗値Rが146mΩと低下した。   In sample numbers 11 and 20, the surface layer of the electrode is formed of Sn-37Pb. When comparing these sample numbers, the resistance value R was 165 mΩ in the sample number 20 that was not subjected to the surface treatment, whereas the specific organic compound was adsorbed on the surface layers of the electrodes 43 a and 43 b in the sample number 11. The work function change amount was -0.03 eV, and the work function was reduced as compared with Sample No. 11. As a result, the resistance value R was reduced to 146 mΩ.

このように試料番号1〜11と試料番号17〜20との比較から明らかなように、特定有機化合物を含有したエタノール溶液で表面処理を行い、電極43a、43bの表層に吸着させることにより、抵抗値Rが低下することが分かった。   As is apparent from the comparison between sample numbers 1 to 11 and sample numbers 17 to 20, the surface treatment is performed with an ethanol solution containing a specific organic compound, and the surface layer of the electrodes 43a and 43b is adsorbed. It was found that the value R decreases.

そして、これらの結果から、電極の表層が他の金属材料であっても、特定有機化合物を電極表面に吸着させることにより、同様の作用効果が得られるものと推定される。   And even if the surface layer of an electrode is another metal material from these results, it is estimated that the same effect is acquired by making a specific organic compound adsorb | suck to an electrode surface.

また、試料番号12は、分枝骨格中に酸素原子を有するトリエタノールアミン[(C24OH)3N]を含有したエタノール溶液を表面処理剤に使用しているため、電極表面を表面処理しなかった試料番号17と比べ、仕事関数の変化量が+0.05eVとなって仕事関数が増加し、抵抗値Rが128mΩから130mΩに上昇した。これは、トリエタノールアミンの分子骨格に含まれる酸素原子は電子吸引性が高く、窒素原子による電子供与性の効果を上回るためであると考えられる。Sample No. 12 uses an ethanol solution containing triethanolamine [(C 2 H 4 OH) 3 N] having an oxygen atom in the branched skeleton as the surface treatment agent, so that the electrode surface is the surface. Compared with sample No. 17 that was not treated, the work function change amount was +0.05 eV, the work function increased, and the resistance value R increased from 128 mΩ to 130 mΩ. This is presumably because the oxygen atom contained in the molecular skeleton of triethanolamine has a high electron-withdrawing property and exceeds the electron-donating effect of the nitrogen atom.

また、試料番号14も、試料番号12と同様、表面処理剤としてトリエタノールアミン[(C24OH)3N]を含有したエタノール溶液を使用しているため、同様の理由から、電極表面を表面処理しなかった試料番号18と比べ、仕事関数の変化量が+0.21eVとなって仕事関数が増加し、抵抗値Rが59mΩから65mΩに上昇した。Sample No. 14 also uses an ethanol solution containing triethanolamine [(C 2 H 4 OH) 3 N] as a surface treating agent, as in Sample No. 12, and therefore for the same reason, Compared with Sample No. 18 that was not surface-treated, the change in work function was +0.21 eV, the work function increased, and the resistance value R increased from 59 mΩ to 65 mΩ.

また、試料番号13は、分枝骨格中に酸素原子を有し窒素原子を有さないデカン酸[C919COOH]を含有したエタノール溶液を表面処理剤に使用しているため、電極表面を表面処理しなかった試料番号17と比べ、仕事関数の変化量が+0.05eVとなって仕事関数が増加し、抵抗値Rが128mΩから150mΩに上昇した。これは、デカン酸の分子骨格には電子供与性のある窒素原子を含まない上、電子吸引性のある酸素原子を含むためであると考えられる。Sample No. 13 uses an ethanol solution containing decanoic acid [C 9 H 19 COOH] having an oxygen atom and no nitrogen atom in the branched skeleton as the surface treatment agent. Compared with Sample No. 17 which was not surface-treated, the work function change amount was +0.05 eV, the work function increased, and the resistance value R increased from 128 mΩ to 150 mΩ. This is presumably because the molecular skeleton of decanoic acid does not contain an electron-donating nitrogen atom and also contains an electron-withdrawing oxygen atom.

また、試料番号15も、試料番号13と同様、表面処理剤としてデカン酸[C919COOH]を使用しているため、同様の理由から、電極表面を表面処理しなかった試料番号18と比べ、仕事関数の変化量が+0.21eVとなって仕事関数が増加し、抵抗値Rが59mΩから71mΩに上昇した。Similarly to sample number 13, sample number 15 uses decanoic acid [C 9 H 19 COOH] as the surface treatment agent. For the same reason, sample number 15 is the same as sample number 18 in which the electrode surface was not surface-treated. In comparison, the work function change amount was +0.21 eV, the work function increased, and the resistance value R increased from 59 mΩ to 71 mΩ.

また、試料番号16も、試料番号13及び15と同様、表面処理剤としてデカン酸[C919COOH]を使用しているため、同様の理由から、電極表面を表面処理しなかった試料番号19と比べ、仕事関数の変化量が+0.03eVとなって仕事関数が増加し、抵抗値Rが38mΩから40mΩに上昇した。Sample No. 16 also uses decanoic acid [C 9 H 19 COOH] as a surface treating agent, as in Sample Nos. 13 and 15, and therefore, for the same reason, Sample No. for which the electrode surface was not surface-treated. Compared to 19, the work function change amount was +0.03 eV, the work function increased, and the resistance value R increased from 38 mΩ to 40 mΩ.

以上のように本実施例によれば、電極表面の仕事関数を低減させる特定有機化合物を電極表面に吸着させることにより、抵抗値Rを低減させることができ、これにより接続信頼性が向上することが確認された。   As described above, according to this embodiment, the resistance value R can be reduced by adsorbing the specific organic compound that reduces the work function of the electrode surface to the electrode surface, thereby improving the connection reliability. Was confirmed.

そして、前記有機化合物としては、分子骨格中に酸素原子を有さず、且つ分子骨格中に窒素原子を有するアミン化合物、具体的にはテトラエチレンペンタミン、トリエチルアミン、トリ−n−ブチルアミン、1−アミノデカンが好適であることも分かった。   Examples of the organic compound include an amine compound having no oxygen atom in the molecular skeleton and a nitrogen atom in the molecular skeleton, specifically tetraethylenepentamine, triethylamine, tri-n-butylamine, 1- Aminodecane has also been found to be suitable.

Claims (5)

外部電極を有する第1の電子部品と、外部電極を有する第2の電子部品とが接合材を介して電気的に接続された電子部品モジュールであって、
前記接合材が導電性接着剤からなると共に、前記第1および第2の電子部品のそれぞれの前記外部電極のうちの少なくともいずれか一方の外部電極の表面に、電極表面の仕事関数を低下させる有機化合物が吸着されていることを特徴とする電子部品モジュール。
An electronic component module in which a first electronic component having an external electrode and a second electronic component having an external electrode are electrically connected via a bonding material,
The bonding material is made of a conductive adhesive, and an organic material that lowers the work function of the electrode surface on the surface of at least one of the external electrodes of each of the first and second electronic components. An electronic component module in which a compound is adsorbed.
前記有機化合物は、分子骨格中に酸素原子を有さず、且つ窒素原子を有するアミン化合物であることを特徴とする請求項1記載の電子部品モジュール。  2. The electronic component module according to claim 1, wherein the organic compound is an amine compound having no oxygen atom and a nitrogen atom in a molecular skeleton. 前記有機化合物は、テトラエチレンペンタミン、トリエチルアミン、トリ−n−ブチルアミン、及び1−アミノデカンの中から選択された一種を含むことを特徴とする請求項1または請求項2記載の電子部品モジュール。  The electronic component module according to claim 1, wherein the organic compound includes one selected from tetraethylenepentamine, triethylamine, tri-n-butylamine, and 1-aminodecane. 前記外部電極の表面は、Au、Ag、Sn、またはこれらの合金の中から選択された一種を含むことを特徴とする請求項1ないし請求項3のいずれかに記載の電子部品モジュール。  4. The electronic component module according to claim 1, wherein the surface of the external electrode includes one selected from Au, Ag, Sn, or an alloy thereof. 5. 前記導電性接着剤は、導電性樹脂材料及び導電性接着シートのいずれかで形成されていることを特徴とする請求項1ないし請求項4のいずれかに記載の電子部品モジュール。  The electronic component module according to claim 1, wherein the conductive adhesive is formed of any one of a conductive resin material and a conductive adhesive sheet.
JP2007512411A 2005-04-12 2006-02-17 Electronic component module Active JP4482945B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005114435 2005-04-12
JP2005114435 2005-04-12
PCT/JP2006/302856 WO2006109369A1 (en) 2005-04-12 2006-02-17 Electronic component module

Publications (2)

Publication Number Publication Date
JPWO2006109369A1 JPWO2006109369A1 (en) 2008-10-09
JP4482945B2 true JP4482945B2 (en) 2010-06-16

Family

ID=37086663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007512411A Active JP4482945B2 (en) 2005-04-12 2006-02-17 Electronic component module

Country Status (5)

Country Link
JP (1) JP4482945B2 (en)
KR (1) KR100938554B1 (en)
CN (1) CN101147217B (en)
TW (1) TW200642539A (en)
WO (1) WO2006109369A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010225606A (en) * 2009-03-19 2010-10-07 Sanyo Electric Co Ltd Method of manufacturing solid electrolytic capacitor
KR101051045B1 (en) * 2009-06-02 2011-07-21 중앙대학교 산학협력단 Terminal connection method using conductive adhesive
KR102122933B1 (en) * 2013-10-16 2020-06-15 삼성전기주식회사 Board for mounting electrocnic part and paste for mounting electrocnic part
KR101813361B1 (en) 2016-02-03 2017-12-28 삼성전기주식회사 Electronic component and circuit board having the same
KR102105384B1 (en) 2018-07-19 2020-04-28 삼성전기주식회사 Multilayered capacitor
KR102345115B1 (en) 2018-07-19 2021-12-30 삼성전기주식회사 Multilayered capacitor
DE102019127915A1 (en) 2019-10-16 2021-04-22 Tdk Electronics Ag Sensor element and method for producing a sensor element
DE102019127924B3 (en) * 2019-10-16 2021-01-21 Tdk Electronics Ag Component and method for manufacturing a component

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61142438U (en) * 1985-02-25 1986-09-03
JPH0661602A (en) * 1992-08-10 1994-03-04 Kao Corp Production of electronic circuit board
JP3567759B2 (en) * 1998-09-28 2004-09-22 株式会社村田製作所 Dielectric ceramic composition and multilayer ceramic capacitor
JP4097566B2 (en) * 2001-10-16 2008-06-11 東洋紡績株式会社 Disassembly method of adhesive composite
JP3730209B2 (en) * 2002-11-14 2005-12-21 株式会社東郷製作所 Conductive adhesive

Also Published As

Publication number Publication date
JPWO2006109369A1 (en) 2008-10-09
KR100938554B1 (en) 2010-01-22
TWI308041B (en) 2009-03-21
WO2006109369A1 (en) 2006-10-19
KR20070110401A (en) 2007-11-16
CN101147217B (en) 2010-09-22
TW200642539A (en) 2006-12-01
CN101147217A (en) 2008-03-19

Similar Documents

Publication Publication Date Title
JP4482945B2 (en) Electronic component module
JP5246207B2 (en) Chip-type electronic components
JP4844311B2 (en) Ceramic electronic components
WO2008023496A1 (en) Laminated electronic component and method for manufacturing laminated electronic component
US20130107419A1 (en) Multilayered ceramic capacitor with improved lead frame attachment
US20210193346A1 (en) Printed circuit surface finish, method of use, and assemblies made therefrom
US20120171432A1 (en) Substrate structure and method of manufacturing the same
US6429382B1 (en) Electrical mounting structure having an elution preventive film
US9644253B2 (en) Mitigation and elimination of tin whiskers
JPS61131520A (en) Ceramic capacitor
JP4254700B2 (en) Conductive adhesive for mounting
JP2007063042A (en) Ceramic substrate and electronic component using it
JP2001354942A (en) Conductive adhesive, mounted structure and its production method
JPH04144190A (en) Circuit board and manufacture thereof
JP4029165B2 (en) Ceramic electronic component and manufacturing method thereof
JP2006137924A (en) Electroconductive resin composition, electroconductive resin cured product, and electronic component module
JP3284273B2 (en) Mounting structure, manufacturing method of mounting structure, and conductive adhesive
JP2531002B2 (en) Electronic component manufacturing method
US8076003B2 (en) Coating composition and a method of coating
JP3031026B2 (en) Manufacturing method of chip-type ceramic electronic component
TW202135177A (en) Electronic component package structure of and manufacturing method thereof capable of preventing the electronic component body and/or the electrodes from process damage, and forming high-impedance layers on the electrodes
JP2006028213A (en) Functional electroconductive coating, electronic circuit using the same and its formation method
JP2021077499A (en) Metal paste and chip electronic component
JP2002076588A (en) Electric structure, connection structure of electronic component, surface treatment agent, surface treatment liquid, method for surface treating electrode, and method for mounting electronic component
JP2002141457A5 (en)

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100301

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100314

R150 Certificate of patent or registration of utility model

Ref document number: 4482945

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140402

Year of fee payment: 4