JP4478284B2 - Manufacturing method of jigs for precision measuring instruments - Google Patents

Manufacturing method of jigs for precision measuring instruments Download PDF

Info

Publication number
JP4478284B2
JP4478284B2 JP2000087061A JP2000087061A JP4478284B2 JP 4478284 B2 JP4478284 B2 JP 4478284B2 JP 2000087061 A JP2000087061 A JP 2000087061A JP 2000087061 A JP2000087061 A JP 2000087061A JP 4478284 B2 JP4478284 B2 JP 4478284B2
Authority
JP
Japan
Prior art keywords
weight
less
parts
cement
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000087061A
Other languages
Japanese (ja)
Other versions
JP2001261409A (en
Inventor
千春 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2000087061A priority Critical patent/JP4478284B2/en
Publication of JP2001261409A publication Critical patent/JP2001261409A/en
Application granted granted Critical
Publication of JP4478284B2 publication Critical patent/JP4478284B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、エアスライド、定盤、スコヤ、ステージなどの精密測定機器用治工具の製造方法に関する。
【0002】
【従来の技術】
エアスライド、定盤、スコヤ、ステージなどの精密測定機器用治工具に用いられる材料には、比剛性(ヤング率/比重)が高いこと、面粗度や平面度に優れること、熱膨張係数が小さいこと、耐摩耗性に優れることなどの特性が必要とされている。
【0003】
その理由は、例えば比剛性が低いと、エアスライドなどの治工具に用いた場合には、自重による撓みが大きく、精密な測定ができなくなることとなる。
【0004】
また、面粗度、平面度などの面精度が低いと、定盤などに用いた場合には、その定盤の表面に汚れが生じたり、精密な測定ができなくなったりすることとなる

【0005】
さらに、熱膨張係数が大きいと、治工具を用いる環境の温度が完全に制御されている場合には問題ないが、それがなされていない場合には、たとえ僅かな温度差であっても治工具に伸び縮みが生じ、同様に精密な測定ができなくなることとなる。このように、精密測定機器用治工具に用いられる材料には、上述したような諸特性が必要である。
【0006】
【発明が解決しようとする課題】
しかしながら、従来用いられている材料、一般的には金属、天然石材、セラミックスなどが挙げられるが、これらの材料では、必ずしも上述の特性を満足しているわけではなく、また、コスト的にも問題が多い。
【0007】
それは、金属の場合には、鋳鉄などが広く用いられていてコスト的には問題ないが、この鋳鉄は熱膨張係数が大きいため、僅かな温度差に対しても寸法変化が大きく、近年の高精度化の流れにある中でその使用が難しくなってきている。また、ヤング率は大きいものの比重も大きいため、比剛性が低く、撓みによる変形が大きくなり、精密な測定をする治工具として用いることが難しい。
【0008】
天然石材の場合には、天然石特有の異方性や節理(一種の亀裂)などの問題があるため、大型品を加工しようとすると、歩留まりが悪くなり、高価にならざるを得なくなる。また、金属とは逆に比重は小さいが、ヤング率も小さいため、やはり比剛性が低く、撓みによる変形が大きくなる。これに亀裂などが内包されていると比剛性がさらに大きく低下して致命的となり、安全性の面でも問題が生じることとなる。
【0009】
これに対して、セラミックスの場合には、比剛性が高く、面粗度や平面度に優れ、熱膨張係数が小さく、耐摩耗性にも優れているので、上述の金属あるいは天然石材より極めて優れ、上述の特性の面では満足できる材料である。
【0010】
しかしながら、このセラミックスの場合には、成形から焼成までの工程を経て作製されるため、コスト的に天然石材よりさらにはるかに高価であること、製造の面で大きさ・形状に制約があることなどの問題がある。
【0011】
本発明は、上述した精密測定機器用治工具が有する課題に鑑みなされたものであって、その目的は、比剛性が高く、面精度に優れ、しかもコスト的にも安価で、大きさや形状にも制約されない精密測定機器用治工具を製造する方法を提供することにある。
【0012】
【課題を解決するための手段】
本発明者は、上記目的を達成するため鋭意研究した結果、セメントを主体とした硬化体を精密測定機器用治工具の材料として用いれば、比剛性が高く、面精度に優れ、しかもコスト的にも安価で、大きさや形状にも制約されない精密測定機器用治工具が得られるとの知見を得て本発明を完成するに至った。
【0013】
即ち本発明は、(1)セメント、ポゾラン質微粉末、粒径が2mm以下の骨材粒子、水及び減水剤のみからなる配合物をポリエチレン型枠を用いて成形し硬化させる、面粗度がRaで0.1μm以下、Rmaxで5μm以下の精密測定機器用治工具の製造方法であって、前記材料の配合割合が、セメント100重量部に対し、ポゾラン質微粉末5〜50重量部、粒径が2mm以下の骨材粒子50〜250重量部、水10〜30重量部、減水剤(固形分換算)0.5〜4.0重量部であり、前記セメントが中庸熱ポルトランドセメント又は低熱ポルトランドセメントで、前記ポゾラン質微粉末がシリカフュームで、前記減水剤がポリカルボン酸系の高性能減水剤又は高性能AE減水剤であることを特徴とする精密測定機器用治工具の製造方法(請求項1)とし、(2)配合物に、凝結後の硬化体体積の4%未満となる量の金属繊維及び/又は凝結後の硬化体体積の10%未満となる量の有機質繊維を含む請求項1に記載の精密測定機器用治工具の製造方法(請求項2)とし、(3)金属繊維が、径0.01〜1.0mm、長さ2〜30mmの鋼繊維であることを特徴とする請求項2記載の精密測定機器用治工具の製造方法(請求項3)とし、(4)有機質繊維が、径0.005〜1.0mm、長さ2〜30mmのビニロン繊維、ポリプロピレン繊維、ポリエチレン繊維、アラミド繊維、アクリル繊維、炭素繊維から選ばれる一種以上の繊維であることを特徴とする請求項2記載の精密測定機器用治工具の製造方法(請求項4)とし、(5)配合物に、平均粒径3〜20μmの無機粉末を、セメント100重量部に対して50重量部以下含むことを特徴とする請求項1〜4のいずれかに記載の精密測定機器用治工具の製造方法(請求項5)とし、(6)配合物に、平均粒度1mm以下の繊維状粒子又は薄片状粒子を、セメント100重量部に対して35重量部以下含むことを特徴とする請求項1〜5のいずれかに記載の精密測定機器用治工具の製造方法(請求項6)とすることを要旨とする。以下さらに詳細に説明する。
【0014】
上記で述べたように本発明の精密測定機器用治工具としては、少なくともセメント、ポゾラン質微粉末、粒径が2mm以下の骨材粒子、水及び減水剤を含む配合物の硬化体からなる治工具とした。治工具の材料がセメントを主体とした硬化体であるため、コスト的に安価であり、しかも流し込みによる成形で作製されるため、大型で複雑な形状品を作製することができ、大きさや形状に制約されない治工具となる。
【0015】
そして、この配合物の硬化体であれば、比剛性が高く、面粗度に優れた治工具となり、その比剛性としては、2.0×10-1GPa以上となり、面粗度としては、Raで1.0μm以下、Rmaxで12μm以下の治工具となる。
【0016】
【発明の実施の形態】
この発明の治工具を構成する硬化体に使用するセメントは、ポルトランドセメント、混合セメント、速硬セメントなどの各種セメントを使用することができる。ポルトランドセメントは、普通、早強、超早強、中庸熱、耐硫酸塩、低熱、白色などの各種ポルトランドセメントがいずれも使用できるが、中庸熱、耐硫酸塩、低熱の各ポルトランドセメントは、アルミネート鉱物(C3A)の含有量が少なく、流動性が良いので好ましい。フライアッシュセメント、高炉セメント、シリカセメント等の混合セメントは、組成物中のポルトランドセメント分が他のセメントより相対的に少ないので、流動性を高める点では好ましい。また、硬化体の早期強度を向上しようとする場合は、早強ポルトランドセメントを使用することが好ましく、速硬セメントは、短時間で硬化するので流動性が早く失われるが、早期に強度の発現を求められる場合には効果的である。
【0017】
セメントの使用量は、後述するポゾラン質微粉末の使用量と併せて決定されるが、配合物中の単位セメント量が500〜1000kg/m3、好ましくは700〜850kg/m3の範囲とすることにより、各種配合物との作用と相俟って、圧縮強度が150MPa以上、特に200MPa以上の超高強度の硬化体を得ることができる。単位セメント量が500kg/m3を下回ると、超高強度硬化体を得ることが困難となり、また、セメント使用量が1000kg/m3を超えると、ポゾラン質微粉末の使用と併せて、配合物の練り混ぜが困難となり好ましくない。
【0018】
次に、ポゾラン質微粉末は、セメントとのポゾラン反応に関与する微粉末であり、シリカフューム、シリカダスト、フライアッシュ、スラグ、火山灰、シリカゾル、沈降シリカ等の平均粒径が1.5μm未満のものが用いられる。中でもシリカフュームは、平均粒径が1.0μm以下であり、粉砕する必要がなく、ポゾラン反応にも好適である。ポゾラン質微粉末は、そのマイクロフィラー効果及びセメント分散効果によりコンクリートが緻密化し、圧縮強度が向上する。一方、その微粉末の添加量が多くなると単位水量を増大させるので、ポゾラン質微粉末量はセメント100重量部に対して5〜50重量部が好ましい。
【0019】
この発明において、骨材は通常のコンクリートに使用されている砂、例えば、川砂、陸砂、海砂、砕砂、珪砂及びこれらの混合物を用いることができるが、粒径は2mm篩通過量が85重量%以上、好ましくは1.5mm篩通過量が85重量%以上、さらに好ましくは1.2mm篩通過量が85重量%以上のものを使用する。このような骨材粒子を使用することにより、配合物の分離抵抗性を高めると共に、硬化体の充填度及び強度を高めることができる。上記骨材の配合量は、セメント100重量部に対して、50〜250重量部の範囲、好ましくは80〜180重量部の範囲とすることにより、コンクリートの作業性や分離抵抗性に優れ、硬化後の強度やクラックに対する抵抗性を保持しつつ、経済的な硬化体を得ることができる。
【0020】
また、この発明においては、上記骨材に加えて、平均粒径3.0〜20μm、好ましくは4〜10μmの無機粉末を配合することにより、さらに硬化体の充填度を高めることができる。無機粉末としては、石英粉末、例えば、石英や非晶質石英、オパール質やクリストバライト質のシリカ含有粉末、あるいは、岩石粉末、石灰石粉末、高炉スラグ、火山灰、分級フライアッシュ、さらにはAl23等の酸化物粉末、SiCZ等の炭化物粉末、SiN等の窒化物粉末が使用できるが、中でも、石英粉末はコストや硬化体の品質安定性の面から好ましいものである。無機粉末は、セメント100重量部に対して無機粉末が50重量部以下の範囲、好ましくは20〜35重量部の範囲で含まれると、流動性が良く、硬化体が強度に優れた緻密な充填構造を形成しやすいものとなる。
【0021】
次に、この発明は減水剤を使用する。減水剤としては、リグニン系、ナフタレンスルホン酸系、メラニン系、ポリカルボン酸系の減水剤、AE減水剤、高性能減水剤又は高性能AE減水剤を使用することができる。中でも、高性能減水剤又は高性能AE減水剤を使用することが好ましい。この発明においては、従来のコンクリートと比べて硬化体中に占める微粉末の体積が多いことが特徴の一つであるが、この場合においても、減水剤の添加量を適切に調整することにより、コンクリートに所定の流動性を与えることができる。減水剤の添加量(セメントに対して外割)は、コンクリートの流動性や分離抵抗性、硬化後の強度、さらにはコスト等から、セメントに対して、固形分換算で、0.1〜10重量%、好ましくは0.5〜4.0重量%とする。添加量が0.1重量%未満では、減水効果が実質上なく、またこれを10重量%超えて添加しても減水性、流動性の改善効果が頭打ちとなる。
【0022】
この発明において、水/セメント比は、コンクリートの流動性や分離抵抗性、硬化体の強度や耐久性等から、10〜30重量%が好ましく、15〜25重量%がより好ましい。
【0023】
この発明においては、硬化体の曲げ強度を高める観点から、配合物に金属繊維及び/又は有機質繊維を含ませることが好ましい。金属繊維としては、鋼繊維、アモルファス繊維等が挙げられるが、中でも鋼繊維は強度に優れており、またコストや入手のし易さの点からも好ましいものである。金属繊維は、径0.01〜1.0mm、長さ2〜30mmのものが好ましい。径が0.01mm未満では繊維自身の強度が不足し、張力を受けた際に切れ易くなる。径が1mmを超えると、同一配合量での本数が少なくなり、コンクリートの曲げ強度が低下する。長さが30mmを超えると、混練の際ファイバーボールが生じ易くなる。長さが2mm未満ではマトリックスとの付着力が低下し曲げ強度が低下する。
【0024】
金属繊維の配合量は、凝結後の硬化体体積の4%未満が好ましく、より好ましくは3.5%未満である。金属繊維の含有量は、流動性と硬化体の曲げ強度の観点から定められる。一般に、金属繊維の含有量が多くなると曲げ強度が向上するが、一方、流動性を確保するために単位水量も増大するので、金属繊維の含有量は前記の量が好ましい。
【0025】
有機質繊維としては、ビニロン繊維、ポリプロビレン繊維、ポリエチレン繊維、アラミド繊維、アクリル繊維、炭素繊維等が挙げられる。有機質繊維は、径0.005〜1.0mm、長さ2〜30mmのものが好ましい。有機繊維の含有量は、凝結後の硬化体体積の10%未満が好ましく、7%未満がより好ましい。なお、この発明においては、金属繊維と有機質繊維を併用することは差し支えない。
【0026】
この発明においては、硬化体の靭性を高める観点から、平均粒度が1mm以下の繊維状粒子又は薄片状粒子を含ませることが好ましい。ここで、粒子の粒度とは、その最大寸法の大きさ(特に、繊維状の粒子はその長さ)である。繊維状の粒子としては、ウォラストナイト、ボーキサイト、ムライト等が、薄片状粒子としては、マイカフレーク、タルクフレーク、バーミキュライトフレーク、アルミナフレーク等が挙げられる。繊維状粒子又は薄片状粒子の配合量は、コンクリートの流動性、硬化体の強度や靭性等から、セメント100重量部に対して35重量部以下が好ましく、10〜25重量部がより好ましい。なお、繊維状粒子においては、硬化体に靭性を高める観点から、長さ/直径の比で表される針状度が3以上のものを用いるのが好ましい。
【0027】
なお、以上説明した配合成分のほかに、この発明は、通常、コンクリートにおいて用いられる急硬・急結材、高強度混和剤、水和促進剤、凝結調整剤などの各種コンクリート混和材料も使用できる。
【0028】
また、前記各成分の混合及び混錬方法に制限はなく、均一に混合混錬できれば良く、オムニミキサ、パン型ミキサ、二軸練りミキサ、傾胴ミキサ等、各種ミキサを使用することができる。さらに、配合成分の添加順序にも特に制限されるものではない。なお、配合物の成形は、通常のコンクリートにおける各種の成形方法が適用可能であり、特にこの発明の配合物の極めて優れた流動性により、通常の流し込み成形が適用できるので、コスト的に安価にできると共に、大きさや形状に制約されなく、さらに、仕上がり精度の良い精密測定機器用治工具とすることができる。
【0029】
養生は、常温養生、高温養生、常圧蒸気養生、高温高圧養生のいずれの方法も採用でき、必要ならば、これらの組み合わせを行ってより超高強度硬化体とすることができる。さらに、従来のコンクリートと同様に配筋し、加えてプレストレスト導入製品とすることも可能である。
【0030】
以上述べたような方法で作製された硬化体は、高い比剛性、優れた面精度を有すると共に、超高強度、高靭性、及び耐摩耗性を有する極めて信頼性のある精密測定機器用治工具とすることができる。その比剛性としては、2.0×10-1GPa以上の比剛性が得られ、面粗度としては、通常の鋼製型枠によってRaで1μm以下、Rmaxで12μm以下の面粗度が得られる。このような仕上がり精度が得られない硬化体であっても、多少手間がかかるが#140の砥石で研削すれば、Raで0.8μm以下、Rmaxで8μm以下の面粗度を得ることができる。そして、型枠を鋼製型枠に代えて仕上がり精度の極めて良いポリエチレン型枠とすれば、Raで0.1μm以下、Rmaxで5μm以下の極めて優れた面粗度が得られる。また、この面粗度に加えて優れた平面度が必要な場合には、必要とする面全体を#140の砥石で研削加工すれば、5μm以下の優れた平面度が得られる。
【0031】
なお、この発明の配合物を含む硬化体を通常のコンクリートと一体化成形し、通常コンクリートの表面を面精度の良い硬化体として成形した複合化治工具とすることもできる。
【0032】
以下、実施例を挙げてこの発明を説明する。
(使用材料)
セメント:低熱ポルトランドセメント(太平洋セメント(株)製)
ポゾラン質微粉末:シリカヒューム(平均粒径0.7μm)
骨材:珪砂4号と珪砂5号の2:1(重量比)混合品(2mm篩通過量が100重量%)
金属繊維:鋼繊維(直径:0.2mm、長さ:15mm)
高性能AE減水剤:ポリカルボン酸系高性能AE減水剤
水:上水道水
石英粉(平均粒径7μm)
繊維状粒子:ウォラストナイト(平均長さ0.3mm、長さ/直径の比4)
【0033】
実施例1
低熱ポルトランドセメント100重量部、シリカヒューム32.5重量部、骨材120重量部、高性能AE減水剤をセメントに対して1.0重量%(固形分)、水/セメント比22重量%の条件で各材料を、二軸練りミキサに一括投入して混練りした。次いで、これを鋼製の型枠に流し込み、前置き(20℃)48時間後、90℃で48時間蒸気養生して、直径50mm、長さ100mmの円柱(圧縮試験用)、及び幅40mm、長さ160mm、厚さ40mmの棒状(曲げ試験用)硬化体を得た。得られた圧縮試験用硬化体の比剛性は、2.3×10-1GPaで、面粗度はRaで0.99μm、Rmaxで11.5μmであった。なお、圧縮強度は、210MPa、曲げ強度は25MPaであり、混錬物のフロー値は270mmであった。
【0034】
実施例2
鋼繊維を配合物中の体積の2%を加えたほかは実施例1と同様にして硬化体を得た。得られた圧縮試験用硬化体の表面を#140の砥石で研削した面精度は、Raで0.71μm、Rmaxで7.6μmであった。なお、圧縮強度は、210MPa、曲げ強度は47MPa、混錬物のフロー値は250mmであった。
【0035】
実施例3
実施例2の配合物に石英粉を30重量部、ウォラストナイトを24重量部加えたほかは実施例1と同様にして硬化体を得た。得られた硬化体の圧縮強度は、230MPa、曲げ強度は47MPa、混錬物のフロー値は250mmであった。
【0036】
比較例
セメントとして普通ポルトランドセメント100重量部、骨材として細骨材160重量部(山形産砕砂)、粗骨材300重量部(秩父産砕砂)を用い、水/セメント比40重量%としたほかは実施例1と同様に硬化体を得た。得られた硬化体の圧縮強度は60MPa、曲げ強度は7MPa、混錬物のフロー値は550mmであった。
【0037】
実施例4
実施例1〜3、及び比較例で得た硬化体を用いて耐摩耗及び耐衝撃試験を行った。耐衝撃試験はピンオンディスク法により摩耗重量を測定し、また、耐衝撃試験は、シャルピー法で行った。測定結果は、実施例1の成形品摩耗量を100とすると、実施例2、3のそれは100、110であり、比較例では60であった。また、実施例1におけるエネルギー吸収率を1とすると、実施例2、3は、それぞれ80、100であり、比較例では1/5であった。
【0038】
実施例5
実施例1〜3、及び比較例で得た硬化体を用いて凍結融解試験を行い、硬化体の劣化度を凍結融解サイクル数と動弾性係数に基づく相対動弾性係数比を計測することにより調べた。測定結果は、凍結融解サイクル数1000回での実施例1〜3の動弾性係数を100とすると、比較例では70であった。
【0039】
実施例6
実施例3の配合物により、ポリエチレン型枠を用いて1m×1m、厚さ100mmの大型定盤を成形したところ、面精度がRaで0.087μm、Rmaxで4.8μmの極めて面精度の良い平滑性ある一体型の大型定盤が得られた。混練り、成形、及び養生条件は実施例3と同様である。
【0040】
【発明の効果】
この発明は、配合物の優れた充填性により生産性が向上すると共に、仕上がり精度の良い比剛性が高く、面精度に優れた治工具とすることができる。またこの発明により、圧縮強度を200MPa以上、曲げ強度は20MPa以上、さらには40MPa以上とした超緻密な硬化体とすることが可能であり、耐摩耗や耐衝撃、耐表面侵食に極めて優れ、信頼性の高い治工具とすることができる。さらに、この発明によれば、比剛性が高く、面精度に優れていることに加えて、超高強度性及び耐衝撃特性を有し、乾燥収縮が小さく、寸法精度も優れているので、計測器や半導体製造装置などに装着される定盤、その他の各種の実験台や除震台としても好適に使用できるものである。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing jigs for precision measuring instruments such as air slides, surface plates, squares, and stages.
[0002]
[Prior art]
The materials used for jigs for precision measuring instruments such as air slides, surface plates, skewers, and stages have high specific rigidity (Young's modulus / specific gravity), excellent surface roughness and flatness, and thermal expansion coefficient. Characteristics such as smallness and excellent wear resistance are required.
[0003]
The reason is that, for example, if the specific rigidity is low, when it is used for a jig such as an air slide, the deflection due to its own weight is large and precise measurement cannot be performed.
[0004]
In addition, when the surface accuracy such as surface roughness and flatness is low, the surface of the surface plate becomes dirty or accurate measurement cannot be performed when it is used for a surface plate.
[0005]
Furthermore, if the thermal expansion coefficient is large, there is no problem if the temperature of the environment in which the tool is used is completely controlled, but if it is not done, even if there is a slight temperature difference, the tool As a result, expansion and contraction occurs, and similarly, precise measurement cannot be performed. As described above, the materials used for the jigs for precision measuring instruments need various characteristics as described above.
[0006]
[Problems to be solved by the invention]
However, conventional materials such as metals, natural stones, and ceramics are generally used. However, these materials do not always satisfy the above-mentioned characteristics, and are also problematic in terms of cost. There are many.
[0007]
In the case of metal, cast iron or the like is widely used, and there is no problem in terms of cost. However, since this cast iron has a large coefficient of thermal expansion, the dimensional change is large even for a slight temperature difference. Its use has become difficult in the trend of accuracy. In addition, although the Young's modulus is large, the specific gravity is large, the specific rigidity is low, the deformation due to bending becomes large, and it is difficult to use as a jig for precise measurement.
[0008]
In the case of natural stone materials, there are problems such as anisotropy and joints (a kind of crack) peculiar to natural stones, so when trying to process a large-sized product, the yield will deteriorate and it will become unavoidable. In contrast to metal, the specific gravity is small, but the Young's modulus is also small, so the specific rigidity is also low, and deformation due to bending becomes large. If cracks and the like are included in this, the specific rigidity is further greatly reduced and becomes fatal, and a problem also arises in terms of safety.
[0009]
On the other hand, in the case of ceramics, the specific rigidity is high, the surface roughness and flatness are excellent, the thermal expansion coefficient is small, and the wear resistance is also excellent. The material is satisfactory in terms of the above characteristics.
[0010]
However, in the case of this ceramic, since it is manufactured through the steps from molding to firing, it is far more expensive than natural stone in terms of cost, and there are restrictions in size and shape in terms of manufacturing, etc. There is a problem.
[0011]
The present invention has been made in view of the problems of the above-described jigs for precision measuring instruments, and its purpose is to have high specific rigidity, excellent surface accuracy, low cost, and size and shape. Another object of the present invention is to provide a method for manufacturing a tool for precision measuring equipment that is not restricted.
[0012]
[Means for Solving the Problems]
As a result of intensive research to achieve the above object, the present inventor has found that if a hardened body mainly composed of cement is used as a material for jigs for precision measuring instruments, the specific rigidity is high, the surface accuracy is excellent, and the cost is low. However, the present invention has been completed with the knowledge that a jig for precision measuring instruments that is inexpensive and is not restricted by size or shape can be obtained.
[0013]
That is, the present invention provides (1) a cement, pozzolanic fine powder, an aggregate particle having a particle size of 2 mm or less, water and a water reducing agent. A method for manufacturing a precision measuring instrument jig having a Ra of 0.1 μm or less and an Rmax of 5 μm or less, wherein the blending ratio of the material is 5 to 50 parts by weight of pozzolanic fine powder with respect to 100 parts by weight of cement. 50 to 250 parts by weight of aggregate particles having a diameter of 2 mm or less, 10 to 30 parts by weight of water, 0.5 to 4.0 parts by weight of a water reducing agent (in terms of solid content), and the cement is moderately hot Portland cement or low heat Portland cement in cement, the at pozzolanic substance fine powder is silica fume, a manufacturing method (claim of tools for precision measuring instruments, wherein the water reducing agent is a superplasticizer or high performance AE water reducing agent of polycarboxylic acid ), And claim 1 comprising organic fibers (2) to the formulation, an amount of less than 10% of the cured product volume after the amount of metal fibers and / or condensation to be less than 4% of the cured product volume after setting a method of manufacturing tools for precision measuring instruments described (claim 2), characterized in that (3) the metal fibers have a diameter 0.01 to 1.0 mm, a steel fiber length 2~30mm A method for manufacturing a jig for precision measuring equipment according to claim 2 (claim 3), (4) the organic fibers are vinylon fibers, polypropylene fibers, polyethylene having a diameter of 0.005 to 1.0 mm and a length of 2 to 30 mm. It is one or more kinds of fibers selected from fibers, aramid fibers, acrylic fibers, and carbon fibers. The method for manufacturing a jig for precision measuring instruments according to claim 2 (claim 4), and (5) compound in an inorganic powder having an average particle diameter of 3 to 20 [mu] m, cementite A method for manufacturing a precision measuring instruments jigs according to any one of claims 1 to 4, characterized in that it comprises 50 parts by weight or less (Claim 5) relative to preparative 100 parts by weight (6) Formulation The jig for a precision measuring instrument according to any one of claims 1 to 5, comprising 35 parts by weight or less of fibrous particles or flaky particles having an average particle size of 1 mm or less with respect to 100 parts by weight of cement . The gist of the present invention is the manufacturing method (claim 6). This will be described in more detail below.
[0014]
As described above, the jig for precision measuring instruments according to the present invention includes a cured product of a mixture containing at least cement, fine pozzolanic powder, aggregate particles having a particle size of 2 mm or less, water and a water reducing agent. A tool was used. Since the tool material is a hardened body mainly composed of cement, it is inexpensive and can be manufactured by molding by pouring, so it is possible to manufacture large and complex shaped products. The tool is not restricted.
[0015]
And if it is a hardened body of this blend, it becomes a jig having a high specific rigidity and excellent surface roughness, the specific rigidity is 2.0 × 10 −1 GPa or more, and the surface roughness is as follows: The jig has a Ra of 1.0 μm or less and an Rmax of 12 μm or less.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Various cements such as Portland cement, mixed cement, and quick-hardening cement can be used as the cement used in the hardened body constituting the jig of the present invention. Portland cement can be any of ordinary, early strength, ultra-early strength, medium heat, sulfate resistant, low heat, white, etc., but each medium temperature, sulfate resistant, low heat Portland cement is made of aluminum. This is preferable because the content of the nate mineral (C 3 A) is small and the fluidity is good. A mixed cement such as fly ash cement, blast furnace cement, silica cement and the like is preferable in terms of improving fluidity because the amount of Portland cement in the composition is relatively smaller than that of other cements. In addition, when trying to improve the early strength of the hardened body, it is preferable to use early-strength Portland cement. Fast-hardening cement is hardened in a short time and loses its fluidity early. This is effective when required.
[0017]
The amount of cement used is determined together with the amount of pozzolanic fine powder to be described later, but the unit cement amount in the blend is 500 to 1000 kg / m 3 , preferably 700 to 850 kg / m 3. Thus, in combination with the action of various blends, an ultra-high strength cured product having a compressive strength of 150 MPa or more, particularly 200 MPa or more can be obtained. When the unit cement amount is less than 500 kg / m 3 , it becomes difficult to obtain an ultra-high strength cured product, and when the cement use amount exceeds 1000 kg / m 3 , it is combined with the use of pozzolanic fine powder. It is not preferable because kneading is difficult.
[0018]
Next, the pozzolanic fine powder is a fine powder involved in the pozzolanic reaction with cement and has an average particle size of less than 1.5 μm, such as silica fume, silica dust, fly ash, slag, volcanic ash, silica sol, and precipitated silica. Is used. Among these, silica fume has an average particle size of 1.0 μm or less, and does not need to be pulverized, and is suitable for a pozzolanic reaction. The pozzolanic fine powder is densified by the micro filler effect and cement dispersing effect, and the compressive strength is improved. On the other hand, when the amount of the fine powder added is increased, the unit water amount is increased. Therefore, the pozzolanic fine powder amount is preferably 5 to 50 parts by weight with respect to 100 parts by weight of the cement.
[0019]
In this invention, as the aggregate, sand that is used for ordinary concrete, such as river sand, land sand, sea sand, crushed sand, silica sand, and a mixture thereof can be used. A weight% or more, preferably a 1.5 mm sieve passage amount of 85 wt% or more, more preferably a 1.2 mm sieve passage amount of 85 wt% or more is used. By using such aggregate particles, it is possible to increase the separation resistance of the blend and increase the degree of filling and strength of the cured body. The amount of the aggregate is 50 to 250 parts by weight, preferably 80 to 180 parts by weight, with respect to 100 parts by weight of cement. An economical cured body can be obtained while maintaining the strength and resistance to cracks later.
[0020]
Moreover, in this invention, in addition to the said aggregate, the filling degree of a hardening body can be raised further by mix | blending inorganic powder with an average particle diameter of 3.0-20 micrometers, Preferably 4-10 micrometers. Examples of the inorganic powder include quartz powder such as quartz and amorphous quartz, opal and cristobalite silica-containing powder, rock powder, limestone powder, blast furnace slag, volcanic ash, classified fly ash, and Al 2 O 3. Oxide powders such as SiC powder, carbide powders such as SiC Z , and nitride powders such as SiN can be used. Of these, quartz powder is preferred from the viewpoint of cost and quality stability of the cured product. When the inorganic powder is contained in the range of 50 parts by weight or less, preferably in the range of 20 to 35 parts by weight with respect to 100 parts by weight of the cement, it is densely packed with good fluidity and excellent cured body strength. It becomes easy to form a structure.
[0021]
Next, the present invention uses a water reducing agent. As the water reducing agent, a lignin-based, naphthalenesulfonic acid-based, melanin-based, or polycarboxylic acid-based water reducing agent, an AE water reducing agent, a high-performance water reducing agent, or a high-performance AE water reducing agent can be used. Among these, it is preferable to use a high performance water reducing agent or a high performance AE water reducing agent. In this invention, it is one of the features that the volume of fine powder in the hardened body is large compared to conventional concrete, but in this case as well, by appropriately adjusting the amount of water reducing agent added, Predetermined fluidity can be given to concrete. The amount of water-reducing agent added (extra split with respect to cement) is 0.1 to 10 in terms of solid content with respect to cement due to the fluidity and separation resistance of concrete, strength after curing, and cost. % By weight, preferably 0.5 to 4.0% by weight. If the addition amount is less than 0.1% by weight, there is substantially no water reducing effect, and even if it is added in excess of 10% by weight, the effect of improving water reduction and fluidity reaches its peak.
[0022]
In this invention, the water / cement ratio is preferably 10 to 30% by weight, more preferably 15 to 25% by weight, from the fluidity and separation resistance of the concrete, the strength and durability of the cured body, and the like.
[0023]
In this invention, it is preferable to include metal fibers and / or organic fibers in the blend from the viewpoint of increasing the bending strength of the cured body. Examples of the metal fibers include steel fibers and amorphous fibers, among which steel fibers are excellent in strength and are preferable from the viewpoint of cost and availability. The metal fiber preferably has a diameter of 0.01 to 1.0 mm and a length of 2 to 30 mm. If the diameter is less than 0.01 mm, the strength of the fiber itself is insufficient, and it is easy to break when subjected to tension. When the diameter exceeds 1 mm, the number of the same blending amount decreases, and the bending strength of the concrete decreases. If the length exceeds 30 mm, fiber balls are likely to occur during kneading. If the length is less than 2 mm, the adhesive strength with the matrix is lowered and the bending strength is lowered.
[0024]
The blending amount of the metal fibers is preferably less than 4%, more preferably less than 3.5% of the volume of the cured product after setting. The content of the metal fiber is determined from the viewpoints of fluidity and bending strength of the cured body. In general, when the content of the metal fiber is increased, the bending strength is improved. On the other hand, since the unit water amount is increased in order to ensure fluidity, the content of the metal fiber is preferably the above amount.
[0025]
Examples of the organic fiber include vinylon fiber, polypropylene fiber, polyethylene fiber, aramid fiber, acrylic fiber, and carbon fiber. The organic fibers preferably have a diameter of 0.005 to 1.0 mm and a length of 2 to 30 mm. The content of the organic fiber is preferably less than 10% and more preferably less than 7% of the volume of the cured product after condensation. In the present invention, it is possible to use metal fibers and organic fibers in combination.
[0026]
In the present invention, from the viewpoint of increasing the toughness of the cured body, it is preferable to include fibrous particles or flaky particles having an average particle size of 1 mm or less. Here, the particle size of the particles is the size of the maximum dimension (in particular, the length of the fibrous particles). Examples of the fibrous particles include wollastonite, bauxite, and mullite, and examples of the flaky particles include mica flakes, talc flakes, vermiculite flakes, and alumina flakes. The blending amount of the fibrous particles or the flaky particles is preferably 35 parts by weight or less, more preferably 10 to 25 parts by weight with respect to 100 parts by weight of cement in view of the fluidity of concrete, the strength and toughness of the cured body. In addition, it is preferable to use a fibrous particle having a needle-like degree represented by a ratio of length / diameter of 3 or more from the viewpoint of enhancing toughness of the cured body.
[0027]
In addition to the above-described blending components, the present invention can also use various concrete admixtures such as rapid hardening / quick setting materials, high-strength admixtures, hydration accelerators and setting modifiers that are usually used in concrete. .
[0028]
Moreover, there is no restriction | limiting in the mixing and kneading | mixing method of said each component, What is necessary is just to be able to mix and knead | mix uniformly, and various mixers, such as an omni mixer, a pan-type mixer, a biaxial kneading mixer, and a tilting cylinder mixer, can be used. Further, the order of addition of the blending components is not particularly limited. In addition, various molding methods for ordinary concrete can be applied to the molding of the compound. In particular, due to the extremely excellent fluidity of the compound of the present invention, ordinary casting can be applied, so that the cost is low. In addition, the jig can be used as a precision measuring instrument with high finishing accuracy without being restricted by size and shape.
[0029]
For curing, any of normal temperature curing, high temperature curing, atmospheric steam curing, and high temperature high pressure curing methods can be adopted, and if necessary, a combination of these can be used to obtain a super high strength cured body. Furthermore, it can be arranged in the same manner as conventional concrete, and in addition, a prestressed product can be obtained.
[0030]
The cured body produced by the method as described above has a high specific rigidity, excellent surface accuracy, and has extremely high strength, high toughness, and wear resistance, and is an extremely reliable jig for precision measuring instruments. It can be. As the specific rigidity, a specific rigidity of 2.0 × 10 −1 GPa or more can be obtained, and as the surface roughness, a surface roughness of 1 μm or less for Ra and 12 μm or less for Rmax can be obtained with a normal steel mold. It is done. Even if it is a hardened body that cannot achieve such finishing accuracy, it can be somewhat troublesome, but if it is ground with a # 140 grindstone, it is possible to obtain a surface roughness of Ra of 0.8 μm or less and Rmax of 8 μm or less. . If the formwork is replaced with a steel formwork and a polyethylene formwork with very good finishing accuracy is obtained, an extremely excellent surface roughness of Ra of 0.1 μm or less and Rmax of 5 μm or less can be obtained. Further, when excellent flatness is required in addition to this surface roughness, excellent flatness of 5 μm or less can be obtained by grinding the entire required surface with a # 140 grindstone.
[0031]
In addition, it can also be set as the composite jig | tool which integrally molded the hardening body containing the compound of this invention with normal concrete, and shape | molded the surface of normal concrete as a hardened | cured body with good surface accuracy.
[0032]
Hereinafter, the present invention will be described with reference to examples.
(Materials used)
Cement: Low heat Portland cement (manufactured by Taiheiyo Cement Co., Ltd.)
Pozzolanic fine powder: Silica fume (average particle size 0.7μm)
Aggregate: 2: 1 (weight ratio) mixture of silica sand No. 4 and silica sand No. 5 (2 mm sieve passage is 100% by weight)
Metal fiber: Steel fiber (diameter: 0.2 mm, length: 15 mm)
High-performance AE water reducing agent: Polycarboxylic acid-based high-performance AE water reducing agent Water: Water tap water quartz powder (average particle size 7 μm)
Fibrous particles: Wollastonite (average length 0.3 mm, length / diameter ratio 4)
[0033]
Example 1
Low heat Portland cement 100 parts by weight, silica fume 32.5 parts by weight, aggregate 120 parts by weight, high performance AE water reducing agent 1.0% by weight (solid content) with respect to cement, water / cement ratio 22% by weight The materials were all put into a biaxial kneader and kneaded. Next, this was poured into a steel mold, steamed at 90 ° C. for 48 hours after pre-heating (20 ° C.), and a cylinder having a diameter of 50 mm and a length of 100 mm (for compression test), and a width of 40 mm and a length A rod-shaped (for bending test) cured body having a thickness of 160 mm and a thickness of 40 mm was obtained. The specific rigidity of the obtained cured body for compression test was 2.3 × 10 −1 GPa, and the surface roughness was 0.99 μm for Ra and 11.5 μm for Rmax. The compressive strength was 210 MPa, the bending strength was 25 MPa, and the flow value of the kneaded material was 270 mm.
[0034]
Example 2
A cured product was obtained in the same manner as in Example 1 except that 2% of the volume of the steel fiber was added. The surface accuracy obtained by grinding the surface of the obtained cured body for compression test with a # 140 grindstone was 0.71 μm for Ra and 7.6 μm for Rmax. The compressive strength was 210 MPa, the bending strength was 47 MPa, and the flow value of the kneaded material was 250 mm.
[0035]
Example 3
A cured product was obtained in the same manner as in Example 1 except that 30 parts by weight of quartz powder and 24 parts by weight of wollastonite were added to the formulation of Example 2. The obtained cured product had a compressive strength of 230 MPa, a bending strength of 47 MPa, and a kneaded product flow value of 250 mm.
[0036]
In addition to 100 parts by weight of normal Portland cement as comparative cement, 160 parts by weight of fine aggregate (crushed sand from Yamagata) as aggregate, and 300 parts by weight of coarse aggregate (crushed sand from Chichibu), the water / cement ratio was 40% by weight. Obtained a cured product in the same manner as in Example 1. The obtained cured product had a compressive strength of 60 MPa, a bending strength of 7 MPa, and a kneaded product flow value of 550 mm.
[0037]
Example 4
Abrasion resistance and impact resistance tests were performed using the cured bodies obtained in Examples 1 to 3 and Comparative Examples. In the impact resistance test, the wear weight was measured by the pin-on-disk method, and the impact resistance test was performed by the Charpy method. The measurement results were 100 and 110 in Examples 2 and 3 and 60 in the comparative example, assuming that the amount of wear of the molded product in Example 1 was 100. Further, assuming that the energy absorption rate in Example 1 is 1, Examples 2 and 3 are 80 and 100, respectively, and 1/5 in the comparative example.
[0038]
Example 5
A freeze-thaw test was performed using the cured bodies obtained in Examples 1 to 3 and the comparative example, and the degree of deterioration of the cured body was examined by measuring the relative dynamic elastic modulus ratio based on the number of freeze-thaw cycles and the dynamic elastic modulus. It was. The measurement result was 70 in the comparative example, assuming that the kinematic elastic modulus of Examples 1 to 3 at 1000 freeze-thaw cycles was 100.
[0039]
Example 6
When a large surface plate having a size of 1 m × 1 m and a thickness of 100 mm was formed using the polyethylene mold, the surface accuracy was 0.087 μm for Ra and 4.8 μm for Rmax. A smooth and integrated large-sized surface plate was obtained. The kneading, molding, and curing conditions are the same as in Example 3.
[0040]
【The invention's effect】
According to the present invention, the productivity is improved by the excellent filling property of the compound, and the jig can be a jig having a high specific rigidity with good finishing accuracy and excellent surface accuracy. In addition, according to the present invention, it is possible to obtain an ultra-dense hardened body having a compressive strength of 200 MPa or more, a bending strength of 20 MPa or more, and further 40 MPa or more, and extremely excellent in wear resistance, impact resistance, and surface erosion resistance, and reliable. It can be set as a highly functional jig. Furthermore, according to the present invention, in addition to high specific rigidity and excellent surface accuracy, it has ultra-high strength and impact resistance, has low drying shrinkage, and has excellent dimensional accuracy. It can also be suitably used as a surface plate mounted on a container, a semiconductor manufacturing apparatus, etc., as well as other various experimental benches or a vibration isolation table.

Claims (6)

セメント、ポゾラン質微粉末、粒径が2mm以下の骨材粒子、水及び減水剤のみからなる配合物をポリエチレン型枠を用いて成形し硬化させる、面粗度がRaで0.1μm以下、Rmaxで5μm以下の精密測定機器用治工具の製造方法であって、A cement, pozzolanic fine powder, aggregate particles having a particle size of 2 mm or less, water and a water reducing agent are blended and molded using a polyethylene mold, and the surface roughness Ra is 0.1 μm or less, Rmax A manufacturing method of jigs for precision measuring instruments of 5 μm or less,
前記材料の配合割合が、セメント100重量部に対し、ポゾラン質微粉末5〜50重量部、粒径が2mm以下の骨材粒子50〜250重量部、水10〜30重量部、減水剤(固形分換算)0.5〜4.0重量部であり、The blending ratio of the material is 5 to 50 parts by weight of pozzolanic powder, 50 to 250 parts by weight of aggregate particles having a particle size of 2 mm or less, 10 to 30 parts by weight of water, and a water reducing agent (solid). Min conversion) 0.5 to 4.0 parts by weight,
前記セメントが中庸熱ポルトランドセメント又は低熱ポルトランドセメントで、前記ポゾラン質微粉末がシリカフュームで、前記減水剤がポリカルボン酸系の高性能減水剤又は高性能AE減水剤であることを特徴とする精密測定機器用治工具の製造方法。Precise measurement characterized in that the cement is medium heat Portland cement or low heat Portland cement, the pozzolanic fine powder is silica fume, and the water reducing agent is a polycarboxylic acid-based high-performance water reducing agent or high-performance AE water reducing agent. Manufacturing method of jigs for equipment.
配合物に、凝結後の硬化体体積の4%未満となる量の金属繊維及び/又は凝結後の硬化体体積の10%未満となる量の有機質繊維を含む請求項1に記載の精密測定機器用治工具の製造方法。 2. The precision measuring instrument according to claim 1, wherein the blend contains metal fibers in an amount of less than 4% of the cured body volume after setting and / or organic fibers in an amount of less than 10% of the cured body volume after setting. A method of manufacturing a tool. 金属繊維が、径0.01〜1.0mm、長さ2〜30mmの鋼繊維であることを特徴とする請求項2記載の精密測定機器用治工具の製造方法。 The method for producing a jig for a precision measuring instrument according to claim 2, wherein the metal fiber is a steel fiber having a diameter of 0.01 to 1.0 mm and a length of 2 to 30 mm . 有機質繊維が、径0.005〜1.0mm、長さ2〜30mmのビニロン繊維、ポリプロピレン繊維、ポリエチレン繊維、アラミド繊維、アクリル繊維、炭素繊維から選ばれる一種以上の繊維であることを特徴とする請求項2記載の精密測定機器用治工具の製造方法。 The organic fiber is one or more fibers selected from a vinylon fiber having a diameter of 0.005 to 1.0 mm and a length of 2 to 30 mm, a polypropylene fiber, a polyethylene fiber, an aramid fiber, an acrylic fiber, and a carbon fiber. The manufacturing method of the jig | tool for precision measuring instruments of Claim 2 . 配合物に、平均粒径3〜20μmの無機粉末を、セメント100重量部に対して50重量部以下含むことを特徴とする請求項1〜4のいずれかに記載の精密測定機器用治工具の製造方法。 The jig for a precision measuring instrument according to any one of claims 1 to 4, wherein the blend contains 50 parts by weight or less of inorganic powder having an average particle diameter of 3 to 20 µm with respect to 100 parts by weight of cement . Production method. 配合物に、平均粒度1mm以下の繊維状粒子又は薄片状粒子を、セメント100重量部に対して35重量部以下含むことを特徴とする請求項1〜5のいずれかに記載の精密測定機器用治工具の製造方法。 6. The precision measurement instrument according to any one of claims 1 to 5, wherein the compound contains 35 parts by weight or less of fibrous particles or flaky particles having an average particle size of 1 mm or less with respect to 100 parts by weight of cement . A method for manufacturing jigs and tools.
JP2000087061A 2000-03-23 2000-03-23 Manufacturing method of jigs for precision measuring instruments Expired - Fee Related JP4478284B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000087061A JP4478284B2 (en) 2000-03-23 2000-03-23 Manufacturing method of jigs for precision measuring instruments

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000087061A JP4478284B2 (en) 2000-03-23 2000-03-23 Manufacturing method of jigs for precision measuring instruments

Publications (2)

Publication Number Publication Date
JP2001261409A JP2001261409A (en) 2001-09-26
JP4478284B2 true JP4478284B2 (en) 2010-06-09

Family

ID=18603133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000087061A Expired - Fee Related JP4478284B2 (en) 2000-03-23 2000-03-23 Manufacturing method of jigs for precision measuring instruments

Country Status (1)

Country Link
JP (1) JP4478284B2 (en)

Also Published As

Publication number Publication date
JP2001261409A (en) 2001-09-26

Similar Documents

Publication Publication Date Title
US7465350B2 (en) Hydraulic composition
JP4374106B2 (en) High strength mortar and high strength concrete
JP5101355B2 (en) Cement composition
JP2001240440A (en) Steel fiber for reinforcing concrete and fiber reinforced concrete
JP2002348167A (en) Hydraulic composition
JP4039801B2 (en) Hydraulic composition
JP4056696B2 (en) Cement slurry
JP4167379B2 (en) Cured body
JP4478284B2 (en) Manufacturing method of jigs for precision measuring instruments
JP4167787B2 (en) Composite material
JP3894738B2 (en) Embedded formwork board
JP4165992B2 (en) Hydraulic composition
JP4540161B2 (en) Water conduit / pipe
JP4376409B2 (en) Joint joint material for post tension prestressed concrete plate
JP2001254302A (en) Sleeper for railway line
JP4812983B2 (en) Surface plate
JP4167373B2 (en) Hand hole
JP4342701B2 (en) Hardened cement and method for producing the same
JP2001205581A (en) Surface plate
JP4478285B2 (en) Wear resistant material
JP2001226160A (en) Ultrahigh strength cement hardened body
JPS6230652A (en) Machine member and tool
JPS61197173A (en) Surface plate
JPH0848548A (en) Portland cement composition and production of concrete using the same
JP2001250443A (en) Insulator and adhesive therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070302

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100309

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100315

R150 Certificate of patent or registration of utility model

Ref document number: 4478284

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees