JP4466559B2 - Gas container manufacturing method - Google Patents

Gas container manufacturing method Download PDF

Info

Publication number
JP4466559B2
JP4466559B2 JP2005371931A JP2005371931A JP4466559B2 JP 4466559 B2 JP4466559 B2 JP 4466559B2 JP 2005371931 A JP2005371931 A JP 2005371931A JP 2005371931 A JP2005371931 A JP 2005371931A JP 4466559 B2 JP4466559 B2 JP 4466559B2
Authority
JP
Japan
Prior art keywords
liner
laser
preheating
gas container
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005371931A
Other languages
Japanese (ja)
Other versions
JP2006283968A (en
Inventor
正明 天野
武史 石川
正彦 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2005371931A priority Critical patent/JP4466559B2/en
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to EP06714653A priority patent/EP1855046B1/en
Priority to US11/884,083 priority patent/US7943884B2/en
Priority to CN2006800069640A priority patent/CN101133280B/en
Priority to KR20077020052A priority patent/KR100904028B1/en
Priority to CA2598621A priority patent/CA2598621C/en
Priority to PCT/JP2006/303514 priority patent/WO2006093059A1/en
Publication of JP2006283968A publication Critical patent/JP2006283968A/en
Application granted granted Critical
Publication of JP4466559B2 publication Critical patent/JP4466559B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/65General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles with a relative motion between the article and the welding tool
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/1429Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation characterised by the way of heating the interface
    • B29C65/1435Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation characterised by the way of heating the interface at least passing through one of the parts to be joined, i.e. transmission welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/1429Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation characterised by the way of heating the interface
    • B29C65/1454Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation characterised by the way of heating the interface scanning at least one of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/1429Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation characterised by the way of heating the interface
    • B29C65/1464Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation characterised by the way of heating the interface making use of several radiators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1635Laser beams characterised by the way of heating the interface at least passing through one of the parts to be joined, i.e. laser transmission welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1654Laser beams characterised by the way of heating the interface scanning at least one of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1677Laser beams making use of an absorber or impact modifier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1677Laser beams making use of an absorber or impact modifier
    • B29C65/168Laser beams making use of an absorber or impact modifier placed at the interface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/72Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by combined operations or combined techniques, e.g. welding and stitching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/02Preparation of the material, in the area to be joined, prior to joining or welding
    • B29C66/024Thermal pre-treatments
    • B29C66/0242Heating, or preheating, e.g. drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/116Single bevelled joints, i.e. one of the parts to be joined being bevelled in the joint area
    • B29C66/1162Single bevel to bevel joints, e.g. mitre joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/14Particular design of joint configurations particular design of the joint cross-sections the joint having the same thickness as the thickness of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/54Joining several hollow-preforms, e.g. half-shells, to form hollow articles, e.g. for making balls, containers; Joining several hollow-preforms, e.g. half-cylinders, to form tubular articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/54Joining several hollow-preforms, e.g. half-shells, to form hollow articles, e.g. for making balls, containers; Joining several hollow-preforms, e.g. half-cylinders, to form tubular articles
    • B29C66/543Joining several hollow-preforms, e.g. half-shells, to form hollow articles, e.g. for making balls, containers; Joining several hollow-preforms, e.g. half-cylinders, to form tubular articles joining more than two hollow-preforms to form said hollow articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/723General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined being multi-layered
    • B29C66/7234General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined being multi-layered comprising a barrier layer
    • B29C66/72341General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined being multi-layered comprising a barrier layer for gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • B29C66/73921General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic characterised by the materials of both parts being thermoplastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/914Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux
    • B29C66/9141Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/914Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux
    • B29C66/9161Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the heat or the thermal flux, i.e. the heat flux
    • B29C66/91641Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the heat or the thermal flux, i.e. the heat flux the heat or the thermal flux being non-constant over time
    • B29C66/91643Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the heat or the thermal flux, i.e. the heat flux the heat or the thermal flux being non-constant over time following a heat-time profile
    • B29C66/91645Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the heat or the thermal flux, i.e. the heat flux the heat or the thermal flux being non-constant over time following a heat-time profile by steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/001Joining in special atmospheres
    • B29C66/0012Joining in special atmospheres characterised by the type of environment
    • B29C66/0014Gaseous environments
    • B29C66/00141Protective gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/712Containers; Packaging elements or accessories, Packages
    • B29L2031/7154Barrels, drums, tuns, vats
    • B29L2031/7156Pressure vessels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0305Bosses, e.g. boss collars

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • Toxicology (AREA)
  • Optics & Photonics (AREA)
  • Thermal Sciences (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method for a gas vessel that enables joining of liner constituent members mutually and properly without causing failure in welding to improve productivity, and to provide the gas vessel. <P>SOLUTION: In this manufacturing method for the gas vessel 1 having a resin liner 11 having hollow inside constituted by joining the liner constituent members 21, 22 having at least a substantially cylindrical one end side mutually, mutual joining parts of the liner constituent members 21, 22 are preliminarily heated and then are joined by laser welding. The resin liner 11 in a temporarily joined condition is rotated and is preliminarily heated by a heater 90, and laser irradiation is performed by a laser torch on the downstream side of the heater 90 to join the liner constituent members 21, 22 mutually in the peripheral direction. <P>COPYRIGHT: (C)2007,JPO&amp;INPIT

Description

本発明は、水素などのガスを貯留するガス容器に関し、特に、内殻となる樹脂ライナが複数のライナ構成部材を接合して構成されるガス容器の製造方法に関するものである。 The present invention relates to a gas container for storing gases such as hydrogen, in particular, in which the resin liner comprising an inner shell about the manufacture how the gas container constituted by joining a plurality of liner constituting members.

従来、水素やCNG(圧縮天然ガス)を貯留するガス容器として、軽量化等の観点から、内殻を樹脂ライナで構成し、樹脂ライナの外周面をFRPなどの補強層(外殻)で補強したものが開発されている。この種の樹脂ライナとして、例えばお碗状(略円筒状部材)の一対のライナ構成部材をポリエチレンなどの熱可塑性樹脂で形成しておき、この一対のライナ構成部材の端部同士を熱板溶着することで接合したものが知られている(例えば、特許文献1参照。)。
特開2004−211783号公報(第2図および第5頁)
Conventionally, as a gas container for storing hydrogen and CNG (compressed natural gas), from the viewpoint of weight reduction, the inner shell is made of a resin liner, and the outer peripheral surface of the resin liner is reinforced with a reinforcing layer (outer shell) such as FRP. What has been developed. As this type of resin liner, for example, a pair of bowl-shaped (substantially cylindrical members) liner constituent members are formed of a thermoplastic resin such as polyethylene, and the ends of the pair of liner constituent members are welded together by hot plate welding. What was joined by doing is known (for example, refer to patent documents 1).
JP 2004-211783 A (FIGS. 2 and 5)

しかしながら、非常に薄いライナ構成部材同士を熱板溶着した場合には、溶融バリの発生のほか、表面焼けや樹脂の溶融の過不足が生じるおそれがあった。また、熱板溶着法では、樹脂ライナを製造するのに時間やコストが多くかかっていた。   However, when very thin liner constituent members are welded to each other by hot plate, there is a possibility that not only the generation of molten burrs but also surface burning and excessive or insufficient melting of the resin may occur. Further, in the hot plate welding method, it takes a lot of time and cost to manufacture the resin liner.

本発明は、溶着時の不具合を生ずることなく、ライナ構成部材同士を適切に接合することができ、生産性を向上することができるガス容器の製造方法を提供することをその目的としている。 The present invention, without causing a problem at the time of welding, the liner constituting members to each other can be suitably joined, and its object is to provide a manufacturing how a gas container capable of improving productivity.

本発明のガス容器の製造方法は、少なくとも一部が中空円筒状のライナ構成部材を、複数個接合して構成される樹脂ライナを有するガス容器の製造方法であって、複数のライナ構成部材同士の接合部分は、予備加熱されている途中でまたは予備加熱された後で、レーザを照射されることによりレーザ溶着で接合されたものである。   The method for producing a gas container according to the present invention is a method for producing a gas container having a resin liner formed by joining a plurality of liner components each having a hollow cylindrical shape, and a plurality of liner components are These joint portions are joined by laser welding by irradiating a laser during or after preheating.

この構成によれば、複数のライナ構成部材同士の接合にレーザ溶着を用いているため、短時間且つ低コストで樹脂ライナを構成することができ、ガス容器の生産性を高めることができる。また、レーザ溶着によれば、接合部分を局所的に加熱することができるため、ライナ構成部材に対し熱的影響箇所を最小限にすることができ、溶融バリなどの発生を抑制し得る。さらに、レーザ溶着に先行して接合部分が予備加熱されているため、レーザ溶着時の接合部分の表面焼けを抑制することができ、ライナ構成部材同士を適切に且つ良好に接合することができる。また、接合部分が予備加熱された状態でレーザ溶着となる分、レーザ溶着に要する時間を短縮することもできるし、レーザの出力を必要以上に高くしなくて済む。   According to this configuration, since laser welding is used for joining a plurality of liner constituent members, the resin liner can be configured in a short time and at low cost, and the productivity of the gas container can be increased. Further, according to the laser welding, since the joint portion can be locally heated, the thermally affected portion can be minimized with respect to the liner constituting member, and the occurrence of a melting burr or the like can be suppressed. Furthermore, since the joining portion is preheated prior to laser welding, surface burn-up of the joining portion at the time of laser welding can be suppressed, and the liner constituent members can be joined appropriately and satisfactorily. Further, the amount of time required for laser welding can be reduced by the amount of laser welding with the joint portion preheated, and the laser output need not be increased more than necessary.

ここで、「少なくとも一部(一端側)が中空円筒状のライナ構成部材」には、ライナ構成部材が全体として円筒状、環状、お碗状、ドーム状等の形状を有することが含まれる。例えば、一対の(半割りの)ライナ構成部材により樹脂ライナが構成される場合には、各ライナ構成部材は、全体としてお碗状に形成される。また、三以上のライナ構成部材により樹脂ライナが構成される場合には、樹脂ライナの両端のライナ構成部材はそれぞれ全体としてお碗状に形成され、この間に位置するライナ構成部材は全体として中空の円筒状または環状に形成される。   Here, the “liner constituent member having at least a part (one end side) of a hollow cylindrical shape” includes that the liner constituent member has a cylindrical shape, an annular shape, a bowl shape, a dome shape or the like as a whole. For example, when a resin liner is constituted by a pair of (half-split) liner constituent members, each liner constituent member is formed in a bowl shape as a whole. Further, when the resin liner is constituted by three or more liner constituent members, the liner constituent members at both ends of the resin liner are each formed in a bowl shape as a whole, and the liner constituent members located between them are hollow as a whole. It is formed in a cylindrical shape or an annular shape.

本発明の他のガス容器の製造方法は、少なくとも一部が中空円筒状のライナ構成部材を、複数個接合して構成される樹脂ライナを有するガス容器の製造方法であって、互いに接合されるべき二つのライナ構成部材の少なくとも一方を予備加熱する予備加熱工程と、予備加熱工程の途中でまたは予備加熱工程の後で、レーザを照射することにより、接合対象となる接触状態のライナ構成部材同士をレーザ溶着で互いに接合するレーザ照射工程と、を有するものである。   Another method for manufacturing a gas container of the present invention is a method for manufacturing a gas container having a resin liner formed by joining a plurality of liner components each having a hollow cylindrical shape, which are joined to each other. A preliminary heating step of preheating at least one of the two liner constituent members, and between the liner constituent members in contact state to be joined by irradiating a laser during or after the preliminary heating step And a laser irradiation process for joining the two together by laser welding.

この構成によれば、上記の発明と同様に、レーザ溶着を用いているためガス容器の生産性を高めることができると共に、ライナ構成部材への熱的影響箇所を最小限にすることができる。また、レーザ溶着に先行して予備加熱を行っているため、レーザ溶着時に表面焼けを抑制することができる。予備加熱された状態でレーザが照射される分、レーザ溶着に要する時間を短縮することもできるし、レーザの出力を必要以上に高くしなくて済む。   According to this configuration, similarly to the above-described invention, since the laser welding is used, the productivity of the gas container can be increased, and the thermal influence on the liner constituent member can be minimized. Further, since preheating is performed prior to laser welding, surface burn can be suppressed during laser welding. Since the laser is irradiated in the preheated state, the time required for laser welding can be shortened, and the laser output need not be increased more than necessary.

ここで、予備加熱をする直接の対象は、接合対象の両方のライナ構成部材であってもよいが、ライナ構成部材の一方のみであってもよい。後者としてもよい理由は、レーザ溶着の際にライナ構成部材同士を接触状態としているため、予備加熱されたライナ構成部材からの熱伝達により、予備加熱されていないライナ構成部材についても、レーザ溶着時には予め加熱された状態になり得るからである。   Here, the direct target to be preheated may be both liner constituent members to be joined, or only one of the liner constituent members. The reason why the latter may be used is that the liner constituent members are in contact with each other during laser welding, so that the heat transfer from the preheated liner constituent members also causes the liner constituent members not preheated during laser welding. It is because it can be in a preheated state.

この場合、予備加熱工程は、互いに接合されるべき一方のライナ構成部材の接合部と、他方のライナ構成部材の接合部との少なくとも一方を予備加熱することで行われ、レーザ照射工程は、接触状態の接合部同士をレーザ溶着で互いに接合することで行われることが、好ましい。   In this case, the preheating step is performed by preheating at least one of the joint portion of one liner constituent member and the joint portion of the other liner constituent member to be joined to each other, and the laser irradiation step is a contact It is preferable to carry out by joining the joined parts in a state to each other by laser welding.

この構成によれば、レーザ溶着の対象となる接合部の局所的な予備加熱となるため、ライナ構成部材の全体を予備加熱する場合に比べて、予備加熱工程において、ライナ構成部材全体の熱変形などの熱的影響を好適に抑制することができると共に、必要な熱量を少なくすることが可能となる。   According to this configuration, since it becomes local preheating of the joint portion to be laser welded, in the preheating step, the entire liner constituent member is thermally deformed as compared with the case where the entire liner constituent member is preheated. It is possible to suitably suppress the thermal influence such as, and to reduce the necessary amount of heat.

この場合、予備加熱工程は、接触状態の接合部同士を予備加熱することで行われることが、好ましい。   In this case, it is preferable that the preheating step is performed by preheating the joint portions in contact with each other.

この構成によれば、非接触状態の接合部同士を予備加熱する場合に比べて、接合部同士の熱伝達を促進することができるため、予備加熱を効率よく行うことができる。   According to this configuration, since heat transfer between the joints can be promoted as compared with the case of preheating the joints in the non-contact state, preheating can be performed efficiently.

この場合、予備加熱工程は、接触状態のライナ構成部材同士の内側および外側の少なくとも一方から、接触状態の接合部同士を加熱することで行われることが、好ましい。   In this case, it is preferable that the preheating step is performed by heating the joint portions in contact state from at least one of the inner side and the outer side of the liner constituent members in contact state.

この場合、予備加熱工程は、熱源を有する予備加熱装置に対し、接触状態のライナ構成部材同士を相対的に回転させながら、接触状態の接合部同士を周方向に亘って予備加熱することで行われることが、好ましい。   In this case, the preheating step is performed by preheating the joint portions in contact with each other in the circumferential direction while relatively rotating the liner constituent members in contact with the preheating device having a heat source. Is preferred.

この構成によれば、予備加熱装置に対してライナ構成部材同士を相対回転させているため、接合部同士の全周を予備加熱することができる。
ここで、「相対的に回転」には、ライナ構成部材同士を回転させること、予備加熱装置のみを回転させること、これら両者を互いに同方向にまたは逆方向に回転させること、が含まれる。
According to this configuration, since the liner constituent members are rotated relative to the preheating device, the entire circumference of the joints can be preheated.
Here, “relatively rotating” includes rotating the liner constituent members, rotating only the preheating device, and rotating both in the same direction or in the opposite direction.

この場合、レーザ照射工程は、レーザを照射するレーザ照射装置に対し、接触状態のライナ構成部材同士を相対的に回転させながら、接触状態の接合部同士を周方向に亘って予備加熱することで行われることが、好ましい。   In this case, the laser irradiation step is performed by preheating the joint portions in contact with each other in the circumferential direction while relatively rotating the liner constituent members in contact with the laser irradiation device that irradiates the laser. It is preferred that this is done.

この構成によれば、予備加熱の場合と同様に、レーザ照射装置に対してライナ構成部材同士を相対回転させているため、接合部同士の全周をレーザによりライン溶接することができ、樹脂ライナの気密性を適切に確保することが可能となる。
ここで、「相対的に回転」には、ライナ構成部材同士を回転させること、レーザ照射装置のみを回転させること、これら両者を互いに同方向にまたは逆方向に回転させること、が含まれる。もっとも、予備加熱装置およびレーザ照射装置の両方を回転させるよりも、ライナ構成部材同士を回転させた方が装置の構成上や制御上、煩雑せず簡易となり得る。
According to this configuration, as in the case of the preheating, the liner constituent members are rotated relative to each other with respect to the laser irradiation apparatus, so that the entire circumference of the joints can be line-welded by the laser, and the resin liner It is possible to appropriately ensure the airtightness of the.
Here, “relatively rotating” includes rotating the liner constituent members, rotating only the laser irradiation device, and rotating both in the same direction or in the opposite direction. However, rather than rotating both the pre-heating device and the laser irradiation device, rotating the liner constituent members can be simplified without complicating the configuration and control of the device.

この場合、予備加熱装置は、接触状態のライナ構成部材同士の回転方向において、レーザ照射装置の上流側に位置していることが、好ましい。   In this case, it is preferable that the preheating device is located on the upstream side of the laser irradiation device in the rotation direction of the liner constituent members in contact with each other.

この構成によれば、ライナ構成部材同士が回転すると、接合部同士が予備加熱装置に臨んでこれによって予備加熱され、その予備加熱された部分がレーザ照射装置に臨んでこれによってレーザ溶着される。これにより、接合部同士の予備加熱温度の低下を最小限に抑制した状態で、接合部同士をレーザ溶着することができる。   According to this configuration, when the liner constituent members rotate, the joints face the preheating device and are preheated thereby, and the preheated portion faces the laser irradiation device and is laser welded thereby. Thereby, the joining portions can be laser-welded in a state in which the decrease in the preheating temperature between the joining portions is minimized.

これらの場合、予備加熱工程を実行する予備加熱装置は、ヒータ、熱風装置、高周波誘導加熱装置及びレーザ照射装置の少なくとも一つであることが、好ましい。   In these cases, the preheating device that performs the preheating step is preferably at least one of a heater, a hot air device, a high frequency induction heating device, and a laser irradiation device.

この構成によれば、例えば高周波誘導加熱装置によれば、予備加熱を短時間で行うことができる。また、予備加熱工程及びレーザ照射工程において、同一のレーザ照射装置を用いれば、製造装置全体の構成を単純化できる。なお、同一のレーザ照射装置を用いる場合には、予備加熱工程では、レーザ溶着しない程度の低出力でレーザを照射すればよい。   According to this configuration, for example, according to the high frequency induction heating apparatus, the preheating can be performed in a short time. Moreover, if the same laser irradiation apparatus is used in the preliminary heating process and the laser irradiation process, the configuration of the entire manufacturing apparatus can be simplified. Note that in the case where the same laser irradiation apparatus is used, in the preheating step, the laser may be irradiated with a low output that does not cause laser welding.

これらの場合、予備加熱工程に先立ち、互いに接合されるべき一方のライナ構成部材の接合部と、他方のライナ構成部材の接合部との少なくとも一方に発熱性材料を設ける工程を、更に有することが、好ましい。   In these cases, prior to the preheating step, the method may further include a step of providing an exothermic material in at least one of a joint portion of one liner constituent member and a joint portion of the other liner constituent member to be joined to each other. ,preferable.

この構成によれば、発熱性材料により接合部同士の予備加熱を促進することができると共に、レーザ溶着の際の接合部同士の溶融を促進することができる。これにより、接合部同士の溶着不良を抑制して、より一層良好に接合することができる。なお、発熱性材料を塗布することで接合部に設けてもよいし、発熱性材料を練入したシートを貼付することで接合部に設けてもよい。   According to this configuration, the preheating between the joints can be promoted by the exothermic material, and the melting of the joints at the time of laser welding can be promoted. Thereby, the welding defect of joining parts can be suppressed and it can join still more favorably. In addition, you may provide in a junction part by apply | coating an exothermic material, and you may provide in a junction part by sticking the sheet | seat which knead | mixed the exothermic material.

この場合、発熱性材料は、セラミックス、黒鉛、樹脂および金属の少なくも一つであることが、好ましい。   In this case, the exothermic material is preferably at least one of ceramics, graphite, resin and metal.

これらの場合、予備加熱工程に先立ち、互いに接合されるべき一方のライナ構成部材の接合部をレーザ透過性の部材で構成すると共に、他方のライナ構成部材の接合部をレーザ吸収性の部材で構成する工程を、更に有し、レーザ照射工程は、レーザ透過性の部材からなる接合部側からレーザを照射することで行われることが、好ましい。   In these cases, prior to the pre-heating step, the joining portion of one liner constituent member to be joined to each other is constituted by a laser transmitting member, and the joining portion of the other liner constituting member is constituted by a laser absorbing member. It is preferable that the laser irradiation step is performed by irradiating a laser beam from the bonding portion side made of a laser transmissive member.

この構成によれば、レーザ透過性の接合部側からレーザを照射すると、レーザ吸収性の接合部が加熱溶融すると共に、その接合部からの熱伝達によりレーザ透過性の接合部が加熱溶融する。このように、レーザに対する透過性または吸収性の特性を接合部に持たせておくことで、接合部同士を適切に接合することができる。なお、この種のレーザに対する特性を接合部のみに持たせてもよいが、接合部を含むライナ構成部材の全体に持たせる方が、ライナ構成部材を簡易に製造し得る。   According to this configuration, when laser is irradiated from the laser-transmitting joint, the laser-absorbing joint is heated and melted, and the laser-transmitting joint is heated and melted by heat transfer from the joint. As described above, the bonding portions can be appropriately bonded to each other by giving the bonding portions the property of transmitting or absorbing the laser. It should be noted that the properties of this type of laser may be imparted only to the joint, but the liner constituent member can be manufactured more easily if the entire liner constituent member including the joint is provided.

これらの場合、予備加熱工程では、ライナ構成部材の接合部の水分を測定する水分測定装置の測定結果に応じて予備加熱することが、好ましい。   In these cases, in the preliminary heating step, it is preferable to perform preliminary heating according to the measurement result of the moisture measuring device that measures the moisture at the joint portion of the liner constituent member.

レーザ溶着時に接合部の水分率が高いと、レーザ溶着に悪影響を及ぼすおそれがあるが、上記構成のように予備加熱を水分測定装置の測定結果に応じて実行することで、溶着不良を防止することができるようになる。   If the moisture content of the joint at the time of laser welding is high, laser welding may be adversely affected. However, preheating is performed according to the measurement result of the moisture measuring device as in the above configuration, thereby preventing poor welding. Will be able to.

ス容器は、少なくとも一部が中空円筒状のライナ構成部材を、複数個接合して構成される樹脂ライナと、樹脂ライナの外周に配置された補強層と、を有するガス容器であって、一のライナ構成部材の接合部と他のライナ構成部材の接合部とが接合された接合部分は、この接合部同士をレーザ溶着により互いに接合したレーザ溶着部と、レーザ溶着部と一体的にまたはその近傍に設けられた発熱性材料と、を有しているものである。 Gas container, at least a portion of a hollow cylindrical liner component, and a resin liner constituted by a plurality junction, a gas container having a reinforcing layer disposed on the outer periphery of the resin liner, A joint portion where a joint portion of one liner constituent member and a joint portion of another liner constituent member are joined together is a laser welded portion obtained by joining the joint portions to each other by laser welding, and a laser welded portion. And an exothermic material provided in the vicinity thereof.

この構成によれば、一のライナ構成部材の接合部と他のライナ構成部材の接合部とをレーザ溶着により接合しているため、短時間且つ低コストで樹脂ライナを構成することができる。よって、ガス容器の生産性を高めることができる。また、レーザ溶着を用いることで、低温でしかも接合部同士を局所的に加熱することができるため、ライナ構成部材に対し熱的影響箇所を最小限にすることができ、溶融バリなどを生じさせなくて済む。さらに、発熱性材料によりレーザ溶着の際の接合部同士の溶融を促進することができるため、接合部同士の溶着不良を抑制して、より一層良好に接合することができる。   According to this configuration, since the joining portion of one liner constituent member and the joining portion of another liner constituent member are joined by laser welding, a resin liner can be constructed in a short time and at low cost. Therefore, the productivity of the gas container can be increased. In addition, by using laser welding, the joints can be locally heated at a low temperature, so that the thermally affected portion can be minimized with respect to the liner component member, resulting in melting burrs and the like. No need. Furthermore, since the exothermic material can promote the melting of the joints during laser welding, poor welding between the joints can be suppressed, and the joining can be performed more satisfactorily.

ここで、レーザ溶着部は、接合部同士または少なくとも一方の接合部が溶融して形成されるものである。また、発熱性材料は、樹脂ライナの製造前(レーザ溶着前)では、少なくとも一方の接合部に設けられるものである。レーザ溶着部と一体的に設けられた発熱性材料とは、樹脂ライナの製造後(レーザ溶着後)において、例えば、レーザ溶着により溶融した接合部の樹脂に発熱性材料が含まれ得る状態にあることをいう。一方、レーザ溶着部の近傍に設けられた発熱性材料とは、樹脂ライナの製造後(レーザ溶着後)において、例えば、レーザ溶着により溶融した接合部の樹脂には含まれず、この溶融して固化した樹脂の近傍にある状態をいう。   Here, the laser welded portion is formed by melting the joined portions or at least one of the joined portions. Further, the exothermic material is provided in at least one of the joints before the resin liner is manufactured (before laser welding). The exothermic material provided integrally with the laser welding portion is in a state in which the exothermic material can be included in the resin of the joint portion melted by the laser welding after the production of the resin liner (after the laser welding). That means. On the other hand, the exothermic material provided in the vicinity of the laser welded portion is not included in the resin of the joint portion melted by laser welding after the resin liner is manufactured (after laser welding), and is melted and solidified. The state in the vicinity of the resin.

本発明のガス容器の製造方法によれば、ライナ構成部材同士の接合をレーザ溶着で行うと共に、そのレーザ溶着に先立って予備加熱がなされている。したがって、レーザ溶着時の不具合を生ずることなく、ライナ構成部材同士を適切に接合することができ、生産性を向上することができる。   According to the method for manufacturing a gas container of the present invention, the liner constituent members are joined by laser welding, and preheating is performed prior to the laser welding. Therefore, the liner constituent members can be appropriately joined to each other without causing problems during laser welding, and productivity can be improved.

以下、添付図面を参照して、本発明の好適な実施形態について説明する。本実施形態のガス容器は、複数のライナ構成部材がレーザ溶着により接合された樹脂ライナを有するものである。以下では、先ずガス容器の構造について説明し、その後、ガス容器の製造方法について説明する。また、第2〜第5実施形態及び第7実施形態では、主として製造方法の変形例について説明し、第6実施形態では、主としてガス容器の他の構造について説明する。第2実施形態以降では、第1実施形態と共通する部分については同一の符号を付してその説明を省略する。   Preferred embodiments of the present invention will be described below with reference to the accompanying drawings. The gas container of this embodiment has a resin liner in which a plurality of liner constituent members are joined by laser welding. Below, the structure of a gas container is demonstrated first, and the manufacturing method of a gas container is demonstrated after that. In the second to fifth embodiments and the seventh embodiment, modified examples of the manufacturing method are mainly described, and in the sixth embodiment, other structures of the gas container are mainly described. In the second and subsequent embodiments, portions common to the first embodiment are denoted by the same reference numerals and description thereof is omitted.

<第1実施形態>
図1に示すように、ガス容器1は、全体として密閉円筒状の容器本体2と、容器本体2の長手方向の両端部に取り付けられた口金3,3と、を具備している。容器本体2の内部は、各種のガスを貯留する貯留空間5となっている。ガス容器1は、常圧のガスを充填することもできるし、常圧に比して圧力が高められたガスを充填することもできる。すなわち、本発明のガス容器1は、高圧ガス容器として機能することができる。
<First Embodiment>
As shown in FIG. 1, the gas container 1 includes a sealed cylindrical container body 2 as a whole, and caps 3 and 3 attached to both ends of the container body 2 in the longitudinal direction. The inside of the container body 2 is a storage space 5 for storing various gases. The gas container 1 can be filled with a normal pressure gas, or can be filled with a gas whose pressure is increased as compared with the normal pressure. That is, the gas container 1 of the present invention can function as a high-pressure gas container.

例えば、燃料電池システムでは、高圧の状態で用意された燃料ガスを減圧して、燃料電池の発電に供している。本発明のガス容器1は、高圧の燃料ガスを貯留するのに適用することができ、燃料ガスとしての水素や、圧縮天然ガス(CNGガス)などを貯留することができる。ガス容器1に充填される水素の圧力としては、例えば35MPaあるいは70MPaであり、CNGガスの圧力としては、例えば20MPaである。以下は、高圧水素ガス容器1を例に説明する。   For example, in a fuel cell system, the fuel gas prepared in a high pressure state is decompressed and used for power generation of the fuel cell. The gas container 1 of the present invention can be applied to store high-pressure fuel gas, and can store hydrogen, compressed natural gas (CNG gas), and the like as fuel gas. The pressure of hydrogen filled in the gas container 1 is, for example, 35 MPa or 70 MPa, and the pressure of CNG gas is, for example, 20 MPa. Hereinafter, the high-pressure hydrogen gas container 1 will be described as an example.

容器本体2は、ガスバリア性を有する内側の樹脂ライナ11(内殻)と、樹脂ライナ11の外周に配置された補強層12(外殻)と、の二層構造を有している。補強層12は、例えば炭素繊維とエポキシ樹脂を含むFRPからなり、樹脂ライナ11の外表面を被覆するようにこれを巻きつけている。   The container body 2 has a two-layer structure of an inner resin liner 11 (inner shell) having gas barrier properties and a reinforcing layer 12 (outer shell) disposed on the outer periphery of the resin liner 11. The reinforcing layer 12 is made of, for example, FRP containing carbon fiber and an epoxy resin, and is wound around so as to cover the outer surface of the resin liner 11.

口金3は、例えばステンレスなどの金属で形成され、容器本体2の半球面状をした端壁部の中心に設けられている。口金3の開口部の内周面には、めねじが刻設されており、配管やバルブアッセンブリ14(バルブボデー)などの機能部品が、このめねじを介して口金3にねじ込み接続可能となっている。なお、図1では、口金3,3の一方にのみバルブアッセンブリ14を設けた例を二点鎖線で示した。   The base 3 is made of a metal such as stainless steel, and is provided at the center of the hemispherical end wall portion of the container body 2. A female screw is engraved on the inner peripheral surface of the opening of the base 3, and functional parts such as piping and a valve assembly 14 (valve body) can be screwed into the base 3 via the female screw. ing. In FIG. 1, an example in which the valve assembly 14 is provided only on one of the caps 3 and 3 is indicated by a two-dot chain line.

例えば、燃料電池システム上のガス容器1は、バルブや継手等の配管要素を一体的に組み込んだバルブアッセンブリ14を介して、貯留空間5と図示省略した外部のガス流路との間が接続され、貯留空間5に水素が充填されると共に貯留空間5から水素が放出される。なお、ガス容器1の両端部に口金3,3を設けたが、もちろん片方の端部にのみ口金3を設けてもよい。   For example, the gas container 1 on the fuel cell system is connected between the storage space 5 and an external gas flow path (not shown) via a valve assembly 14 in which piping elements such as valves and joints are integrated. The storage space 5 is filled with hydrogen and hydrogen is released from the storage space 5. In addition, although the nozzle | cap | die 3,3 was provided in the both ends of the gas container 1, of course, you may provide the nozzle | cap | die 3 only in one edge part.

樹脂ライナ11は、長手方向の中央で二分割された一対の略同形状からなるライナ構成部材21,22(割体)を、レーザ溶着により接合して構成されている。すなわち、半割り中空体のライナ構成部材21,22同士をレーザ溶着により接合することで、中空内部の樹脂ライナ11が構成されている。   The resin liner 11 is constituted by joining a pair of liner constituent members 21 and 22 (split bodies) having substantially the same shape divided into two at the center in the longitudinal direction by laser welding. That is, the resin liner 11 inside the hollow is configured by joining the liner constituting members 21 and 22 of the half hollow body by laser welding.

一対のライナ構成部材21,22は、樹脂ライナ11の軸方向に所定の長さ延在する胴部31,41をそれぞれ有している。各胴部31,41の軸方向の両端側は、開口している。   The pair of liner constituting members 21, 22 have body portions 31, 41 extending a predetermined length in the axial direction of the resin liner 11. Both end sides in the axial direction of the body portions 31 and 41 are open.

一方のライナ構成部材21は、胴部31の一端側の縮径された端部に形成された返し部32と、返し部32の中央部に開口した連通部33と、胴部31の他端側の略円筒状の端部に形成された接合部34と、を有している。同様に、他方のライナ構成部材22は、胴部41の一端側の縮径された端部に形成された返し部42と、返し部42の中央部に開口した連通部43と、胴部41の他端側の略円筒状の端部に形成された接合部44と、を有している。   One liner constituting member 21 includes a return portion 32 formed at a reduced diameter end portion on one end side of the body portion 31, a communication portion 33 opened in the center of the return portion 32, and the other end of the body portion 31. And a joining portion 34 formed at the substantially cylindrical end portion on the side. Similarly, the other liner constituting member 22 includes a return portion 42 formed at a reduced diameter end portion on one end side of the body portion 41, a communication portion 43 opened at the center of the return portion 42, and the body portion 41. And a joint portion 44 formed at a substantially cylindrical end portion on the other end side.

各返し部32,42は、各ライナ構成部材21,22の強度を確保するのに機能する。各返し部32,42の外周面と補強層12の端部との間に口金3,3が位置しており、各口金3,3は、各連通部33,43に嵌合している。なお、口金3が片方の端部にのみ設けられる場合には、一対のライナ構成部材21,22の一方については、返し部32,42および連通部33,43が形成されず、胴部31および胴部41の一方については一端側が閉塞端で形成される。   The return portions 32 and 42 function to secure the strength of the liner constituent members 21 and 22. The bases 3, 3 are positioned between the outer peripheral surfaces of the return portions 32, 42 and the end portions of the reinforcing layer 12, and the bases 3, 3 are fitted in the communication parts 33, 43. When the base 3 is provided only at one end, the return portions 32 and 42 and the communication portions 33 and 43 are not formed on one of the pair of liner constituting members 21 and 22, but the trunk portion 31 and One end of the body portion 41 is formed as a closed end.

ここで、本明細書では、ライナ構成部材21,22とは、分割構造の樹脂ライナ11を構成する部材をいい、上述のように、少なくとも一端側(一部)が中空円筒状の形状を有するものをいう。したがって、ライナ構成部材21,22の形状には、その全体の形状が円筒状、環状、お碗状、ドーム状等であることが含まれる。   Here, in this specification, the liner constituting members 21 and 22 are members constituting the resin liner 11 having a split structure, and at least one end side (part) has a hollow cylindrical shape as described above. Say things. Therefore, the shape of the liner constituent members 21 and 22 includes that the overall shape is a cylindrical shape, an annular shape, a bowl shape, a dome shape, or the like.

図2は、接合部34,44まわりを拡大して示す断面図である。なお、図2において補強層12は省略している。
一方の接合部34は、所定の角度傾斜した接合端面51を有している。接合端面51は、ライナ構成部材21の端部が内側に向かって面取りされるように(逆テーパ状となるように)、ライナ構成部材21の端部に周方向に亘って形成されている。
FIG. 2 is an enlarged cross-sectional view around the joints 34 and 44. In FIG. 2, the reinforcing layer 12 is omitted.
One joining portion 34 has a joining end face 51 inclined at a predetermined angle. The joining end surface 51 is formed on the end portion of the liner constituting member 21 in the circumferential direction so that the end portion of the liner constituting member 21 is chamfered inward (inverted taper shape).

同様に、他方の接合部44は、所定の角度傾斜した接合端面61を有している。接合端面61は、ライナ構成部材の端部が外側に向かって面取りされるように(テーパ状となるように)、ライナ構成部材22の端部に周方向に亘って形成されている。   Similarly, the other joining portion 44 has a joining end face 61 inclined at a predetermined angle. The joining end surface 61 is formed on the end portion of the liner constituting member 22 in the circumferential direction so that the end portion of the liner constituting member is chamfered outward (tapered).

一方の接合部34と他方の接合部44とは、ライナ構成部材21,22同士を突き合わせた状態では、両者の接合端面51,61同士が整合し、接合端面51,61同士が樹脂ライナ11の周方向に亘って接触する。   In the state in which the liner constituting members 21 and 22 are abutted with each other, the one joining portion 34 and the other joining portion 44 are aligned with each other, and the joining end surfaces 51 and 61 are aligned with each other of the resin liner 11. Contact in the circumferential direction.

なお、両者の接合端面51,61の角度は、任意であるが、レーザトーチ100(レーザ照射装置)からのレーザを透過または受光可能な角度であればよい。また、接合端面51,61同士には、樹脂ライナ11の製造過程において、後述する予備加熱装置としてのヒータ90が臨むようになっている。   In addition, although the angle of both joining end surfaces 51 and 61 is arbitrary, it should just be an angle which can permeate | transmit or receive the laser from the laser torch 100 (laser irradiation apparatus). In addition, a heater 90 as a preheating device, which will be described later, faces the joining end faces 51 and 61 in the manufacturing process of the resin liner 11.

本実施形態では、接合部34を有するライナ構成部材21は、レーザ透過性の熱可塑性樹脂で形成されている。一方、接合部44を有するライナ構成部材22は、レーザ吸収性の熱可塑性樹脂で形成されている。   In the present embodiment, the liner constituting member 21 having the joint portion 34 is formed of a laser transmissive thermoplastic resin. On the other hand, the liner constituting member 22 having the joint portion 44 is formed of a laser-absorbing thermoplastic resin.

レーザ透過性の熱可塑性樹脂は、レーザ溶着に必要なエネルギーをレーザ吸収性側の接合部44の接合端面61に到達させる程度に、レーザに対する透過性を有していればよい。したがって、レーザ透過性の熱可塑性樹脂であっても、レーザ吸収性の特性を僅かに有していてもよい。
レーザ透過性の熱可塑性樹脂としては、例えばポリエチレン、ポリプロピレン、ナイロン66などを挙げることができるが、これらにガラス繊維などの補強繊維や着色剤を添加したものであってもよい。例えば、レーザ透過性のライナ構成部材21は、白色、半透明または透明に形成される。
The laser-transmitting thermoplastic resin only needs to be transparent to the laser so that energy necessary for laser welding reaches the bonding end surface 61 of the bonding portion 44 on the laser absorption side. Therefore, even a laser-transmitting thermoplastic resin may have a slight laser-absorbing characteristic.
Examples of the laser-transmitting thermoplastic resin include polyethylene, polypropylene, nylon 66, and the like, and those obtained by adding a reinforcing fiber such as glass fiber or a colorant to these may be used. For example, the laser transmissive liner component 21 is formed in white, translucent or transparent.

レーザ吸収性の熱可塑性樹脂は、レーザに対する吸収性を有していればよく、吸収したレーザにより発熱して溶融するものであればよい。レーザ吸収性の熱可塑性樹脂としては、例えばポリエチレン、ポリプロピレン、ナイロン66などを挙げることができるが、これらにガラス繊維などの補強繊維や着色剤を添加したものであってもよい。
例えば、レーザ吸収性の熱可塑性樹脂は、レーザ透過性の熱可塑性樹脂と同一の樹脂で形成した場合には、レーザ透過性の熱可塑性樹脂よりもカーボンを多く添加することで形成される。したがって、レーザ吸収性のライナ構成部材22は、例えば黒色に形成される。
The laser-absorbing thermoplastic resin only needs to have an absorptivity with respect to the laser and may be any one that generates heat and melts with the absorbed laser. Examples of the laser-absorbing thermoplastic resin include polyethylene, polypropylene, nylon 66, and the like, and those obtained by adding a reinforcing fiber such as glass fiber or a colorant to these may be used.
For example, when the laser-absorbing thermoplastic resin is formed of the same resin as the laser-transmitting thermoplastic resin, it is formed by adding more carbon than the laser-transmitting thermoplastic resin. Therefore, the laser-absorbing liner constituting member 22 is formed in black, for example.

レーザ透過性の接合部34とレーザ吸収性の接合部44とは、接合端面51,61同士がレーザ溶着により接合されている。レーザ溶着は、接合部34の外側からレーザトーチ100によりレーザを照射し、レーザ吸収性の接合端面61の樹脂を加熱溶融すると共に、この接合端面61からの熱伝達によりレーザ透過性の接合端面51の樹脂を加熱溶融することで行われる。   The joining end surfaces 51 and 61 of the laser transmitting joint 34 and the laser absorbing joint 44 are joined by laser welding. Laser welding is performed by irradiating a laser beam from the outside of the bonding portion 34 with the laser torch 100 to heat and melt the resin of the laser-absorbing bonding end surface 61 and heat transfer from the bonding end surface 61 to the laser-transmitting bonding end surface 51. It is carried out by heating and melting the resin.

したがって、接合部34,44同士が接合された接合部分にあるレーザ溶着部70は、接合端面61および接合端面51の両方が溶融した部位であり、レーザ吸収性およびレーザ透過性の両方の樹脂が入り絡まった状態となっている。本実施形形態では、接合端面51,61同士を樹脂ライナ11の軸方向に対して直交させるのではなく傾斜させたことで、接合端面51,61同士の接触面積が大きくなり、接合部分の大きさが適切に確保されている。   Therefore, the laser welded portion 70 in the joint portion where the joint portions 34 and 44 are joined is a portion where both the joint end surface 61 and the joint end surface 51 are melted, and both the laser-absorbing and laser-transmitting resins are used. It is in an intertwined state. In the present embodiment, the joint end surfaces 51 and 61 are inclined rather than orthogonal to the axial direction of the resin liner 11, thereby increasing the contact area between the joint end surfaces 51 and 61, and the size of the joint portion. Is properly secured.

なお、ライナ構成部材21,22の全体をレーザ透過性やレーザ吸収性の樹脂とするのでなく、接合部34,44のみをレーザ透過性やレーザ吸収性の樹脂で構成するなど、ライナ構成部材21,22が部分的にレーザ透過性やレーザ吸収性の特性を有していてもよい。   The liner constituent members 21 and 22 are not made of a resin having a laser transmitting property or a laser absorbing property as a whole, but only the joint portions 34 and 44 are made of a resin having a laser transmitting property or a laser absorbing property. , 22 may partially have laser transmission characteristics or laser absorption characteristics.

例えば、一対のライナ構成部材21,22を両方ともレーザ透過性の樹脂で形成しておき、そのうちの一方のライナ構成部材21(または22)の接合部34(または44)の接合端面51(または61)に、レーザ吸収性を有する吸収剤を塗布したり、この種の吸収剤を練入したシートを貼付したりしてもよい。   For example, both of the pair of liner constituting members 21 and 22 are made of a laser transmitting resin, and the joining end face 51 (or the joining portion 34 (or 44) of one of the liner constituting members 21 (or 22) is selected. 61) may be coated with an absorbent having laser absorptivity, or a sheet containing this kind of absorbent may be pasted.

ここで、図3および図4を参照して、ガス容器1の製造方法について説明する。
先ず、一対のライナ構成部材21,22および二つの口金3,3を成形する(S1)。このとき例えば、予め成形した一の口金3を金型内に配置し、この金型内にレーザ透過性の熱可塑性樹脂を射出して、ライナ構成部材21および口金3を一体成形する(インサート成形する。)。
Here, with reference to FIG. 3 and FIG. 4, the manufacturing method of the gas container 1 is demonstrated.
First, a pair of liner constituent members 21 and 22 and two caps 3 and 3 are formed (S1). At this time, for example, one preformed base 3 is placed in the mold, a laser-transmitting thermoplastic resin is injected into the mold, and the liner constituting member 21 and the base 3 are integrally molded (insert molding). To do.)

また同様の手順により、レーザ吸収性の熱可塑性樹脂を射出して、ライナ構成部材22および口金3を一体成形する。このように、射出成形を用いることで各ライナ構成部材21,22を成形精度良く成形することができる。なお、射出成形に代えて、回転成形やブロー成形を用いてもよい。また、各ライナ構成部材21,22と各口金3,3とを一体成形しなくてもよく、後述するレーザ溶着工程(S5)の後などで、各ライナ構成部材21,22に各口金3,3を取り付けてもよい。   In addition, by a similar procedure, a laser-absorbing thermoplastic resin is injected to integrally form the liner constituting member 22 and the base 3. Thus, each liner constituent member 21 and 22 can be molded with high molding accuracy by using injection molding. Instead of injection molding, rotational molding or blow molding may be used. Further, the liner constituent members 21 and 22 and the bases 3 and 3 do not have to be integrally formed. After the laser welding step (S5) described later, the liner constituent members 21 and 22 are attached to the bases 3 and 3, respectively. 3 may be attached.

次に、口金3付きの各ライナ構成部材21,22を製造設備内に例えば横向き姿勢で配置し、ライナ構成部材21,22同士を突き合わせる。そして、接合部34,44同士を接触させて、接合端面51,61同士を周方向に亘って接触させる(S2)。   Next, the liner constituent members 21 and 22 with the base 3 are arranged in a production facility, for example, in a lateral orientation, and the liner constituent members 21 and 22 are brought into contact with each other. Then, the joining portions 34 and 44 are brought into contact with each other, and the joining end surfaces 51 and 61 are brought into contact with each other in the circumferential direction (S2).

これにより、ライナ構成部材21,22同士が仮接合(暫定接合)した状態の樹脂ライナ11となる。なお、この後で、各ライナ構成部材21,22の各口金3,3に図示省略した栓をねじ込み接続することなどにより、仮接合状態の樹脂ライナ11の内部を略密閉状態として、この密閉空間に不純物が入り込まないようにしてもよい。   Thus, the resin liner 11 is in a state where the liner constituent members 21 and 22 are temporarily joined (temporary joined). After this, the interior of the temporarily bonded resin liner 11 is made substantially sealed by, for example, screwing and connecting a stopper (not shown) to each of the caps 3 and 3 of the liner constituting members 21 and 22. Impurities may be prevented from entering.

次の工程として、樹脂ライナ11の仮接合状態を維持しつつ、図示省略した回転装置を駆動して樹脂ライナ11をその軸回りに回転させながら、ヒータ90を駆動して接触状態の接合部34,44同士を予備加熱する(S3)。ヒータ90は、樹脂ライナ11の外側に位置して、接合部34,44同士の周方向の一部に(ライナ構成部材21,22同士の接合境界の一部に)非接触で臨んでいる。   As the next step, while maintaining the temporarily joined state of the resin liner 11, the heater 90 is driven while the rotating device (not shown) is driven to rotate the resin liner 11 around its axis, and the joined portion 34 in the contact state is driven. 44 are preheated (S3). The heater 90 is located outside the resin liner 11 and faces a part in the circumferential direction between the joint portions 34 and 44 (a part of the joint boundary between the liner constituent members 21 and 22) in a non-contact manner.

また、ヒータ90は、両接合端面51,61の軸方向の長さに相当する長さだけ、樹脂ライナ11の軸方向に延在する加熱領域91を有している(図2参照)。したがって、樹脂ライナ11を一回転させることで、接触状態の接合端面51の全面および接合端面61の全面がヒータ90により予備加熱される。なお、接合端面51,61同士を接触させているため、予備加熱時の熱伝達が促進される。   In addition, the heater 90 has a heating region 91 extending in the axial direction of the resin liner 11 by a length corresponding to the axial length of both the joining end faces 51 and 61 (see FIG. 2). Therefore, by rotating the resin liner 11 once, the entire surface of the joint end surface 51 and the entire surface of the joint end surface 61 in a contact state are preheated by the heater 90. In addition, since the joining end surfaces 51 and 61 are brought into contact with each other, heat transfer during preheating is promoted.

なお、ヒータ90の軸方向の長さを両接合端面51,61の軸方向の長さよりも短く設定してもよいが、ヒータ90の加熱領域91が両接合端面51,61を軸方向に超えて位置するようにしてもよい。また、ヒータ90を樹脂ライナ11の外側に位置させたが、ヒータ90を樹脂ライナ11の内側に位置させて、接触状態の接合部34,44同士をその内面側から(樹脂ライナ11の内部から)予備加熱するようにしてもよい。   The axial length of the heater 90 may be set shorter than the axial length of the joint end surfaces 51 and 61, but the heating region 91 of the heater 90 exceeds the joint end surfaces 51 and 61 in the axial direction. May be located. Further, although the heater 90 is positioned outside the resin liner 11, the heater 90 is positioned inside the resin liner 11, and the contact portions 34 and 44 are brought into contact with each other from the inner surface side (from the inside of the resin liner 11. ) You may make it preheat.

さらに、樹脂ライナ11に対して非接触式のヒータ90としたが、接触式の予備加熱装置を構成して、これを接合部34,44同士のある接合境界の内面または外面に接触させてもよい。例えば、ヒータを内蔵したローラで接触式の予備加熱装置を構成した場合には、加温されたローラの周面を接合境界の内面または外面に接触させればよい。   Furthermore, although the non-contact type heater 90 is used for the resin liner 11, a contact type pre-heating device may be configured so that it contacts the inner or outer surface of the bonding boundary between the bonding portions 34 and 44. Good. For example, when a contact-type preheating device is configured by a roller having a built-in heater, the peripheral surface of the heated roller may be brought into contact with the inner surface or the outer surface of the joining boundary.

また、ヒータ90により接触状態のライナ構成部材21,22同士を全体的に予備加熱してもよいが、レーザ溶着の対象となる接合部34,44同士を局所的に予備加熱した方が、ライナ構成部材21(22)全体の熱変形などの熱的影響を好適に抑制することができると共に、必要な熱量を少なくすることが可能となる。   Further, the liner constituting members 21 and 22 in contact with each other may be preliminarily heated by the heater 90, but it is more preferable to locally preheat the joining portions 34 and 44 to be laser welded. Thermal effects such as thermal deformation of the entire component 21 (22) can be suitably suppressed, and the necessary amount of heat can be reduced.

次に、予備加熱された接合部34,44同士に対して、レーザが照射される(S4)。レーザの照射は、樹脂ライナ11の外側に位置するレーザトーチ100を駆動することで行われる。レーザトーチ100は、レーザ透過性の接合部34の外側から、接触状態の接合端面51,61同士にレーザを照射する。照射されたレーザは、接合端面61の樹脂およびその熱伝達により接合端面51の樹脂を加熱溶融する。そして、これらの溶融された樹脂が冷却固化することで、接合部34,44同士を互いに一体的に接合するレーザ溶着部70が形成される。   Next, laser is irradiated to the pre-heated joint portions 34 and 44 (S4). Laser irradiation is performed by driving a laser torch 100 located outside the resin liner 11. The laser torch 100 irradiates the contact end surfaces 51 and 61 in contact with each other from the outside of the laser-transmitting joint 34. The irradiated laser heats and melts the resin on the joint end face 61 and the resin on the joint end face 51 by heat transfer thereof. Then, the melted resin is cooled and solidified to form a laser welding portion 70 that integrally joins the joint portions 34 and 44 to each other.

ここで、レーザの照射も予備加熱と同様に、仮接合状態の樹脂ライナ11を軸回りに回転させることで行われる。このため、レーザ溶着部70は、樹脂ライナ11の周方向に亘って形成されることになる。   Here, similarly to the preheating, the laser irradiation is performed by rotating the temporarily bonded resin liner 11 around the axis. For this reason, the laser welding part 70 is formed over the circumferential direction of the resin liner 11.

本実施形態では、レーザトーチ100は、仮接合状態の樹脂ライナ11の軸回りの回転方向において、ヒータ90の下流側に設けられている。これにより、ヒータ90に臨んだ接合部34,44同士の予備加熱された部分に対して、レーザトーチ100からのレーザが随時照射されることになる。したがって、樹脂ライナ11を少なくとも一回転させることで、接合部34,44同士が周方向に亘って予備加熱およびレーザ照射される。   In the present embodiment, the laser torch 100 is provided on the downstream side of the heater 90 in the rotational direction around the axis of the temporarily bonded resin liner 11. As a result, the laser from the laser torch 100 is irradiated at any time to the preheated portion of the joint portions 34 and 44 facing the heater 90. Therefore, by rotating the resin liner 11 at least once, the joints 34 and 44 are preheated and irradiated with laser over the circumferential direction.

このように、接合端面51,61同士の予備加熱された部位が順次レーザ照射されて、接合端面51,61同士がレーザ溶着により接合されるため、接合部34,44同士の予備加熱温度の低下を最小限に抑制した状態で、接合部34,44同士をレーザ溶着することができる。   In this way, the preheated portions of the joining end surfaces 51 and 61 are sequentially irradiated with laser, and the joining end surfaces 51 and 61 are joined by laser welding, so that the preheating temperature of the joining portions 34 and 44 is lowered. The joining portions 34 and 44 can be laser-welded in a state where the above is suppressed to a minimum.

また、予備加熱された状態でレーザが照射されるため、レーザが照射される樹脂ライナ11の部位の焼け焦げなどを抑制することができ、樹脂ライナ11の接合不良や強度低下を抑制することができる。   In addition, since the laser is irradiated in a preheated state, it is possible to suppress scorching and the like of the portion of the resin liner 11 irradiated with the laser, and it is possible to suppress the bonding failure and the strength reduction of the resin liner 11. .

また、予備加熱していて接合端面51,61同士が温まっている分、レーザ溶着に要する時間を短縮することができる。さらに、予備加熱しているため、仮にレーザ透過側の接合部34をレーザ透過性の低い樹脂で形成したり肉厚に形成したりしても、レーザの出力を必要以上に高くしなくて済む。   Further, the time required for laser welding can be shortened by the preheating and the joining end faces 51 and 61 being heated. Further, since the preheating is performed, the laser output does not need to be increased more than necessary even if the laser transmission side joining portion 34 is formed of a resin having low laser transmittance or is formed thick. .

なお、レーザトーチ100が出射するレーザは、半導体レーザなどを用いることができるが、これに限定されるものではなく、レーザの種類は、レーザ透過性のライナ構成部材21の樹脂の肉厚を含む性状などを考慮して適宜選択される。また、ヒータ90の出力(加熱温度、加熱量、加熱時間)、レーザの出力(照射量、照射時間)、および樹脂ライナ11の回転速度などの諸条件は、各ライナ構成部材21,22や各接合部34,44の性状に応じて適宜設定すればよい。この場合、接合部34,44同士の予備加熱温度については、レーザにより加熱されて溶融し始める本加熱温度よりも低く設定すればよい。   The laser emitted from the laser torch 100 may be a semiconductor laser or the like, but is not limited to this, and the type of laser is a property including the thickness of the resin of the laser-permeable liner constituting member 21. It chooses suitably in consideration of the above. Various conditions such as the output of the heater 90 (heating temperature, heating amount, heating time), the output of the laser (irradiation amount, irradiation time), and the rotation speed of the resin liner 11 are determined by the liner constituent members 21 and 22 What is necessary is just to set suitably according to the property of the junction parts 34 and 44. FIG. In this case, the preheating temperature between the joining portions 34 and 44 may be set lower than the main heating temperature at which the joining portions 34 and 44 start to melt by being heated by the laser.

なおまた、上記のように予備加熱工程(S3)の実行中に、レーザの照射を実行してレーザ溶着工程(S4)を行うようにしているが、もちろん、接合部34,44同士について周方向に亘って予備加熱を完了した後で、レーザの照射を開始するようにしてもよい。なお、上記説明では、樹脂ライナ11の外側から接合部34,44同士にレーザを照射しているが、レーザトーチ100を樹脂ライナ11の内側に配置して、樹脂ライナ11の内側から接合部34,44同士にレーザを照射してもよい。   In addition, while performing the preheating step (S3) as described above, laser irradiation is performed to perform the laser welding step (S4). Of course, the joining portions 34 and 44 are circumferentially connected to each other. After the preliminary heating is completed over a period of time, laser irradiation may be started. In the above description, the joints 34 and 44 are irradiated with laser from the outside of the resin liner 11. However, the laser torch 100 is disposed inside the resin liner 11, and the joints 34 and 44 are arranged from the inside of the resin liner 11. You may irradiate 44 with laser.

また、樹脂ライナ11を直接的に回転させる構成ではなく、ヒータ90やレーザトーチ100を樹脂ライナ11の周囲で直接的に回転させるようにしてもよい。これに代えて、樹脂ライナ11、ヒータ90およびレーザトーチ100をともに、同方向にまたは逆方向に回転させるようにしてもよい。もっとも、上記のように、樹脂ライナ11のみを回転させた方が、ヒータ90およびレーザトーチ100を関連付けて回転させる場合に比べて、装置構成上、簡易となり得る。   Further, instead of directly rotating the resin liner 11, the heater 90 and the laser torch 100 may be directly rotated around the resin liner 11. Instead, the resin liner 11, the heater 90, and the laser torch 100 may be rotated in the same direction or in the opposite direction. However, as described above, rotating only the resin liner 11 can be simplified in terms of the apparatus configuration as compared with the case where the heater 90 and the laser torch 100 are rotated in association with each other.

レーザ溶着の完了により、樹脂ライナ11は、仮接合状態から本接合状態(すなわち、完全に接合された状態。)となって、中空内部に上記の貯留空間5が構成される。そして、レーザ溶着完了後の工程として、フィラメントワインディング法等により樹脂ライナ11の外表面に補強層12を形成する工程(S5)が実行されることで、ガス容器1が製造される。   When the laser welding is completed, the resin liner 11 is changed from the temporarily joined state to the fully joined state (that is, the completely joined state), and the storage space 5 is formed in the hollow interior. And the gas container 1 is manufactured by performing the process (S5) of forming the reinforcement layer 12 in the outer surface of the resin liner 11 by the filament winding method etc. as a process after completion of laser welding.

以上のように、本実施形態のガス容器1の製造方法によれば、レーザ溶着を用いたため、短時間且つ低コストで樹脂ライナ11を製造することができ、ガス容器1の生産性を高めることができる。また上記したように、レーザ溶着に先行して、レーザ溶着の対象となる接合部34,44同士を予備加熱しているため、レーザ照射時に樹脂ライナ11の部位の焼け焦げなどを抑制することができ、良好な接合精度で且つ短時間でライナ構成部材21,22同士を接合することができる。   As described above, according to the method for manufacturing the gas container 1 of the present embodiment, since the laser welding is used, the resin liner 11 can be manufactured in a short time and at low cost, and the productivity of the gas container 1 is increased. Can do. In addition, as described above, since the joining portions 34 and 44 to be laser welded are preheated prior to laser welding, it is possible to suppress scorching of the resin liner 11 at the time of laser irradiation. The liner constituent members 21 and 22 can be joined to each other with good joining accuracy and in a short time.

<第2実施形態>
次に、図5を参照して、第2実施形態に係るガス容器1の製造方法ついて相違点を中心に説明する。第1実施形態との相違点は、予備加熱装置としてのヒータ110の形状をコイル状としたことである。
<Second Embodiment>
Next, with reference to FIG. 5, the manufacturing method of the gas container 1 which concerns on 2nd Embodiment is demonstrated centering on difference. The difference from the first embodiment is that the shape of the heater 110 as the preheating device is coiled.

本実施形態のヒータ110は、樹脂ライナ11の外側から接合部34,44同士を予備加熱する環状ヒータ部111を有している。環状ヒータ部111は、樹脂ライナ11の周方向にほぼ亘って、接触状態の接合部34,44同士の接合境界に非接触で臨んでいる。このため、樹脂ライナ11をヒータ110に対して相対回転させなくとも、環状ヒータ部111により接合部34,44同士を周方向にほぼ亘って予備加熱することが可能となる。環状ヒータ部111は、上記ヒータ90と同様に、例えば、両接合端面51,61の軸方向の長さに相当する長さだけ、樹脂ライナ11の軸方向に延在する加熱領域を有している。   The heater 110 of this embodiment has an annular heater portion 111 that preheats the joint portions 34 and 44 from the outside of the resin liner 11. The annular heater part 111 faces the joining boundary between the joined parts 34 and 44 in a contact state substantially in the circumferential direction of the resin liner 11. For this reason, even if the resin liner 11 is not relatively rotated with respect to the heater 110, the annular heater portion 111 can preheat the joining portions 34 and 44 substantially in the circumferential direction. Similar to the heater 90, the annular heater portion 111 has a heating region extending in the axial direction of the resin liner 11 by a length corresponding to the axial length of the joint end faces 51 and 61, for example. Yes.

本実施形態によっても、ヒータ110によって予備加熱された接合部34,44同士に対してレーザを照射することで、焼け焦げなどの不具合を抑制して、接合部34,44同士を適切にレーザ溶着で接合することができる。   Also in this embodiment, by irradiating the joints 34 and 44 preheated by the heater 110 with laser, problems such as scorching can be suppressed, and the joints 34 and 44 can be appropriately welded to each other. Can be joined.

なお、本実施形態においても上記実施形態と同様にさまざまな変形例を適用することができ、例えば、ヒータ110の発熱中に(すなわち予備加熱中に)、樹脂ライナ11の軸回りの回転を開始しつつ、これに同期してレーザの照射を開始するようにしてもよい。また、樹脂ライナ11を回転させるのではなくて、レーザトーチ100を樹脂ライナ11の周りを回転させるようにしてもよい。   In this embodiment, various modifications can be applied as in the above embodiment. For example, rotation of the resin liner 11 about its axis is started while the heater 110 is generating heat (that is, during preheating). However, laser irradiation may be started in synchronization with this. Further, instead of rotating the resin liner 11, the laser torch 100 may be rotated around the resin liner 11.

<第3実施形態>
次に、図6を参照して、第3実施形態に係るガス容器1の製造方法ついて相違点を中心に説明する。第1実施形態との相違点は、ヒータ90に代わる予備加熱装置として、熱風装置120を用いた点である。
<Third Embodiment>
Next, with reference to FIG. 6, the manufacturing method of the gas container 1 which concerns on 3rd Embodiment is demonstrated centering on difference. A difference from the first embodiment is that a hot air device 120 is used as a preheating device instead of the heater 90.

熱風装置120は、例えば、図示省略した熱源と、熱源を通過したエアや不活性ガス等の熱風を送風する図示省略したブロワと、ブロワからの熱風を仮接合状態の樹脂ライナ11の内部に導入するダクト121と、を具備している。ダクト121は、樹脂ライナ11の一方の口金3に例えばねじ込み接続されている。   The hot air device 120 introduces, for example, a heat source (not shown), a blower (not shown) that blows hot air such as air or an inert gas that has passed through the heat source, and hot air from the blower into the temporarily bonded resin liner 11. And a duct 121. The duct 121 is connected to one base 3 of the resin liner 11 by screwing, for example.

この場合、ダクト121の下流端は、樹脂ライナ11の内部から接合部34,44同士の接合境界に又はその近傍に熱風を吹き付けるように、樹脂ライナ11の内部で延在している。もっとも、ダクト121の下流端を口金3や樹脂ライナ11の内部の中央部などに位置させて、樹脂ライナ11の内部を全体的に熱風で予備加熱するようにしてもよい。この全体予備加熱の場合には、樹脂ライナ11のダクト121が接続された口金3とは反対側の口金3に栓をしておくことで、樹脂ライナ11の内部から外部に熱を極力逃がさなくて済む。   In this case, the downstream end of the duct 121 extends inside the resin liner 11 so as to blow hot air from the inside of the resin liner 11 to the bonding boundary between the bonding portions 34 and 44 or in the vicinity thereof. However, the downstream end of the duct 121 may be positioned at the center of the base 3 or the resin liner 11 or the like, and the inside of the resin liner 11 may be preheated entirely with hot air. In the case of this overall preheating, by plugging the base 3 opposite to the base 3 to which the duct 121 of the resin liner 11 is connected, heat is not released as much as possible from the inside of the resin liner 11 to the outside. I'll do it.

以上のように本実施形態によっても、熱風装置120によって予備加熱された接合部34,44同士に対してレーザを照射することができる。これにより、焼け焦げなどの不具合を抑制して、接合部34,44同士を適切にレーザ溶着で接合することができる。特に、熱風として、加熱された不活性ガスを用いた場合には、レーザ溶着の際に、接合部34,44同士の酸化を抑制することも可能となる。   As described above, according to the present embodiment as well, it is possible to irradiate the laser beam onto the joint portions 34 and 44 preliminarily heated by the hot air device 120. Thereby, it is possible to appropriately bond the joining portions 34 and 44 by laser welding while suppressing problems such as scorching. In particular, when a heated inert gas is used as the hot air, it is possible to suppress oxidation of the joint portions 34 and 44 during laser welding.

そして変形例としては、上記実施形態と同様に、レーザ溶着の際に、熱風装置120の駆動を停止してもよいし、その駆動を続けて予備加熱を続行してもよい。また、熱風装置120を駆動する予備加熱の際に樹脂ライナ11を回転させてもよいが、ダクト121からの熱風が接合部34,44同士の接合境界において又はその近傍において周方向に亘って吹き付けられる場合には、予備加熱の際に樹脂ライナ11を回転させなくてもよい。   As a modification, similarly to the above-described embodiment, during laser welding, the driving of the hot air device 120 may be stopped, or the driving may be continued and the preheating may be continued. In addition, the resin liner 11 may be rotated during preheating to drive the hot air device 120, but hot air from the duct 121 is blown in the circumferential direction at or near the joint boundary between the joint portions 34 and 44. In the case of being preheated, the resin liner 11 does not have to be rotated.

<第4実施形態>
次に、図7を参照して、第4実施形態に係るガス容器1およびその製造方法について相違点を中心に説明する。第1実施形態との相違点は、ガス容器1の構造として、接合部34,44同士の界面に発熱性材料130を設けたことである。なお、図7は、ガス容器1の接合部分を拡大して示す図2と同様の断面図である。
<Fourth embodiment>
Next, with reference to FIG. 7, the gas container 1 which concerns on 4th Embodiment, and its manufacturing method are demonstrated centering on difference. The difference from the first embodiment is that the heat generating material 130 is provided at the interface between the joint portions 34 and 44 as the structure of the gas container 1. FIG. 7 is a cross-sectional view similar to FIG. 2 showing an enlarged joint portion of the gas container 1.

発熱性材料130は、レーザ吸収性のライナ構成部材22の接合端面61の全面に設けられている。もっとも、発熱性材料130を接合端面61に部分的に設けてもよい。また、この構成に代えて、発熱性材料130をレーザ吸収性の接合端面51の全面に設けてもよいし、両方の接合端面51,61に設けてもよい。   The exothermic material 130 is provided on the entire joining end surface 61 of the laser-absorbing liner constituting member 22. However, the exothermic material 130 may be partially provided on the joining end surface 61. Instead of this configuration, the heat-generating material 130 may be provided on the entire surface of the laser-absorbing joining end face 51 or on both joining end faces 51 and 61.

発熱性材料130は、接合端面61の樹脂よりも発熱性の高い材料であればよい。例えば、発熱性材料130は、セラミックス、黒鉛、樹脂および金属のいずれかで構成することもできるし、これらを混合して構成することもできる。発熱性材料130を接合端面61に設ける場合には、発熱性の微粒子を揮発性溶媒と混合させて接合端面61の全面に塗布してもよいし、発熱性材料130を練入したシートを接合端面61の全面に貼付してもよい。   The exothermic material 130 may be any material that has a higher exothermic property than the resin of the joining end surface 61. For example, the exothermic material 130 can be composed of any one of ceramics, graphite, resin, and metal, or can be composed by mixing them. When the exothermic material 130 is provided on the joining end surface 61, the exothermic fine particles may be mixed with a volatile solvent and applied to the entire surface of the joining end surface 61, or a sheet containing the exothermic material 130 may be joined. You may affix on the whole surface of the end surface 61. FIG.

本実施形態のガス容器1を製造する際には、ライナ構成部材21,22同士を突き合わせて仮接合する前に、塗布等により接合端面61に発熱性材料130を設けている。すなわち、本実施形態のガス容器1の製造工程は、第1実施形態で説明した図4に示すS1の工程とS2の工程との間に、接合端面61に発熱性材料130を設ける工程を具備している。   When the gas container 1 of the present embodiment is manufactured, the exothermic material 130 is provided on the joining end surface 61 by coating or the like before the liner constituent members 21 and 22 are brought into contact with each other and temporarily joined. That is, the manufacturing process of the gas container 1 of the present embodiment includes a process of providing the exothermic material 130 on the joining end surface 61 between the process S1 and the process S2 shown in FIG. 4 described in the first embodiment. is doing.

この発熱性材料130を設ける工程の後、樹脂ライナ11を仮接合して、接触状態の接合部34,44同士を予備加熱すると共にレーザ溶着で接合する。予備加熱は、例えば第1〜第3実施形態の予備加熱装置(90,110,120)を用いて行われる。レーザ溶着の完了により、接合部34と接合部44とが一体的に接合された樹脂ライナ11の接合部分は、レーザ溶着部70の近傍に発熱性材料130を有した構成となる(図7(b)参照)。   After the step of providing the exothermic material 130, the resin liner 11 is temporarily joined, and the joined portions 34 and 44 in a contact state are preheated and joined by laser welding. Preheating is performed using, for example, the preheating devices (90, 110, 120) of the first to third embodiments. When the laser welding is completed, the joint portion of the resin liner 11 in which the joint portion 34 and the joint portion 44 are integrally joined has a configuration having a heat generating material 130 in the vicinity of the laser weld portion 70 (FIG. 7 ( b)).

本実施形態が上記各実施形態に対して有用となる点は、第一に、予備加熱時に接合端面51,61同士の発熱が発熱性材料130により助長されることである。このため、短時間で予備加熱することができる。第二に、同様にレーザ照射時に接合端面51,61同士の溶融が発熱性材料130により助長されることである。このため、接合部34,44同士の溶着不良を抑制して、より一層良好に接合することができる。   The point that this embodiment is useful for each of the above embodiments is that heat generation between the joining end faces 51 and 61 is promoted by the exothermic material 130 during preheating. For this reason, preheating can be performed in a short time. Second, similarly, melting of the joining end faces 51 and 61 is promoted by the exothermic material 130 during laser irradiation. For this reason, the poor welding between the joint portions 34 and 44 can be suppressed, and the joints can be further satisfactorily joined.

なお、レーザ溶着によって、レーザ溶着部70と一体的に発熱性材料130が設けられる場合もある。例えば、レーザの照射によって接合端面61の樹脂が溶融する際に、これに発熱性材料130が混入している場合には、この溶融した固化した樹脂(すなわちレーザ溶着部70)に発熱性材料130が含まれることがある。   In some cases, the heat generating material 130 may be provided integrally with the laser welding portion 70 by laser welding. For example, when the resin of the joining end surface 61 is melted by laser irradiation and the exothermic material 130 is mixed therein, the exothermic material 130 is added to the melted and solidified resin (that is, the laser welding portion 70). May be included.

なお、本実施形態においては、発熱性材料130が導電性セラミックスである場合など、発熱性材料130が導電性を有している場合には、上記の第1〜第3実施形態の予備加熱装置に代えて、予備加熱装置を兼ねる高周波誘導加熱装置を用いるとよい。   In the present embodiment, when the exothermic material 130 has conductivity, such as when the exothermic material 130 is a conductive ceramic, the preheating device of the first to third embodiments described above. Instead of this, a high-frequency induction heating device that also serves as a preheating device may be used.

高周波誘導加熱装置を用いて、ガス容器1を製造する方法について簡単に説明する。その製造過程においては、先ず、図4に示すS2の工程の際に、仮接合状態の樹脂ライナ11を高周波誘導加熱装置の高周波炉内に設置すると共に、この高周波炉内にレーザトーチ100を所定の位置に設置する。高周波誘導加熱装置を駆動すると、高周波による誘導加熱で発熱性材料130に発熱がおこり、接合端面51,61同士が予備加熱された状態となる。この高周波誘導加熱装置の駆動中にレーザトーチ100を駆動して、接合端面51,61同士をレーザ溶着により接合する。   A method for manufacturing the gas container 1 using a high-frequency induction heating apparatus will be briefly described. In the manufacturing process, first, in the step S2 shown in FIG. 4, the temporarily bonded resin liner 11 is installed in a high-frequency furnace of a high-frequency induction heating apparatus, and a laser torch 100 is installed in the high-frequency furnace. Install in position. When the high-frequency induction heating device is driven, heat generation occurs in the heat-generating material 130 by induction heating using high frequency, and the joining end faces 51 and 61 are preheated. The laser torch 100 is driven during the driving of the high-frequency induction heating device, and the joining end faces 51 and 61 are joined by laser welding.

このように、接合端面61に導電性の発熱性材料130が設けられている場合に高周波誘導加熱装置を用いることで、接合端面51,61同士をより一層短時間で予備加熱することができると共に、接合端面51,61同士の溶融を促進することができる。したがって、接合部34,44同士の溶着不良を抑制して、より一層良好に接合することができる。   As described above, when the conductive endothermic material 130 is provided on the joining end face 61, the joining end faces 51 and 61 can be preheated in a shorter time by using the high frequency induction heating device. The melting of the joining end faces 51 and 61 can be promoted. Therefore, poor welding between the joining portions 34 and 44 can be suppressed, and the joining can be performed more satisfactorily.

また、レーザ溶着中においては、高周波による誘導加熱によってレーザ溶着部70を所定の温度に保つことができる。このため、樹脂ライナ11の品質を安定化させることができる。さらに、高周波による誘導加熱によって樹脂ライナ11自体にアニール処理と同様の効果を得ることができる。   Further, during laser welding, the laser welding portion 70 can be maintained at a predetermined temperature by induction heating using high frequency. For this reason, the quality of the resin liner 11 can be stabilized. Furthermore, the effect similar to the annealing treatment can be obtained on the resin liner 11 itself by induction heating with high frequency.

<第5実施形態>
次に、図8を参照して、第5実施形態に係るガス容器1の製造方法について相違点を説明する。第4実施形態との相違点は、高周波誘導加熱装置140の高周波炉141内に加圧治具150を設置したことである。
<Fifth Embodiment>
Next, with reference to FIG. 8, a difference in the method for manufacturing the gas container 1 according to the fifth embodiment will be described. The difference from the fourth embodiment is that the pressing jig 150 is installed in the high-frequency furnace 141 of the high-frequency induction heating device 140.

加圧治具150は、例えば、仮接合状態の樹脂ライナ11をその両端側から内側に向かって圧着するように、接合部34,44同士を挟んで対向して設けられた一対の治具で構成されている。一対の加圧治具150,150は、樹脂ライナ11の軸方向の内側に圧着力を印加して、接合端面51,61同士を強密着させる。一対の加圧治具150,150は、駆動源となるシリンダなどのアクチュエータを有していてもよいし、アクチュエータを具備しない構成であってもよい。   The pressure jig 150 is, for example, a pair of jigs provided facing each other with the joint portions 34 and 44 sandwiched so that the temporarily bonded resin liner 11 is crimped inward from both ends thereof. It is configured. The pair of pressurizing jigs 150 and 150 apply a pressure-bonding force to the inner side of the resin liner 11 in the axial direction so that the joining end faces 51 and 61 are in close contact with each other. The pair of pressurizing jigs 150 and 150 may have an actuator such as a cylinder serving as a drive source, or may not have an actuator.

本実施形態によれば、一対の加圧治具150,150により接合端面51,61同士の密着力を高めた状態で、高周波による誘導加熱およびレーザ溶着を行うことができる。これにより、レーザ溶着された接合端面51,61同士の接合性を高めることができ、樹脂ライナ11の接合強度や気密性をより一層確保することができる。   According to the present embodiment, high-frequency induction heating and laser welding can be performed in a state where the adhesion force between the joining end faces 51 and 61 is enhanced by the pair of pressure jigs 150 and 150. Thereby, the joining property of the joining end surfaces 51 and 61 laser-welded can be improved, and the joining strength and airtightness of the resin liner 11 can be further ensured.

なお、一対の加圧治具150,150による機械的圧着力に代えて、摩擦圧接などの他の構造により、仮接合状態の接合端面51,61同士を強密着させるようにしてもよい。   In addition, instead of the mechanical pressure-bonding force by the pair of pressure jigs 150 and 150, the joint end surfaces 51 and 61 in the temporarily joined state may be strongly adhered to each other by other structures such as friction welding.

<第6実施形態>
次に、図9を参照して、第6実施形態に係るガス容器1について相違点を中心に説明する。第1実施形態との相違点は、ガス容器1の樹脂ライナ11を三つのライナ構成部材201,202,203より構成したことである。なお、図9では、補強層12については省略している。
<Sixth Embodiment>
Next, with reference to FIG. 9, it demonstrates centering around difference about the gas container 1 which concerns on 6th Embodiment. The difference from the first embodiment is that the resin liner 11 of the gas container 1 is composed of three liner constituent members 201, 202, and 203. In FIG. 9, the reinforcing layer 12 is omitted.

樹脂ライナ11は、長手方向において三分割された三つのライナ構成部材201,202,203を、レーザ溶着により接合して構成されている。両端に位置する二つのライナ構成部材201,202は、全体の形状がお碗状に形成されている。中央に位置するライナ構成部材203は、全体の形状が円筒状または環状に形成されている。両端の二つのライナ構成部材201,202は、それぞれ、例えば射出成形により口金3と一体成形される。中央のライナ構成部材203は、例えば射出成形により形成される。   The resin liner 11 is configured by joining three liner constituting members 201, 202, and 203 divided in three in the longitudinal direction by laser welding. The two liner constituting members 201 and 202 located at both ends are formed in a bowl shape as a whole. The liner constituting member 203 located at the center is formed in a cylindrical or annular shape as a whole. The two liner constituting members 201 and 202 at both ends are integrally formed with the base 3 by, for example, injection molding. The central liner constituting member 203 is formed by, for example, injection molding.

両端の二つのライナ構成部材201,202の各々は、返し部211,221および連通部212,222のほか、各口金3,3と反対側に接合部213,223を有している。中央のライナ構成部材203は、軸方向の開口した両端側にそれぞれ接合部231,232を有している。   Each of the two liner constituent members 201 and 202 at both ends has joint portions 213 and 223 on the side opposite to the caps 3 and 3 in addition to the return portions 211 and 221 and the communication portions 212 and 222. The central liner constituting member 203 has joint portions 231 and 232 on both end sides opened in the axial direction.

これらの接合部(213,223,231,232)は、レーザ透過性またはレーザ吸収性の特性を有している。例えば、両端の二つのライナ構成部材201,202は、レーザ透過性の熱可塑性樹脂で形成され、中央のライナ構成部材203は、レーザ吸収性の熱可塑性樹脂で形成される。もちろん、この逆であってもよいし、各ライナ構成部材201,202,203が、部分的にレーザ透過性またはレーザ吸収性の特性を有していてもよい。樹脂ライナ11は、接合部213,231同士がレーザ溶着により互いに接合され、且つ接合部223,232同士がレーザ溶着により互いに接合されている。   These joint portions (213, 223, 231 and 232) have laser transmission characteristics or laser absorption characteristics. For example, the two liner constituent members 201 and 202 at both ends are formed of a laser-transmitting thermoplastic resin, and the central liner constituent member 203 is formed of a laser-absorbing thermoplastic resin. Of course, this may be reversed, and each of the liner constituting members 201, 202, 203 may partially have a laser transmitting property or a laser absorbing property. In the resin liner 11, the joint portions 213 and 231 are joined to each other by laser welding, and the joint portions 223 and 232 are joined to each other by laser welding.

本実施形態のガス容器1の製造方法は、上記した各実施形態の製造方法を適用することができる。ここでは、三つのライナ構成部材201,202,203を同時に予備加熱およびレーザ溶着する場合について簡単に説明する。   The manufacturing method of each embodiment mentioned above can be applied to the manufacturing method of the gas container 1 of this embodiment. Here, the case where the three liner constituent members 201, 202, 203 are simultaneously preheated and laser welded will be briefly described.

先ず、口金3付きのライナ構成部材(201,202)を含む三つのライナ構成部材201,202,203を成形する。そして、接合部213,231同士および接合部223,232同士を接触させて、仮接合状態の樹脂ライナ11とする。   First, three liner constituent members 201, 202, 203 including a liner constituent member (201, 202) with a base 3 are formed. Then, the joint portions 213 and 231 and the joint portions 223 and 232 are brought into contact with each other to obtain the resin liner 11 in a temporarily joined state.

次いで、仮接合状態の樹脂ライナ11をその軸回りに回転させながら、あるいは二つの予備加熱装置(例えばヒータ90,110)および二つのレーザトーチ100を樹脂ライナ11の周囲を回転させる。この回転中に、接合部213,231同士および接合部223,232同士について、予備加熱の途中でまたはその後でレーザ溶着により周方向に亘って接合する。   Next, while rotating the temporarily bonded resin liner 11 around its axis, the two preheating devices (for example, heaters 90 and 110) and the two laser torches 100 are rotated around the resin liner 11. During this rotation, the joints 213 and 231 and the joints 223 and 232 are joined together in the circumferential direction by laser welding during or after preheating.

これにより、三つのライナ構成部材201,202,203が一体的に接合され、本接合状態の樹脂ライナ11が製造される。その後、三つのライナ構成部材201,202,203の外周に亘って補強層が巻き付けられて、ガス容器1が製造される。   As a result, the three liner constituting members 201, 202, 203 are integrally joined, and the resin liner 11 in the final joined state is manufactured. Thereafter, the reinforcing layer is wound around the outer circumferences of the three liner constituting members 201, 202, 203, and the gas container 1 is manufactured.

したがって、本実施形態のように三つのライナ構成部材201,202,203で樹脂ライナ11を構成しても、上記実施形態と同様に、レーザ溶着による接合が良好なガス容器1を製造することができる。   Therefore, even if the resin liner 11 is constituted by the three liner constituting members 201, 202, and 203 as in the present embodiment, the gas container 1 having good bonding by laser welding can be manufactured as in the above embodiment. it can.

なお、三つのライナ構成部材201,202,203について、予備加熱やレーザ溶着等の処理を同時に行った例を説明したが、もちろんこれらの処理を別個に行ってもよい。また、ライナ構成部材が三つの場合について説明したが、四つ以上も同様である。すなわち、本発明は、軸方向に並ぶ複数のライナ構成部材を接合した樹脂ライナ11に適用することができる。   In addition, although the example which performed the process of preheating, laser welding, etc. simultaneously about three liner structural members 201,202,203 was demonstrated, of course, you may perform these processes separately. Moreover, although the case where there were three liner structural members was demonstrated, four or more are the same. That is, the present invention can be applied to the resin liner 11 in which a plurality of liner constituent members arranged in the axial direction are joined.

<第7実施形態>
次に、図10及び図11を参照して、第7実施形態に係るガス容器1の製造方法について相違点を説明する。第1実施形態との相違点は、レーザトーチ100が予備加熱装置を兼ねることと、水分を測定する非接触式の水分測定装置300を設けたことである。
<Seventh embodiment>
Next, with reference to FIG.10 and FIG.11, a difference is demonstrated about the manufacturing method of the gas container 1 which concerns on 7th Embodiment. The difference from the first embodiment is that the laser torch 100 also serves as a preheating device and that a non-contact type moisture measuring device 300 for measuring moisture is provided.

水分測定装置300は、ライナ構成部材21,22の水分率を測定するものである。水分測定装置300は、樹脂ライナ11の外側に位置して、接合部34,44同士の周方向の一部に(ライナ構成部材21,22同士の接合境界の一部に)非接触で臨んでいる。それゆえ、水分測定装置300は、接合部34又は接合部44の水分率を測定する。   The moisture measuring device 300 measures the moisture content of the liner constituent members 21 and 22. The moisture measuring device 300 is located outside the resin liner 11 and faces a part in the circumferential direction between the joint portions 34 and 44 (a part of the joint boundary between the liner constituent members 21 and 22) in a non-contact manner. Yes. Therefore, the moisture measuring device 300 measures the moisture content of the joint 34 or the joint 44.

水分測定装置300は、例えば露点計、赤外線分光計など各種公知のものを用いることができ、本実施形態ではマイクロ波水分計が用いられている。図示省略した回転装置により、樹脂ライナ11を軸回りに一回転させることで、水分測定装置300は、接合部34又は接合部34の水分率を周方向に亘って測定することができる。   Various known devices such as a dew point meter and an infrared spectrometer can be used as the moisture measuring device 300, and a microwave moisture meter is used in this embodiment. The moisture measuring device 300 can measure the moisture content of the bonded portion 34 or the bonded portion 34 in the circumferential direction by rotating the resin liner 11 once around the axis by a rotating device (not shown).

図11は、予熱からレーザ溶着完了までの工程を示すフローチャートであり、これらの工程は、第1実施形態の図3に示す予熱の工程(S3)及びレーザ溶着の工程(S4)に相当するものである。   FIG. 11 is a flowchart showing steps from preheating to completion of laser welding, and these steps correspond to the preheating step (S3) and the laser welding step (S4) shown in FIG. 3 of the first embodiment. It is.

ステップS11では、仮接合状態の樹脂ライナ11を回転装置により回転させながら、レーザトーチ100を駆動し、接触状態の接合部34,44同士を予備加熱する。このとき、レーザトーチ100によるレーザの出力は、接合部34,44同士がレーザ溶着しない程度のものに設定される。すなわち、予備加熱する場合のレーザの出力は、本加熱(レーザ溶着のために加熱)する場合のレーザの出力よりも低く設定される。   In step S11, the laser torch 100 is driven while the temporarily bonded resin liner 11 is rotated by the rotating device, and the bonded portions 34 and 44 in the contact state are preheated. At this time, the laser output from the laser torch 100 is set to a value that does not cause laser welding between the joint portions 34 and 44. That is, the laser output in the case of preheating is set lower than the laser output in the case of main heating (heating for laser welding).

予備加熱を実行しながら、水分測定装置300によって、ライナ構成部材21,22の水分率を測定する(ステップS12)。ここで、水分率が基準値を超える場合には(ステップS13;No)、レーザトーチ100による予備加熱が続行され、予備加熱による接合部33,34の水分除去が続行される。水分率の基準値は、例えば0.2%に設定される。   While performing preheating, the moisture content of the liner constituent members 21 and 22 is measured by the moisture measuring device 300 (step S12). Here, when the moisture content exceeds the reference value (step S13; No), the preliminary heating by the laser torch 100 is continued, and the moisture removal of the joint portions 33 and 34 by the preliminary heating is continued. The reference value of the moisture content is set to 0.2%, for example.

一方、水分率が基準値以内である場合には(ステップS13;Yes)、レーザトーチ100が予備加熱から本加熱に移行して、接合部34,44同士のレーザ溶着が開始される(ステップS14)。そして、上記実施形態と同様にして、レーザ溶着が完了すると(ステップS15)、樹脂ライナ11は仮接合状態から本接合状態となる。   On the other hand, when the moisture content is within the reference value (step S13; Yes), the laser torch 100 shifts from the preheating to the main heating, and laser welding between the joint portions 34 and 44 is started (step S14). . Then, in the same manner as in the above embodiment, when the laser welding is completed (step S15), the resin liner 11 is changed from the temporarily bonded state to the main bonded state.

以上のように、本実施形態では、水分測定装置300の測定結果に応じて予備加熱を行い、接合部34,44の水分率を所定の基準値にまで下げることができる。これにより、接合部34,44の水分率が溶着不良が発生しない水分率になったところで、レーザ溶着を開始することができ、ロバスト性の高いレーザ溶着が可能となる。また、製造工程の全体を通じて、ライナ構成部材21,22の湿度管理が容易となる。さらに、レーザトーチ100が予備加熱装置を兼ねているため、製造装置全体の構成を単純化できる。   As described above, in the present embodiment, preliminary heating can be performed according to the measurement result of the moisture measuring device 300 to reduce the moisture content of the joints 34 and 44 to a predetermined reference value. As a result, laser welding can be started when the moisture content of the joint portions 34 and 44 reaches a moisture content that does not cause poor welding, and laser welding with high robustness can be performed. Further, the humidity management of the liner constituent members 21 and 22 is facilitated throughout the manufacturing process. Furthermore, since the laser torch 100 also serves as a preheating device, the configuration of the entire manufacturing apparatus can be simplified.

なお、水分測定装置300の測定結果に応じて予備加熱を行うことは、レーザトーチ100以外の予備加熱装置の場合にも有効であり、上記各実施形態に適用することができる。   In addition, performing preheating according to the measurement result of the moisture measuring apparatus 300 is also effective in the case of a preheating apparatus other than the laser torch 100, and can be applied to each of the above embodiments.

<他の実施形態>
上記した本発明のガス容器1の製造方法では、様々な製造設備を用いて行うことができる。例えば、第1実施形態の仮接合状態の樹脂ライナ11をチャンバー内に配置して、チャンバー内を不活性ガス雰囲気下または真空状態にして、接合部34,44同士を予備加熱およびレーザ溶着するようにしてもよい。こうすることで、大気よりも低酸素雰囲気下でレーザ溶着されるため、各接合部34,44の酸化を抑制することができ、接合精度をより一層を高めることができる。
<Other embodiments>
In the manufacturing method of the gas container 1 of this invention mentioned above, it can carry out using various manufacturing equipment. For example, the resin liner 11 in the temporarily bonded state according to the first embodiment is disposed in the chamber, the inside of the chamber is placed in an inert gas atmosphere or in a vacuum state, and the bonded portions 34 and 44 are preheated and laser welded together. It may be. By doing so, since laser welding is performed in a lower oxygen atmosphere than the atmosphere, oxidation of each of the joint portions 34 and 44 can be suppressed, and the joining accuracy can be further improved.

また、レーザ溶着時に樹脂ライナ11の内外に圧力差を付与して、接合端面51,61同士の密着性を高めるようにしてもよい。圧力差の付与は、例えばポンプにより、樹脂ライナ11の口金3を介して樹脂ライナ11の内部を減圧または加圧することで行うことができる。こうすることで、第5実施形態で説明した加圧治具を不要または簡略化しても、接合端面51,61同士の密着力を高めた状態で、これをレーザ溶着により接合することができる。   Further, a pressure difference may be applied to the inside and outside of the resin liner 11 at the time of laser welding to improve the adhesion between the joining end faces 51 and 61. The application of the pressure difference can be performed by, for example, reducing or pressurizing the inside of the resin liner 11 through the base 3 of the resin liner 11 by a pump. By doing so, even if the pressing jig described in the fifth embodiment is unnecessary or simplified, it can be joined by laser welding in a state where the adhesion force between the joining end faces 51 and 61 is increased.

ガス容器1について説明したレーザ溶着については、樹脂ライナ11のみならず、自動車部品や配管部品などの各種の樹脂成形品に適用することができる。例えば、インテークマニホールドを複数の樹脂成形材で構成し、この樹脂成形材同士をレーザ溶着で接合する場合にも、レーザ溶着工程に先行する予備加熱や、レーザ溶着部70への発熱性材料130の追加などを適用することで接合精度を高めることができる。   The laser welding described for the gas container 1 can be applied not only to the resin liner 11 but also to various resin molded products such as automobile parts and piping parts. For example, even when the intake manifold is constituted by a plurality of resin molding materials and the resin molding materials are joined to each other by laser welding, preheating prior to the laser welding process or heating of the heat generating material 130 to the laser welding portion 70 is performed. Application accuracy can be increased by applying additions and the like.

第1実施形態に係るガス容器の構成を示す断面図である。It is sectional drawing which shows the structure of the gas container which concerns on 1st Embodiment. 第1実施形態に係るガス容器の接合部分を拡大して示す断面図である。It is sectional drawing which expands and shows the junction part of the gas container which concerns on 1st Embodiment. 第1実施形態に係るガス容器の製造方法を説明する斜視図である。It is a perspective view explaining the manufacturing method of the gas container which concerns on 1st Embodiment. 第1実施形態に係るガス容器の製造方法の工程を示すフローチャートである。It is a flowchart which shows the process of the manufacturing method of the gas container which concerns on 1st Embodiment. 第2実施形態に係るガス容器の製造方法を説明する斜視図である。It is a perspective view explaining the manufacturing method of the gas container which concerns on 2nd Embodiment. 第3実施形態に係るガス容器の製造方法を説明する斜視図である。It is a perspective view explaining the manufacturing method of the gas container which concerns on 3rd Embodiment. 第4実施形態に係るガス容器の製造方法を説明する図であり、(a)接合前の接合部分の拡大断面図、(b)接合後の接合部分の拡大断面図である。It is a figure explaining the manufacturing method of the gas container which concerns on 4th Embodiment, (a) The expanded sectional view of the junction part before joining, (b) The expanded sectional view of the junction part after joining. 第5実施形態に係るガス容器の製造方法を説明する側面図である。It is a side view explaining the manufacturing method of the gas container which concerns on 5th Embodiment. 第6実施形態に係るガス容器の構成を示す断面図である。It is sectional drawing which shows the structure of the gas container which concerns on 6th Embodiment. 第7実施形態に係るガス容器の製造方法を説明する斜視図である。It is a perspective view explaining the manufacturing method of the gas container which concerns on 7th Embodiment. 第7実施形態に係るガス容器の製造方法の工程を示すフローチャートである。It is a flowchart which shows the process of the manufacturing method of the gas container which concerns on 7th Embodiment.

符号の説明Explanation of symbols

1 ガス容器、11 樹脂ライナ、12 補強層、21 ライナ構成部材、22 ライナ構成部材、34 接合部、44 接合部、70 レーザ溶着部、90 ヒータ、100 レーザトーチ、110 ヒータ、120 熱風装置、130 発熱性材料、140 高周波誘導加熱装置、201 ライナ構成部材、202 ライナ構成部材、203 ライナ構成部材、213 接合部、223 接合部、231 接合部、232 接合部

DESCRIPTION OF SYMBOLS 1 Gas container, 11 Resin liner, 12 Reinforcement layer, 21 Liner constituent member, 22 Liner constituent member, 34 Joining part, 44 Joining part, 70 Laser welding part, 90 Heater, 100 Laser torch, 110 Heater, 120 Hot air apparatus, 130 Heat generation Material, 140 high frequency induction heating device, 201 liner constituent member, 202 liner constituent member, 203 liner constituent member, 213 joint portion, 223 joint portion, 231 joint portion, 232 joint portion

Claims (12)

少なくとも一部が中空円筒状のライナ構成部材を、複数個接合して構成される樹脂ライナを有するガス容器の製造方法であって、
前記複数のライナ構成部材同士の接合部分は、その水分を測定する水分測定装置の測定結果に応じて予備加熱されると共に、その予備加熱されている途中でまたは予備加熱された後で、レーザを照射されることによりレーザ溶着で接合されたガス容器の製造方法。
A method for producing a gas container having a resin liner constituted by joining a plurality of liner components having a hollow cylindrical shape at least partially,
The joint portion between the plurality of liner constituent members is preheated according to the measurement result of the moisture measuring device for measuring the moisture , and the laser is applied during or after the preheating. A method for manufacturing a gas container which is bonded by laser welding by irradiation.
少なくとも一部が中空円筒状のライナ構成部材を、複数個接合して構成される樹脂ライナを有するガス容器の製造方法であって、
互いに接合されるべき二つのライナ構成部材の少なくとも一方を予備加熱する予備加熱工程と、
前記予備加熱工程の途中でまたは前記予備加熱工程の後で、レーザを照射することにより、接合対象となる接触状態のライナ構成部材同士をレーザ溶着で互いに接合するレーザ照射工程と、
を有し、
前記予備加熱工程は、ライナ構成部材の接合部の水分を測定する水分測定装置の測定結果に応じて、予備加熱することで行われるガス容器の製造方法。
A method for producing a gas container having a resin liner constituted by joining a plurality of liner components having a hollow cylindrical shape at least partially,
A preheating step of preheating at least one of the two liner components to be joined together;
A laser irradiation step of joining the liner constituent members in contact with each other by laser welding by irradiating laser in the middle of the preheating step or after the preheating step;
I have a,
The said preheating process is a manufacturing method of the gas container performed by preheating according to the measurement result of the moisture measuring apparatus which measures the water | moisture content of the junction part of a liner structural member .
前記予備加熱工程は、互いに接合されるべき一方のライナ構成部材の接合部と、他方のライナ構成部材の接合部との少なくとも一方を予備加熱することで行われ、
前記レーザ照射工程は、接触状態の接合部同士をレーザ溶着で互いに接合することで行われる請求項2に記載のガス容器の製造方法。
The preheating step is performed by preheating at least one of a joint portion of one liner constituent member to be joined to each other and a joint portion of the other liner constituent member,
The said laser irradiation process is a manufacturing method of the gas container of Claim 2 performed by joining the junction parts of a contact state mutually by laser welding.
前記予備加熱工程は、接触状態の接合部同士を予備加熱することで行われる請求項3に記載のガス容器の製造方法。   The said preheating process is a manufacturing method of the gas container of Claim 3 performed by preheating the junction parts of a contact state. 前記予備加熱工程は、接触状態のライナ構成部材同士の内側および外側の少なくとも一方から、接触状態の接合部同士を加熱することで行われる請求項4に記載のガス容器の製造方法。   The said preheating process is a manufacturing method of the gas container of Claim 4 performed by heating the junction parts of a contact state from at least one of the inner side of the liner structural members of a contact state, and the outer side. 前記予備加熱工程は、熱源を有する予備加熱装置に対し、接触状態のライナ構成部材同士を相対的に回転させながら、接触状態の接合部同士を周方向に亘って予備加熱することで行われる請求項5に記載のガス容器の製造方法。   The preheating step is performed by preheating the joint portions in contact with each other in the circumferential direction while relatively rotating the liner constituent members in contact with the preheating device having a heat source. Item 6. A method for producing a gas container according to Item 5. 前記レーザ照射工程は、レーザを照射するレーザ照射装置に対し、接触状態のライナ構成部材同士を相対的に回転させながら、接触状態の接合部同士を周方向に亘って予備加熱することで行われる請求項6に記載のガス容器の製造方法。   The laser irradiation step is performed by preheating the bonded joints in the circumferential direction while rotating the liner constituent members in contact with each other with respect to a laser irradiation apparatus that irradiates a laser. The manufacturing method of the gas container of Claim 6. 前記予備加熱装置は、接触状態のライナ構成部材同士の回転方向において、前記レーザ照射装置の上流側に位置している請求項7に記載のガス容器の製造方法。   The said preheating apparatus is a manufacturing method of the gas container of Claim 7 located in the upstream of the said laser irradiation apparatus in the rotation direction of the liner structural members of a contact state. 前記予備加熱工程を実行する予備加熱装置は、ヒータ、熱風装置、高周波誘導加熱装置及びレーザ照射装置の少なくとも一つである請求項2ないし8のいずれか一項に記載のガス容器の製造方法。   The method for manufacturing a gas container according to any one of claims 2 to 8, wherein the preheating device that performs the preheating step is at least one of a heater, a hot air device, a high-frequency induction heating device, and a laser irradiation device. 前記予備加熱工程に先立ち、互いに接合されるべき一方のライナ構成部材の接合部と、他方のライナ構成部材の接合部との少なくとも一方に発熱性材料を設ける工程を、更に有する請求項2ないし9のいずれか一項に記載のガス容器の製造方法。   Prior to the preheating step, the method further comprises a step of providing a heat generating material in at least one of a joint portion of one liner constituent member and a joint portion of the other liner constituent member to be joined to each other. The manufacturing method of the gas container as described in any one of these. 前記発熱性材料は、セラミックス、黒鉛、樹脂および金属の少なくも一つである請求項10に記載のガス容器の製造方法。   The method for manufacturing a gas container according to claim 10, wherein the exothermic material is at least one of ceramics, graphite, resin, and metal. 前記予備加熱工程に先立ち、互いに接合されるべき一方のライナ構成部材の接合部をレーザ透過性の部材で構成すると共に、他方のライナ構成部材の接合部をレーザ吸収性の部材で構成する工程を、更に有し、
前記レーザ照射工程は、前記レーザ透過性の部材からなる接合部側からレーザを照射することで行われる請求項2ないし11のいずれか一項に記載のガス容器の製造方法。
Prior to the preheating step, a step of forming a joint portion of one liner constituent member to be joined to each other with a laser transmitting member and a step of forming a joint portion of the other liner constituent member with a laser absorbing member. And further,
The method of manufacturing a gas container according to any one of claims 2 to 11, wherein the laser irradiation step is performed by irradiating a laser from a joint side made of the laser transmissive member.
JP2005371931A 2005-03-02 2005-12-26 Gas container manufacturing method Active JP4466559B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2005371931A JP4466559B2 (en) 2005-03-07 2005-12-26 Gas container manufacturing method
US11/884,083 US7943884B2 (en) 2005-03-02 2006-02-20 Gas container and method of producing the same
CN2006800069640A CN101133280B (en) 2005-03-02 2006-02-20 Gas vessel and its manufacturing method
KR20077020052A KR100904028B1 (en) 2005-03-02 2006-02-20 Gas container and method of producing the same
EP06714653A EP1855046B1 (en) 2005-03-02 2006-02-20 Gas container and method of producing the same
CA2598621A CA2598621C (en) 2005-03-02 2006-02-20 Gas container and method of producing the same
PCT/JP2006/303514 WO2006093059A1 (en) 2005-03-02 2006-02-20 Gas container and method of producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005062584 2005-03-07
JP2005371931A JP4466559B2 (en) 2005-03-07 2005-12-26 Gas container manufacturing method

Publications (2)

Publication Number Publication Date
JP2006283968A JP2006283968A (en) 2006-10-19
JP4466559B2 true JP4466559B2 (en) 2010-05-26

Family

ID=37406092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005371931A Active JP4466559B2 (en) 2005-03-02 2005-12-26 Gas container manufacturing method

Country Status (1)

Country Link
JP (1) JP4466559B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006004121A1 (en) * 2006-01-25 2007-07-26 Hydac Technology Gmbh Pressure tank for holding a liquid/gaseous fluid medium has a second plastic jacket encasing a first plastic jacket both attached to each other in a coaxial structure
JP2008114420A (en) * 2006-11-01 2008-05-22 Hamamatsu Photonics Kk Laser welding method, laser welding apparatus and manufacturing method of resin product
JP4873482B2 (en) * 2007-02-28 2012-02-08 国立大学法人大阪大学 Metal resin bonding method and metal resin composite using a plurality of laser light sources
JP5071351B2 (en) * 2008-11-07 2012-11-14 トヨタ自動車株式会社 Method for manufacturing resin liner and method for manufacturing fluid storage container
JP5765207B2 (en) * 2011-12-06 2015-08-19 トヨタ自動車株式会社 Manufacturing method of high-pressure tank
JP2014020440A (en) * 2012-07-17 2014-02-03 Jfe Container Co Ltd Container for storing hydrogen
JP2014052030A (en) * 2012-09-07 2014-03-20 Sanko Gosei Ltd Pressure-resistant container and manufacturing method of pressure-resistant container
KR101883279B1 (en) * 2014-03-13 2018-08-30 우시 화잉 마이크로일렉트로닉스 테크놀로지 컴퍼니 리미티드 Chemical liquid storage bottle and preparation method therefor
DE102018110049B4 (en) * 2018-04-26 2020-07-02 Nproxx B.V. Process for the production of a fiber-reinforced pressure vessel with polar cap reinforcement
JP7067329B2 (en) * 2018-07-13 2022-05-16 トヨタ自動車株式会社 How to join resin molded products

Also Published As

Publication number Publication date
JP2006283968A (en) 2006-10-19

Similar Documents

Publication Publication Date Title
JP4466559B2 (en) Gas container manufacturing method
EP1855046B1 (en) Gas container and method of producing the same
JP4466408B2 (en) Gas container and manufacturing method thereof
JP5071351B2 (en) Method for manufacturing resin liner and method for manufacturing fluid storage container
JP2006247892A (en) Joining structure of two members, joining method of them, gas container and its manufacturing method
US20080187697A1 (en) Structure and Method for Bonding Two Members, Gas Container and Method for Manufacturing Such Gas Container
US6596122B1 (en) Simultaneous butt and lap joints
US20020100540A1 (en) Simultaneous butt and lap joints
JP5466929B2 (en) Glass welding method and glass layer fixing method
WO2007018054A1 (en) Sealed container
JP2013176975A (en) Resin molded product and method of producing the same
KR101866021B1 (en) Pressure container having the liner welding and the manufacture method for the same
JP2010167695A (en) Method of manufacturing pressure vessel
JP2013104435A (en) Method for manufacturing resin linear
JP5505079B2 (en) High pressure tank liner manufacturing apparatus, high pressure tank liner manufacturing method, and high pressure tank manufacturing method
JP2007223087A (en) Manufacturing method of gas container
RU2363880C2 (en) Tank for gas storage and method for fabrication of this tank
JP2017164939A (en) Method of manufacturing liner
JP5262954B2 (en) Injection molding apparatus, method for manufacturing molded body, and molded body
US20190126563A1 (en) Method for producing a moulded part assembly and corresponding production device
US20220024145A1 (en) Infrared welding machine
JP5201533B2 (en) Resin welding method and tank manufacturing method using the same
JP2005219449A (en) Method for and device of manufacturing composite product
JP2837704B2 (en) Fluororesin-lined container and method for producing the same
JP5401834B2 (en) Laser resin fusion method and laser resin fusion device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100215

R151 Written notification of patent or utility model registration

Ref document number: 4466559

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140305

Year of fee payment: 4