JP4457469B2 - Electric double layer capacitor - Google Patents

Electric double layer capacitor Download PDF

Info

Publication number
JP4457469B2
JP4457469B2 JP2000186259A JP2000186259A JP4457469B2 JP 4457469 B2 JP4457469 B2 JP 4457469B2 JP 2000186259 A JP2000186259 A JP 2000186259A JP 2000186259 A JP2000186259 A JP 2000186259A JP 4457469 B2 JP4457469 B2 JP 4457469B2
Authority
JP
Japan
Prior art keywords
electric double
layer
packing
layer capacitor
double layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000186259A
Other languages
Japanese (ja)
Other versions
JP2002008955A (en
Inventor
裕通 伊藤
論 堀越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Original Assignee
Meidensha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp filed Critical Meidensha Corp
Priority to JP2000186259A priority Critical patent/JP4457469B2/en
Publication of JP2002008955A publication Critical patent/JP2002008955A/en
Application granted granted Critical
Publication of JP4457469B2 publication Critical patent/JP4457469B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electric double-layer capacitor, in which the sealing part will not become loose, and no leakage of electrolyte solution occurs, despite repeated expansions and contractions of the filler inside the cell during long term usage. SOLUTION: A positive-polarity polarizable electrode 7 containing an electrolyte solution, a negative-polarity polarizable electrode 7 containing an electrolyte solution, and an electrolyte solution of a gel state arranged between the polarizable electrodes, are accommodated in a space sandwiched by collector electrodes 4, 6 and surrounded by packing 2. All these are sealed hermetically by pressing from both ends, to form an electric double-layer capacitor, where a gaseous layer 8 for absorbing expansion and contraction is arranged in the space by an amount of 6% or higher and 20% or lower (under an atmospheric pressure and at 25 deg.C) of the total volume of the gas layer and the liquid layer inside the space.

Description

【0001】
【発明の属する技術分野】
本発明は、活性炭電極を分極性電極とする電気二重層キャパシタに関する。
【0002】
【従来の技術】
単位キャパシタの耐電圧は、その構成要素である電解液(電解質、溶媒)の電気分解電圧で決まり、水溶液系電解液の場合約1.2V、有機系電解液の場合2.8〜3Vである。
溶媒分解電圧以上の電圧を印加するとキャパシタは破壊されるため、高電圧を要求される用途には、単位キャパシタを複数個、直列接続を行う。
【0003】
構造的には、電極とセパレータを渦巻き状に巻き円筒形ケースに収納する捲回型と、電極セパレータが平板状の平板型がある。
平板型は電極、セパレータ、電極、セパレータと交互に積層するバイポーラ構造をとることができ、高電圧用途に適する。
【0004】
平板型2セル積層キャパシタの断面図を図1に示す。
図1に示すように、集電極4,6とパッキン2に囲まれたセル内には液体層として電解液が含まれ、固体層として活性炭電極が含まれ、また、気体層8として窒素ガス、アルゴンガス又は乾燥空気が含まれる。
【0005】
【発明が解決しようとする課題】
上述した電気二重層キャパシタにおいては、環境温度変化や充放電電流条件によりキャパシタ温度は−20〜70℃に変化し、セル内液体層は膨張収縮を繰り返す。
そのため、キャパシタの長期的使用により、セル内部充填物の膨張収縮繰り返して、封口部に緩みが生じ、電解液漏出が発生する問題があった。
【0006】
【課題を解決するための手段】
上記課題を解決する本発明の請求項1記載の電気二重層キャパシタは、電解液を含んだ正極分極性電極と、電解液を含んだ負極分極性電極と、上記分極性電極間に配置されるゲル状電解液とを有し、これらを集電極とパッキンとで挟まれるスペースに収容し、両端から締め付けることにより密閉する電気二重層キャパシタにおいて、上記スペースに膨張収縮吸収用の気体層が設けられる一方、前記電解液量が予め決まっており、前記膨張収縮吸収用の気体層が上記スペース内の気体層と液体層の総和に対して14%以上19%以下(25℃時大気圧下)であることを特徴とする。
【0007】
上記課題を解決する本発明の請求項記載の電気二重層キャパシタは、請求項記載の電気二重層キャパシタにおいて、前記パッキンの材質を有機過酸化物加硫エチレンプロピレンゴム(PO−EPDM)とすることを特徴とする。
【0008】
上記課題を解決する本発明の請求項記載の電気二重層キャパシタは、請求項記載の電気二重層キャパシタにおいて、前記パッキンに締付リブを設けたことを特徴とする。
【0009】
〔作用〕
気体、液体は圧力変化に対して体積が変化するが、固体は変化しないため、気体層と液体層の総和に対する気体層の割合(=気体層体積/(液体層体積+気体層体積))を指標とすることが理論的である。
圧力増加耐久性を上げるために、シール構造を強化すれば、結果としてキャパシタの重量増加につながる。
また、セル内に収納する電解液量は決まっているので、気体層の割合を増やすと、その分キャパシタ体積が増加し、体積エネルギー密度の低下につながる。
従って、上記気体層の割合は、6%〜20%が最適と考えられる。
【0010】
尚、以下に述べる実施例では、気体層の割合を20%とし、比較例としてその割合を5%としたが、14%とすれば良好な結果が得られることを確認した。
また、計算上では5%、6%、7%、8%で70℃のとき圧力がそれぞれ4倍、3倍、2.5倍、2.2倍になるので、これより数%のところが急激に変化するポイントであることが判る。
【0011】
【発明の実施の形態】
[実施例1]
本発明の第1の実施例を図1に示す。
本実施例は、セル内電解液の膨張を同セル内の規定量の気体をバッファとして使用することにより抑え、漏液発生率を低減させたものである。
即ち、図1に示す電気二重層キャパシタにおいては、セパレータ5を間に挟んで端集電極4と中間集電極6を交互に2セル積層すると共にその外周部分にパッキン2を介装させる一方、これらをエンドプレート1で両側から挟んで締付けボルト3にて締め付けた構造となっている。
【0012】
端集電極4,中間集電極6とパッキン2に囲まれたセル内には液体層として電解液が含まれ、固体層として活性炭電極が含まれ、また、気体層8として窒素ガス、アルゴンガス又は乾燥空気が含まれる。
中間集電極6としてアルミ箔を使用し、分極性電極7として外形195mm×195mmの日本カイノール株式会社製、活性炭繊維布ACC561−25を使用し、両者を導電性接着剤で貼り合わせた。
分極性電極7には、4フッ化硼酸テトラエチルアンモニウムを1mol/dm3プロピレンカーボネートに溶解させた電解液を8cm3含浸させた。
【0013】
上記電解液にゲル化剤としてポリアクリロニトリルを使用したゲル状電解液(縦205mm,横205mm,厚さ0.2mm)をセパレータ5とした。
パッキン2は厚さ0.8mm、内寸法212mm×212mmのエラストマーを使用し、セル内部に5.6cm3のアルゴンガスを封入した。
ここで、アルゴンガスの規定量としては、気体層と液体層の総和に対して19%とした。
規定量が、少なすぎると高温時の内圧が高まり漏液発生率が上昇し、多すぎるとセル容積が増加し体積エネエルギー密度の低いキャパシタとなるので、気体層と液体層の総和に対して6%以上20%以下とするのが望ましい。
【0014】
例えば、アルゴンガス雰囲気中(1atm)で積層する場合は、構造上の内容積から内部固体層、液体層を除いた体積がガス封入量となる。
本実施例では、7セル積層し、キャパシタユニットを製作した。
比較例として、分極性電極7に含浸させる電解液量を10cm3、封入ガス量1.6cm3(気体層と液体層の総和に対して5%)とした7セル積層キャパシタユニットを製作した。
【0015】
上記2種類のユニットを20個ずつ70℃で2時間、25℃で2時間、−20℃で2時間、温度変化速度45℃/hのヒートサイクルを100サイクル実施し、漏液の有無を調べ、漏液発生率を求めた。
【0016】
その結果、比較例では漏液発生率が80%であったのに対し、実施例1では0%に低減した。
尚、積層型キャパシタのセル貫通穴10を集電極6でなく、パッキン2に設けることにより工数低減を行うこともできる。
例えば、パッキン2に2mm×2mmの矩形貫通穴10を締付リブ内側の薄肉部の4隅の1箇所に設け、図2に示すように組み立て、図3に示すように締付け、実施例3の構造のキャパシタユニットを製作できる。
【0017】
[実施例2]
本実施例は、圧縮永久歪みの小さいパッキン材を使用することで、パッキン材の高温時耐久性を向上させ、温度幅を広げた場合の漏液発生率低減を図ったものである。その他の構成は前述した実施例と同様である。
パッキン材質を有機過酸化物加硫エチレンプロピレンゴム(PO−EPDM)(圧縮永久歪み7%:圧縮率25%−100℃−70時間)として、実施例1の構造のキャパシタユニットを製作した。
【0018】
比較例として、硫黄化合物加硫エチレンプロピレンゴム(S−EPDM)(圧縮永久歪み44%:圧縮率25%−100℃−70時間)として、実施例1の構造のキャパシタユニットを製作した。
上記2種類のユニットを20個ずつ90℃で2時間、35℃で2時間、−20℃で2時間、温度変化速度55℃/hのヒートサイクルを100サイクル実施し、漏液の有無を調べ、漏液発生率を求めた。
その結果、比較例では漏液発仕率が20%であったのに対し、実施例2では0%に低減した。
【0019】
尚、積層型キャパシタのセル貫通穴10を集電極6でなく、パッキン2に設けることにより工数低減を行うこともできる。
例えば、パッキン2に2mm×2mmの矩形貫通穴10を締付リブ内側の薄肉部の4隅の1箇所に設け、図2に示すように組み立て、図3に示すように締付け、実施例3の構造のキャパシタユニットを製作できる。
【0020】
[実施例3]
本発明の第3の実施例を図2に示す。
本実施例は、パッキンに締付リブを設けることによなソール特性を向上させ、温度幅を広げた場合の漏液発生率低減を図ったものである。
即ち、図2に示す電気二重層キャパシタにおいては、セパレータ5を間に挟んで端集電極4と中間集電極6を交互に複数セル積層すると共にその外周部分にパッキン2を介装させる一方、これらをエンドプレート1で両側から挟んで締め付けボルト3にて締付けた構造となっている。
【0021】
ここで、パッキン2は、厚さ0.8mmの平板パッキンに、幅2.5mm高さ0.2mmの締付リブ9を設けたものである。
但し、図2は、組み立て積層した状態の締付けリブ9を示し、図3は締付けボルト3にて締め付けた状態の締付けリブ9を示している。
【0022】
比較例としてリブのない平板パッキンを使用した、実施例1の構造のキャパシタユニットを製作した。
上記2種類のユニットを20個ずつ90℃で2時間、35℃で2時間、−20℃で2時間、温度変化速度55℃/hのヒートサイクルを100サイクル実施し、漏液の有無を調べ、漏液発生率を求めた。
その結果、比較例では漏液発生率が20%であったのに対し、実施例3では0%に低減した。
【0023】
尚、積層型キャパシタのセル貫通穴10を集電極6でなく、パッキン2に設けることにより工数低減を行うこともできる。
例えば、パッキン2に2mm×2mmの矩形貫通穴10を締付リブ内側の薄肉部の4隅の1箇所に設け、図2に示すように組み立て、図3に示すように締付け、実施例3の構造のキャパシタユニットを製作できる。
【0024】
【発明の効果】
以上、実施例に基づいて具体的に説明したように、本発明では、温度変化に伴う封口部の緩みを防止し、電解液の漏出を防止したので、耐漏液性が優れ、かつコンパクトな電気二重層キャパシタを提供できる。
【図面の簡単な説明】
【図1】本発明の第1の実施例に係る電気二重層キャパシタの構造図である。
【図2】本発明の第3の実施例に係る電気二重層キャパシタの組み立て積層段階の構造図である。
【図3】本発明の第3の実施例に係る電気二重層キャパシタの締めつけ後の構造図である。
【符号の説明】
1 エンドプレート
2 パッキン
3 締付けボルト
4 端集電極
5 セパレータ
6 中間集電虚
7 電解液を含む分極電極
8 気体層
9 締付リブ
10 セル貫通穴
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electric double layer capacitor having an activated carbon electrode as a polarizable electrode.
[0002]
[Prior art]
The withstand voltage of the unit capacitor is determined by the electrolysis voltage of the electrolytic solution (electrolyte, solvent) that is a component of the unit capacitor, and is about 1.2 V for an aqueous electrolyte and 2.8 to 3 V for an organic electrolyte. .
Since a capacitor is destroyed when a voltage higher than the solvent decomposition voltage is applied, a plurality of unit capacitors are connected in series for applications requiring a high voltage.
[0003]
Structurally, there are a wound type in which an electrode and a separator are spirally wound and accommodated in a cylindrical case, and a flat plate type in which the electrode separator is a flat plate.
The flat plate type can take a bipolar structure in which electrodes, separators, electrodes and separators are alternately stacked, and is suitable for high voltage applications.
[0004]
A cross-sectional view of a flat type two-cell multilayer capacitor is shown in FIG.
As shown in FIG. 1, the cell surrounded by the collector electrodes 4 and 6 and the packing 2 contains an electrolyte as a liquid layer, an activated carbon electrode as a solid layer, and nitrogen gas as a gas layer 8; Argon gas or dry air is included.
[0005]
[Problems to be solved by the invention]
In the electric double layer capacitor described above, the capacitor temperature changes to -20 to 70 ° C. due to environmental temperature changes and charge / discharge current conditions, and the in-cell liquid layer repeatedly expands and contracts.
Therefore, there has been a problem that, due to long-term use of the capacitor, the filling inside the cell is repeatedly expanded and contracted, the sealing portion is loosened, and electrolyte leakage occurs.
[0006]
[Means for Solving the Problems]
The electric double layer capacitor according to claim 1 of the present invention that solves the above problems is disposed between a positive polarizable electrode containing an electrolytic solution, a negative polarizable electrode containing an electrolytic solution, and the polarizable electrode. In an electric double layer capacitor that has a gel electrolyte solution, is housed in a space sandwiched between a collector electrode and packing, and is sealed by tightening from both ends, a gas layer for expansion and contraction absorption is provided in the space On the other hand, the amount of the electrolyte solution is determined in advance, and the gas layer for expansion and contraction absorption is 14% or more and 19% or less (at atmospheric pressure at 25 ° C.) with respect to the sum of the gas layer and the liquid layer in the space. characterized in that there.
[0007]
The electric double layer capacitor according to claim 2 of the present invention that solves the above problem is the electric double layer capacitor according to claim 1 , wherein the packing material is organic peroxide vulcanized ethylene propylene rubber (PO-EPDM). It is characterized by doing.
[0008]
The electric double layer capacitor according to claim 3 of the present invention for solving the above-mentioned problems is characterized in that in the electric double layer capacitor according to claim 1 , a fastening rib is provided on the packing.
[0009]
[Action]
Since the volume of gas and liquid changes with pressure change, but the solid does not change, the ratio of gas layer to the sum of gas layer and liquid layer (= gas layer volume / (liquid layer volume + gas layer volume)) It is theoretical to use it as an indicator.
If the sealing structure is strengthened to increase the durability against pressure increase, the weight of the capacitor will increase as a result.
Moreover, since the amount of the electrolyte solution stored in the cell is determined, when the proportion of the gas layer is increased, the capacitor volume is increased correspondingly and the volume energy density is reduced.
Therefore, the optimal ratio of the gas layer is considered to be 6% to 20%.
[0010]
In the examples described below, the ratio of the gas layer was set to 20%, and as a comparative example, the ratio was set to 5%. However, it was confirmed that good results were obtained when the ratio was set to 14%.
Also, in calculation, when the pressure is 5%, 6%, 7%, and 8% at 70 ° C, the pressure becomes 4 times, 3 times, 2.5 times, and 2.2 times respectively. It turns out that this is a point that changes.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
[Example 1]
A first embodiment of the present invention is shown in FIG.
In this embodiment, expansion of the electrolyte in the cell is suppressed by using a specified amount of gas in the cell as a buffer, and the leakage occurrence rate is reduced.
That is, in the electric double layer capacitor shown in FIG. 1, the end collector electrode 4 and the intermediate collector electrode 6 are alternately stacked with two cells sandwiched between the separators 5 and the packing 2 is interposed on the outer peripheral portion thereof. Is clamped with a tightening bolt 3 with the end plate 1 sandwiched from both sides.
[0012]
The cell surrounded by the end collector electrode 4, the intermediate collector electrode 6 and the packing 2 contains an electrolytic solution as a liquid layer, an activated carbon electrode as a solid layer, and nitrogen gas, argon gas or Contains dry air.
An aluminum foil was used as the intermediate collector electrode 6 and an activated carbon fiber cloth ACC561-25 manufactured by Nihon Kynol Co., Ltd. having an outer shape of 195 mm × 195 mm was used as the polarizable electrode 7 and both were bonded together with a conductive adhesive.
The polarizable electrode 7 was impregnated with 8 cm 3 of an electrolytic solution in which tetraethylammonium tetrafluoroborate was dissolved in 1 mol / dm 3 propylene carbonate.
[0013]
A gel electrolyte solution (205 mm in length, 205 mm in width, 0.2 mm in thickness) using polyacrylonitrile as a gelling agent as the gelling agent was used as the separator 5.
As the packing 2, an elastomer having a thickness of 0.8 mm and an inner dimension of 212 mm × 212 mm was used, and 5.6 cm 3 of argon gas was sealed inside the cell.
Here, the prescribed amount of argon gas was 19% with respect to the total of the gas layer and the liquid layer.
If the specified amount is too small, the internal pressure at a high temperature increases and the leakage rate increases, and if it is too large, the cell volume increases and the capacitor has a low volume energy density. % Or more and 20% or less is desirable.
[0014]
For example, when laminating in an argon gas atmosphere (1 atm), the volume of the internal volume on the structure excluding the internal solid layer and the liquid layer is the gas filling amount.
In this embodiment, 7 cells were stacked to produce a capacitor unit.
As a comparative example, a 7-cell multilayer capacitor unit in which the amount of electrolyte impregnated in the polarizable electrode 7 was 10 cm 3 and the amount of sealed gas was 1.6 cm 3 (5% with respect to the sum of the gas layer and the liquid layer) was manufactured.
[0015]
20 units of the above two units are tested at 70 ° C for 2 hours, 25 ° C for 2 hours, -20 ° C for 2 hours, and a temperature change rate of 45 ° C / h for 100 cycles. The rate of occurrence of leakage was determined.
[0016]
As a result, the leakage rate was 80% in the comparative example, whereas it was reduced to 0% in Example 1.
The number of man-hours can be reduced by providing the cell through hole 10 of the multilayer capacitor not in the collector electrode 6 but in the packing 2.
For example, a rectangular through hole 10 of 2 mm × 2 mm is provided in the packing 2 at one location in the four corners of the thin portion inside the fastening rib, assembled as shown in FIG. 2, and tightened as shown in FIG. Capacitor unit with structure can be manufactured.
[0017]
[Example 2]
In this embodiment, by using a packing material having a small compression set, the durability at high temperature of the packing material is improved, and the leakage rate is reduced when the temperature range is widened. Other configurations are the same as those in the above-described embodiment.
A capacitor unit having the structure of Example 1 was manufactured using an organic peroxide vulcanized ethylene propylene rubber (PO-EPDM) (compression set 7%: compression rate 25% -100 ° C.-70 hours) as the packing material.
[0018]
As a comparative example, a capacitor unit having the structure of Example 1 was manufactured as a sulfur compound vulcanized ethylene propylene rubber (S-EPDM) (compression set 44%: compression rate 25% -100 ° C.-70 hours).
20 units of the above two units are each 90 ° C for 2 hours, 35 ° C for 2 hours, -20 ° C for 2 hours, and 100 cycles of heat change at a temperature change rate of 55 ° C / h. The rate of occurrence of leakage was determined.
As a result, the leakage rate was 20% in the comparative example, whereas it was reduced to 0% in Example 2.
[0019]
The number of man-hours can be reduced by providing the cell through hole 10 of the multilayer capacitor not in the collector electrode 6 but in the packing 2.
For example, a rectangular through hole 10 of 2 mm × 2 mm is provided in the packing 2 at one location in the four corners of the thin portion inside the fastening rib, assembled as shown in FIG. 2, and tightened as shown in FIG. Capacitor unit with structure can be manufactured.
[0020]
[Example 3]
A third embodiment of the present invention is shown in FIG.
In this embodiment, the sole characteristic is improved by providing a fastening rib on the packing, and the leakage rate is reduced when the temperature range is widened.
That is, in the electric double layer capacitor shown in FIG. 2, a plurality of end collector electrodes 4 and intermediate collector electrodes 6 are alternately stacked with the separator 5 interposed therebetween, and the packing 2 is interposed on the outer peripheral portion thereof. Is clamped with a tightening bolt 3 between the end plate 1 and both ends.
[0021]
Here, the packing 2 is a flat plate packing having a thickness of 0.8 mm provided with fastening ribs 9 having a width of 2.5 mm and a height of 0.2 mm.
However, FIG. 2 shows the fastening rib 9 in the assembled and laminated state, and FIG. 3 shows the fastening rib 9 in the state fastened by the fastening bolt 3.
[0022]
As a comparative example, a capacitor unit having the structure of Example 1 using a flat packing without ribs was manufactured.
20 units of the above two units are each 90 ° C for 2 hours, 35 ° C for 2 hours, -20 ° C for 2 hours, and 100 cycles of heat change at a temperature change rate of 55 ° C / h. The rate of occurrence of leakage was determined.
As a result, the leakage occurrence rate in the comparative example was 20%, whereas in Example 3, it was reduced to 0%.
[0023]
The number of man-hours can be reduced by providing the cell through hole 10 of the multilayer capacitor not in the collector electrode 6 but in the packing 2.
For example, a rectangular through hole 10 of 2 mm × 2 mm is provided in the packing 2 at one location in the four corners of the thin portion inside the fastening rib, assembled as shown in FIG. 2, and tightened as shown in FIG. Capacitor unit with structure can be manufactured.
[0024]
【The invention's effect】
As specifically described above based on the examples, in the present invention, since the sealing portion is prevented from loosening due to temperature change and the electrolyte is prevented from leaking out, the leakage resistance is excellent and the compact electric A double layer capacitor can be provided.
[Brief description of the drawings]
FIG. 1 is a structural diagram of an electric double layer capacitor according to a first embodiment of the present invention.
FIG. 2 is a structural diagram of an assembly and lamination stage of an electric double layer capacitor according to a third embodiment of the present invention.
FIG. 3 is a structural diagram after tightening of an electric double layer capacitor according to a third embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 End plate 2 Packing 3 Clamping bolt 4 End collector electrode 5 Separator 6 Intermediate current collection virtual 7 Polarizing electrode containing electrolyte 8 Gas layer 9 Clamping rib 10 Cell through hole

Claims (3)

電解液を含んだ正極分極性電極と、電解液を含んだ負極分極性電極と、上記分極性電極間に配置されるゲル状電解液とを有し、これらを集電極とパッキンとで挟まれるスペースに収容し、両端から締め付けることにより密閉する電気二重層キャパシタにおいて、上記スペースに膨張収縮吸収用の気体層が設けられる一方、前記電解液量が予め決まっており、前記膨張収縮吸収用の気体層が上記スペース内の気体層と液体層の総和に対して14%以上19%以下(25℃時大気圧下)であることを特徴とする電気二重層キャパシタ。It has a positive polarizable electrode containing an electrolytic solution, a negative polarizable electrode containing an electrolytic solution, and a gel electrolyte placed between the polarizable electrodes, and these are sandwiched between a collector electrode and a packing In an electric double layer capacitor which is accommodated in a space and sealed by tightening from both ends, a gas layer for expansion / contraction absorption is provided in the space, while the amount of the electrolyte is predetermined, and the gas for expansion / contraction absorption An electric double layer capacitor, wherein the layer is 14% or more and 19% or less (under atmospheric pressure at 25 ° C.) with respect to the sum of the gas layer and the liquid layer in the space . 前記パッキンの材質を有機過酸化物加硫エチレンプロピレンゴムとすることを特徴とする請求項記載の電気二重層キャパシタ。Electric double layer capacitor according to claim 1, characterized in that the material of the packing and organic peroxide vulcanization of ethylene propylene rubbers. 前記パッキンに締付リブを設けたことを特徴とする請求項記載の電気二重層キャパシタ。Electric double layer capacitor according to claim 1, characterized in that a clamping rib on the packing.
JP2000186259A 2000-06-21 2000-06-21 Electric double layer capacitor Expired - Fee Related JP4457469B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000186259A JP4457469B2 (en) 2000-06-21 2000-06-21 Electric double layer capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000186259A JP4457469B2 (en) 2000-06-21 2000-06-21 Electric double layer capacitor

Publications (2)

Publication Number Publication Date
JP2002008955A JP2002008955A (en) 2002-01-11
JP4457469B2 true JP4457469B2 (en) 2010-04-28

Family

ID=18686453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000186259A Expired - Fee Related JP4457469B2 (en) 2000-06-21 2000-06-21 Electric double layer capacitor

Country Status (1)

Country Link
JP (1) JP4457469B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005276885A (en) * 2004-03-23 2005-10-06 Sanyo Electric Co Ltd Electric double layer capacitor, electrolyte battery and manufacturing method of them

Also Published As

Publication number Publication date
JP2002008955A (en) 2002-01-11

Similar Documents

Publication Publication Date Title
EP2329549B1 (en) Devices and methods for lead acid batteries
CN107346816B (en) Battery pack and battery unit thereof
US8705225B2 (en) Electric double layer capacitor with non-equal areas of the active material layers of the positive electrode and the negative electrode
US9190221B2 (en) Aqueous-based electric double-layer capacitor
US9330855B2 (en) Aqueous-based electric double-layer capacitor
US7310219B2 (en) Electrochemical capacitor
JP4457469B2 (en) Electric double layer capacitor
KR20170130999A (en) Pouch-type electric double layer capacitor
CN107230796B (en) Battery pack and method of assembling the same
JP2005044821A (en) Electric double layer capacitor
TWI498931B (en) Energy storage device
KR20080014134A (en) Ultra capacitor
JP3921957B2 (en) Multilayer electric double layer capacitor
JP2003209029A (en) Double-layered electric capacitor having improved withstand voltage
KR102028677B1 (en) Multilayer lithium-ion capacitor comprising graphene electrode
US7489497B2 (en) Electrochemical device
CN107346804B (en) Battery pack
CN107230797B (en) Battery pack and method of assembling the same
KR100955233B1 (en) Multilayered electric double layer capacitor
JP2002075806A (en) Electric double-layer capacitor
JP4627874B2 (en) Electric double layer capacitor
JP2000269100A (en) Electric double-layer capacitor
KR101205846B1 (en) Lithium ion capacitor having current collector of plate type
JP4513465B2 (en) Electric double layer capacitor and manufacturing method thereof
JP2001230163A (en) Electric double-layered capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060308

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080930

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090609

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090807

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20091014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091020

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100119

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100201

R150 Certificate of patent or registration of utility model

Ref document number: 4457469

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130219

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140219

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees