JP4451237B2 - 固体高分子型燃料電池用膜・電極構造体及び固体高分子型燃料電池 - Google Patents

固体高分子型燃料電池用膜・電極構造体及び固体高分子型燃料電池 Download PDF

Info

Publication number
JP4451237B2
JP4451237B2 JP2004210953A JP2004210953A JP4451237B2 JP 4451237 B2 JP4451237 B2 JP 4451237B2 JP 2004210953 A JP2004210953 A JP 2004210953A JP 2004210953 A JP2004210953 A JP 2004210953A JP 4451237 B2 JP4451237 B2 JP 4451237B2
Authority
JP
Japan
Prior art keywords
group
polymer electrolyte
polymer
membrane
sulfonic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004210953A
Other languages
English (en)
Other versions
JP2006032179A (ja
Inventor
長之 金岡
勝 井口
浩 相馬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2004210953A priority Critical patent/JP4451237B2/ja
Publication of JP2006032179A publication Critical patent/JP2006032179A/ja
Application granted granted Critical
Publication of JP4451237B2 publication Critical patent/JP4451237B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Description

本発明は、固体高分子型燃料電池用膜・電極構造体と、該膜・電極構造体を備える固体高分子型燃料電池に関するものである。
石油資源が枯渇化する一方、化石燃料の消費による地球温暖化等の環境問題が深刻化しており、二酸化炭素の発生を伴わないクリーンな電動機用電力源として燃料電池が注目されて広範に開発されると共に、一部では実用化され始めている。前記燃料電池を自動車等に搭載する場合には、高電圧と大電流とが得やすいことから、高分子電解質膜を用いる固体高分子型燃料電池が好適に用いられる。
前記固体高分子型燃料電池に用いる電極構造体として、白金等の触媒がカーボンブラック等の触媒担体に担持されイオン伝導性高分子バインダーにより一体化されることにより形成されている1対の電極触媒層を備え、両電極触媒層の間にイオン伝導可能な高分子電解質膜を挟持すると共に、各電極触媒層の上に、拡散層を積層したものが知られている。前記電極構造体は、さらに各電極触媒層の上に、ガス通路を兼ねたセパレータを積層することにより、固体高分子型燃料電池を構成する。
前記固体高分子型燃料電池では、一方の電極触媒層を燃料極として前記拡散層を介して水素、メタノール等の還元性ガスを導入すると共に、他方の電極触媒層を酸素極として前記拡散層を介して空気、酸素等の酸化性ガスを導入する。このようにすると、燃料極側では、前記電極触媒層に含まれる触媒の作用により、前記還元性ガスからプロトン及び電子が生成し、前記プロトンは前記高分子電解質膜を介して、前記酸素極側の電極触媒層に移動する。そして、前記プロトンは、前記酸素極側の電極触媒層で、前記電極触媒層に含まれる触媒の作用により、該酸素極に導入される前記酸化性ガス及び電子と反応して水を生成する。従って、前記燃料極と酸素極とを導線により接続することにより、前記燃料極で生成した電子を前記酸素極に送る回路が形成され、電流を取り出すことができる。
前記電極構造体では、前記高分子電解質膜としていわゆる陽イオン交換樹脂に属するポリマー、例えばポリスチレンスルホン酸等のビニル系ポリマーのスルホン化物、ナフィオン(商品名、デュポン社製)を代表とするパーフルオロアルキルスルホン酸ポリマー、パーフルオロアルキルカルボン酸ポリマー、ポリベンズイミダゾール、ポリエーテルエーテルケトン等の耐熱性高分子に、スルホン酸基またはリン酸基を導入したポリマー等の有機系ポリマーが好適に用いられる。
これら有機系ポリマーは、通常、フィルム状で用いられるが、溶媒に可溶性であること、または熱可塑性であることを利用し、電極上に伝導膜を接合加工できる。ところが、これら有機系ポリマーの多くは、プロトン伝導性がまだ十分でないことに加え、耐久性が低いこと、高温(100℃以上)でプロトン伝導性が低下してしまうこと、スルホン化により脆化し、機械的強度が低下すること、湿度条件下の依存性が大きいこと、あるいは電極との密着性が十分満足のいくものとはいえないこと等の問題がある。さらに、これら有機系ポリマーには、含水ポリマー構造に起因して、燃料電池の稼動中に過度の膨潤により強度が低下したり、形状の崩壊に至るという問題がある。
一方、スルホン化された剛直ポリフェニレンからなる固体高分子電解質が知られている(例えば、特許文献1参照)。前記剛直ポリフェニレンは、フェニレン連鎖からなる芳香族化合物を重合して得られるポリマーを主成分とし、これをスルホン化剤と反応させてスルホン酸基を導入しており、スルホン酸基の導入量の増加によって、プロトン伝導度が向上する。
しかしながら、前記剛直ポリフェニレンは、スルホン化すると耐熱水性や靭性等が著しく損なわれるという問題がある。
米国特許第5,403,675号明細書 特開平7−220741号公報 Polymer Preprints, Japan, Vol.42, No.3, p.730(1993) Polymer Preprints, Japan, Vol.43, No.3, p.736(1994) Polymer Preprints, Japan, Vol.42, No.7, p.2490〜2492(1993)
本発明は、かかる不都合を解消して、スルホン酸基の導入量を増加しても優れた耐熱水性を有するスルホン化ポリマーからなり、プロトン伝導度と寸法安定性とに優れた高分子電解質膜を備える固体高分子型燃料電池用膜・電極構造体を提供することを目的とする。
また、本発明の目的は、前記膜・電極構造体を備え、発電性能と耐久性とに優れた固体高分子型燃料電池を提供することにもある。
かかる目的を達成するために、本発明の固体高分子型燃料電池用膜・電極構造体は、高分子電解質膜を、触媒を含む1対の電極で挟持した固体高分子型燃料電池用膜・電極構造体において、
前記高分子電解質膜は、下記式(II)または下記式(IV)で表されるいずれかのポリアリーレン系重合体からなることを特徴とする。
Figure 0004451237
前記ポリアリーレン系重合体は、スルホン酸基の導入量を増加しても優れた耐熱水性を有するスルホン化ポリマーが得られる。従って、本発明によれば、前記スルホン化ポリマーを用いることにより、プロトン伝導度と、寸法安定性とに優れた固体高分子電解質膜を備える膜・電極構造体を得ることができる。
また、本発明の固体高分子型燃料電池は、前記式(II)または前記式(IV)で表されるいずれかのポリアリーレン系重合体からなる高分子電解質膜を、触媒を含む1対の電極で挟持した固体高分子型燃料電池用膜・電極構造体を備えることを特徴とする。
本発明の固体高分子型燃料電池は、前述のようにプロトン伝導度と、寸法安定性とに優れた固体高分子電解質膜を備える膜・電極構造体を用いるので、優れた発電性能と優れた耐久性とを得ることができる。また、本発明の固体高分子型燃料電池は、前記固体高分子電解質膜が寸法安定性に優れていることにより、膜-電極界面の密着性を改善することができる。従って、本発明の固体高分子型燃料電池によれば、低温時の固体高分子電解質膜の収縮による電極の剥離が抑制され、低温履歴を経た後の性能低下を抑制することができる。
次に、図面を参照しながら本発明の実施の形態について詳しく説明する。図1は本実施形態の膜・電極構造体の構成を示す説明的断面図である。
本実施形態の膜・電極構造体は、図1に示すように、一対の電極触媒層1,1と、両電極触媒層1,1に挟持された固体高分子電解質膜2と、各電極触媒層1,1の上に積層されたガス拡散層3,3とからなる。
前記電極触媒層1は、触媒とイオン伝導性高分子電解質とからなる。
前記触媒としては細孔の発達したカーボン材料に白金または白金合金を担持させた担持触媒が好ましい。細孔の発達したカーボン材料としては、カーボンブラックや活性炭等を好ましく使用することができる。前記カーボンブラックとしては、チャンネルブラック、ファーネスブラック、サーマルブラック、アセチレンブラック等を挙げることができ、また前記活性炭としては、種々の炭素原子を含む材料を炭化、賦活処理して得られたもの等を挙げることができる。また、これらのカーボン材料に黒鉛化処理を施したものを用いてもよい。
前記触媒は、カーボン担体に白金を担持させたものであってもよいが、白金合金を使用することにより、さらに電極触媒としての安定性や活性を付与することもできる。前記白金合金としては、ルテニウム、ロジウム、パラジウム、オスミウム、イリジウム等の白金以外の白金族金属、鉄、チタン、金、銀、クロム、マンガン、モリブデン、タングステン、アルミニウム、ケイ素、レニウム、亜鉛、スズからなる群から選ばれる1種以上の金属と白金との合金が好ましい。前記白金合金には、白金と合金化される金属との金属間化合物が含有されていてよい。
白金または白金合金の担持率(担持触媒の全質量に対する白金または白金合金の質量の割合)は、高出力を得るために、20〜80質量%、特に30〜55質量%の範囲であることが好ましい。前記担持率が20質量%未満では、充分な出力を得られないおそれがあり、80質量%を超えると、白金または白金合金の粒子を分散性よく担体となるカーボン材料に担持できないおそれがある。
また、白金または白金合金の一次粒子径は、高活性なガス拡散電極を得るためには1〜20nmであることが好ましく、特に反応活性の点で白金または白金合金の表面積を大きく確保できる2〜5nmであることが好ましい。また、白金または白金合金は触媒粒子中に0.1〜1.0mg/cmの範囲で含まれていることが好ましい。
電極触媒層1は、前記担持触媒に加え、スルホン酸基を有するイオン伝導性高分子電解質を含む。通常、担持触媒は前記高分子電解質により被覆されており、該高分子電解質の繋がっている経路を通ってプロトン(H)が移動する。
スルホン酸基を有するイオン伝導性高分子電解質としては、特に、デュポン社製ナフィオン(商品名)、旭硝子株式会社製フレミオン(商品名)、旭化成株式会社製アシプレックス(商品名)等に代表されるパーフルオロアルキレンスルホン酸高分子化合物が好適に用いられる。なおパーフルオロアルキレンスルホン酸高分子化合物だけでなく、本明細書に記載のスルホン化ポリアリーレン系重合体等の芳香族系炭化水素化合物を主とするイオン伝導性高分子電解質を用いてもよい。
前記固体高分子電解質膜2は、スルホン酸基導入ユニットである下記一般式(1)で表される構成単位と、疎水性ユニットである下記一般式(2)で表される構成単位とを含有するポリアリーレン系重合体から形成されている。
Figure 0004451237
一般式(1)において、Yは2価の電子吸引性基を示す。前記電子吸引性基として、具体的には、−CO−、−SO−、−SO−、−CONH−、−COO−、−(CF−(pは1〜10の整数である)、−C(CF32−等を挙げることができる。尚、前記電子吸引性基とは、ハメット(Hammett)置換基定数がフェニル基のm位の場合、0.06以上、p位の場合、0.01以上の値となる基をいう。
Zは2価の電子供与性基または直接結合を示す。前記電子供与性基として、具体的には、−CH−、−C(CH−、−O−、−S−、−CH=CH−、−C≡C−、
Figure 0004451237
等を挙げることができる。
Arは−SOHで表される置換基を有する芳香族基を示す。前記芳香族基として、具体的には、フェニル基、ナフチル基、アントラセニル基、フェナンチル基等を挙げることができる。これらの芳香族基のうち、フェニル基、ナフチル基が好ましい。
kは0〜10、好ましくは0〜2の整数、lは0〜10の、好ましくは0〜2の整数を示し、jは1〜4の整数を示す。
前記ポリアリーレン系重合体は、前記一般式(1)で表される構成単位を含有することにより、スルホン酸基が導入される。従って、該ポリアリーレン系重合体は高分子電解質となり、固体高分子電解質膜2として好適に用いることができる。
前記スルホン酸基を有するポリアリーレン系重合体は、一般式(1)で表される構成単位を99.5〜0モル%、好ましくは90〜0.001モル%の割合で含有し、一般式(2)で表される構成単位を0.5〜100モル%、好ましくは10〜99.999モル%の割合で含有している。
前記スルホン酸基を有するポリアリーレン系重合体は、例えば、前記一般式(1)においてスルホン酸基に代えてスルホン酸エステル基を有する構成単位となりうるモノマーと、前記一般式(2)で表される構成単位となりうるモノマーとを共重合させ、スルホン酸エステル基を有するポリアリーレン系重合体を製造し、このスルホン酸エステル基を有するポリアリーレン系重合体を加水分解して、スルホン酸エステル基をスルホン酸基に変換することにより合成することができる。
また、スルホン酸基を有するポリアリーレン系重合体は、例えば、前記一般式(1)においてスルホン酸基を有しない構成単位となりうるモノマーと、前記一般式(2)で表される構成単位となりうるモノマーとを共重合させ、スルホン酸基を有しないポリアリーレン系重合体を予め合成し、該重合体をスルホン化することにより合成することもできる。
前記一般式(1)においてスルホン酸基に代えてスルホン酸エステル基を有する構成単位となりうるモノマーとしては、例えば、下記一般式(5)で表されるスルホン酸エステル(以下「化合物(5)」ということがある)を挙げることができる。
Figure 0004451237
一般式(5)中、X’はフッ素を除くハロゲン原子(塩素、臭素、ヨウ素)、−OSOG(ここで、Gはアルキル基、フッ素置換アルキル基またはアリール基を示す)から選ばれる原子または基を示し、Y、Z、j、k、lは、それぞれ前記一般式(1)中のY、Z、j、k、lと同義である。
は炭素原子数1〜20、好ましくは4〜20の炭化水素基を示し、具体的には、メチル基、エチル基、n−プロピル基、iso−プロピル基、tert−ブチル基、iso−ブチル基、n−ブチル基、sec−ブチル基、ネオペンチル基、シクロペンチル基、ヘキシル基、シクロヘキシル基、シクロペンチルメチル基、シクロへキシルメチル基、アダマンチル基、アダマンチルメチル基、2−エチルへキシル基、ビシクロ[2.2.1]ヘプチル基、ビシクロ[2.2.1]ヘプチルメチル基、テトラヒドロフルフリル基、2−メチルブチル基、3,3−ジメチル−2,4−ジオキソランメチル基、シクロヘキシルメチル基等の直鎖状炭化水素基、分岐状炭化水素基、脂環式炭化水素基、5員の複素環を有する炭化水素基等を挙げることができる。これらの中では、n−ブチル基、ネオペンチル基、テトラヒドロフルフリル基、シクロペンチル基、シクロヘキシル基、シクロヘキシルメチル基、アダマンチルメチル基、ビシクロ[2.2.1]ヘプチルメチル基が好ましく、特にネオペンチル基が好ましい。
Arは−SOで表される置換基を有する芳香族基を示し、芳香族基として具体的にはフェニル基、ナフチル基、アントラセニル基、フェナンチル基等を挙げることができる。これらの基のうち、フェニル基、ナフチル基が好ましい。
置換基−SOは、前記芳香族基に1個または2個以上置換しており、置換基−SOが2個以上置換している場合には、これらの置換基は互いに同一でも異なっていてもよい。
ここで、Rは炭素原子数1〜20、好ましくは4〜20の炭化水素基を示し、具体的には前記炭化水素原子数1〜20の炭化水素基等を挙げることができる。これらの中では、n−ブチル基、ネオペンチル基、テトラヒドロフルフリル基、シクロペンチル基、シクロヘキシル基、シクロヘキシルメチル基、アダマンチルメチル基、ビシクロ[2.2.1]ヘプチルメチル基が好ましく、特にネオペンチル基が好ましい。
一般式(5)で表されるスルホン酸エステルの具体例としては、以下のような化合物を挙げることができる。
Figure 0004451237
Figure 0004451237
Figure 0004451237
Figure 0004451237
Figure 0004451237
Figure 0004451237
Figure 0004451237
Figure 0004451237
また、一般式(5)で表されるスルホン酸エステルは、前記具体例の化合物において塩素原子が臭素原子に置き換わった化合物、−CO−が−SO−に置き換わった化合物、塩素原子が臭素原子に置き換わり、かつ、−CO−が−SO−に置き換わった化合物等も含む。
一般式(5)の中のR基は1級アルコール由来であって、β炭素が3級または4級炭素であることが重合工程中の安定性に優れ、脱エステル化によるスルホン酸の生成に起因する重合阻害や架橋を引き起こさない点で好ましく、さらには、これらのエステル基は1級アルコール由来であってβ位が4級炭素であることが好ましい。
また、前記一般式(1)において、スルホン酸基を有しない化合物の具体例としては、以下のような化合物を挙げることができる。
Figure 0004451237
前記一般式(1)においてスルホン酸基を有しない化合物は、前記具体例の化合物において塩素原子が臭素原子に置き換わった化合物、−CO−が−SO−に置き換わった化合物、塩素原子が臭素原子に置き換わり、かつ、−CO−が−SO−に置き換わった化合物等も含む。
前記一般式(2)の構成単位となりうるモノマーとしては、例えば、下記一般式(6)で表される化合物(以下「化合物(6)」ということがある)を挙げることができる。この化合物(6)から導かれる構成単位を含有させることにより、前記ポリアリーレン系重合体に疎水部を付与することができる。また、化合物(6)は屈曲性構造を有するため、前記ポリアリーレン系重合体の靭性、その他の機械的強度等を向上させる作用を有する。
Figure 0004451237
一般式(6)中、Xは、フッ素を除くハロゲン原子(塩素、臭素、ヨウ素)、−OSOCH、−OSOCFから選ばれる原子または基を示す。
〜Rは互いに同一でも異なっていてもよく、水素原子、フッ素原子またはアルキル基を示す。アルキル基としては、メチル基、エチル基、プロピル基、ブチル基、アミル基、ヘキシル基等を挙げることができ、メチル基、エチル基等が好ましい。
Aは独立に2価の原子もしくは有機基または直接結合を示す。前記有機基として、具体的には、−CONH−、−(CFp−(pは1〜10の整数)、−C(CF−、−COO−、−SO−、−SO−等の電子吸引性基(ただし、−CO−を除く)、−O−、−S−、−CH=CH−、−C≡C−および下記式で表される基等の電子供与性基等を挙げることができる。
Figure 0004451237
Bは独立に酸素原子または硫黄原子である。nは1以上の整数であり、上限は通常100、好ましくは80である。
Qは下記一般式(3)で表される少なくとも1種の構造(以下「構造(3)」ということがある)99〜20モル%、好ましくは95〜30モル%、特に好ましくは90〜35モル%と、下記一般式(4−1)および/または(4−2)で表される少なくとも1種の構造(以下「構造(4)」といいうことがある)1〜80モル%、好ましくは50〜70モル%、特に好ましくは10〜65モル%とからなる構造を示す。このような範囲で構造(3)と構造(4)とを含有することにより、熱水耐性、プロトン伝導性等に優れた固体高分子電解質膜を得ることができる。
Figure 0004451237
前記式中、Dは2価の原子もしくは有機基を示し、例えば、前記Aと同様のものを挙げることができる。
9〜R40は同一でも異なっていてもよく、水素原子、フッ素原子、アルキル基または芳香族基を示す。アルキル基としては、メチル基、エチル基、プロピル基、ブチル基、アミル基、ヘキシル基等を挙げることができ、メチル基、エチル基等が好ましい。芳香族基としては、例えば、フェニル基、ナフチル基、ピリジル基、フェノキシジフェニル基、フェニルフェニル基、ナフトキシフェニル等を挙げることができる。
化合物(4−1)の具体的な例としては、9,9−ビス(4−ヒドロキシフェニル)フルオレン、9,9−ビス(4−ヒドロキシ−3−メチルフェニル)フルオレン、9,9−ビス(4−ヒドロキシ−3−エチルフェニル)フルオレン、9,9−ビス(4−ヒドロキシ−3−n−プロピルフェニル)フルオレン、9,9−ビス(4−ヒドロキシ−3−イソプロピルフェニル)フルオレン、9,9−ビス(4−ヒドロキシ−3−t−ブチルフェニル)フルオレン、9,9−ビス(4−ヒドロキシ−3−イソブチルフェニル)フルオレン、9,9−ビス(4−ヒドロキシ−3−n−ブチルフェニル)フルオレン、9,9−ビス(4−ヒドロキシ−3−フェニルフェニル)フルオレン、9,9−ビス(4−ヒドロキシ−3−フルオロフェニル)フルオレン、9,9−ビス(4−ヒドロキシ−3,5−ジメチルフェニル)フルオレン、9,9−ビス(4−ヒドロキシ−3,5−ジエチルフェニル)フルオレン、9,9−ビス(4−ヒドロキシ−3,5―ジ−n−プロピルフェニル)フルオレン、9,9−ビス(4−ヒドロキシ−3,5―ジ−イソプロピルフェニル)フルオレン、9,9−ビス(4−ヒドロキシ−3,5―ジ−t−ブチルフェニル)フルオレン、9,9−ビス(4−ヒドロキシ−3,5―ジ−イソブチルフェニル)フルオレン、9,9−ビス(4−ヒドロキシ−3,5―ジ−n−ブチルフェニル)フルオレン、9,9−ビス(4−ヒドロキシ−3,5―ジ−フェニルフェニル)フルオレン、9,9−ビス(4−ヒドロキシ−3,5―ジフルオロフェニル)フルオレン等を挙げることができる。
また、前記化合物(4−2)の具体的な例としては、4,4’−ジヒドロキシビフェニル、3,4’−ジヒドロキシビフェニル、2,4’−ジヒドロキシビフェニル、3,3’−ジヒドロキシビフェニル、2,3’−ジヒドロキシビフェニル、2,2’−ジヒドロキシビフェニル、4,4’−ジヒドロキシ−3,3’,5,5’−テトラメチルビフェニル、2,2’−ジヒドロキシ−3,3’,5,5’−テトラメチルビフェニル、4,4’−ジヒドロキシ−3,3’−ジメチルビフェニル、2,2’−ジヒドロキシ−3,3’−ジメチルビフェニル、4,4’−ジヒドロキシ−3,3’ 5,5’−テトラエチルビフェニル、2,2’−ジヒドロキシ−3,3’ 5,5’−テトラエチルビフェニル、4,4’−ジヒドロキシ−3,3’−ジエチルビフェニル、2,2’−ジヒドロキシ−3,3’−ジエチルビフェニル、4,4’−ジヒドロキシ−3,3’ 5,5’−テトラ−t−ブチルビフェニル、2,2’−ジヒドロキシ−3,3’ 5,5’−テトラ−t−ブチルビフェニル、4,4’−ジヒドロキシ−3,3’−ジ−t−ブチルビフェニル、2,2’−ジヒドロキシ−5,5’−ジ−t−ブチルビフェニル、4,4’−ジヒドロキシ−3,3’−ビス(2−プロペニル)ビフェニル、4,4’−ジヒドロキシ−3,3’−ジフルオロビフェニル、4,4’−ジヒドロキシ−3,3’ 5,5’−テトラフルオロビフェニル等を挙げることができる。
前記化合物(6)は、例えば、次のような反応により合成することができる。
まず、2価の原子もしくは有機基または直接結合で連結されたビスフェノールと、フルオレン類で連結されたビスフェノールおよび/またはビフェノールと(以下、これらをまとめて「ビスフェノール類」ということがある)をアルカリ金属塩とするために、N−メチル−2−ピロリドン、N,N−ジメチルアセトアミド、スルホラン、ジフェニルスルホン、ジメチルスルホキサイド等の誘電率の高い極性溶媒中で、リチウム、ナトリウム、カリウム等のアルカリ金属、水素化アルカリ金属、アルカリ金属炭酸塩等を加える。アルカリ金属はビスフェノール類の水酸基に対し、過剰気味で反応させ、通常、1.1〜2倍当量、好ましくは1.2〜1.5倍当量で使用する。このとき、ベンゼン、トルエン、キシレン、クロロベンゼン、アニソール等の水と共沸する溶媒を共存させて、反応の進行を促進させることが好ましい。
次いで、前記ビスフェノール類のアルカリ金属塩と、電子吸引性基等で活性化された塩素等のハロゲン原子で置換された芳香族ジハライド化合物、例えば、4,4’−ジクロロジフェニルスルホン、3,3’−ジクロロジフェニルスルホン、2,2’−ジクロロジフェニルスルホン、3,4’−ジクロロジフェニルスルホン、2,4’−ジクロロジフェニルスルホン、2,3’−ジクロロジフェニルスルホン、3,3’−ジメチル−4,4’−ジクロロジフェニルスルホン、3,3’−ジエチル−4,4’−ジクロロジフェニルスルホン、3,3’−ジフェニル−4,4’−ジクロロジフェニルスルホン、3,3’−ジフルオロ−4,4’−ジクロロジフェニルスルホン、3,3’−ジニトロ−4,4’−ジクロロジフェニルスルホン等とを反応させる。
前記芳香族ジハライド化合物は、前記ビスフェノール類に対し0.33〜0.999倍モル、好ましくは0.5〜0.999倍モルの量で用いられる。このように、芳香族ジハライド化合物に対して、前記ビスフェノール類を過剰に加えることで、両末端にビスフェノール類のアルカリ金属塩を有する前駆体が生成する。分子量は、この段階での前記芳香族ジハライド化合物と前記ビスフェノール類との反応モル比によって調整することができる。
最後に、両末端にクロロベンゾイル基を導入するために、ジクロロベンゾフェノン類を加えて反応させる。ここで用いられるジクロロベンゾフェノン類としては、4,4’−ジクロロベンゾフェノン、3,4’−ジクロロベンゾフェノン、2,2’−ジクロロベンゾフェノン等を挙げることができる。これらのうち、4,4’−ジクロロベンゾフェノンが好ましい。
前記ジクロロベンゾフェノン類は、前記前駆体に対して、2倍モル以上加えることが必要であり、好ましくは3〜10倍モルの量で用いられる。添加量が2倍モルを下回る場合には、末端へのクロロベンゾイル基の導入が不完全となり、次工程のポリアリーレン系重合体の合成時に共重合性が低下して単独重合体の生成を招き、プロトン伝導度、熱水耐性等諸物性の低下を引き起こすことがある。
これらの反応は、反応温度が60℃〜300℃で、好ましくは80℃〜250℃の範囲、反応時間が15分〜100時間、好ましくは1時間〜24時間の範囲で行なわれる。
得られたオリゴマーないしポリマーは、ポリマーの一般的な精製方法、例えば、溶解−沈殿の操作によって精製することができる。化合物(6)の具体例としては、以下のような化合物を挙げることができる。
Figure 0004451237
前記スルホン酸基を有するポリアリーレン系重合体(以下、単に「スルホン化ポリマー」ということがある)は、前記化合物(5)と化合物(6)とを、触媒の存在下に反応させることにより合成される。
この際使用される触媒は、遷移金属化合物を含む触媒系であり、このような触媒系としては、(i)遷移金属塩および配位子となる化合物(以下「配位子成分」という)、または、配位子が配位された遷移金属錯体(銅塩を含む)と、(ii)還元剤とを必須成分とし、さらに、重合速度を上げるために「塩」を添加してもよい。
ここで、遷移金属塩としては、塩化ニッケル、臭化ニッケル等を挙げることができる。
また、配位子成分としては、トリフェニルホスフィン、2,2’−ビピリジン等を挙げることができる。前記配位子成分である化合物は、1種を単独で用いてもよく、あるいは2種以上を併用してもよい。
さらに、配位子が配位された遷移金属錯体としては、塩化ニッケルビス(トリフェニルホスフィン)、塩化ニッケル(2,2’−ビピリジン)を挙げることができる。
前記触媒系に使用することができる還元剤としては、亜鉛、マグネシウム、マンガン等を挙げることができる。これらの還元剤は、有機酸等の酸に接触させることにより、より活性化して用いることができる。
また、前記触媒系に用いられる「塩」としては、臭化ナトリウム、ヨウ化ナトリウム、臭化カリウム、臭化テトラエチルアンモニウム、ヨウ化テトラエチルアンモニウム等を挙げることができる。
各成分の使用割合は、遷移金属塩または遷移金属錯体が、前記モノマーの総計(化合物(5)と化合物(6)との合計)1モルに対し、通常、0.0001〜10モル、好ましくは0.01〜0.5モルである。0.0001モル未満では、重合反応が十分に進行しないことがあり、一方、10モルを超えると、得られたスルホン酸エステル基を有するポリアリーレン系重合体の分子量が低下することがある。
触媒系において、遷移金属塩および配位子成分を用いる場合、この配位子成分の使用割合は、遷移金属塩1モルに対し、通常0.1〜100モル、好ましくは1〜10モルである。0.1モル未満では、触媒活性が不十分となることがあり、一方、100モルを超えると、得られたスルホン酸エステル基を有するポリアリーレン系重合体の分子量が低下することがある。
また、還元剤の使用割合は、前記モノマーの総計1モルに対し、通常、0.1〜100モル、好ましくは1〜10モルである。0.1モル未満では、重合が十分進行しないことがあり、100モルを超えると、得られたスルホン酸エステル基を有するポリアリーレン系重合体の精製が困難になることがある。
さらに、「塩」を使用する場合、その使用割合は、前記モノマーの総計1モルに対し、通常、0.001〜100モル、好ましくは0.01〜1モルである。0.001モル未満では、重合速度を上げる効果が不十分であることがあり、100モルを超えると、得られたスルホン化ポリマーの精製が困難となることがある。
化合物(5)と化合物(6)とを反応させる際に使用することのできる重合溶媒としては、テトラヒドロフラン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドン、N,N’−ジメチルイミダゾリジノンが好ましい。これらの重合溶媒は、十分に乾燥してから用いることが好ましい。
前記重合溶媒中における前記モノマーの総計の濃度は、通常、1〜90重量%、好ましくは5〜40重量%である。重合する際の重合温度は、通常、0〜200℃、好ましくは50〜120℃である。また、重合時間は、通常、0.5〜100時間、好ましくは1〜40時間である。
化合物(5)を用いて得られたスルホン酸エステル基を有するポリアリーレン系重合体は、スルホン酸エステル基を加水分解して、スルホン酸基に変換することによりスルホン酸基を有するポリアリーレン系重合体とすることができる。
加水分解の方法としては、(i)少量の塩酸を含む過剰量の水またはアルコールに、前記スルホン酸エステル基を有するポリアリーレン系重合体を投入し、5分間以上攪拌する方法、(ii)トリフルオロ酢酸中で前記スルホン酸エステル基を有するポリアリーレン系重合体を80〜120℃程度の温度で5〜10時間程度反応させる方法、(iii)スルホン酸エステル基を有するポリアリーレン系重合体中のスルホン酸エステル基(−SO)1モルに対して1〜3倍モルのリチウムブロマイドを含む溶液、例えばN−メチル−2−ピロリドン等の溶液中で前記ポリアリーレン系重合体を80〜150℃程度の温度で3〜10時間程度反応させた後、塩酸を添加する方法、等を挙げることができる。
前記スルホン酸基を有するポリアリーレン系重合体は、前記化合物(6)と、前記一般式(1)においてスルホン酸基を有しない化合物とを共重合させることにより、スルホン酸基を有しないポリアリーレン系共重合体(以下「非スルホン化ポリマー」ということがある)を予め合成し、この非スルホン化ポリマーをスルホン化することにより合成することもできる。この場合、前記合成方法に準じた方法により非スルホン化ポリマーを製造した後、スルホン化剤を用いてスルホン酸基を導入することにより、スルホン酸基を有するポリアリーレン系重合体を得ることができる。
スルホン酸基の導入方法は、特に制限されず、一般的な方法で行うことができる。例えば、前記非スルホン化ポリマーを、無溶媒下または溶媒存在下で、無水硫酸、発煙硫酸、クロルスルホン酸、硫酸、亜硫酸水素ナトリウム等の公知のスルホン化剤を用いて、公知の条件でスルホン化することにより、スルホン酸基を導入することができる(非特許文献1〜3参照)。
前記スルホン化の際に用いられる溶剤としては、例えば、n−ヘキサン等の炭化水素溶剤、テトラヒドロフラン、ジオキサン等のエーテル系溶剤、ジメチルアセトアミド、ジメチルホルムアミド、ジメチルスルホキシド等の非プロトン系極性溶剤、テトラクロロエタン、ジクロロエタン、クロロホルム、塩化メチレン等のハロゲン化炭化水素系溶剤等を挙げることができる。反応温度は、特に限定されないが、通常−50〜200℃、好ましくは−10〜100℃である。また、反応時間は、通常0.5〜1,000時間、好ましくは1〜200時間である。
前記のような方法により製造されるスルホン化ポリマー中のスルホン酸基量は、通常0.3〜5meq/g、好ましくは0.5〜3meq/g、さらに好ましくは0.8〜2.8meq/gである。0.3meq/g未満では、プロトン伝導度が低く実用的ではなく、5meq/gを超えると、耐水性が低下することがある。
前記スルホン酸基量は、例えば、モノマーの種類、使用割合、組み合わせを変えることにより、調整することができる。
このようにして得られるスルホン酸基を有するポリアリーレン系重合体の分子量は、ゲルパーミエーションクロマトグラフィー(GPC)によるポリスチレン換算重量平均分子量で、1万〜100万、好ましくは2万〜80万である。前記スルホン酸基を有するポリアリーレン系重合体は、分子量が前記範囲内であることにより、優れた塗膜性、強度的性質、溶解性、加工性等を得ることができる。
前記スルホン酸基を有するポリアリーレン系重合体の構造は、赤外線吸収スペクトルによって、1,030〜1,045cm−1、1,160〜1,190cm−1のS=O吸収、1,130〜1,250cm−1のC−O−C吸収、1,640〜1,660cm−1のC=O吸収等により確認でき、これらの組成比は、スルホン酸の中和滴定や、元素分析により知ることができる。また、核磁気共鳴スペクトル(H−NMR)により、6.8〜8.0ppmの芳香族プロトンのピークから、その構造を確認することができる。
固体高分子電解質膜2は、前記スルホン酸基を有するポリアリーレン系重合体からなる高分子電解質を用いて調製される。また、固体高分子電解質膜2を調製する際に、高分子電解質以外に、硫酸、リン酸等の無機酸、カルボン酸を含む有機酸、適量の水等を併用してもよい。また、プロトン伝導性を損なわない範囲で、フェノール系水酸基含有化合物、アミン系化合物、有機リン化合物、有機イオウ化合物等の酸化防止剤を含んでもよい。
固体高分子電解質膜2は、前記スルホン酸基を有するポリアリーレン系重合体を、溶剤に溶解して溶液とした後、基体上に流延してフィルム状に成形するキャスティング法等により、フィルム状に成形することにより製造することができる。
前記基体としては、通常の溶液キャスティング法に用いられる基体であれば特に限定されず、例えばプラスチック製、金属製等の基体を用いることができ、好ましくは、ポリエチレンテレフタレート(PET)フィルム等の熱可塑性樹脂からなる基体を用いることができる。
前記スルホン酸基を有するポリアリーレン系重合体を溶解する溶媒としては、例えば、N−メチル−2−ピロリドン、N,N−ジメチルホルムアミド、γ−ブチロラクトン、N,N−ジメチルアセトアミド、ジメチルスルホキシド、ジメチル尿素、ジメチルイミダゾリジノン等の非プロトン系極性溶剤を挙げることができ、特に溶解性、溶液粘度の面から、N−メチル−2−ピロリドン(以下「NMP」ということがある)が好ましい。前記非プロトン系極性溶剤は、1種単独で、または2種以上を組み合わせて用いることができる。
また、前記スルホン酸基を有するポリアリーレン系重合体を溶解させる前記溶媒として、前記非プロトン系極性溶剤とアルコールとの混合物を用いることもできる。アルコールとしては、例えば、メタノール、エタノール、プロピルアルコール、iso−プロピルアルコール、sec−ブチルアルコール、tert−ブチルアルコール等を挙げることができ、特にメタノールが幅広い組成範囲で溶液粘度を下げる効果があり好ましい。前記アルコールは、1種単独で、または2種以上を組み合わせて用いることができる。
前記溶媒として、非プロトン系極性溶剤とアルコールとの混合物を用いる場合には、非プロトン系極性溶剤が95〜25重量%、好ましくは90〜25重量%、アルコールが5〜75重量%、好ましくは10〜75重量%(合計100重量%)の範囲で用いる。アルコールの量が前記範囲内にあると、溶液粘度を下げる点で優れた効果を得ることができる。
前記スルホン酸基を有するポリアリーレン系重合体を溶解させた溶液のポリマー濃度は、該ポリアリーレン系重合体の分子量にもよるが、通常、5〜40重量%、好ましくは7〜25重量%である。5重量%未満では厚膜化し難く、またピンホールが生成しやすい。一方、40重量%を超えると溶液粘度が高すぎてフィルム化し難く、また表面平滑性に欠けることがある。
溶液粘度は、前記スルホン酸基を有するポリアリーレン系重合体の分子量や、ポリマー濃度にもよるが、通常、2,000〜100,000mPa・s、好ましくは3,000〜50,000mPa・sの範囲である。2,000mPa・s未満では、成膜中の溶液の滞留性が悪く、基体から流れてしまうことがある。一方、100,000mPa・sを超えると、粘度が高すぎてダイからの押し出しができず、流延法によるフィルム化が困難となることがある。
前記のようにして成膜した後、得られた未乾燥フィルムを水に浸漬すると、未乾燥フィルム中の有機溶剤を水と置換することができ、得られる固体高分子電解質膜2の残留溶媒量を低減することができる。なお、成膜後、未乾燥フィルムを水に浸漬する前に、未乾燥フィルムを予備乾燥してもよい。予備乾燥は、未乾燥フィルムを通常50〜150℃の温度で、0.1〜10時間保持することにより行われる。
未乾燥フィルムを水に浸漬する際には、未乾燥フィルム1重量部に対し、水が10重量部以上、好ましくは30重量部以上の接触比となるようにすることが好ましい。得られる固体高分子電解質膜2の残存溶媒量をできるだけ少なくするためには、できるだけ大きな接触比を維持するのが好ましい。また、浸漬に使用する水を交換したり、オーバーフローさせたりして、常に水中の有機溶媒濃度を一定濃度以下に維持しておくことも、得られる固体高分子電解質膜2の残存溶媒量の低減に有効である。固体高分子電解質膜2中に残存する有機溶媒量の面内分布を小さく抑えるためには、水中の有機溶媒濃度を攪拌等によって均質化させることは効果がある。
未乾燥フィルムを水に浸漬する際の水温は、好ましくは5〜80℃の範囲である。水温が高温であるほど、有機溶媒と水との置換速度は速くなるが、フィルムの吸水量も大きくなるので、乾燥後に得られる固体高分子電解質膜2の表面状態が荒れる懸念がある。通常、置換速度と取り扱いやすさとの点から10〜60℃の温度範囲が好都合である。浸漬時間は、初期の残存溶媒量や接触比、処理温度にもよるが、通常10分〜240時間、好ましくは30分〜100時間の範囲である。
前記のように未乾燥フィルムを水に浸漬した後乾燥すると、残存溶媒量が低減された固体高分子電解質膜2が得られるが、このようにして得られる固体高分子電解質膜2の残存溶媒量は、通常5重量%以下である。また、浸漬条件によっては、得られる固体高分子電解質膜2の残存溶媒量を1重量%以下とすることができる。このような条件としては、例えば、未乾燥フィルムと水との接触比を、未乾燥フィルム1重量部に対し、水が50重量部以上、浸漬する際の水の温度を10〜60℃、浸漬時間を10分〜10時間とする方法がある。
前記のように未乾燥フィルムを水に浸漬した後、フィルムを30〜100℃、好ましくは50〜80℃で、10〜180分、好ましくは15〜60分乾燥し、次いで、50〜150℃で、好ましくは500mmHg〜0.1mmHgの減圧下、0.5〜24時間、真空乾燥することにより、固体高分子電解質膜2を得ることができる。
前記のような方法により得られる固体高分子電解質膜2は、その乾燥膜厚が、通常10〜100μm、好ましくは20〜80μmである。
また、固体高分子電解質膜2は、前記スルホン酸エステル化されたポリアリーレン系重合体を加水分解することなく、上述したような方法でフィルム状に成形した後、加水分解することにより製造することもできる。
固体高分子電解質膜2は、老化防止剤、好ましくは分子量500以上のヒンダードフェノール系化合物を含有してもよく、前記老化防止剤を含有することで固体高分子電解質膜としての耐久性をより向上させることができる。
本実施形態で使用することのできるヒンダードフェノール系化合物としては、ペンタエリスリチル−テトラキス〔3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート〕(チバ・スペシャルティ・ケミカルズ株式会社製IRGANOX 1010(商品名))、N,N−ヘキサメチレンビス(3,5−ジ−t−ブチル−4−ヒドロキシ−ヒドロシンナマミド)(チバ・スペシャルティ・ケミカルズ株式会社製IRGANOX 1098(商品名))、1,3,5−トリメチル−2,4,6−トリス(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)ベンゼン(チバ・スペシャルティ・ケミカルズ株式会社製IRGANOX 1330(商品名))等を挙げることができる。
分子量500以上のヒンダードフェノール系化合物は、前記スルホン酸基を有するポリアリーレン100重量部に対して、0.01〜10重量部の量で使用することが好ましい。
本実施形態において、膜・電極構造体は、アノード、カソードの電極触媒層1,1と、電極触媒層1,1に挟持される固体高分子電解質膜(プロトン伝導膜)2とのみからなっていてもよいが、アノード、カソードともに電極触媒層1の外側にカーボンペーパーやカーボンクロスのような導電性多孔質基材からなるガス拡散層3が配置されるとさらに好ましい。また、この導電性多孔質基材は撥水化加工処理を施してもよい。さらに、このガス拡散層3には、カーボンブラックとポリテトラフルオロエチレン(PTFE)粒子を混合したスラリーを塗布する等して、撥水性を付与した下地層を形成してもよい。ガス拡散層3は集電体としても機能するので、本明細書ではガス拡散層3を有する場合はガス拡散層3と電極触媒層1とを合わせて電極というものとする。
図1に示す膜・電極構造体を備える固体高分子型燃料電池では、カソードには酸素を含むガス、アノードには水素を含むガスが供給される。具体的には、例えばガスの流路となる溝が形成されたセパレータを膜・電極構造体の両方の電極(ガス拡散層3)の外側に配置し、該ガスの流路にガスを流すことにより膜・電極構造体に燃料となるガスを供給する。
図1に示す膜・電極構造体を製造する方法としては、固体高分子電解質膜2の上に電極触媒層1を直接形成し必要に応じガス拡散層3で挟み込む方法、カーボンペーパー等のガス拡散層3となる基材上に電極触媒層1を形成しこれを固体高分子電解質膜2と接合する方法、平板上に電極触媒層1を形成しこれを高分子電解質膜2に転写した後、平板を剥離し、さらに必要に応じガス拡散層3で挟み込む方法等の各種の方法を採用することができる。特に、溶媒で表面を溶かしてから接合できるため、固体高分子電解質膜2の上に電極触媒層1を直接形成する方法が好ましい。
電極触媒層1の形成方法としては、担持触媒とスルホン酸基を有するパーフルオロアルキレンスルホン酸高分子化合物とを分散媒に分散させた分散液を用いて(必要に応じて撥水剤、造孔剤、増粘剤、希釈溶媒等を加え)、固体高分子電解質膜2、ガス拡散層3、または平板上に噴霧、塗布、濾過等により形成させる公知の方法が採用できる。電極触媒層1を固体高分子電解質膜2上に直接形成しない場合は、電極触媒層1と固体高分子電解質膜2とは、ホットプレス法、接着法等により接合することが好ましい(例えば特許文献2参照)。
本実施例では、始めに、以下のようにして、疎水性ユニットを合成した。
まず、攪拌機、温度計、Dean-stark管、窒素導入管、冷却管を取り付けた1Lの三口フラスコに、2,2−ビス(4−ヒドロキシフェニル)−1,1,1,3,3,3−ヘキサフルオロプロパン20.2g(60.2mmol)、9,9−ビス(4−ヒドロキシフェニル)フルオレン18.1g(51.6mmol)、4,4’−ジクロロジフェニルスルホン29.6g(103mmol)、炭酸カリウム20.1g(145mmol)をはかりとった。窒素置換後、スルホラン170ml、トルエン85mlを加えて攪拌し、オイルバスで反応液を150℃で加熱還流させた。反応によって生成する水はDean-stark管にトラップした。3時間後、水の生成がほとんど認められなくなったところで、トルエンをDean-stark管から系外に除去した。徐々に反応温度を上げて200℃とし、5時間攪拌を続けた後、4,4’−ジクロロベンゾフェノン10.8g(43mmol)を加え、さらに8時間反応させた。
反応液を放冷後、トルエン100mlを加えて希釈した。反応液に不溶の無機塩をろ過し、ろ液をメタノール2Lに注いで生成物を沈殿させた。沈殿した生成物をろ過、乾燥後、テトラヒドロフラン250mlに溶解し、これをメタノール2Lに注いで再沈殿させた。沈殿した白色粉末をろ過、乾燥し、疎水性ユニット56.5gを得た。
次に、疎水性ユニットの数平均分子量を、溶剤としてテトラヒドロフラン(THF)を用い、GPCによって、ポリスチレン換算の分子量として求めた。GPCで測定した数平均分子量は7800であった。
また、この化合物のH−NMRスペクトルから、得られた化合物は、下記式(I)で表されるオリゴマーであり、下記式(I)中、aとbの比a:bは54:46であった。尚、繰り返し数aおよびbで表している構造単位を、それぞれ成分a、成分bという。
Figure 0004451237
次に、以下のようにしてスルホン化ポリマーを合成した。
まず、攪拌機、温度計、窒素導入管を取り付けた1Lのフラスコに、3−(2,5−ジクロロベンゾイル)ベンゼンスルホン酸ネオペンチル119g(296mmol)、本実施例で得られた分子量7800の前記疎水性ユニット30.4g(3.9mmol)、ビス(トリフェニルホスフィン)ニッケルジクロリド5.89g(9.0mmol)、ヨウ化ナトリウム1.35g(9.0mmol)、トリフェニルホスフィン31.5g(120mmol)、亜鉛47.1g(720mmol)をはかりとり、乾燥窒素置換した。ここにN,N−ジメチルアセトアミド(DMAc)350mlを加え、反応温度を80℃に保持しながら、3時間攪拌を続けたあと、DMAc700mlを加えて希釈し、不純物をろ過した。
得られた溶液を攪拌機、温度計、窒素導入管を取り付けた2Lのフラスコに入れ、115℃に加熱攪拌し、臭化リチウム56.6g(651mmol)を加えた。7時間攪拌後、アセトン5Lに注いで生成物を沈殿させた。次いで、1M塩酸、純水の順に洗浄後、乾燥して目的のスルホン化ポリマー103gを得た。
次に、前記スルホン化ポリマーの重量平均分子量を、溶剤として臭化リチウムとリン酸を添加したN−メチル−2−ピロリドン(NMP)を溶離液として用い、GPCによって、ポリスチレン換算の分子量として求めた。得られたスルホン化ポリマーの重量平均分子量(Mw)は260,000であった。
得られたスルホン化ポリマーは、式(II)で表される重合体であると推定される。
Figure 0004451237
得られたスルホン化ポリマーの10重量%N−メチル−2−ピロリドン(NMP)溶液を、ガラス板上にキャストして成膜し、膜厚40μmのフィルム(固体高分子電解質膜2)を得た。
次に、前記フィルムを用い、以下のようにして、図1に示す膜・電極構造体を作製した。
まず、平均径50nmのカーボンブラック(ファーネスブラック)に白金粒子を、カーボンブラック:白金=1:1の重量比で担持させ、触媒粒子を作製した。次に、イオン伝導性バインダーとしてのパーフルオロアルキレンスルホン酸高分子化合物(デュポン社製ナフィオン(商品名))溶液に、前記触媒粒子を、イオン伝導性バインダー:触媒粒子=8:5の重量比で均一に分散させ、触媒ペーストを調製した。
次に、カーボンブラックとポリテトラフルオロエチレン(PTFE)粒子とを、カーボンブラック:PTFE粒子=4:6の重量比で混合し、得られた混合物をエチレングリコールに均一に分散させたスラリーをカーボンペーパーの片面に塗布、乾燥させて下地層とし、該下地層とカーボンペーパーとからなるガス拡散層3を2つ作製した。
本実施例で得られた前記フィルム(固体高分子電解質膜2)の両面に、前記触媒ペーストを、白金含有量が0.5mg/cmとなるようにバーコーター塗布し、乾燥させることにより電極塗布膜(以下、Catalyst Coated Membrane:CCMということがある)を得た。前記乾燥は、100℃で15分間の乾燥を行なった後、140℃で10分間の二次乾燥を行なった。
次に、前記CCMを前記ガス拡散層3の下地層側で狭持し、ホットプレスを行なって図1に示す膜・電極構造体を得た。前記ホットプレスは、80℃、5MPaで2分間の一次ホットプレスの後、160℃、4MPaで1分間の二次ホットプレスを行なった。
また、本実施例で得られた膜・電極構造体は、ガス拡散層3の上にさらにガス通路を兼ねるセパレーターを積層することにより、固体高分子型燃料電池を構成することができる。
次に、本実施例で得られたスルホン化ポリマーと、固体高分子電解質膜2との物性を、以下のようにして評価した。結果を表1に示す。
スルホン化ポリマーのイオン交換容量は、該スルホン化ポリマーの水洗水がpH4〜6になるまで洗浄して、残存している遊離の酸を除去後、十分に水洗して乾燥した後、所定量を秤量してTHF/水の混合溶剤に溶解した。次に、フェノールフタレインを指示薬としてNaOHの標準液にて滴定し、中和点からイオン交換容量を求めた。
固体高分子電解質膜2のプロトン伝導度は、まず、固体高分子電解質膜2を5mm幅の短冊状の試料とし、該試料の表面に、白金線(直径0.5mm)を押し当て、恒温恒湿装置中に試料を保持し、白金線間の交流インピーダンス測定することにより交流抵抗を求めた。抵抗測定装置として、Solartron社製SI1260インピーダンスアナライザ(商品名)を用い、恒温恒湿装置にはエスペック社製小型環境試験機SH−241(商品名)を使用した。白金線を5mm間隔に5本押し当てて、線間距離を5〜20mmに変化させて交流抵抗を測定した。次に、線間距離と抵抗の勾配とから次式により固体高分子電解質膜2の比抵抗を算出し、比抵抗の逆数から交流インピーダンスを算出し、このインピーダンスからプロトン伝導度を算出した。測定は、85℃、相対湿度90%の条件下で行った。
比抵抗R(Ω・cm)=0.5(cm)×膜厚(cm)×抵抗線間勾配(Ω/cm)
固体高分子電解質膜2の熱水耐性は、固体高分子電解質膜2を2.0cm×3.0cmにカットし、秤量して試験用のテストピースとした。このテストピースを、ポリカーボネート製の250ml瓶に入れ、そこに約100mlの蒸留水を加え、プレッシャークッカー試験機(HIRAYAMA MFS CORP製 PC−242HS(商品名))を用いて、120℃で24時間加温した。
前記加温終了後、前記テストピースを熱水中から取り出し、該テストピースの寸法を測定して、試験前のテストピースの寸法に対する試験後の寸法の割合(寸法変化率)を求めた。また、試験後のテストピースを真空乾燥機で5時間乾燥して重量を秤量し、試験前のテストピースの重量に対する試験後の重量の割合(重量保持率)を求めた。
固体高分子電解質膜2の電極接着性は、固体高分子電解質膜2の両面に電極を塗布した電極塗布膜(CCM)を、結露サイクル試験機(エスペック社製DCTH−200(商品名))に投入し、85℃95%RHと−20℃との冷熱サイクルテストを20回実施した。試験後のCCMを1.0cm×5.0cmの短冊状にカットし、アルミ板に両面で固定しテストピースとした。さらに、電極面にテープを貼り付け、テープを180℃方向に50mm/分の速さで引っ張り、CCM上の電極を剥離させた。テープの剥離試験は、豊光エンジニアリング製SPG荷重測定機HPC.A50.500(商品名)を用いて行なった。剥離試験後のテストピースについて画像処理を行い、次式に基づいて電極が残存した面積を算出し、電極接着率を求めた。画像処理は、エプソン社製スキャナGT−8200UF(商品名)を用いて画像を取り込み、2値化することにより行なった。
電極接着率(%)=電極残存面積/全サンプル面積
本実施例で得られた膜・電極構造体の発電特性は、温度85℃、燃料極側と酸素極側との相対湿度をともに30%とした発電条件により、高温低加湿環境下での発電性能を評価した。燃料極側には純水素を、酸素極側には空気をそれぞれ供給した。電流密度1A/cmで200時間発電した後、電流密度は1A/cmとし、セル電位の測定を行った。
また、本実施例で得られた膜・電極構造体を用い、−20℃の条件下で低温始動性を評価した。結果は、20秒以内に起動できれば良好として「○」で表示し、20秒以上または始動不可であった場合には不良として「×」で表示した。
本実施例では、2,2−ビス(4−ヒドロキシフェニル)−1,1,1,3,3,3−ヘキサフルオロプロパンおよび、9,9−ビス(4−ヒドロキシフェニル)フルオレンの仕込み量を、それぞれ14.5g(43.0mmol)および24.1g(68.8mmol)に変更した以外は、実施例1と同一の方法で合成を行い、疎水性ユニット54.4gを得た。実施例1と同一にして、GPCで測定した数平均分子量は8300であった。得られた化合物は、前記式(I)で表されるオリゴマーであり、式(I)中、aとbの比a:bは37:63であった。
次に、本実施例で得られた分子量8300の疎水性ユニットを用いたこと以外は、実施例1と同一にして合成をおこない、スルホン化ポリマー102gを得た。実施例1と同一にして、GPCで測定した重量平均分子量は250,000であった。得られたスルホン化ポリマーを用いたこと以外は、実施例1と同一にしてフィルム(固体高分子電解質膜2)を作製した。
次に、本実施例で得られたフィルムを用いたこと以外は、実施例1と同一にして膜・電極構造体を得た。
次に、本実施例で得られたスルホン化ポリマーと、固体高分子電解質膜2との物性を、実施例1と同一にして評価した。結果を表1に示す。
本実施例では、2,2−ビス(4−ヒドロキシフェニル)−1,1,1,3,3,3−ヘキサフルオロプロパンおよび、9,9−ビス(4−ヒドロキシフェニル)フルオレンの仕込み量を、それぞれ28.9g(86.0mmol)および9.04g(25.8mmol)に変更した以外は、実施例1と同一の方法で合成を行い、疎水性ユニット55.1gを得た。実施例1と同一にして、GPCで測定した数平均分子量は7600であった。得られた化合物は、前記式(I)で表されるオリゴマーであり、式(I)中、aとbの比a:bは77:23であった。
次に、本実施例で得られた分子量7600の疎水性ユニットを用いたこと以外は、実施例1と同一にして合成をおこない、スルホン化ポリマー102gを得た。実施例1と同一にして、GPCで測定した重量平均分子量は250,000であった。得られたスルホン化ポリマーを用いたこと以外は、実施例1と同一にしてフィルム(固体高分子電解質膜2)を作製した。
次に、本実施例で得られたフィルムを用いたこと以外は、実施例1と同一にして膜・電極構造体を得た。
次に、本実施例で得られたスルホン化ポリマーと、固体高分子電解質膜2との物性を、実施例1と同一にして評価した。結果を表1に示す。
本実施例では、始めに、以下のようにして、疎水性ユニットを合成した。
まず、攪拌機、温度計、Dean-stark管、窒素導入管、冷却管を取り付けた1Lの三口フラスコに、2,2−ビス(4−ヒドロキシフェニル)−1,1,1,3,3,3−ヘキサフルオロプロパン29.8g(88.6mmol)、4,4’−ビフェノール4.70g(25.3mmol)、4,4’−ジクロロジフェニルスルホン29.1g(101mmol)、炭酸カリウム20.5g(148mmol)をはかりとった。窒素置換後、スルホラン160ml、トルエン80mlを加えて攪拌し、オイルバスで反応液を150℃で加熱還流させた。反応によって生成する水はDean-stark管にトラップした。3時間後、水の生成がほとんど認められなくなったところで、トルエンをDean-stark管から系外に除去した。徐々に反応温度を上げて200℃とし、5時間攪拌を続けたあと、4,4’−ジクロロベンゾフェノン15.9g(63.2mmol)を加え、さらに8時間反応させた。
反応液を放冷後、トルエン100mlを加えて希釈した。反応液に不溶の無機塩をろ過し、ろ液をメタノール2Lに注いで生成物を沈殿させた。沈殿した生成物をろ過、乾燥後、テトラヒドロフラン250mlに溶解し、これをメタノール2Lに注いで再沈殿させた。沈殿した白色粉末をろ過、乾燥し、疎水性ユニット48.3gを得た。実施例1と同一にして、GPCで測定した数平均分子量は7400であった。得られた化合物は、式(III)で表されるオリゴマーであり、式(III)中、aとbの比a:bは78:22であった。
Figure 0004451237
次に、以下のようにしてスルホン化ポリマーを合成した。
まず、攪拌機、温度計、窒素導入管を取り付けた1Lのフラスコに、3−(2,5−ジクロロベンゾイル)ベンゼンスルホン酸ネオペンチル119g(296mmol)、(1)で得られた分子量7400の疎水性ユニット31.1g(4.2mmol)、ビス(トリフェニルホスフィン)ニッケルジクロリド5.89g(9.0mmol)、ヨウ化ナトリウム1.35g(9.0mmol)、トリフェニルホスフィン31.5g(120mmol)、亜鉛47.1g(720mmol)をはかりとり、乾燥窒素置換した。ここにN,N−ジメチルアセトアミド(DMAc)350mlを加え、反応温度を80℃に保持しながら、3時間攪拌を続けた後、DMAc700mlを加えて希釈し、不溶物をろ過した。
得られた溶液を攪拌機、温度計、窒素導入管を取り付けた2Lのフラスコに入れ、115℃に加熱攪拌し、臭化リチウム56.6g(651mmol)を加えた。7時間攪拌後、アセトン5Lをに注いで生成物を沈殿させた。次いで、1M塩酸、純水の順に洗浄後、乾燥して目的のスルホン化ポリマー102gを得た。実施例1と同一にして、GPCで測定した重量平均分子量(Mw)は230,000であった。得られたスルホン化ポリマーは、式(IV)で表される重合体と推定される。
Figure 0004451237
次に、得られたスルホン化ポリマーの10重量%N−メチル−2−ピロリドン(NMP)溶液を、ガラス板上にキャストして成膜し、膜厚40μmのフィルム(固体高分子電解質膜2)を作製した。
次に、本実施例で得られたフィルムを用いたこと以外は、実施例1と同一にして膜・電極構造体を得た。
次に、本実施例で得られたスルホン化ポリマーと、固体高分子電解質膜2との物性を、実施例1と同一にして評価した。結果を表1に示す。
〔比較例1〕
本比較例では、始めに、以下のようにして、疎水性ユニットを合成した。
まず、攪拌機、温度計、Dean-stark管、窒素導入管、冷却管を取り付けた1Lの三口フラスコに、2,2−ビス(4−ヒドロキシフェニル)−1,1,1,3,3,3−ヘキサフルオロプロパン2.68g(7.96mmol)、9,9−(4−ヒドロキシフェニル)フルオレン36.3g(104mmol)、4,4’−ジクロロジフェニルスルホン29.7g(104mmol)、炭酸カリウム20.0g(145mmol)をはかりとった。窒素置換後、スルホラン172ml、トルエン86mlを加えて攪拌し、オイルバスで反応液を150℃で加熱還流させた。反応によって生成する水はDean-stark管にトラップした。水の生成がほとんど認められなくなったところで、トルエンをDean-stark管から系外に除去した。徐々に反応温度を上げて200℃とし、5時間攪拌を続けた後、4,4’−ジクロロベンゾフェノン10.0g(39.8mmol)を加え、さらに8時間反応させた。
反応後は実施例1と同一の後処理を行い、前記式(I)で表される疎水性ユニット57.4gを得た。実施例1と同一にして、GPCで測定した数平均分子量は7600であった。式(I)において、aとbの比a:bは7:93であった。
次に、以下のようにしてスルホン化ポリマーを合成した。
まず、攪拌機、温度計、窒素導入管を取り付けた1Lのフラスコに、3−(2,5−ジクロロベンゾイル)ベンゼンスルホン酸ネオペンチル119g(296mmol)、前記の分子量7600の疎水性ユニット31.9g(4.2mmol)、ビス(トリフェニルホスフィン)ニッケルジクロリド5.89g(9.0mmol)、ヨウ化ナトリウム1.35g(9.0mmol)、トリフェニルホスフィン31.5g(120mmol)、亜鉛47.1g(720mmol)をはかりとり、乾燥窒素置換した。ここにN,N−ジメチルアセトアミド(DMAc)350mlを加え、反応温度を80℃に保持しながら、3時間攪拌を続けたあと、DMAc700mlを加えて希釈し、不溶物をろ過した。
得られた溶液を攪拌機、温度計、窒素導入管を取り付けた2Lのフラスコに入れ、115℃に加熱攪拌し、臭化リチウム56.6g(651mmol)を加えた。7時間攪拌後、アセトン5Lに注いで生成物を沈殿させた。次いで、1M塩酸、純水の順に洗浄後、乾燥して目的のスルホン化ポリマー104gを得た。実施例1と同一にして、GPCで測定した重量平均分子量(Mw)は210,000であった。
得られたスルホン化ポリマーの10重量%N−メチル−2−ピロリドン(NMP)溶液を、ガラス板上にキャストして成膜し、膜厚40μmのフィルム(固体高分子電解質膜2)を作製した。
次に、本比較例で得られたフィルムを用いたこと以外は、実施例1と同一にして膜・電極構造体を得た。
次に、本比較例で得られたスルホン化ポリマーと、固体高分子電解質膜2との物性を、実施例1と同一にして評価した。結果を表1に示す。
〔比較例2〕
本比較例では、始めに、以下のようにして、疎水性ユニットを合成した。
まず、攪拌機、温度計、Dean-stark管、窒素導入管、冷却管をとりつけた1L三口フラスコに、4,4’−ジクロロジフェニルスルホン29.8g(104mmol)、2,2−ビス(4−ヒドロキシフェニル)−1,1,1,3,3,3−ヘキサフルオロプロパン37.4g(111mmol)、炭酸カリウム20.0g(145mmol)をはかりとった。窒素置換後、スルホラン168ml、トルエン84mlを加えて攪拌し、フラスコをオイルバスにつけ、150℃に加熱還流させた。反応によって生成する水はDean-stark管にトラップした。3時間後、水の生成がほとんど認められなくなったところで、トルエンをDean-stark管から系外に除去した。徐々に反応温度を上げて200℃とし、5時間攪拌を続けた後、4,4’−ジクロロベンゾフェノン7.5g(30mmol)を加え、さらに8時間反応させた。
反応液を放冷後、トルエン100mlを加えて希釈した。反応液に不溶の無機塩をろ過し、得られた溶液をメタノール2Lに注ぎ、生成物を沈殿させた。沈殿をろ過、乾燥後、テトラヒドロフラン250mlに溶解し、メタノール2L再沈殿した。沈殿した白色粉末をろ過、乾燥し、前記式(I)で表される疎水性ユニット(I)56gを得た。実施例1と同一にして、GPCで測定した数平均分子量は10,500であった。式(I)において、aとbの比a:bは100:0である。
次に、以下のようにしてスルホン化ポリマーを合成した。
まず、攪拌機、温度計、窒素導入管をとりつけた1Lの三口フラスコに、3−(2,5−ジクロロベンゾイル)ベンゼンスルホン酸ネオペンチル119g(297mmol)、(1)の疎水性ユニット31.5g(3.0mmol)、ビス(トリフェニルホスフィン)ニッケルジクロリド5.89g(9.0mmol)、ヨウ化ナトリウム1.35g(9.0mmol)、トリフェニルホスフィン31.5g(120mmol)、亜鉛47.1g(720mmol)をはかりとり、乾燥窒素置換した。ここにN,N−ジメチルアセトアミド(DMAc)350mlに加え、反応温度を80℃に保持しながら3時間攪拌を続けた後、DMAc700mlを加えて希釈し、不溶物をろ過した。
得られた溶液を攪拌機、温度計、窒素導入管をとりつけた2Lの三口フラスコに入れ、115℃に加熱攪拌し、臭化リチウム56.8g(653mmol)を加えた。7時間攪拌後、5Lアセトンに注いで生成物を沈殿させた。ついで、1M塩酸、純水の順に洗浄後、乾燥して目的のスルホン化ポリマー101gを得た。実施例1と同一にして、GPCで測定した重量平均分子量は190,000であった。
得られたスルホン化ポリマーの10重量%N−メチル−2−ピロリドン(NMP)溶液をガラス基板上にキャストして成膜し、膜厚40μmのフィルム(固体高分子電解質膜2)を作製した。
次に、本比較例で得られたフィルムを用いたこと以外は、実施例1と同一にして膜・電極構造体を得た。
次に、本比較例で得られたスルホン化ポリマーと、固体高分子電解質膜2との物性を、実施例1と同一にして評価した。結果を表1に示す。
Figure 0004451237
表1から、実施例1〜4の固体高分子電解質膜2は、スルホン化ポリマーのイオン交換容量が同一であるにも係わらず、比較例1,2の固体高分子電解質膜2対し、優れたプロトン伝導率と熱水耐性を備えていることが明らかである。
この結果、実施例1〜4の固体高分子電解質膜2を備える膜・電極構造体は、優れた電極接着率と、発電性能とを備えていることが明らかである。
本発明の膜・電極構造体の一構成例を示す説明的断面図。
符号の説明
1…電極触媒層、 2…高分子電解質膜、 3…ガス拡散層。

Claims (2)

  1. 高分子電解質膜を、触媒を含む1対の電極で挟持した固体高分子型燃料電池用膜・電極構造体において、
    前記高分子電解質膜は、下記式(II)または下記式(IV)で表されるいずれかのポリアリーレン系重合体からなることを特徴とする固体高分子型燃料電池用膜・電極構造体。
    Figure 0004451237
  2. 下記式(II)または下記式(IV)で表されるいずれかのポリアリーレン系重合体からなる高分子電解質膜を、触媒を含む1対の電極で挟持した固体高分子型燃料電池用膜・電極構造体を備えることを特徴とする固体高分子型燃料電池。
    Figure 0004451237
JP2004210953A 2004-07-20 2004-07-20 固体高分子型燃料電池用膜・電極構造体及び固体高分子型燃料電池 Expired - Fee Related JP4451237B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004210953A JP4451237B2 (ja) 2004-07-20 2004-07-20 固体高分子型燃料電池用膜・電極構造体及び固体高分子型燃料電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004210953A JP4451237B2 (ja) 2004-07-20 2004-07-20 固体高分子型燃料電池用膜・電極構造体及び固体高分子型燃料電池

Publications (2)

Publication Number Publication Date
JP2006032179A JP2006032179A (ja) 2006-02-02
JP4451237B2 true JP4451237B2 (ja) 2010-04-14

Family

ID=35898264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004210953A Expired - Fee Related JP4451237B2 (ja) 2004-07-20 2004-07-20 固体高分子型燃料電池用膜・電極構造体及び固体高分子型燃料電池

Country Status (1)

Country Link
JP (1) JP4451237B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8110639B2 (en) 2006-11-17 2012-02-07 Solvay Advanced Polymers, L.L.C. Transparent and flame retardant polysulfone compositions
JP5040000B2 (ja) * 2008-01-21 2012-10-03 トヨタ自動車株式会社 膜・電極接合体の製造方法
EP2343714A4 (en) * 2008-10-03 2013-06-12 Nippon Kayaku Kk POLYETHERSULPHONE POLYMER ELECTROLYTE, FESTPOLYMER ELECTROLYTMEMBRANE, FUEL CELL AND METHOD FOR THE PREPARATION OF POLYETHERSULPHONE POLYMER ELECTROLYTE

Also Published As

Publication number Publication date
JP2006032179A (ja) 2006-02-02

Similar Documents

Publication Publication Date Title
JP4508954B2 (ja) 固体高分子型燃料電池用膜−電極構造体
EP1619739B1 (en) Membrane-electrode structure for solid polymer fuel cell and solid polymer fuel cell
JP4684678B2 (ja) 固体高分子型燃料電池用膜−電極構造体及び固体高分子型燃料電池
JP4068988B2 (ja) 電解膜−電極基板複合体の製造方法
JP4579073B2 (ja) 固体高分子型燃料電池用膜−電極構造体
JP2007294213A (ja) 固体高分子型燃料電池用膜−電極構造体
JP2006032181A (ja) 固体高分子型燃料電池用膜・電極構造体及び固体高分子型燃料電池
JP5000289B2 (ja) 固体高分子型燃料電池用膜−電極構造体
JP4754496B2 (ja) ニトリル型疎水性ブロックを有するスルホン化ポリマーおよび固体高分子電解質
JP5352128B2 (ja) 固体高分子型燃料電池用膜−電極構造体
JP4554568B2 (ja) 固体高分子型燃料電池用膜−電極構造体
JP4955209B2 (ja) 固体高分子型燃料電池用膜−電極構造体及び固体高分子型燃料電池
JP2005154578A (ja) 架橋型高分子電解質およびプロトン伝導膜
JP4451237B2 (ja) 固体高分子型燃料電池用膜・電極構造体及び固体高分子型燃料電池
JP2009238468A (ja) 固体高分子型燃料電池用膜−電極構造体
JP4671769B2 (ja) 固体高分子型燃料電池用膜−電極構造体およびその製造方法
JP2006179256A (ja) 固体高分子型燃料電池用膜−電極構造体及び固体高分子型燃料電池
JP2009245774A (ja) 固体高分子型燃料電池用膜−電極構造体
JP2005197236A (ja) 固体高分子型燃料電池およびそれに用いる膜・電極構造体
JP5059339B2 (ja) 固体高分子型燃料電池用膜−電極構造体
JP4459744B2 (ja) 固体高分子型燃料電池用膜・電極構造体及び固体高分子型燃料電池
JP5350974B2 (ja) 固体高分子型燃料電池用膜−電極構造体
JP2005190675A (ja) 固体高分子電解質膜および固体高分子電解質型燃料電池
JP2006172861A (ja) 燃料電池用膜−電極接合体
JP2010010007A (ja) 固体高分子型燃料電池用膜−電極構造体

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100126

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100127

R150 Certificate of patent or registration of utility model

Ref document number: 4451237

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140205

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees