JP4447593B2 - スロットルバルブ装置 - Google Patents

スロットルバルブ装置 Download PDF

Info

Publication number
JP4447593B2
JP4447593B2 JP2006288449A JP2006288449A JP4447593B2 JP 4447593 B2 JP4447593 B2 JP 4447593B2 JP 2006288449 A JP2006288449 A JP 2006288449A JP 2006288449 A JP2006288449 A JP 2006288449A JP 4447593 B2 JP4447593 B2 JP 4447593B2
Authority
JP
Japan
Prior art keywords
valve body
tumble
intake
passage
bypass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006288449A
Other languages
English (en)
Other versions
JP2008106641A (ja
Inventor
和宏 林
誠 大坪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Soken Inc
Original Assignee
Denso Corp
Nippon Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Nippon Soken Inc filed Critical Denso Corp
Priority to JP2006288449A priority Critical patent/JP4447593B2/ja
Publication of JP2008106641A publication Critical patent/JP2008106641A/ja
Application granted granted Critical
Publication of JP4447593B2 publication Critical patent/JP4447593B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)

Description

本発明は、内燃機関への吸入空気の流量を調節するスロットルバルブ装置に関する。
従来より、内燃機関に吸入空気を導く吸気通路を内部に形成する吸気管、回転軸、および回転軸から延出する弁体を備え、回転軸とともに弁体を回転させることにより吸気通路の開度を調節するスロットルバルブ装置が知られている(特許文献1等参照)。
そして、特許文献1記載のスロットルバルブ装置では、弁体のうち回転軸と反対側に位置する端面と吸気管の内壁との間で形成される通路(以下、タンブル兼用メイン通路と呼ぶ)の開度を調節することで、吸入空気の流量(以下、単に吸気流量と呼ぶ)を調節するとともにタンブル量を制御している。すなわち、吸気流量を調節する弁体が、タンブル量を制御する弁体を兼ねている。
因みに、「タンブル」とは、内燃機関の燃焼室内にて生じる縦方向の渦流のことであり、内燃機関の燃焼促進等を図るものである。そして、「タンブル量」とは、単位時間当たりに渦が回転した回数のことである。
特開平7−503526号公報
ところで、冷間時には、タンブルを発生させることにより、燃料のウェット量(吸気管の内壁等に付着する燃料)を低減させるとともに燃焼室内に均質な混合気を形成することができるため、燃焼を安定化させることができる。そして、内燃機関のアイドル運転時において、冷間時であっても内燃機関の温度が上昇してくれば、タンブル量を抑えて燃焼抑制を図ることが望ましい。
しかしながら、特許文献1記載の如く吸気流量を調節する弁体がタンブル量を制御する弁体を兼ねている場合には、弁体の回転にともなって吸気流量とタンブル量がともに増大または減少することとなる。よって、アイドル運転に必要な吸気流量を確保したままタンブル量のみを減少させることはできず、上述の燃焼抑制ができないため燃費悪化は免れない。
そこで、本発明の目的は、吸気流量を調節する弁体にタンブル量を制御する弁体を兼ねさせることと、燃費改善との両立を図ったスロットルバルブ装置を提供することにある。
請求項1記載の発明では、吸気通路は、弁体のうち回転軸と反対側に位置する上方端面と吸気管の内壁との間で形成されるタンブル兼用メイン通路と、タンブル兼用メイン通路をバイパスするバイパス通路とに区画されている。そして、タンブル兼用メイン通路およびバイパス通路は、弁体を開方向に回転させるにつれタンブル兼用メイン通路の開度が減少するとともにバイパス通路の開度が増大するように配置されている。
この構成によれば、内燃機関をアイドル運転させている場合において、内燃機関の温度上昇にともなって弁体を開方向に回転させれば、タンブル兼用メイン通路の開度が減少するとともにバイパス通路の開度が増大する。従って、タンブル兼用メイン通路の開度が減少することによりタンブル量を減少できるとともに、バイパス通路の開度が増大することにより、タンブル兼用メイン通路の開度減少による吸気流量の減少をバイパス通路を流れる吸入空気の増大により補うことができる。よって、アイドル運転に必要な吸気流量を確保したままタンブル量のみを減少できるので、吸気流量を調節する弁体にタンブル量を制御する弁体を兼ねさせることと、燃費改善との両立を図ることができる。
請求項2記載の発明では、弁体を開方向に回転させるにつれ弁体が吸気管の内壁に形成された凸部に近づくことにより、タンブル兼用メイン通路の開度が減少するように構成されている。そのため、弁体を開方向に回転させるにつれタンブル兼用メイン通路の開度が減少するとともにバイパス通路の開度が増大するように構成することを容易に実現できる。
また、請求項3〜5記載の発明のようにバイパス通路を形成すれば、弁体を開方向に回転させるにつれタンブル兼用メイン通路の開度が減少するとともにバイパス通路の開度が増大するように構成することを容易に実現できる。
請求項7記載の発明では、アイドル制御領域では、弁体の回転位置に拘わらず総和吸気流量が一定となるように構成されているので、内燃機関のアイドル運転時に、内燃機関の温度上昇にともなって弁体を開方向に回転させてタンブル量を減少させた場合であっても、内燃機関の回転数が変動してしまうことを抑制できる。
ここで、弁体の回転により吸気通路の開度を調節するにあたりバイパス通路の開度が大きいほど吸入空気の流れが乱れてしまい、吸入空気の圧力損失増大を招いてしまう。そして、通常制御領域では、圧力損失を少なくし、より多くの空気を吸入する必要がある。この点を鑑み、請求項8記載の発明では、通常制御領域では、弁体を開方向に回転させるにつれタンブル兼用メイン通路の開度が増大するとともにバイパス通路の開度が減少または閉塞するので、通常制御領域における上記圧力損失増大を抑制できる。
以下、本発明の複数の実施形態を図面に基づいて説明する。なお、以下の各実施形態相互において、実質的に同一の構成部位には、図中、同一符号を付してある。
(第1実施形態)
本発明の第1実施形態に係るスロットルバルブ装置を、図1〜図3を用いて以下に説明する。図1は、スロットルバルブ装置20の詳細を示す模式図であり、図2は、図1に示すスロットルバルブ装置20が内燃機関としてのガソリンエンジン10に搭載された状態を示す模式図である。
はじめに、図2を用いてスロットルバルブ装置20の構造の概略を説明する。
ガソリンエンジン10は車両に搭載された走行用のエンジンであり、図示しない複数の気筒11を有するエンジンである。各気筒には、シリンダヘッド12内部に形成された燃焼室13、ピストン14、吸気ポート15、排気ポート16、吸気バルブ17、排気バルブ(図示しない)等が備えられている。
吸気ポート15にはスロットルバルブ装置20が接続され、スロットルバルブ装置20の吸入空気流れ上流側には、図示しないインテークマニホールドおよびサージタンク等が接続されている。
従って、ピストン14の吸気行程により燃焼室13に負圧が発生すると、図示しないエアクリーナを通過した空気が吸入空気としてサージタンクに流入し、各気筒に向けて分岐する。そして、分岐した吸入空気はインテークマニホールド内を流通した後、スロットルバルブ装置20により流量調節される。そして、流量調節された吸入空気は吸気ポート15から燃焼室13内に流入する。
スロットルバルブ装置20は、吸気管21、回転軸22、弁体23、電動モータ24およびECU25(電子制御手段)等を備えて構成されている。
吸気管21は、シリンダヘッド12に形成された吸気ポート15に接続されており、燃焼室13に吸入空気を導く吸気通路211を内部に形成する。すなわち、吸気通路211は気筒の数だけ複数形成されている。なお、吸気管21の材質はアルミニウム合金等の金属製または樹脂製である。
回転軸22は、回転軸22の延びる方向が吸入空気の流れ方向(図2の左右方向)に対して略直交する方向となるように配置されている。そして、弁体23および回転軸22は一体的に回転する。因みに、本実施形態では、複数の吸気管21のそれぞれに配置された弁体23は共通した一本の回転軸22に固定されており、複数の弁体23および回転軸22は一体的に回転する。すなわち、本実施形態に係るスロットルバルブ装置20は所謂多連スロットル式である。
電動モータ24は回転軸22を駆動させるアクチュエータであり、電動モータ24の作動はECU25により制御される。そして、ECU25は、車両の運転者によるアクセル操作量に基づき、弁体23による吸気通路211の目標開度を算出するとともに、図示しないロータリーエンコーダ等の回転位置検出手段により回転軸22および弁体23の実際の回転位置(実際の開度)を算出する。そして、ECU25は、回転位置検出手段により検出された実際の開度が目標開度となるように電動モータ24の作動を制御する。
次に、図1を用いて、本発明の要部である吸気管21および弁体23の構造について詳細に説明する。なお、図1(a)(b)(c)は弁体23を解放側(下流側)に回転させるときの吸入空気の流れの変化を説明する図であり、図1(d)は図1(a)のd矢視図である。
弁体23は、回転軸22の径方向片側に向けて回転軸22から板状に延びる形状であり、回転軸22の径方向方片側でのみ吸気通路211を開閉する片側開閉式である。そして、弁体23は回転軸22とともに回転して、吸気通路211の開度を調節する。因みに、弁体23の材質はアルミニウム合金等の金属製または樹脂製である。
また、弁体23を最小開度位置近傍に回転させて、図1(a)および図1(b)に示す位置にすると、吸入空気は弁体23先端と吸気管21との僅かな隙間を流通して絞られるため、吸入空気の主流は吸気通路211の径方向片側部分に寄せられるとともに、流速が増大する。その結果、燃焼室13内に流入した吸入空気が、図2中の矢印Fに示すように縦方向の渦流(例えばタンブル流)となる。すなわち、スロットルバルブ装置20は、吸入空気の流量を調節する機能の他に、タンブル量を調節する渦流制御装置としての機能をも有している。
因みに、「タンブル量」とは、単位時間当たりに渦が回転した回数のことであり、その回転数の計測場所は、吸気管21内のうち弁体23の下流側部分や、吸気ポート15や、燃焼室13等が挙げられる。そして、タンブル流により燃焼室13での燃焼が促進される。
吸気通路211は、タンブル兼用メイン通路211aと、タンブル兼用メイン通路211aをバイパスするバイパス通路211bとに区画されている。そして、タンブル兼用メイン通路211aは、弁体23のうち回転軸22と反対側に位置する上方端面231と吸気管21の内壁との間で形成される。バイパス通路211bは、弁体23のうち回転軸22から上方端面231まで延びる部分である側方端面232と吸気管21の内壁との間で形成される。
次に、バイパス通路211bの構造をより詳細に説明する。
吸気管21の内壁には、吸気通路211の通路断面を図1(d)の左右方向に拡大する凹部212が形成されている。凹部212は、弁体23の左右両側に形成されており、正面視において空気流れ方向を長手方向とする楕円形である。そして、弁体23が図1(b)に示す位置に回転すると、弁体23の側方端面232と凹部212との間でバイパス通路211bが形成されることとなる。また、凹部212は回転軸22よりも下流側に配置されている。
従って、バイパス通路211bは弁体23の側方端面232により開閉される。よって、弁体23が図1(a)および図1(c)に示す回転位置である場合には、バイパス通路211bは閉塞されて開度が殆どゼロの状態となるため、バイパス通路211bを流通する吸気流量(以下、バイパス吸気流量Qbと呼ぶ)は、漏れ出る程度の少量となる。
一方、弁体23が図1(a)に示す回転位置から図1(b)に示す回転位置まで回転するにつれ、バイパス通路211bの開度は増大するため、バイパス吸気流量Qbは増大する。また、弁体23が図1(b)に示す回転位置から図1(c)に示す回転位置まで回転するにつれ、バイパス通路211bの開度は減少するため、バイパス吸気流量Qbは減少する。
なお、図3(a)中の一点鎖線は、弁体23の回転角度とバイパス吸気流量Qbとの関係を示している。図1(a)に示す弁体23の回転位置は図3中の符号θaに対応し、図1(b)(c)に示す弁体23の回転位置ははそれぞれ符号θb、θcに対応する。
次に、タンブル兼用メイン通路211aの構造をより詳細に説明する。
吸気管21の内壁のうちタンブル兼用メイン通路211aを形成する部分には、吸気通路211の通路断面を図1(a)の上下方向に縮小する凸部213が形成されている。凸部213は、弁体23の幅方向(図1(d)の左右方向)全体に亘って延びる形状であり、図1(a)に示すように吸入空気の流れに沿った円弧形状である。また、凸部213は回転軸22よりも下流側に配置されている。
従って、弁体23が図1(a)に示す回転位置から図1(b)に示す回転位置まで回転するにつれ、弁体23の上方端面231が凸部213に近づくため、タンブル兼用メイン通路211aの開度は減少する。よって、タンブル兼用メイン通路211aを流通する吸気流量(以下、タンブル吸気流量Qaと呼ぶ)は減少する。
一方、弁体23が図1(b)に示す回転位置から図1(c)に示す回転位置まで回転するにつれ、弁体23の上方端面231が凸部213から離れるため、タンブル兼用メイン通路211aの開度は増大する。よって、タンブル吸気流量Qaは増大する。
なお、図3(a)中の点線は、弁体23の回転角度とタンブル吸気流量Qaとの関係を示している。そして、図3(a)中の実線は、タンブル吸気流量Qaおよびバイパス吸気流量Qbの総和である総和吸気流量(Qa+Qb)と、弁体23の回転角度との関係を示している。
ここで、ECU25が弁体23の回転を制御するにあたり、弁体23が最も上流側へ回転した時の位置は図1(a)に示す位置である。そして、この最上流側位置から弁体23を開方向(下流側)に回転させるにあたり、その回転領域は、次に説明するアイドル制御領域と通常制御領域とに区画されている。
すなわち、アイドル制御領域は、エンジン10をアイドル運転させるように弁体23を制御する領域であり、図3中の符号θaからθiの領域に対応する。また、通常制御領域は、アイドル運転よりも高回転でエンジン10を運転させて車両を走行させる領域であり、図3中の符号θi以上の領域に対応する。
そして、図3(a)に示すように、アイドル制御領域のうち弁体23の回転位置がθaのときにはタンブル吸気流量Qaの方がバイパス吸気流量Qbよりも多くなり、弁体23の回転位置がθbのときにはバイパス吸気流量Qbの方がタンブル吸気流量Qaよりも多くなる。そして、アイドル制御領域の全域に亘って、弁体23の回転位置に拘わらず総和吸気流量が一定となるように設定されている。
一方、通常制御領域では、弁体23を開方向に回転させるにつれタンブル吸気流量Qaおよびバイパス吸気流量Qbの総和吸気流量が増大し、図1(c)に示す弁体23の位置では、バイパス通路211bは閉塞された状態であるため、バイパス吸気流量Qbはタンブル吸気流量Qaに比べて無視できる程度に少なくなる。また、通常制御領域では、弁体23を開方向に回転させるにつれタンブル吸気流量Qaは増大し、バイパス吸気流量Qbは減少する。
図3(b)中の実線は、弁体23の回転角度とタンブル量との関係を示している。アイドル制御領域のうちθaからθbの範囲では、タンブル吸気流量Qaが減少する(図3(a)の点線参照)ことにともなってタンブル量は減少し、θbの回転角度のときタンブル量は最小となる(図3(b)の一点鎖線部分参照)。そして、弁体23をθbから開方向側にさらに回転させるとタンブル量は増大するが、タンブル兼用メイン通路211aの開度が所定値を超えるとタンブル量は減少する。これは、吸入空気の主流が吸気通路211の径方向片側部分に寄せられる度合いが小さくなるとともに、吸入空気の流速が低くなるためである。
ところで、タンブル量が多いほどエンジン回転数は高くなるので、外気温度が低い場合にエンジン10を始動させた場合、暖気運転期間中はタンブル量を多くしてエンジン回転数を効率よく高めることが望ましい。しかしながら、暖気運転が終了した後のアイドル運転時には、タンブル量を少なくしてエンジン回転数を低くすることで、燃費向上を図ることが望ましい。
この点を鑑み、本実施形態の上記構成によれば、アイドル制御領域において、弁体23が最上流側位置から開方向に回転させると、タンブル吸気流量Qaおよびバイパス吸気流量Qbの総和吸気流量が一定のままタンブル量が減少する。よって、エンジン10をアイドル運転させるにあたり、ECU25は弁体23を次のように制御すれば、上述の燃費向上を図ることができる。
すなわち、エンジン10始動直後の暖気運転中は、弁体23をθaの位置に制御し、エンジン温度が上昇するにしたがって弁体23をθbの位置まで回転させるように制御し、暖気運転が終了した後、弁体23をθbの位置にしてアイドル運転を行うように制御する。
上記スロットルバルブ装置20の構成および制御によれば、総和吸気流量とタンブル量とをそれぞれ独立して制御でき、アイドル制御領域において総和吸気流量を一定にしたままタンブル量を可変にできる。従って、暖気運転期間中はタンブル量を多くしてエンジン回転数を効率よく高めることができ、暖気運転が終了した後のアイドル運転では、アイドル運転に必要な総和吸気流量を確保したままタンブル量のみを減少できる。よって、吸気流量を調節する弁体23にタンブル量を制御する弁体を兼ねさせることと、燃費改善との両立を図ることができる。
しかも、本実施形態によれば、アイドル制御領域では、弁体23の回転位置に拘わらず総和吸気流量が一定となるため、アイドル運転時に、エンジン温度の上昇にともなって弁体23を開方向に回転させてタンブル量を減少させた場合であっても、エンジン回転数が変動してしまうことを抑制できる。
さらに、本実施形態によれば、通常制御領域では、弁体23を開方向に回転させるにつれバイパス通路211bの開度が減少するので、バイパス通路211bの開度が大きいことによる吸入空気流れの乱れを低減できるので、車両走行時における吸入空気の圧力損失増大を抑制できる。
(第2実施形態)
図4を用いて、本発明の第2実施形態に係るスロットルバルブ装置を以下に説明する。
本第2実施形態では、回転軸22には、径方向一方側に向けて延出する弁体23と、径方向他方側に向けて延出するバイパス用弁体26とが備えられており、回転軸22が回転すると弁体23およびバイパス用弁体26が一体的に回転する。
そして、上記第1実施形態では、弁体23の側方端面232と吸気管21の内壁との間でバイパス通路211bを形成しているのに対し、本第2実施形態では、バイパス用弁体26のうち回転軸22と反対側に位置する下方端面261a、262aと吸気管21の内壁との間でバイパス通路211cを形成している。なお、本第2実施形態では第1実施形態に係る凹部212を廃止している。
バイパス用弁体26は、上流側弁体261と、上流側弁体261の下流側に位置する下流側弁体262とから構成されている。そして、上流側弁体261の下方端面261aは平面形状であり、下流側弁体262の下方端面262aは吸気管21に向けて凸となる向きの曲面形状である。
そして、本第2実施形態においても、バイパス用弁体26および弁体23を回転させると、上記第1実施形態と同様にして図3(a)(b)に示すようにタンブル吸気流量Qa、バイパス吸気流量Qbおよび総和吸気流量は変化する。なお、図4(a)に示す弁体23の回転位置は図3中の符号θaに対応し、図4(b)(c)に示す弁体23の回転位置ははそれぞれ符号θb、θcに対応する。
(第3実施形態)
図5を用いて、本発明の第3実施形態に係るスロットルバルブ装置を以下に説明する。
本第3実施形態では、回転軸22に対して平行に配置されるサブ回転軸27と、サブ回転軸27から延出してサブ回転軸27とともに回転するサブ弁体28とを備えている。サブ弁体28は弁体23に対して積層配置されている。
そして、電動モータ24により駆動軸271を回転させると、駆動軸271の回転力は、ギヤ272を介してサブ回転軸27に伝達されるとともに、回転軸22にも伝達される。従って、サブ回転軸27が回転軸22と連動して回転することにともない、サブ弁体28は弁体23と連動して回転する。
従って、タンブル兼用メイン通路211aは、弁体23の上方端面231およびサブ弁体28の上方端面281と吸気管21の内壁との間で形成される。
また、弁体23には第1貫通孔233が形成され、サブ弁体28には第1貫通孔233と連通可能な第2貫通孔282が形成されている。これにより、バイパス通路は、連通した状態の第1貫通孔233および第2貫通孔282により形成される。なお、本第3実施形態では第1実施形態に係る凹部212を廃止している。
そして、本第3実施形態においても、サブ弁体28および弁体23を回転させると、上記第1実施形態と同様にして図3(a)(b)に示すようにタンブル吸気流量Qa、バイパス吸気流量Qbおよび総和吸気流量は変化する。なお、図5(a)に示す弁体23の回転位置は図3中の符号θaに対応し、図5(b)(c)に示す弁体23の回転位置ははそれぞれ符号θb、θcに対応する。
なお、弁体23の回転位置がθaのときには、第1貫通孔233の位置は第2貫通孔282よりも上側にずれている。弁体23の回転位置がθbのときには、第1貫通孔233の位置は第2貫通孔282と完全に連通する位置であり、連通度が最大となる。弁体23の回転位置がθcのときには、第1貫通孔233の位置は第2貫通孔282よりも下側にずれている。
(他の実施形態)
上記実施形態では、複数の弁体23を有する多連スロットル式のスロットルバルブ装置20を採用しているが、スロットルバルブ装置20をインテークマニホールドの上流側に配置して、1つの弁体23を有するスロットルバルブ装置20を採用してもよい。
また、上記実施形態では1つの回転軸22に複数の弁体23を固定して、複数の弁体23が全て同じ開度となるように構成しているが、各々の弁体23を独立して回転制御する所謂独立スロットルを採用してもよい。
また、上記本実施形態では、特許請求の範囲に記載の「吸気管」に相当する吸気管21を、エンジン10の吸気ポート15およびインテークマニホールドとは別体に構成しているが、弁体23が内蔵される吸気管21を、インテークマニホールド或いは吸気ポート15と一体に構成してもよい。
このように、本発明は、上記実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々の実施形態に適用可能である。
本発明の第1実施形態に係るスロットルバルブ装置の作動と、その作動にともなうタンブル兼用メイン通路およびバイパス通路の開度変化を示す模式図である。 図1に示すスロットルバルブ装置がエンジンに搭載された状態を示す模式図である。 (a)は、タンブル吸気流量Qa、バイパス吸気流量Qbおよび総和吸気流量と、弁体の回転角度との関係を示す図であり、(b)は、タンブル量と弁体の回転角度との関係を示す図である。 本発明の第2実施形態に係るスロットルバルブ装置の作動と、その作動にともなうタンブル兼用メイン通路およびバイパス通路の開度変化を示す模式図である。 本発明の第3実施形態に係るスロットルバルブ装置の作動と、その作動にともなうタンブル兼用メイン通路およびバイパス通路の開度変化を示す模式図である。
符号の説明
10:エンジン(内燃機関)、13:燃焼室、15:吸気ポート、20:スロットルバルブ装置、21:吸気管、22:回転軸、23:弁体、26:バイパス用弁体、27:サブ回転軸、28:サブ弁体、211a:タンブル兼用メイン通路、211b:バイパス通路、211c:バイパス通路、211:吸気通路、212:凹部、213:凸部、231:上方端面、232:側方端面、233:貫通孔、Qa:タンブル吸気流量、Qb:バイパス吸気流量。

Claims (8)

  1. 内燃機関に吸入空気を導く吸気通路を内部に形成する吸気管と、
    前記吸入空気の流れ方向に対して略直交する方向に延びる回転軸と、
    前記回転軸から延出し、前記回転軸とともに回転して前記吸気通路の開度を調節する弁体と、
    を備え、
    前記吸気通路は、前記弁体のうち前記回転軸と反対側に位置する上方端面と前記吸気管の内壁との間で形成されるタンブル兼用メイン通路と、前記タンブル兼用メイン通路をバイパスするバイパス通路とに区画され、
    前記タンブル兼用メイン通路および前記バイパス通路は、前記弁体を開方向に回転させるにつれ前記タンブル兼用メイン通路の開度が減少するとともに前記バイパス通路の開度が増大するように配置されているスロットルバルブ装置。
  2. 前記吸気管の内壁のうち前記タンブル兼用メイン通路を形成する部分には、前記吸気通路の通路断面を縮小する凸部が形成されており、
    前記弁体を開方向に回転させるにつれ前記弁体が前記凸部に近づくことにより、前記タンブル兼用メイン通路の開度が減少するように構成されている請求項1記載のスロットルバルブ装置。
  3. 前記吸気管の内壁には前記吸気通路を拡大する凹部が形成されており、
    前記バイパス通路は、前記弁体のうち前記回転軸から前記上方端面まで延びる部分である側方端面と前記凹部との間で形成され、
    前記弁体を開方向に回転させるにつれ前記弁体が前記凹部に近づくことにより、前記バイパス通路の開度が増大するように構成されている請求項1または2記載のスロットルバルブ装置。
  4. 前記弁体は、前記回転軸の径方向一方側に向けて延出し、
    前記回転軸から径方向他方側に向けて延出し、前記回転軸とともに回転するバイパス用弁体を備え、
    前記バイパス通路は、前記バイパス用弁体のうち前記回転軸と反対側に位置する下方端面と前記吸気管の内壁との間で形成され、
    前記弁体を開方向に回転させるにつれ前記バイパス用弁体が回転することにより、前記バイパス通路の開度が増大するように構成されている請求項1または2記載のスロットルバルブ装置。
  5. 前記回転軸に対して平行に配置され、前記回転軸と連動して回転するサブ回転軸と、
    前記サブ回転軸から延出して前記サブ回転軸とともに回転し、前記弁体に対して積層配置されたサブ弁体と、
    を備え、
    前記弁体には第1貫通孔が形成され、
    前記サブ弁体には前記第1貫通孔と連通可能な第2貫通孔が形成され、
    前記バイパス通路は、連通した状態の前記第1貫通孔および前記第2貫通孔により形成され、
    前記弁体および前記サブ弁体を開方向に回転させるにつれ前記第1貫通孔と前記第2貫通孔との連通度が増大するように構成されている請求項1または2記載のスロットルバルブ装置。
  6. 前記弁体を開方向に回転させるにあたりその回転領域は、
    前記タンブル兼用メイン通路の開度が減少するとともに前記バイパス通路の開度が増大して前記内燃機関をアイドル運転させるアイドル制御領域と、
    前記アイドル制御領域よりも開方向側の領域であり、前記アイドル運転よりも高回転で前記内燃機関を運転させる通常制御領域と、
    に区画されている請求項1から5のいずれか一項記載のスロットルバルブ装置。
  7. 前記通常制御領域では、前記弁体を開方向に回転させるにつれ前記タンブル兼用メイン通路および前記バイパス通路を流通する総和吸気流量が増大し、
    前記アイドル制御領域では、前記弁体の回転位置に拘わらず前記総和吸気流量が一定となるように構成されている請求項6記載のスロットルバルブ装置。
  8. 前記通常制御領域では、前記弁体を開方向に回転させるにつれ前記タンブル兼用メイン通路の開度が増大するとともに前記バイパス通路の開度が減少または閉塞するように構成されている請求項7記載のスロットルバルブ装置。
JP2006288449A 2006-10-24 2006-10-24 スロットルバルブ装置 Expired - Fee Related JP4447593B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006288449A JP4447593B2 (ja) 2006-10-24 2006-10-24 スロットルバルブ装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006288449A JP4447593B2 (ja) 2006-10-24 2006-10-24 スロットルバルブ装置

Publications (2)

Publication Number Publication Date
JP2008106641A JP2008106641A (ja) 2008-05-08
JP4447593B2 true JP4447593B2 (ja) 2010-04-07

Family

ID=39440224

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006288449A Expired - Fee Related JP4447593B2 (ja) 2006-10-24 2006-10-24 スロットルバルブ装置

Country Status (1)

Country Link
JP (1) JP4447593B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009068381A (ja) * 2007-09-11 2009-04-02 Toyota Motor Corp 内燃機関の排気通路

Also Published As

Publication number Publication date
JP2008106641A (ja) 2008-05-08

Similar Documents

Publication Publication Date Title
JP6808466B2 (ja) 車両エンジンルーム空気流量制御システムおよびその制御方法
JP4755034B2 (ja) 火花点火式多気筒エンジン
JP2007291929A (ja) 内燃機関の吸気装置
JP2007247560A (ja) 内燃機関
WO2013146703A1 (ja) 内燃機関の吸気装置
JP5849924B2 (ja) 排気弁装置およびターボ過給機付エンジン
JP2011231688A (ja) 内燃機関の吸気装置
JP4447593B2 (ja) スロットルバルブ装置
JP4840248B2 (ja) 内燃機関の吸気制御装置
JP5527583B2 (ja) 内燃機関用吸気装置
JP4971242B2 (ja) 内燃機関の吸気装置
JP2008095512A (ja) スロットルバルブ装置
US9051908B2 (en) Air intake apparatus for internal combustion engine
JP2011106405A (ja) 内燃機関用吸気装置
JP2006125343A (ja) ターボチャージャ
KR101145630B1 (ko) 엔진의 흡기 시스템
JP6481410B2 (ja) 内燃機関の吸気装置
JP4711141B2 (ja) 吸気装置
JP5347486B2 (ja) 内燃機関の可変吸気装置
JP2004003424A (ja) エンジンの吸気装置
JP5908321B2 (ja) 内燃機関
KR101417599B1 (ko) 흡기 매니폴드 구조
JP4352618B2 (ja) 吸気渦流発生装置
US11035328B1 (en) Intake manifold
JP2009275603A (ja) 内燃機関の吸気装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100120

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130129

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees