JP4446721B2 - Carbon fiber spun yarn and its woven fabric - Google Patents

Carbon fiber spun yarn and its woven fabric Download PDF

Info

Publication number
JP4446721B2
JP4446721B2 JP2003401982A JP2003401982A JP4446721B2 JP 4446721 B2 JP4446721 B2 JP 4446721B2 JP 2003401982 A JP2003401982 A JP 2003401982A JP 2003401982 A JP2003401982 A JP 2003401982A JP 4446721 B2 JP4446721 B2 JP 4446721B2
Authority
JP
Japan
Prior art keywords
carbon fiber
spun yarn
fiber
carbon
tex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003401982A
Other languages
Japanese (ja)
Other versions
JP2005163208A (en
Inventor
辰男 小林
直弘 園部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kureha Corp
Original Assignee
Kureha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kureha Corp filed Critical Kureha Corp
Priority to JP2003401982A priority Critical patent/JP4446721B2/en
Priority to CNB2004800356805A priority patent/CN100537866C/en
Priority to EP04799952A priority patent/EP1700938A4/en
Priority to US10/581,254 priority patent/US7610743B2/en
Priority to PCT/JP2004/018103 priority patent/WO2005054554A1/en
Publication of JP2005163208A publication Critical patent/JP2005163208A/en
Application granted granted Critical
Publication of JP4446721B2 publication Critical patent/JP4446721B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/02Yarns or threads characterised by the material or by the materials from which they are made
    • D02G3/16Yarns or threads made from mineral substances
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/44Yarns or threads characterised by the purpose for which they are designed
    • D02G3/447Yarns or threads for specific use in general industrial applications, e.g. as filters or reinforcement
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/20Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads
    • D03D15/242Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads inorganic, e.g. basalt
    • D03D15/275Carbon fibres
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/40Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the structure of the yarns or threads
    • D03D15/41Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the structure of the yarns or threads with specific twist
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/50Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the properties of the yarns or threads
    • D03D15/573Tensile strength
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2101/00Inorganic fibres
    • D10B2101/10Inorganic fibres based on non-oxides other than metals
    • D10B2101/12Carbon; Pitch
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2201/00Cellulose-based fibres, e.g. vegetable fibres
    • D10B2201/20Cellulose-derived artificial fibres
    • D10B2201/22Cellulose-derived artificial fibres made from cellulose solutions
    • D10B2201/24Viscose
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2321/00Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D10B2321/10Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polymers of unsaturated nitriles, e.g. polyacrylonitrile, polyvinylidene cyanide
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/06Load-responsive characteristics
    • D10B2401/063Load-responsive characteristics high strength
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/16Physical properties antistatic; conductive
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/30Woven fabric [i.e., woven strand or strip material]
    • Y10T442/3065Including strand which is of specific structural definition

Description

本発明は、炭素繊維紡績糸およびその織物に関し、より詳しくは細く且つ強度に優れた炭素繊維紡績糸、およびこれからなる固体高分子電解質型燃料電池のガス拡散(集電)体としての使用に適した炭素繊維紡績糸織物に関する。   The present invention relates to a carbon fiber spun yarn and a woven fabric thereof, and more specifically, is suitable for use as a gas diffusion (current collector) of a carbon fiber spun yarn that is thin and excellent in strength and a solid polymer electrolyte fuel cell comprising the same. Carbon fiber spun yarn fabric.

現在、炭素繊維としてポリアクリロニトリル(PAN)およびレーヨンを原料とするPAN系およびレーヨン系炭素繊維とピッチ類を原料とするピッチ系炭素繊維が製造されている。PAN系炭素繊維は、おもに高強度タイプが多い。一方、ピッチ系炭素繊維には異方性炭素繊維と等方性炭素繊維があり、異方性炭素繊維は高い結晶完全性と六角網平面の繊維軸方向への高い配向構造を有するため、高い比弾性率や熱伝導度を有しておりスポーツレジャー用途や航空宇宙分野での利用がなされている。   Currently, PAN and rayon carbon fibers made of polyacrylonitrile (PAN) and rayon as raw materials and pitch carbon fibers made of pitches as raw materials are produced as carbon fibers. PAN-based carbon fibers are mainly high-strength types. On the other hand, pitch-based carbon fibers include anisotropic carbon fibers and isotropic carbon fibers, and anisotropic carbon fibers have high crystal perfection and a high orientation structure in the fiber axis direction of the hexagonal mesh plane. It has a specific elastic modulus and thermal conductivity, and is used in sports and leisure applications and in the aerospace field.

他方、ピッチ系等方性炭素繊維は、原料が安価であり製造方法が大量生産に有利なため、比較的廉価であり、高い強度や高い弾性率を発現しないが、軽量、耐薬品性、耐熱性、摺動性および導電性等の特性から広く使用されている。   On the other hand, pitch-based isotropic carbon fibers are relatively inexpensive because the raw materials are inexpensive and the production method is advantageous for mass production, and do not exhibit high strength or high elastic modulus, but are lightweight, chemical resistant, and heat resistant. It is widely used because of its properties such as safety, slidability and conductivity.

炭素繊維は、フィラメント、ヤーン、紡績糸、織物、チョップ、ミルド、マット、プリプレグなど多くの形態で使用され、用途により焼成温度や黒鉛化度も変えられる。中でも炭素繊維織物は、断熱材、摺動材、導電材の構成材料として利用されており、高分子材料などとの親和性が求められ、織物の厚みや空隙の制御が重要である。   Carbon fibers are used in many forms such as filaments, yarns, spun yarns, woven fabrics, chops, milled, mats, and prepregs, and the firing temperature and degree of graphitization can be changed depending on the application. Among these, carbon fiber fabrics are used as constituent materials for heat insulating materials, sliding materials, and conductive materials, and are required to have an affinity with polymer materials, and control of the thickness and voids of the fabric is important.

近年、炭素繊維織物に関しては、固体高分子電解質型燃料電池のガス拡散体(例えば特許文献1および2)など、電子材料用途への利用が提案されている。   In recent years, carbon fiber fabrics have been proposed for use in electronic materials such as gas diffusers of solid polymer electrolyte fuel cells (for example, Patent Documents 1 and 2).

固体高分子電解質型燃料電池のガス拡散体の主たる機能は、触媒層への反応ガスの供給と集電である。したがって、ガス透過性や導電性が最大の必要特性であるが、それに加えて柔軟性や高い引っ張り強度などが要求される(特許文献1)。   The main functions of the gas diffuser of the solid polymer electrolyte fuel cell are supply of a reaction gas to the catalyst layer and current collection. Therefore, gas permeability and conductivity are the most necessary characteristics, but in addition, flexibility and high tensile strength are required (Patent Document 1).

導電性に関しては、2000℃以上の高温で熱処理し、黒鉛化度を高めることにより高い導電性を得ることができる。   With regard to conductivity, high conductivity can be obtained by heat treatment at a high temperature of 2000 ° C. or higher to increase the degree of graphitization.

一方、ガス透過性は、織物の開孔率(空隙率)により決まるが、あまり粗い多孔体では触媒層とのコンタクトが不良で集電に問題を生ずる。炭素繊維織物を、ガス透過体に使用した場合、単糸が揃って高密度になりやすいフィラメント織物よりも紡績糸織物の方が好ましいことが開示されている(特許文献2)。触媒層へのガスの供給を考えると反応ガスが触媒層へ到達するにはガス拡散体の厚さ分だけ反応ガスが拡散する必要があり、ガス拡散層が厚すぎると性能を落とす原因となる。従ってガス拡散体としての炭素繊維織物の厚さを適切に制御する必要がある。   On the other hand, the gas permeability is determined by the porosity (porosity) of the woven fabric. However, if the porous body is too coarse, the contact with the catalyst layer is poor, causing a problem in current collection. It is disclosed that when a carbon fiber woven fabric is used for a gas permeable material, a spun yarn woven fabric is preferable to a filament woven fabric, in which single yarns are easily aligned and easily become high density (Patent Document 2). Considering the supply of gas to the catalyst layer, it is necessary for the reaction gas to diffuse by the thickness of the gas diffuser to reach the catalyst layer. If the gas diffusion layer is too thick, the performance may be degraded. . Therefore, it is necessary to appropriately control the thickness of the carbon fiber fabric as the gas diffuser.

上記理由により、ガス拡散体としては、適切な厚さを有し且つ2000℃以上の熱履歴を有する紡績糸織物が好ましいといえる。このような紡績糸織物を得るには、耐炎化繊維あるいは炭素質繊維の紡績糸から製織して織物とした後、これを2000℃以上の温度で熱処理する方法と2000℃以上で熱処理された紡績糸を製織し織物とする方法がある。繊維は熱処理により熱収縮を起こすため、炭素化が不十分な織物を熱処理すると熱収縮により繊維に歪みをきたすため好ましくない。   For the above reason, it can be said that a spun yarn fabric having an appropriate thickness and a thermal history of 2000 ° C. or more is preferable as the gas diffuser. In order to obtain such a spun yarn fabric, weaving the spun yarn of flame-resistant fiber or carbonaceous fiber into a woven fabric, and then heat-treating it at a temperature of 2000 ° C. or higher and spinning processed at 2000 ° C. or higher. There is a method of weaving yarn into a woven fabric. Since the fiber undergoes heat shrinkage due to heat treatment, heat treatment of a fabric with insufficient carbonization is not preferable because the fiber is distorted due to heat shrinkage.

紡績糸としては、PAN系の耐炎化繊維の紡績糸およびピッチ系の紡績糸が知られている。PAN系の耐炎化繊維の紡績糸は、紡績糸径が比較的細く、強度があり製織が可能であるが、2000℃で熱処理すると極端に強度が低下し、製織することが困難である。したがって、耐炎化繊維を製織したのち、2000℃で熱処理する方法を使用しなければ、目的とする織物を得ることができない。しかしながら、熱処理による繊維の歪みおよび熱処理により紡績糸の強度低下をきたすことから、得られる織物の強度が低くなるという重要な欠点がある。このため、ガス拡散体として使用するためには、炭素繊維織物に粒状フッ素樹脂を含ませたり(特許文献1)、フッ素樹脂を含むカーボン層で裏打ちしたり(特許文献2[0023])する手段が採られているが、これら手段は必然的にガス拡散体の集電機能を低下させる難点がある。他方、25mm以上、好ましくは50〜75mmの繊維長を有するスライバー状の炭素繊維を紡績することにより強度の改善された炭素繊維紡績糸を得ることも提案されている(特許文献3)。しかしながら、このようにして得られる炭素繊維紡績糸の強度は0.08〜0.09N/tex程度であり、未だ満足すべきものではない。   Known spun yarns include spun yarns of PAN-based flameproof fibers and pitch-based spun yarns. The spun yarn of the PAN-based flameproof fiber has a relatively small spun yarn diameter and is strong and can be woven. However, when heat-treated at 2000 ° C., the strength is extremely lowered and it is difficult to weave. Therefore, the target woven fabric cannot be obtained unless a method of heat treating at 2000 ° C. is used after weaving the flameproof fiber. However, there is an important drawback in that the strength of the woven fabric obtained is lowered because the fiber is strained by heat treatment and the spun yarn strength is lowered by heat treatment. For this reason, in order to use it as a gas diffuser, means for including a granular fluororesin in a carbon fiber fabric (Patent Document 1) or backing with a carbon layer containing a fluororesin (Patent Document 2 [0023]) However, these measures inevitably have a drawback of lowering the current collecting function of the gas diffuser. On the other hand, it has also been proposed to obtain a carbon fiber spun yarn with improved strength by spinning a sliver-like carbon fiber having a fiber length of 25 mm or more, preferably 50 to 75 mm (Patent Document 3). However, the strength of the carbon fiber spun yarn thus obtained is about 0.08 to 0.09 N / tex, which is not yet satisfactory.

一方、ピッチ系等方性炭素繊維は、短繊維で製造されるものが大部分であり、それを原料とし炭素化が進んだ紡績糸が市販されている。しかしながら市販されている紡績糸は比較的太いものが多く、それを製織して得られる織物では厚くなりすぎて、ガス拡散体としての性能が低下することとなる。
特開2002−352807号公報 特開2003−288906号公報 特開昭53−81735号公報
On the other hand, pitch-based isotropic carbon fibers are mostly made of short fibers, and spun yarns that have been carbonized using these as raw materials are commercially available. However, many commercially available spun yarns are relatively thick, and the woven fabric obtained by weaving them is too thick, and the performance as a gas diffuser is reduced.
JP 2002-352807 A JP 2003-288906 A JP-A-53-81735

上記のような従来材料の問題点に鑑み、本発明は、炭素質乃至黒鉛質構造を有し、且つ細く、高い引っ張り強度を有する炭素繊維紡績糸、およびガス透過性に優れ、高い導電率を有し、機械的物性の優れた固体高分子電解質型燃料電池のためのガス拡散体として好適な炭素繊維織物を提供することを目的とする。   In view of the problems of the conventional materials as described above, the present invention is a carbon fiber spun yarn having a carbonaceous to graphitic structure, thin, having high tensile strength, and excellent gas permeability and high conductivity. It is an object of the present invention to provide a carbon fiber fabric suitable as a gas diffuser for a solid polymer electrolyte fuel cell having excellent mechanical properties.

本発明者等は、上記目的で研究をしている過程で、細く且つ高強度を有する炭素繊維紡績糸が得られ、これを製織することにより、適切な繊維厚みを有し、ガス透過性、導電性に優れ、且つ良好な機械的強度を有する固体高分子電解質型燃料電池のガス拡散体として好適な炭素繊維紡績糸織物となることを見出し、本発明に想到した。   In the process of studying for the above purpose, the present inventors have obtained a carbon fiber spun yarn that is thin and has high strength, and by weaving it, it has an appropriate fiber thickness, gas permeability, The present inventors have found that the carbon fiber spun yarn fabric is suitable as a gas diffuser of a solid polymer electrolyte fuel cell having excellent electrical conductivity and good mechanical strength, and has arrived at the present invention.

すなわち、本発明の紡績糸は、X線回折法により求められる(002)平均層面間隔が0.340〜0.380nm、密度勾配管法により求められる比重1.55〜1.80、元素分析により求められる水素原子と炭素原子の原子比(H/C)が0.1以下、繊維長150mm以上の炭素繊維を3〜30重量%含有する炭素繊維束からなり、1000m当たりの重量(tex)が30〜150g、一次撚り数50〜400回/m、引っ張り強度が0.15N/tex以上であることを特徴とするものである。   That is, the spun yarn of the present invention has a (002) average layer surface spacing of 0.340 to 0.380 nm determined by an X-ray diffraction method, a specific gravity of 1.55 to 1.80 determined by a density gradient tube method, and elemental analysis. It consists of a carbon fiber bundle containing 3 to 30% by weight of carbon fibers having a hydrogen atom to carbon atom ratio (H / C) of 0.1 or less and a fiber length of 150 mm or more, and the weight (tex) per 1000 m is 30 to 150 g, primary twist number 50 to 400 times / m, and tensile strength is 0.15 N / tex or more.

本発明の炭素繊維紡績糸が、30〜150texと細い一方で、0.15N/tex以上と高い引張り強度を示す理由は、長炭素繊維を適度の割合で含む炭素繊維束に適度の紡績加工を行ったことにあると考えられる。   The reason why the carbon fiber spun yarn of the present invention is as thin as 30 to 150 tex, while having a high tensile strength of 0.15 N / tex or more, is that a carbon fiber bundle containing a long carbon fiber at a proper ratio is subjected to an appropriate spinning process. It is thought to have been there.

より詳しく説明すると、紡績糸は、短繊維に撚りを掛けて短い単繊維同士を絡み合わせることで短繊維同士をつなぎ合わせた長い糸束である。その引っ張り強度は、単繊維同士の絡み合い(接触)による摩擦力により維持されている。絡み合いが多ければ多いほど繊維同士の接触面積が増加し、摩擦が増えて強度が増加する。さらに、撚りが強いほど、繊維同士が強く押し付けられることになり、摩擦力が増加し、紡績糸としての引っ張り強度が向上する。また、使用される繊維長が長いほど繊維同士の繋ぎ合わせ点が減少するため、得られる紡績糸の強度が向上する。   More specifically, the spun yarn is a long yarn bundle in which short fibers are joined together by twisting short fibers and intertwining short single fibers. The tensile strength is maintained by the frictional force due to the entanglement (contact) between the single fibers. As the number of entanglements increases, the contact area between the fibers increases, the friction increases, and the strength increases. Furthermore, the stronger the twist, the stronger the fibers are pressed against each other, increasing the frictional force and improving the tensile strength as a spun yarn. Moreover, since the joining point of fibers decreases as the fiber length used is longer, the strength of the obtained spun yarn is improved.

本発明では、上記の観点から、紡績糸の製造において撚り数を50〜400回/mと適度に向上させ、且つ比較的長い繊維を原料として用いることにより、短繊維の範疇には属するが、従来採用されていた例えば約25〜80mm(特許文献1[0014])よりは相当に長い150mm以上の炭素繊維を3〜30重量%と適度の割合で含む細い繊維束を紡績加工することにより、上記のように細く且つ高強度の炭素繊維紡績糸が得られたものと解される。   In the present invention, from the above viewpoint, the number of twists is appropriately increased to 50 to 400 times / m in the production of spun yarn, and a relatively long fiber is used as a raw material, and thus belongs to the category of short fibers. For example, by spinning a thin fiber bundle containing carbon fibers having a length of 150 mm or longer, which is considerably longer than, for example, about 25 to 80 mm (Patent Document 1 [0014]), which is conventionally used, in an appropriate ratio of 3 to 30% by weight, It is understood that a thin and high-strength carbon fiber spun yarn was obtained as described above.

本発明の炭素繊維紡績糸織物は、上記のようにして得られた細く且つ高強度の炭素繊維紡績糸を製織して得られるものであり、固体高分子電解質型燃料電池のガス拡散体に好適な形態を有するものである。   The carbon fiber spun yarn fabric of the present invention is obtained by weaving the thin and high-strength carbon fiber spun yarn obtained as described above, and is suitable for a gas diffuser of a solid polymer electrolyte fuel cell. It has a form.

本発明の紡績糸を構成する炭素繊維のX線回折法により求められる(002)平均層面間隔は、小さすぎると炭素繊維の弾性率が高く繊維同士の絡まり合いが困難になるので好ましくない。また、大きすぎるのは、炭素化度が低いことを意味し、導電率が低くなるので好ましくない。平均層面間隔は0.340〜0.380nmが好ましく、0.340〜0.375nmがさらに好ましい。   If the (002) average layer spacing determined by the X-ray diffraction method of the carbon fibers constituting the spun yarn of the present invention is too small, the elastic modulus of the carbon fibers is high and it becomes difficult to entangle the fibers. On the other hand, being too large means that the degree of carbonization is low, and the electrical conductivity is low, which is not preferable. The average layer surface spacing is preferably 0.340 to 0.380 nm, more preferably 0.340 to 0.375 nm.

元素分析により求められる水素原子と炭素原子の原子比(H/C)は、炭素材料の炭素化度を示す良い指標となることが知られている。H/Cが大きいと熱処理温度が低いことを示唆し、導電率が低く、熱処理により熱収縮を生じるので好ましくない。好ましくは、0.1以下、さらに好ましくは0.05以下、特に好ましくは0.02以下である。   It is known that the atomic ratio (H / C) of hydrogen atoms to carbon atoms obtained by elemental analysis is a good index indicating the degree of carbonization of a carbon material. A large H / C is not preferable because it suggests that the heat treatment temperature is low, the electrical conductivity is low, and heat shrinkage occurs by the heat treatment. Preferably, it is 0.1 or less, more preferably 0.05 or less, and particularly preferably 0.02 or less.

炭素繊維の比重は、H/C比とも関連しており、一般に密度勾配管法による測定値として1.55〜1.80、好ましくは1.58〜1.65の範囲内になる。小さすぎる場合、大きすぎる場合は、それぞれH/Cが高すぎる場合および低すぎる場合と同様な不都合がある。   The specific gravity of the carbon fiber is also related to the H / C ratio, and is generally in the range of 1.55 to 1.80, preferably 1.58 to 1.65 as measured by the density gradient tube method. When it is too small and too large, there are the same disadvantages as when H / C is too high and too low, respectively.

紡績糸を構成する炭素繊維の繊維長は、長すぎると繊維束から紡績糸を製造する際、練条機で数本の繊維束を数倍に延伸(回転数の異なるローラー間を通すことにより繊維束を延伸する)して1本の繊維束として繊維の平行度をさらに向上させる工程で、ローラーの間隔よりも繊維長が長くなり糸切れを起こし工程に不具合を生じる。これに対し、繊維長が短いと得られる紡績糸の強度が低下する。そのため、紡績糸を構成する炭素繊維の繊維長として、150mm以上の炭素繊維を3〜30重量%含有することが好ましく、更に好ましくは150mm以上の炭素繊維を5〜20重量%含有することである。   If the fiber length of the carbon fiber constituting the spun yarn is too long, when the spun yarn is produced from the fiber bundle, several fiber bundles are stretched several times with a drawing machine (by passing between rollers having different rotation speeds). In the process of further extending the parallelism of the fibers as a single fiber bundle by stretching the fiber bundle), the fiber length becomes longer than the interval between the rollers, causing yarn breakage and causing problems in the process. On the other hand, when the fiber length is short, the strength of the spun yarn obtained decreases. Therefore, the fiber length of the carbon fibers constituting the spun yarn is preferably 3 to 30% by weight of carbon fibers of 150 mm or more, and more preferably 5 to 20% by weight of carbon fibers of 150 mm or more. .

150mm以下の炭素繊維は、梳綿機および練条機による処理工程で原料中の炭素繊維が適宜切断されて形成されるものであるが、一般に主として50〜150mmの範囲内の繊維長を有するものであり、これが適度の分布で70〜97重量%含まれることにより、150mm以上の炭素繊維のみを紡績加工する場合に起り得る紡績糸の太さむらが生じて、結果として織物の厚さむらおよび強度むらが生ずる問題を防止できる。   Carbon fibers of 150 mm or less are formed by appropriately cutting carbon fibers in the raw material in a treatment process by a carding machine and a drawing machine, but generally have a fiber length in the range of 50 to 150 mm. When this is contained in an appropriate distribution in an amount of 70 to 97% by weight, uneven thickness of the spun yarn that can occur when spinning only carbon fibers of 150 mm or more occurs, resulting in uneven thickness of the fabric and The problem of unevenness in strength can be prevented.

炭素繊維(フィラメント)は、一般に5〜20μmの範囲の平均径を有する。   Carbon fibers (filaments) generally have an average diameter in the range of 5-20 μm.

上記のような炭素繊維束を紡績加工して得られる紡績糸の太さは、一般に1000m当たりの重量(g)を示すtexという単位で表される。紡績糸が太いと薄い織物が得られないので好ましくない。細すぎると製織するに十分な強度が得られない、更に得られた織物の通気性が低下するので好ましくない。好ましくは30〜150tex、更に好ましくは30〜100tex、特に好ましくは30〜80texである。   The thickness of the spun yarn obtained by spinning the carbon fiber bundle as described above is generally expressed in units of tex indicating the weight (g) per 1000 m. If the spun yarn is thick, a thin fabric cannot be obtained. If it is too thin, sufficient strength for weaving cannot be obtained, and further, the air permeability of the obtained woven fabric is lowered. Preferably it is 30-150 tex, More preferably, it is 30-100 tex, Most preferably, it is 30-80 tex.

紡績糸の撚り数は、強度に大きな影響を及ぼす。撚り数が少ないと引っ張り強度が低下するので好ましくない。また、多すぎると繊維の破壊をもたらすので好ましくない。好ましくは50〜400回/m、更に好ましくは100〜200回/mである。2本以上の紡績糸を撚糸機により合糸する場合、通常、例えば2本の場合、一次撚りに対して二次撚りとして、60%±5%の撚り数の逆回転の撚りが掛けられる。また、3本の場合、一次撚りに対して二次撚りとして、55%±5%の撚り数の逆回転の撚りが掛けられる。   The number of twists of the spun yarn has a great influence on the strength. If the number of twists is small, the tensile strength decreases, which is not preferable. Moreover, since it will cause destruction of a fiber when it is too much, it is not preferable. Preferably it is 50-400 times / m, More preferably, it is 100-200 times / m. When two or more spun yarns are combined with a twisting machine, for example, in the case of two yarns, a reverse twist of 60% ± 5% is applied as a secondary twist to the primary twist. Moreover, in the case of three, as the secondary twist with respect to the primary twist, the reverse rotation twist of 55% ± 5% is applied.

上記の構成の結果として、本発明の紡績糸は、0.15N/tex以上の引っ張り強度を有するものであり、好ましくは0.2N/tex以上である。   As a result of the above configuration, the spun yarn of the present invention has a tensile strength of 0.15 N / tex or more, and preferably 0.2 N / tex or more.

本発明の紡績糸は、例えば以下のような方法により製造される。   The spun yarn of the present invention is produced, for example, by the following method.

炭素繊維としては、ピッチ系炭素繊維および、ポリアクリロニトリルおよびレーヨンを原料とした炭素繊維のいずれも使用することができる。いずれにしても、本発明の紡績糸を構成する炭素繊維は、紡績加工前に炭素化されていることにより高引っ張り強度を有するものであるが、その黒鉛化度を調整するために追加の熱処理が必要に応じて行われる。ピッチ系炭素繊維には、異方性ピッチを原料とした炭素繊維と等方性ピッチを原料とした炭素繊維があるが、異方性ピッチを原料とした炭素繊維は熱処理により弾性率が高くなり、繊維同士の絡まり合いが不十分となるため、等方性ピッチを使用した炭素繊維を使用することが好ましい。熱処理は、紡績糸とする前の状態で行っても、紡績糸とした後に行っても良い。熱処理温度として好ましくは、700℃〜3000℃、更に好ましくは1500℃〜2500℃である。   As the carbon fiber, any of pitch-based carbon fiber and carbon fiber made from polyacrylonitrile and rayon can be used. In any case, the carbon fiber constituting the spun yarn of the present invention has high tensile strength because it is carbonized before spinning, but additional heat treatment is required to adjust the degree of graphitization. Is done as needed. Pitch-based carbon fibers include carbon fibers made from anisotropic pitch and carbon fibers made from isotropic pitch. Carbon fibers made from anisotropic pitch have higher elastic modulus due to heat treatment. Since the entanglement between the fibers becomes insufficient, it is preferable to use a carbon fiber using an isotropic pitch. The heat treatment may be performed before the spun yarn or after the spun yarn. The heat treatment temperature is preferably 700 ° C to 3000 ° C, more preferably 1500 ° C to 2500 ° C.

炭素繊維の長さは、製造方法により異なり、長繊維の場合は短く裁断して使用することが出来るが、適度の長さを有する短繊維の場合そのまま利用しても、適宜裁断機により繊維長を制御してから使用しても良い。   The length of the carbon fiber varies depending on the production method, and in the case of long fiber, it can be cut short and used, but in the case of a short fiber having an appropriate length, it can be used as it is, and the fiber length can be appropriately reduced by a cutting machine. It may be used after controlling.

上記の炭素繊維を使用して、以下の方法で紡績糸を製造することができる。   Using the carbon fiber, a spun yarn can be produced by the following method.

炭素繊維を裁断機により短く切断し150mm以上の長さを有する短繊維状としたのち、これから、梳綿機により繊維を引き揃えた炭素繊維束を得て、ついで練条機で、数本の炭素繊維束を組み合わせ(ダブリング)、数倍の長さに延伸(ドラフト)しながら1本の炭素繊維束として繊維の平行度をさらに向上させ細くし、精紡機ではこの炭素繊維束を更に延伸加撚して紡績糸を得ることができる。   After cutting the carbon fiber short with a cutting machine into a short fiber shape having a length of 150 mm or more, a carbon fiber bundle in which the fibers are aligned with a carding machine is obtained, and then several pieces are drawn with a drawing machine. Combining carbon fiber bundles (doubling) and drawing (drafting) several times as long as one carbon fiber bundle, the parallelism of the fibers is further improved and thinned. A spun yarn can be obtained by twisting.

またピッチ系短繊維の紡糸方法には、遠心力を利用してノズルから溶融ピッチを出す遠心法、溶融ピッチを高温高速の空気とともに吹き出すメルトブロー法、メルトブロー法の高温高速空気を渦巻状とし、その旋回流で延伸する渦流法、エアーサッカーノズルに繊維を吸引して延伸し、その出口以降で集綿するエアーサッカー法などがあるが、これらのいずれかの方法によって得られた炭素短繊維束および炭素繊維マットも使用することができる。   In addition, the spinning method of pitch-based short fibers is a centrifugal method in which a melt pitch is extracted from a nozzle using centrifugal force, a melt blow method in which the melt pitch is blown together with high-temperature and high-speed air, and high-temperature high-speed air in a melt blow method is spirally formed. There are the vortex method that draws in a swirling flow, the air football method that draws fibers by drawing them into an air soccer nozzle and draws them after the outlet, and the short carbon fiber bundle obtained by any of these methods and Carbon fiber mats can also be used.

本発明の紡績糸は、片撚り糸とすることが、細い糸を得る上で有利であるが、30〜150texの太さの範囲内で、必要に応じてもろ撚り糸とすることもできる。   The spun yarn of the present invention is advantageously a single-twisted yarn for obtaining a thin yarn, but may be a twisted yarn if necessary within a thickness range of 30 to 150 tex.

上記、紡績糸を使用して製織することにより固体高分子電解質型燃料電池のガス拡散体として好適な紡績糸織物を得ることができる。以下に、固体高分子電解質型燃料電池用ガス拡散体として用いるに好適な紡績糸織物を説明する。   By weaving using the above-described spun yarn, a spun yarn fabric suitable as a gas diffuser of a solid polymer electrolyte fuel cell can be obtained. The spun yarn fabric suitable for use as a gas diffuser for a solid polymer electrolyte fuel cell will be described below.

織物FAW(Fiber Area Weight)が低いと触媒層との接触が低下し、集電能力が低下する。一方、FAWが高いと集電能力は向上するが、空隙が少なくなりガス透過性が低下する。したがって、織物のFAWは50g/m以上200g/m未満が好ましく、さらに好ましくは100g/m以上200g/m未満である。 When the fabric FAW (Fiber Area Weight) is low, the contact with the catalyst layer is lowered, and the current collecting ability is lowered. On the other hand, when the FAW is high, the current collecting ability is improved, but the gap is reduced and the gas permeability is lowered. Accordingly, the FAW of the fabric is preferably 50 g / m 2 or more and less than 200 g / m 2 , more preferably 100 g / m 2 or more and less than 200 g / m 2 .

織物の厚みは、通気性や排水性の維持のためにはある程度の厚さが必要であるが、あまり厚すぎるとガスの拡散に時間がかかるため性能が低下する。したがって、織物の厚みは、0.20〜0.60mmが好ましく、0.20〜0.40mmがさらに好ましい。   The woven fabric needs to have a certain thickness in order to maintain air permeability and drainage. However, if it is too thick, it takes time to diffuse the gas, and the performance deteriorates. Accordingly, the thickness of the woven fabric is preferably 0.20 to 0.60 mm, and more preferably 0.20 to 0.40 mm.

ガス拡散体として用いる場合、織物は一般に、平織り、朱子織り、綾織り、バスケット織り等、いずれの織り方のものも使用することができるが、特に平織りが好ましい。この場合、本発明の紡績糸は、その強度を有効に生かせる経糸およぴ緯糸の少なくともいずれか一方として、30重量%以上、好ましくは40重量%以上、の割合で用いることもできる。体積抵抗率は、好ましくは20〜1500μΩ・m、更に好ましくは50〜700μΩ・m、特に好ましくは50〜400μΩ・m   When used as a gas diffuser, generally, weaving fabrics of any weaving method such as plain weaving, satin weaving, twill weaving and basket weaving can be used, but plain weaving is particularly preferred. In this case, the spun yarn of the present invention can be used in a proportion of 30% by weight or more, preferably 40% by weight or more, as at least one of warp and weft that can effectively utilize its strength. The volume resistivity is preferably 20 to 1500 μΩ · m, more preferably 50 to 700 μΩ · m, and particularly preferably 50 to 400 μΩ · m.

以下、実施例および比較例により、本発明をさらに具体的に説明する。以下の例を含めて、本明細書中に記載する物性値は、以下の方法により求めた値に基づく。   Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples. The physical property values described in this specification including the following examples are based on values obtained by the following method.

「X線回折法による(002)平均層面間隔」
炭素繊維粉末をアルミニウム製試料セルに充填し、グラファイトモノクロメーターにより単色化したCuKα線(波長λ=0.15418nm)を線源とし、X線回折図形を得る。(002)回折線のピーク位置は、重心法(回折線の重心位置を求め、これに対応する2θ値でピーク位置を求める方法)により求め、標準物質用高純度シリコン粉末の(111)回折線を用いて補正し、下記のBraggの公式よりd002を計算した。
"(002) average layer spacing by X-ray diffraction"
An X-ray diffraction pattern is obtained by filling an aluminum sample cell with carbon fiber powder and using CuKα rays (wavelength λ = 0.15418 nm) monochromatized with a graphite monochromator as a radiation source. The peak position of the (002) diffraction line is obtained by the centroid method (a method of obtaining the centroid position of the diffraction line and obtaining the peak position with the corresponding 2θ value), and the (111) diffraction line of the high-purity silicon powder for standard material And d 002 was calculated from the following Bragg formula.

[数1]
002=λ/(2・sinθ) (Braggの公式)
「密度勾配管法による比重」
(比重液の調整)
塩化亜鉛と1%塩酸の所定量をビーカーに量り取った後、混合した。これを500mlのメスシリンダーに移しかえ、20±1.0℃の低温恒温水槽に浸し、20±1.0℃に調整後、比重計を浮かべて比重を測定した。塩化亜鉛と1%塩酸の相対量を適宜変えて10種類の比重液を調製した。
[Equation 1]
d 002 = λ / (2 · sin θ) (Bragg formula)
"Specific gravity by density gradient tube method"
(Adjustment of specific gravity liquid)
A predetermined amount of zinc chloride and 1% hydrochloric acid was weighed into a beaker and then mixed. This was transferred to a 500 ml graduated cylinder, immersed in a low-temperature water bath at 20 ± 1.0 ° C., adjusted to 20 ± 1.0 ° C., and then the specific gravity was measured by floating a hydrometer. Ten specific gravity solutions were prepared by appropriately changing the relative amounts of zinc chloride and 1% hydrochloric acid.

(試料の比重測定)
20mlのメスシリンダーに、前記10種類の比重液を各々2mlずつ、比重の高いものから静かに管壁を伝わらせながら注ぎ入れ、密度勾配管を作った。次いで、この密度勾配管を20±1.0℃の低温恒温水槽に浸し、30分経過後、乳鉢で摺り潰して目開き150μmの標準ふるいを通過した炭素繊維試料約0.1gを少量のエタノールに分散させ、密度勾配管に静かに入れ、12時間以上静置した。12時間以上経過後、密度勾配管の中の試料の位置を読み取り、比重換算表より、試料の比重を求めた。
(Specific gravity measurement of sample)
A density gradient tube was prepared by pouring 2 ml of each of the 10 specific gravity liquids into a 20 ml graduated cylinder from the one with high specific gravity while gently passing along the tube wall. Next, the density gradient tube was immersed in a low temperature constant temperature bath of 20 ± 1.0 ° C., and after 30 minutes, about 0.1 g of a carbon fiber sample which had been crushed in a mortar and passed through a standard sieve having an opening of 150 μm was added with a small amount of ethanol. And gently placed in a density gradient tube and allowed to stand for 12 hours or more. After 12 hours or longer, the position of the sample in the density gradient tube was read, and the specific gravity of the sample was determined from the specific gravity conversion table.

「水素/炭素(H/C)の原子比の測定」
CHNアナライザーによる元素分析により得られる試料中の水素及び炭素の重量割合から、水素/炭素の原子数の比として求めた。
“Measurement of atomic ratio of hydrogen / carbon (H / C)”
The hydrogen / carbon atom ratio was determined from the weight ratio of hydrogen and carbon in the sample obtained by elemental analysis using a CHN analyzer.

「炭素単繊維の体積抵抗率」
炭素繊維試験方法JIS R7601−1986の単繊維の試験に準拠して測定した。具体的には、試料から繊維長さ4〜5cmのフィラメント糸を取り出し、適当な方法で開繊して、単繊維を1本ずつ抜き取り、同JISの6.6.1(2.3)に規定する台紙を用い、短繊維を台紙の中央線に沿ってまっすぐに張った状態で、所定の長さになるように2ヶ所を導電塗料で固定した。同時に、銅線を試料繊維とともに導電塗料で固定し、リード線として使用した。試料繊維を台紙に貼り付けた状態で、長さ計を用いて導電塗料間の長さを0.1mmまで測定し、試験長とした。また測微顕微鏡を用いて試料繊維の直径を読みとった。次いで試料繊維の抵抗を、抵抗測定器を用いて測定した。体積抵抗率は、下記の式より算出した。
"Volume resistivity of carbon fiber"
The carbon fiber test method was measured in accordance with the single fiber test of JIS R7601-1986. Specifically, a filament yarn having a fiber length of 4 to 5 cm is taken out from the sample, opened by an appropriate method, and single fibers are extracted one by one, and the same JIS 6.6.1 (2.3) Using a specified mount, two places were fixed with a conductive paint so as to have a predetermined length in a state where the short fibers were stretched straight along the center line of the mount. At the same time, the copper wire was fixed together with the sample fiber with a conductive paint and used as a lead wire. With the sample fiber affixed to the mount, the length between the conductive paints was measured up to 0.1 mm using a length meter to obtain the test length. The diameter of the sample fiber was read using a microscopic microscope. The resistance of the sample fiber was then measured using a resistance meter. The volume resistivity was calculated from the following formula.

[数2]
=(π・D2・)/(4・L)
ここに、S:体積抵抗率(Ω・m)、R:試料繊維の抵抗(Ω)、L:試料繊維の長さ(m)、D:試料繊維の直径(m)
「紡績糸強度」
引張試験機((株)オリエンテック製、「テンシロン万能試験機 1310型」)を用いて、紡績糸のつかみ間隔300mmとし、引っ張り速度200mm/minで引っ張った時の破断強力をその紡績糸のtex値で割って、紡績糸強度(N/tex)とした。
[Equation 2]
S f = (π · D 2 · R f ) / (4 · L)
Here, S f : volume resistivity (Ω · m), R f : resistance of sample fiber (Ω), L: length of sample fiber (m), D: diameter of sample fiber (m)
"Spun yarn strength"
Using a tensile testing machine ("Tensilon Universal Testing Machine Model 1310", manufactured by Orientec Co., Ltd.), the thread holding distance was 300 mm and the breaking strength when pulled at a pulling speed of 200 mm / min was the tex of the spun yarn. Divided by the value to obtain spun yarn strength (N / tex).

「繊維織物の厚さ測定」
炭素繊維クロス試験法、JCFS 003−1982の方法1に準拠して測定した。具体的には、100mm×100mmの試験片5個について、直進式ペーパーマイクロメーターPPM−25型((株)ミツトヨ製)を用いて、そのスピンドルを静かに回転させて測定面が試料面に平行に接触し、ラチェットが3回音をたてたときの目盛りを読み取った。測定値の平均値を小数点以下2桁まで求めた。
"Measurement of fiber fabric thickness"
The measurement was performed according to the carbon fiber cloth test method, method 1 of JCFS 003-1982. Specifically, for five test pieces of 100 mm × 100 mm, using a straight paper micrometer PPM-25 type (manufactured by Mitutoyo Corporation), the spindle is gently rotated and the measurement surface is parallel to the sample surface. The scale when the ratchet made three sounds was read. The average value of the measured values was obtained to 2 digits after the decimal point.

「炭素繊維織物の体積抵抗率」
縦約0.5m×横約0.5mの織物試料と厚さ計(直進式ペーパーマイクロメーター「PPM−25型」((株)ミツトヨ製))の加圧板が平行になるように手で支え、試料の4辺について中心方向に約0.10mの内部の位置を各辺毎に2箇所(試料1枚当たり合計8箇所)ずつ厚さ計を使用して厚さを測定し、この値の平均値を求めた。次に試料から縦方向の試験片(縦方向の長さ:0.22m、横方向の長さ:0.20m)と横方向の試験片(横方向の長さ:0.22m、縦方向の長さ:0.20m)を各々1枚ずつ裁断した。裁断した試験片を銅板端子付き硬質型板の電極間に固定し、これを加圧機で4.9MPa加圧後、縦および横方向の試験片について抵抗測定器を用いて抵抗を測定した。炭素繊維織物の体積抵抗率は、下記の式より算出した。
"Volume resistivity of carbon fiber fabric"
Support by hand so that the pressure plate of the fabric sample approximately 0.5m in length x 0.5m in width and the thickness meter (straight forward paper micrometer "PPM-25 type" (Mitutoyo Co., Ltd.)) are parallel. Measure the thickness of the four sides of the sample in the center direction using a thickness gauge at two locations (total of 8 locations per sample) for each side. The average value was obtained. Next, a test piece in the vertical direction (length in the vertical direction: 0.22 m, length in the horizontal direction: 0.20 m) and a test piece in the horizontal direction (length in the horizontal direction: 0.22 m, from the sample) Length: 0.20 m) was cut one by one. The cut test piece was fixed between electrodes of a hard mold plate with a copper plate terminal, and this was pressed with a pressurizer at 4.9 MPa, and then the resistance of the vertical and horizontal test pieces was measured using a resistance measuring instrument. The volume resistivity of the carbon fiber fabric was calculated from the following formula.

[数3]
T=A・B/C
ここに、T:体積抵抗率(Ω・m)、 A:試験片の抵抗(Ω)、 B:試験片の断面積(m)(=試料の厚さ(m)×試験片の1辺の寸法(0.20m))、C:試験片の抵抗測定時の電極端子間隔(0.20m)
(実施例1)
窒素雰囲気中、1000℃で、1時間熱処理して得られた等方性ピッチ系炭素繊維(平均単繊維径=約14.5μm)を裁断機を用いて繊維長200mmに切断した。梳綿機により繊維を引き揃えて、10g/mの繊維束を得た。次いで第1練条機でこの1本の繊維束を5.1倍に延伸し、1.96g/mの繊維束を得た。更に第2練条機でこの繊維束を2本合わせて4.6倍に延伸し、1本の繊維束とし、また更に第3練条機でこの繊維束を2本合せて2.0倍に延伸し、1本の繊維束とした。この繊維束を精紡機を用いて、延伸12倍、Z(左)撚り数130回/mで紡糸し、70texの紡績糸を得た。次いで撚糸機でこの紡績糸2本を合わせて、S(右)撚り数78回/mで合糸し,140texの紡績糸を得た。
[Equation 3]
T = A ・ B / C
Where, T: volume resistivity (Ω · m), A: resistance of test piece (Ω), B: cross-sectional area of test piece (m 2 ) (= thickness of sample (m) × one side of test piece Dimension (0.20 m)), C: Electrode terminal interval (0.20 m) when measuring resistance of the test piece
Example 1
An isotropic pitch-based carbon fiber (average single fiber diameter = about 14.5 μm) obtained by heat treatment at 1000 ° C. for 1 hour in a nitrogen atmosphere was cut into a fiber length of 200 mm using a cutter. The fibers were aligned by a carding machine to obtain a fiber bundle of 10 g / m. Next, this single fiber bundle was stretched by a factor of 5.1 using a first drawing machine to obtain a fiber bundle of 1.96 g / m. Further, the two fiber bundles are combined and stretched 4.6 times with the second drawing machine to form one fiber bundle, and further, the two fiber bundles are combined with the third drawing machine to 2.0 times. To a single fiber bundle. This fiber bundle was spun using a fine spinning machine at a stretch of 12 times and a Z (left) twist number of 130 times / m to obtain a spun yarn of 70 tex. Next, the two spun yarns were combined with a twisting machine and combined at an S (right) twist of 78 times / m to obtain a spun yarn of 140 tex.

この紡績糸を用いて平織りすることにより、FAW150g/m、厚み0.30mmの織物が得られた。 By plain weaving using this spun yarn, a woven fabric having a FAW of 150 g / m 2 and a thickness of 0.30 mm was obtained.

得られた紡績糸および織物の物性ないし特性値を、以下の実施例および比較例の結果とまとめて後記表1に示す。   The physical properties and characteristic values of the obtained spun yarn and fabric are shown in Table 1 below together with the results of the following Examples and Comparative Examples.

(実施例2)
実施例1の精紡機を用いて、Z(左)撚り数130回/mで紡糸したことに代えて、Z(左)撚り数180回/mで紡糸し、撚糸機による合糸をしないこと以外は、実施例1と同様に行った。その結果、70texの紡績糸を得た。
(Example 2)
Using the fine spinning machine of Example 1, instead of spinning with a Z (left) twist number of 130 times / m, spinning with a Z (left) twist number of 180 times / m and not using a twisting machine Except that, the same procedure as in Example 1 was performed. As a result, a spun yarn of 70 tex was obtained.

この紡績糸を用いて平織りすることにより、FAW70g/m、厚み0.15mmの織物が得られた。 By plain weaving using this spun yarn, a woven fabric having a FAW of 70 g / m 2 and a thickness of 0.15 mm was obtained.

(実施例3)
実施例2の窒素雰囲気中、1000℃、1時間熱処理して得られた等方性ピッチ系炭素繊維を裁断機を用いて繊維長200mmに切断したことに代えて、繊維長180mmに切断した以外、実施例2と同様に行った。その結果70texの紡績糸を得た。
(Example 3)
Instead of cutting the isotropic pitch-based carbon fiber obtained by heat treatment at 1000 ° C. for 1 hour in the nitrogen atmosphere of Example 2 to a fiber length of 200 mm using a cutter, except for cutting to a fiber length of 180 mm The same procedure as in Example 2 was performed. As a result, a spun yarn of 70 tex was obtained.

この紡績糸を用いた場合、FAW70g/m、厚み0.15mmの平織りの織物が得られた。 When this spun yarn was used, a plain weave fabric having a FAW of 70 g / m 2 and a thickness of 0.15 mm was obtained.

(実施例4)
実施例2の繊維束を精紡機を用い、Z(左)撚り数180回/mで紡糸したことに代えて、Z(左)撚り数100回/mで紡糸した以外は、実施例2と同様に行った。その結果70texの紡績糸を得た。
Example 4
Example 2 except that the fiber bundle of Example 2 was spun at a Z (left) twist of 100 times / m using a spinning machine, instead of spinning at a Z (left) twist of 180 times / m. The same was done. As a result, a spun yarn of 70 tex was obtained.

この紡績糸を用いて平織りすることにより、FAW70g/m、厚み0.15mmの織物が得られた。 By plain weaving using this spun yarn, a woven fabric having a FAW of 70 g / m 2 and a thickness of 0.15 mm was obtained.

(実施例5)
実施例2の窒素雰囲気中、1000℃、1時間熱処理して得られた等方性ピッチ系炭素繊維に代えて、窒素雰囲気中、1500℃、1時間熱処理して得られた等方性ピッチ系炭素繊維を用いた以外は、実施例2と同様に行った。その結果、70texの紡績糸を得た。
(Example 5)
In place of the isotropic pitch-based carbon fiber obtained by heat treatment at 1000 ° C. for 1 hour in the nitrogen atmosphere of Example 2, the isotropic pitch system obtained by heat treatment at 1500 ° C. for 1 hour in a nitrogen atmosphere. The same operation as in Example 2 was performed except that carbon fiber was used. As a result, a spun yarn of 70 tex was obtained.

この紡績糸を用いて平織りすることにより、FAW70g/m、厚み0.15mmの織物が得られた。 By plain weaving using this spun yarn, a woven fabric having a FAW of 70 g / m 2 and a thickness of 0.15 mm was obtained.

(実施例6)
実施例2の窒素雰囲気中、1000℃、1時間熱処理して得られた等方性ピッチ系炭素繊維に代えて、窒素雰囲気中、2000℃、1時間熱処理して得られた等方性ピッチ系炭素繊維を用いた以外は、実施例2と同様に行った。その結果、70texの紡績糸を得た。
(Example 6)
In place of the isotropic pitch-based carbon fiber obtained by heat treatment at 1000 ° C. for 1 hour in the nitrogen atmosphere of Example 2, the isotropic pitch system obtained by heat treatment at 2000 ° C. for 1 hour in a nitrogen atmosphere. The same operation as in Example 2 was performed except that carbon fiber was used. As a result, a spun yarn of 70 tex was obtained.

この紡績糸を用いて平織りすることにより、FAW70g/m、厚み0.15mmの織物が得られた。 By plain weaving using this spun yarn, a woven fabric having a FAW of 70 g / m 2 and a thickness of 0.15 mm was obtained.

(実施例7)
窒素雰囲気中、2000℃で1時間熱処理して得られたPAN系炭素繊維(平均繊維径=約7〜8μm)を裁断機を用いて繊維長200mmに切断した後、梳綿機により繊維を引き揃えて、10g/mの繊維束を得た。次いで、第1練条機でこの1本の繊維束を5.1倍に延長し、1.96g/mの繊維束を得た。更に第2練条機でこの繊維束2本を合わせて3.2倍に延伸し、1本の繊維束とし、また更に第3練条機でこの繊維束を2本合せて2.0倍に延伸し、1本の繊維束とした。この繊維束を精紡機を用いて、延伸12倍、撚数180回/mで紡糸し、100texの紡績糸を得た。
(Example 7)
A PAN-based carbon fiber (average fiber diameter = about 7-8 μm) obtained by heat treatment at 2000 ° C. for 1 hour in a nitrogen atmosphere is cut into a fiber length of 200 mm using a cutting machine, and then the fiber is drawn by a carding machine. All together, a fiber bundle of 10 g / m was obtained. Next, this single fiber bundle was extended by a factor of 5.1 using a first drawing machine to obtain a fiber bundle of 1.96 g / m. Further, the two fiber bundles are combined and stretched to 3.2 times with the second drawing machine to form one fiber bundle, and further, the two fiber bundles are combined with the third drawing machine to 2.0 times. To a single fiber bundle. This fiber bundle was spun at a stretch of 12 times and a twist number of 180 times / m using a spinning machine to obtain a spun yarn of 100 tex.

この紡績糸を用いて平織りすることにより、FAW100g/m、厚み0.18mmの織物が得られた。 By plain weaving using this spun yarn, a woven fabric having a FAW of 100 g / m 2 and a thickness of 0.18 mm was obtained.

(実施例8)
実施例2と同様にして、70texの紡績糸を得た後、更にこの紡績糸を窒素雰囲気中、2000℃で1時間熱処理した。
(Example 8)
In the same manner as in Example 2, after obtaining a spun yarn of 70 tex, the spun yarn was further heat-treated at 2000 ° C. for 1 hour in a nitrogen atmosphere.

この紡績糸を用いて平織りすることにより、FAW70g/m、厚み0.15mmの織物が得られた。 By plain weaving using this spun yarn, a woven fabric having a FAW of 70 g / m 2 and a thickness of 0.15 mm was obtained.

(比較例1)
実施例2において、窒素雰囲気中、1000℃で1時間熱処理して得られた等方性ピッチ系炭素繊維を裁断機を用いて繊維長200mmに切断したことに代えて、繊維長140mmに切断した以外は、実施例2と同様に行った。その結果70texの紡績糸を得た。
(Comparative Example 1)
In Example 2, the isotropic pitch-based carbon fiber obtained by heat treatment at 1000 ° C. for 1 hour in a nitrogen atmosphere was cut into a fiber length of 200 mm using a cutting machine, and cut into a fiber length of 140 mm. Except for this, the same procedure as in Example 2 was performed. As a result, a spun yarn of 70 tex was obtained.

この紡績糸を用いて平織りすることを試みた。しかし、糸切れが頻繁に起きて、織物を織るのが困難であった。   An attempt was made to plain weave using this spun yarn. However, yarn breakage frequently occurred and it was difficult to weave the fabric.

(比較例2)
実施例7において、窒素雰囲気中、2000℃で1時間熱処理して得られたPAN系炭素繊維を、裁断機を用いて繊維長200mmに切断したことに代えて、繊維長140mmに切断した以外、実施例7と同様に行った。その結果100texの紡績糸を得た。
(Comparative Example 2)
In Example 7, instead of cutting the PAN-based carbon fiber obtained by heat treatment at 2000 ° C. for 1 hour in a nitrogen atmosphere into a fiber length of 200 mm using a cutting machine, the fiber length was cut to 140 mm, The same operation as in Example 7 was performed. As a result, a spun yarn of 100 tex was obtained.

この紡績糸を用いて平織りすることを試みた。しかし、糸切れが頻繁に起きて、織物を織るのが困難であった。   An attempt was made to plain weave using this spun yarn. However, yarn breakage frequently occurred and it was difficult to weave the fabric.

(比較例3)
実施例1において、10g/mの繊維束を、精紡機を用い、延伸12倍で紡糸したことに代えて、延伸10.5倍で紡糸したこと、ならびに撚糸機で紡績糸2本を合わせてS(右)撚り数78回/mで合糸したことに代えて紡績糸2本を合わせて、S(右)撚り数110回/mで合糸したこと以外は、実施例2と同様に行った。その結果、160texの紡績糸を得た。
(Comparative Example 3)
In Example 1, a fiber bundle of 10 g / m was spun at a stretching of 10.5 times instead of being spun at a stretching of 12 times using a fine spinning machine, and two spun yarns were combined with a twisting machine. Similar to Example 2, except that two spun yarns were combined in place of the S (right) twist of 78 times / m, and the S (right) twist was 110 times / m. went. As a result, a 160 tex spun yarn was obtained.

この紡績糸を用いて平織りすることにより、FAW230g/m、厚み0.46mmの織物が得られた。 By plain weaving using this spun yarn, a woven fabric having a FAW of 230 g / m 2 and a thickness of 0.46 mm was obtained.

(比較例4)
実施例2の窒素雰囲気中、1000℃、1時間熱処理して得られた等方性ピッチ系炭素繊維に代えて、窒素雰囲気中、800℃、1時間熱処理して得られた等方性ピッチ系炭素繊維を用いた以外は、実施例2と同様に行った。その結果、70texの紡績糸を得た。
(Comparative Example 4)
In place of the isotropic pitch-based carbon fiber obtained by heat treatment at 1000 ° C. for 1 hour in the nitrogen atmosphere of Example 2, the isotropic pitch system obtained by heat treatment at 800 ° C. for 1 hour in a nitrogen atmosphere. The same operation as in Example 2 was performed except that carbon fiber was used. As a result, a spun yarn of 70 tex was obtained.

この紡績糸を用いて平織りすることにより、FAW70g/m、厚み0.15mmの織物が得られた。 By plain weaving using this spun yarn, a woven fabric having a FAW of 70 g / m 2 and a thickness of 0.15 mm was obtained.

上記実施例および比較例の結果を後記表1にまとめて示す。   The results of the above Examples and Comparative Examples are summarized in Table 1 below.

次表1に示す結果からも理解される通り、本発明によれば従来よりも長い炭素繊維を適度の割合で含む細い炭素繊維束を、適度の撚り数で紡績加工することにより、細く且つ高強度の炭素繊維紡績糸が得られ、これを製織することにより固体高分子型燃料電池のガス拡散(集電)体として好適な炭素繊維紡績糸織物が得られる。

Figure 0004446721
As understood from the results shown in the following Table 1, according to the present invention, a thin carbon fiber bundle containing carbon fibers longer than the conventional ones in an appropriate ratio is spun and processed with an appropriate number of twists. A strong carbon fiber spun yarn is obtained, and by weaving it, a carbon fiber spun yarn fabric suitable as a gas diffusion (current collector) of a polymer electrolyte fuel cell is obtained.
Figure 0004446721

Claims (6)

X線回折法により求められる(002)平均層面間隔が0.340〜0.380nm、密度勾配管法により求められる比重1.55〜1.80、元素分析により求められる水素原子と炭素原子の原子比(H/C)が0.1以下、繊維長150mm以上の炭素繊維を3〜30重量%含有し、1000m当たりの重量(tex)が30〜150g、一次撚り数50〜400回/m、引っ張り強度が0.15N/tex以上であることを特徴とする炭素繊維紡績糸。 (002) average layer spacing determined by X-ray diffraction method is 0.340-0.380 nm, specific gravity 1.55-1.80 determined by density gradient tube method, hydrogen atom and carbon atom atom determined by elemental analysis The ratio (H / C) is 0.1 or less and the fiber length is 3 to 30% by weight of carbon fibers of 150 mm or more, the weight (tex) per 1000 m is 30 to 150 g, the primary twist number is 50 to 400 times / m, A carbon fiber spun yarn having a tensile strength of 0.15 N / tex or more. 炭素繊維が等方性ピッチ系炭素繊維であることを特徴とする請求項1に記載の炭素繊維紡績糸。 The carbon fiber spun yarn according to claim 1, wherein the carbon fiber is an isotropic pitch-based carbon fiber. 炭素繊維がPAN系炭素繊維またはレーヨン系炭素繊維のいずれかであることを特徴とする請求項1に記載の炭素繊維紡績糸。 The carbon fiber spun yarn according to claim 1, wherein the carbon fiber is either a PAN-based carbon fiber or a rayon-based carbon fiber. 請求項1〜3のいずれかに記載の炭素繊維紡績糸を30重量%以上含有することを特徴とする炭素繊維紡績糸織物。 A carbon fiber spun yarn fabric comprising 30% by weight or more of the carbon fiber spun yarn according to any one of claims 1 to 3. 単位面積当たりの重さ(FAW)が50g/m以上200g/m未満、厚さ0.20〜0.60mmであることを特徴とする請求項4に記載の炭素繊維紡績糸織物。 5. The carbon fiber spun yarn fabric according to claim 4, wherein the weight per unit area (FAW) is 50 g / m 2 or more and less than 200 g / m 2 and the thickness is 0.20 to 0.60 mm. 体積抵抗率が20〜1500μΩ・mであることを特徴とする請求項4または5に記載の炭素繊維紡績糸織物。 The carbon fiber spun yarn fabric according to claim 4 or 5, wherein the volume resistivity is 20 to 1500 µΩ · m.
JP2003401982A 2003-12-01 2003-12-01 Carbon fiber spun yarn and its woven fabric Expired - Fee Related JP4446721B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2003401982A JP4446721B2 (en) 2003-12-01 2003-12-01 Carbon fiber spun yarn and its woven fabric
CNB2004800356805A CN100537866C (en) 2003-12-01 2004-11-30 Carbon fiber spun yarn, its fabric and uses thereof
EP04799952A EP1700938A4 (en) 2003-12-01 2004-11-30 Carbon fiber spun yarn and woven fabric thereof
US10/581,254 US7610743B2 (en) 2003-12-01 2004-11-30 Carbon fiber spun yarn and woven fabric thereof
PCT/JP2004/018103 WO2005054554A1 (en) 2003-12-01 2004-11-30 Carbon fiber spun yarn and woven fabric thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003401982A JP4446721B2 (en) 2003-12-01 2003-12-01 Carbon fiber spun yarn and its woven fabric

Publications (2)

Publication Number Publication Date
JP2005163208A JP2005163208A (en) 2005-06-23
JP4446721B2 true JP4446721B2 (en) 2010-04-07

Family

ID=34649995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003401982A Expired - Fee Related JP4446721B2 (en) 2003-12-01 2003-12-01 Carbon fiber spun yarn and its woven fabric

Country Status (5)

Country Link
US (1) US7610743B2 (en)
EP (1) EP1700938A4 (en)
JP (1) JP4446721B2 (en)
CN (1) CN100537866C (en)
WO (1) WO2005054554A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2670051C (en) * 2005-11-16 2015-05-26 Ladama, Llc Methods and apparatuses for making a fire retardant heat resistant yarn
JP4889741B2 (en) * 2006-08-22 2012-03-07 株式会社クレハ Carbon fiber-containing laminated molded body and method for producing the same
WO2010021045A1 (en) * 2008-08-21 2010-02-25 株式会社クレハ Woven fabric of isotropic pitch carbon fiber and process for producing the same
DE102008039840A1 (en) * 2008-08-27 2010-03-04 Sgl Carbon Ag Stretched carbon fiber yarns for a heater
GB2477531B (en) 2010-02-05 2015-02-18 Univ Leeds Carbon fibre yarn and method for the production thereof
CN102041597B (en) * 2010-11-16 2012-08-08 江苏澳盛复合材料科技有限公司 Carbon fiber cloth and application thereof to antifriction parts of automobile
CN102560816A (en) * 2011-11-18 2012-07-11 濮阳市德发特种纺织物有限公司 Antistatic breathable fabric
KR102088293B1 (en) * 2013-12-16 2020-03-13 에자이 알앤드디 매니지먼트 가부시키가이샤 Revascularization graft material
JP7395476B2 (en) * 2017-08-07 2023-12-11 ゾルテック コーポレイション Filler sized with polyvinyl alcohol to strengthen plastics

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3145267A1 (en) * 1981-11-14 1983-05-19 Hasso von 4000 Düsseldorf Blücher MIXED YARN CONTAINING ACTIVATED CHARCOAL FIBERS AND FABRIC MADE THEREOF
US4913889A (en) * 1983-03-09 1990-04-03 Kashima Oil Company High strength high modulus carbon fibers
JP2801264B2 (en) * 1989-05-24 1998-09-21 帝人株式会社 Synthetic fiber yarn having high-quality cotton-like feeling and method for producing the same
DE60129118T2 (en) 2000-11-24 2008-02-28 Toho Tenax Co., Ltd. CARBON FIBERS AND MANUFACTURING METHOD
JP4002426B2 (en) 2001-07-27 2007-10-31 東邦テナックス株式会社 Carbon fiber spun woven fabric structure for polymer electrolyte fuel cell electrode material and method for producing the same
JP2003064539A (en) 2001-08-24 2003-03-05 Toho Tenax Co Ltd Carbon fiber fabric and method for producing the same
JP4195564B2 (en) 2002-01-25 2008-12-10 東邦テナックス株式会社 Carbon fiber spun yarn fabric and manufacturing method thereof
JP4190768B2 (en) 2002-02-01 2008-12-03 東邦テナックス株式会社 Polyacrylonitrile-based carbon fiber spun yarn fabric and method for producing the same
JP2003227054A (en) 2002-02-01 2003-08-15 Toho Tenax Co Ltd Woven fabric of spun yarn of polyacrylonitrile-based oxidized fiber, woven fabric of spun yarn of carbon fiber, and method for producing woven fabric of spun yarn of carbon fiber
JP4353672B2 (en) 2002-02-15 2009-10-28 東邦テナックス株式会社 Polyacrylonitrile-based carbon fiber spun yarn fabric, carbon fiber spun yarn fabric roll, and method for producing carbon fiber spun yarn fabric
JP3934974B2 (en) 2002-03-28 2007-06-20 東邦テナックス株式会社 High bulk density flame resistant fiber spun yarn fabric, carbon fiber spun yarn fabric, and production method thereof
JP4502636B2 (en) * 2003-12-17 2010-07-14 株式会社クレハ Pitch-based carbon fiber sliver and method for producing spun yarn
CN101124355B (en) * 2005-02-22 2010-07-28 株式会社吴羽 Hybrid carbon fiber spun yarn, fabric and production method of hybrid carbon fiber spun yarn

Also Published As

Publication number Publication date
US7610743B2 (en) 2009-11-03
EP1700938A4 (en) 2011-03-30
EP1700938A1 (en) 2006-09-13
CN1890416A (en) 2007-01-03
CN100537866C (en) 2009-09-09
WO2005054554A1 (en) 2005-06-16
US20080307765A1 (en) 2008-12-18
JP2005163208A (en) 2005-06-23

Similar Documents

Publication Publication Date Title
Chae et al. High strength and high modulus carbon fibers
US8171711B2 (en) Hybrid carbon fiber spun yarn and hybrid carbon fiber spun yarn fabric using the same
Mikhalchan et al. A perspective on high-performance CNT fibres for structural composites
Newcomb et al. High resolution transmission electron microscopy study on polyacrylonitrile/carbon nanotube based carbon fibers and the effect of structure development on the thermal and electrical conductivities
Zhou et al. Graphitic carbon nanofibers developed from bundles of aligned electrospun polyacrylonitrile nanofibers containing phosphoric acid
US20050260909A1 (en) Carbonic fiber woven fabric, carbonic fiber woven fabric roll, gas diffusion layer material for solid polymer fuel cell, method for producing carbonic fiber woven fabric and method for producing gas diffusion layer material for solid polymer fuel cell
JP4446721B2 (en) Carbon fiber spun yarn and its woven fabric
Newcomb et al. The properties of carbon fibers
Sui et al. Highly aligned polyacrylonitrile-based nano-scale carbon fibres with homogeneous structure and desirable properties
JPH07331536A (en) Pitch-based carbon fiber
US5721308A (en) Pitch based carbon fiber and process for producing the same
Ozcan et al. Designing the structure of carbon fibers for optimal mechanical properties
Yan et al. Structures and properties of polyacrylonitrile/graphene composite nanofiber yarns prepared by multi-needle electrospinning device with an auxiliary electrode
Karacan et al. Formation of non-graphitizing carbon fibers prepared from poly (p-phenylene terephthalamide) precursor fibers
JP4283010B2 (en) Conductive carbonaceous fiber woven fabric and polymer electrolyte fuel cell using the same
JP3890770B2 (en) Carbon fiber bundle and manufacturing method thereof
JP4282964B2 (en) Carbon fiber woven fabric
JP2010047865A (en) Carbon fiber for composite material and composite material produced by using the same
JP4002426B2 (en) Carbon fiber spun woven fabric structure for polymer electrolyte fuel cell electrode material and method for producing the same
JP4333106B2 (en) Method for producing carbon fiber woven fabric
JP2000096353A (en) Production of carbon fiber
JP6818222B2 (en) Carbon fiber fabric for fuel cells
Mochida et al. Preparation and structure of mesophase pitch-based thin carbon tape
Ji et al. Comparison of tensile fracture morphologies among various polyacrylonitrile-based carbon fibers
Hiremath Structure And Properties Of Cnt Yarns And Cnt/Cnf Reinforced Pan-Based Carbon Fibers

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100119

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100119

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130129

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4446721

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130129

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140129

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees