JP4445277B2 - ポリ乳酸系樹脂と無機化合物からなる高分子圧電材料 - Google Patents

ポリ乳酸系樹脂と無機化合物からなる高分子圧電材料 Download PDF

Info

Publication number
JP4445277B2
JP4445277B2 JP2004022056A JP2004022056A JP4445277B2 JP 4445277 B2 JP4445277 B2 JP 4445277B2 JP 2004022056 A JP2004022056 A JP 2004022056A JP 2004022056 A JP2004022056 A JP 2004022056A JP 4445277 B2 JP4445277 B2 JP 4445277B2
Authority
JP
Japan
Prior art keywords
polylactic acid
acid
film
inorganic compound
piezoelectric material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004022056A
Other languages
English (en)
Other versions
JP2005213376A (ja
Inventor
佳郎 田實
斗志彦 高木
和幸 福田
康彦 芳賀
徳夫 中山
隆行 小野木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP2004022056A priority Critical patent/JP4445277B2/ja
Publication of JP2005213376A publication Critical patent/JP2005213376A/ja
Application granted granted Critical
Publication of JP4445277B2 publication Critical patent/JP4445277B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Biological Depolymerization Polymers (AREA)

Description

本発明は、スピーカーやマイクロフォン、センサー、アクチュエーターなどに使われる高分子圧電材料において、ポーリング処理が不要で緩和効果がないという特徴をもつポリ乳酸系樹脂に無機化合物を複合化して延伸処理を行うことを特徴とする、高い圧電性をもつ高分子圧電材料に関する。
圧電現象とは、物質に応力を加えると分極が現れる現象(正の圧電効果)、あるいはその逆に電界を与えると歪が生じる現象(逆の圧電効果)をいう。圧電材料としてはチタン酸バリウム(BaTiO3)やPZT(PbZrO3−PbTiO3系固溶体)、ZnOなどの無機物質が高い圧電率を持つことが知られており、センサーやアクチュエーターなどに広く用いられてきた。高分子に圧電性を付与できれば、フィルムや複雑な形状の構造体を容易に作製できるため、応用範囲が広がることが期待される。高分子は一般に微結晶と非晶部の不均質系であり、この状態が不規則で巨視的に等方性である場合には圧電性はなく、圧電性を得るには何らかの異方性を与える処理が必要になる。ポリフッ化ビニリデン(PVDF)、フッ化ビニリデン−トリフルオロエチレン(VDF/TrFE)共重合体等の強誘電性高分子や、シアン化ビニリデン−酢酸ビニル共重合体、ナイロン−11等の極性高分子、あるいはPZT−フッ化ビニリデン共重合体、PZT−ポリオキシメチレン等の複合体では、ポーリング処理と呼ばれる直流電界をフィルムに印加し、双極子を一方向に揃えることにより圧電性が発現する。このタイプの圧電性高分子の中では、VDF/TrFE(75/25)共重合体が40pC/N程度の高い圧電率を出すことが知られている。一方、ポリ(グルタル酸γ−ベンジル)、ポリ(グルタル酸γ−メチル)等のポリペプチドや、酢酸セルロース、シアノエチルセルロース等のセルロース誘導体、あるいはポリ乳酸やポリプロピレンオキシド、ポリ(β−ヒドロキシ酪酸)等の光学活性高分子は機械的な延伸処理により圧電性が発現することが知られている。光学活性高分子の中で、ポリ乳酸のようなヘリカルキラリティをもつ高分子結晶の圧電性は、らせん軸方向に存在するC=O結合の双極子に起因する。ポリ乳酸の場合、主鎖に対する側鎖の占める体積分率が小さいため、体積あたりの双極子は大きく、それだけ系の圧電率も高くなる理想的な高分子といえる。
また、ポーリング処理を必要とする圧電性高分子では、空気中の水やイオンのような異種電荷が付着して、ポーリング処理で揃えた双極子配向が緩和し、経時で圧電率が顕著に減少することが知られており、実用上問題があった。一方、延伸処理のみで圧電性を発現するポリ乳酸の場合にはポーリング処理が不要であるため、圧電率は数年にわたり減少しない。
ポリ乳酸の成形物を延伸してなる高分子圧電材は常温で10pC/N程度の高い圧電率を示す(特許文献1)。この値は延伸処理のみで圧電性を発現する高分子の中では最高の値であるが、ポーリング処理を必要とする強誘電性高分子に比べると低いものの、経時安定性に優れた実用的な圧電性材料になると期待される。
ポリ乳酸は延伸処理により圧電性が発現するものの、PVF−TrFE等の強誘電性高分子に比べると小さい。ポリ乳酸のようなヘリカルキラリティに由来する圧電率は多くの計算が試みられており(非特許文献1)、数十〜数百pC/Nと試算されているものの、単純な延伸処理では高分子の持つ潜在的な能力が十分に引き出されていないと推測される。
ポリ乳酸結晶を高配向にするために、鍛造法と呼ばれる特殊な配向方法により18pC/N程度の高い圧電性を出す報告例もあるが、この方法では広い面積にわたって均質なフィルムを作製することは極めて困難であり、ポリ乳酸系の圧電材料を利用できる範囲は制限を受けていた。
特開平5−152638号公報 田實佳郎、未来材料、Vol.3、第7号(2003)16頁〜25頁
本発明の目的は、ポーリング処理が不要で簡便な処理のみで高い圧電性を示すポリ乳酸フィルムを提供することにある。
本発明者らは、ポリ乳酸に無機化合物を複合化したフィルムを延伸処理のみで圧電性が向上する材料になることを見出した。また、無機微粒子をナノメートルサイズにすることで複合フィルムの加工性や透明性が良好で、多方面の用途に使える材料になることを見出した。
すなわち、本発明は、
(1)ポリ乳酸系樹脂と無機化合物からなる高分子圧電材料であって
前記無機化合物はリン酸カルシウム、ケイ素酸化物、二酸化チタン、及び粘土鉱物からなる群から選ばれる少なくとも1種の化合物である、高分子圧電材料、
(2)前記無機化合物はシリカである(1)の高分子圧電材料、
(3)前記無機化合物は、有機カチオンにより処理されている粘土鉱物である(1)の高分子圧電材料、
(4)延伸処理してなる(1)〜(3)のいずれかの高分子圧電材料である。
本発明によれば、ポリ乳酸系樹脂に無機化合物を複合化させた後に、延伸処理を行うことで高い圧電性を示すポリ乳酸フィルムを提供することができる。このとき、無機化合物をナノレベルの大きさまで微細化すれば、透明性を付与するだけではなく、圧電性や加工性をさらに改善することができる。そのために無機化合物は平均粒径が500nm以下の粒子であることが望ましい。
また層状無機化合物を用いる場合、有機カチオン処理されることが望ましい。この処理により得られる高分子圧電材料の透明性が向上する。
本発明のポリ乳酸系樹脂と無機化合物からなる高分子圧電材料は、スピーカーやマイクロフォンなどの各種音響機器や部材、各種センサー、ディスプレイ、医用機器、アクチュエーターなどの分野で利用することが可能である。
本発明は、ポリ乳酸系樹脂と無機化合物からなる複合材料であって、高い圧電性を付与するために延伸処理を施されたことを特徴とする、高分子圧電材料である。
ポリ乳酸系樹脂
本発明で使用されるポリ乳酸系樹脂は、ポリ乳酸、乳酸と共重合可能な多官能性化合物とのコポリマーおよびそれらの混合物である。ポリ乳酸はL−ポリ乳酸、D−ポリ乳酸のホモポリマー、ブロックコポリマー、グラフトコポリマーである。共重合可能な多官能性化合物は、グリコール酸、ジメチルグリコール酸、3−ヒドロキシ酪酸、4−ヒドロキシ酪酸、2−ヒドロキシプロパン酸、3−ヒドロキシプロパン酸、2−ヒドロキシ吉草酸、3−ヒドロキシ吉草酸、4−ヒドロキシ吉草酸、5−ヒドロキシ吉草酸、2−ヒドロキシカプロン酸、3−ヒドロキシカプロン酸、4−ヒドロキシカプロン酸、5−ヒドロキシカプロン酸、6−ヒドロキシカプロン酸、6−ヒドロキシメチルカプロン酸、マンデル酸等のヒドロキシカルボン酸、グリコリド、β−メチル−δ−バレロラクトン、γ−バレロラクトン、ε−カプロラクトン等の環状エステル、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、アゼライン酸、セバシン酸、ウンデカン二酸、ドデカン二酸、テレフタル酸等の多価カルボン酸、及びこれらの無水物、エチレングリコール、ジエチレングリコール、トリエチレングリコール、1,2−プロパンジオール、1,3−プロパンジオール、1,3−ブタンジオール、1,4−ブタンジオール、2,3−ブタンジオール、1,5−ペンタンジオール、1,6−ヘキサンジオール、1,9−ノナンジオール、3−メチル−1,5−ペンタンジオール、ネオペンチルグリコール、テトラメチレングリコール、1,4−ヘキサンジメタノール等の多価アルコール、セルロース等の多糖類、α−アミノ酸等のアミノカルボン酸等を挙げることができる。乳酸と共重合可能な多官能性化合物とのコポリマーは、らせん結晶を生成できるポリ乳酸シーケンスを持つブロックコポリマーまたはグラフトコポリマーである。
ポリ乳酸系樹脂の製造方法
本発明で使用されるポリ乳酸系樹脂の製造方法は、特に限定されないが、例えば、特開昭59−096123号、特開平7−033861号に記載されている、乳酸を直接脱水縮合して得る方法、または、米国特許2,668,182号、4,057,357号等に記載されている乳酸の環状二量体であるラクチドを用いて開環重合させる方法などにより製造することができる。
ポリ乳酸系樹脂の分子量
本発明で使用されるポリ乳酸系樹脂の重量平均分子量(Mw)は、延伸処理が可能な範囲であれば特に制限はない。後述するように、無機化合物にゾルゲル反応を利用して製造するものの中には、エステル−アミド交換反応により無機分子がポリ乳酸系樹脂中に共有結合により導入されるものがあり、この反応に伴ってポリ乳酸系樹脂の分子量低下を伴うことがあるが、実際には無機分子の結合、あるいは無機分子が架橋点となって分子量が低下しない場合もある。従って、本発明で使用されるポリ乳酸系樹脂の分子量は無機化合物と複合化する前の分子量で規定され、概ね1万〜1000万、好ましくは3万〜300万、より好ましくは5万〜100万の範囲にある。
無機化合物
本発明で使用される無機化合物は、周期表2族元素化合物、金属酸化物、層状無機化合物から選ばれる化合物であり、それらの混合物であっても良い。
本発明の周期表2族元素化合物は、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム、ラジウム等の化学的性質が類似している周期表2族元素から選ばれる1種以上の元素を含有する化合物を使用することができるが、その中でもマグネシウム、カルシウム、ストロンチウム、バリウムが好ましい。
本発明の周期表2族元素化合物は、水酸化物、フッ化物、塩化物、臭化物、沃化物、ホウ酸塩、メタホウ酸塩、炭酸塩、硝酸塩、亜硝酸塩、リン酸(オルトリン酸)塩、ピロリン酸(二リン酸)塩、メタリン酸塩、ホスホン酸(亜リン酸)塩、ジホスホン酸(二亜リン酸)塩、ホスフィン酸(次亜リン酸)塩、硫酸塩、二硫酸塩、チオ硫酸塩、亜硫酸塩、クロム酸塩、二クロム酸塩、過塩素酸塩、イソシアン酸塩、雷酸塩、オルトケイ酸塩、メタケイ酸塩、ギ酸塩、酢酸塩、プロピオン酸塩、酪酸塩、シュウ酸塩、マロン酸塩、コハク酸塩、グルタル酸塩、アジピン酸塩、マレイン酸塩、フマル酸塩、乳酸塩、リンゴ酸塩、酒石酸塩、安息香酸塩、フタル酸塩などが例示される。
本発明の周期表2族元素化合物の例は、酢酸マグネシウム、炭酸マグネシウム、塩化マグネシウム、ケイフッ化マグネシウム、水酸化マグネシウム、酸化マグネシウム、硝酸マグネシウム、硫酸マグネシウム、酢酸カルシウム、リン酸二水素カルシウム、乳酸カルシウム、クエン酸カルシウム、水酸化カルシウム、炭酸カルシウム、塩化カルシウム、硝酸カルシウム、硫酸カルシウム、チオ硫酸カルシウム、水酸化ストロンチウム、炭酸ストロンチウム、硝酸ストロンチウム、塩化ストロンチウム、酢酸バリウム、塩化バリウム、硝酸バリウム、硫酸バリウム、水酸化バリウム、フッ化バリウムなどから選ばれる1種以上の化合物があげられる。
動物骨殻の無機成分として、貝殻等に含まれる炭酸カルシウムや骨、歯、魚燐等に含まれるリン酸カルシウムは、生体内に見られる有機/無機複合体の主要な構成成分であり、本発明の水難溶性微粒子の中でも、これらのリン酸カルシウムや炭酸カルシウムをはじめとしたカルシウム化合物は有機物との親和性が高いため、特に好適に使用される。
本発明で使用されるリン酸カルシウムは、リン酸に由来する部分とカルシウム原子の合計が50重量%以上含まれるものである。例としてはヒドロキシアパタイト、フッ素アパタイト、塩素アパタイト、炭酸含有アパタイト、マグネシウム含有アパタイト、鉄含有アパタイト等のアパタイト化合物、リン酸三カルシウム等が挙げられる。
本発明のリン酸カルシウムに含まれるアパタイト化合物は、基本組成がM(ROで表される。Mサイトがカルシウムイオン(Ca2+)、ROサイトがリン酸イオン(PO 3−)、Xサイトが水酸イオン(OH-)の場合には、x=10、y=6、z=2となり、一般的にヒドロキシアパタイトと呼ばれる化合物である。M、RO、Xの各サイトは種々のイオン等と置換が可能であり、また、空孔ともなり得るものである。置換量および空孔量はそのイオン等の種類により異なるが、リン酸に由来する部分とカルシウム原子の合計が50重量%以上含まれていれば他のイオン等と置換されていても、空孔であっても差し支えない。
リン酸に由来する部分とカルシウム原子の合計が50重量%を下回るとリン酸カルシウムとしての特性が失われることがあるために好ましくない。Mサイトは基本的にCa2+であるが、置換可能なイオン種の例として、H、Na、K、H、Sr2+、Ba2+、Cd2+、Pb2+、Zn2+、Mg2+、Fe2+、Mn2+、Ni2+、Cu2+、Hg2+、Ra2+、Al3+、Fe3+、Y3+、Ce3+、Nd3+、La3+、Dy3+、Eu3+、Zr4+等があげられる。ROサイトは基本的にPO 3−であるが、置換可能なイオン種の例として、SO 2−、CO 2−、HPO 2−、PO2−、AsO 3−、VO 3−、CrO 3−、BO 3−、SiO 4−、GeO 4−、BO 5−、AlO 5−、H 4−等があげられる。Xサイトに入るイオン種や分子の例として、OH、F、Cl、Br、I、O2−、CO 2−、HO等があげられる。
本発明で使用される金属酸化物は、固相法、気相法または液相法で製造される、SiO、TiO、Al、ZrO、CeO、Ho、Bi、Y、SnO、ZnO、CuO、CoO、BaTiO、LiNbO、KTaO、InO−SnO、LiAlOなどから選ばれる1種以上の化合物およびそれらの混合物である。
固相法、気相法では金属酸化物は粉体として製造され、ポリ乳酸系樹脂に溶融状態で混錬するか、あるいは溶液中で混合分散した後に溶媒を留去する方法によって複合化される。延伸処理を可能にして、透明性の高いフィルムとして得るためには、両者を均一に複合化する必要があるが、通常粉体は一次粒子が凝集状態になっている場合が多く、高圧下、あるいは高剪断下に混合して一次粒子を均一に分散する必要がある。
金属酸化物微粒子をポリ乳酸系樹脂に均一に分散する方法として、特開2003−138153に記載されているような、微粒子表面を酸性基および塩基性基で修飾する方法で分散性を改良することができる。例えば、チタンアルコキシドの加水分解やJapanese. Journal of Applied Physics、第37巻、4603−4608ページ(1998年)に記載されている合成法により製造された二酸化チタン微粒子の表面を酸性基で表面修飾を行うことで有機溶媒への分散性が良くなる。酸性基とは、水中でHを放出し酸性を示す基であり、カルボキシル基、ヒドロキシル基、スルホン基等があげられるが好ましくはカルボキシル基であり、カルボキシ基を有する有機化合物としては飽和あるいは不飽和カルボン酸である。例示すれば酢酸、プロピオン酸、アクリル酸、メタクリル酸、ヘキシル酸、オクタン酸、ドデカン酸、ステアリン酸、オレイン酸、安息香酸などが挙げられる。このようにして合成された表面を酸性基で修飾した二酸化チタン超微粒子は、エタノール、1−ブタノールなどのアルコールに分散させ、加熱還流あるいは超音波化学処理した後、トルエンなどの低極性溶媒を加えることで溶媒の極性を変化させることができる。これに所望のポリマーを溶解させ、二酸化チタン微粒子−ポリマー組成物を形成することができる。このような酸性基で修飾した二酸化チタン超微粒子は活性なサイトを多く残しているため、選択するポリマーとの組み合わせによっては黄色ないし赤色着色という問題を引き起こす場合があり、表面を塩基性基で修飾を行うことで防止することができる。塩基性基とは水中でHを受け取り塩基性を示す基であり、メチルアミン、プロピルアミン、ヘキシルアミン、ドデシルアミン、エタノールアミンなどのアルカノールアミン、アリルアミンなどの飽和あるいは不飽和脂肪族アミン等のアミノ系化合物が使用される。極性の低い溶媒への微粒子の溶解分散を所望するときはメチレン基数が多いアミンが選ばれる。さらに表面を酸性基と塩基性基の両方で修飾した二酸化チタン超微粒子を所望の溶剤に分散させる。本発明に用いる溶剤は、使用するポリ乳酸系樹脂により異なるが、トルエン、キシレンなどの芳香族炭化水素、クロロホルム、トリクロロエタンなどのハロゲン化炭化水素、アセトン、メチルエチルケトンなどのケトン類、さらに、N.N−ジメチルホルムアミド、N.N−ジメチルアセトアミド、ジメチルスルホキド等の溶剤が使用できる。
また、高分子化合物の溶液中で、金属酸化物をゾル−ゲル法で代表される液相法で合成する方法により複合化する方法もある。液相法は金属の有機および無機物を加水分解して縮合する、いわゆるゾル−ゲル反応で金属酸化物を作る方法が好適である。この方法では、ポリ乳酸系樹脂溶液と混和する金属化合物を出発原料として、ポリ乳酸系樹脂存在下にゾル−ゲル反応を行うと、ポリ乳酸系樹脂と金属酸化物との分離が抑制され、より均一に混合分散したフィルムを得ることができる。用いられる金属化合物は、テトラメトキシシラン(TMOS)、テトラエトキシシラン(TEOS)、テトラプロポキシシラン、テトライソプロポキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリプロポキシシラン、メチルトリブトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、n−プロピルトリメトキシシラン、n−プロピルトリエトキシシラン、イソプロピルトリメトキシシラン、イソプロピルトリエトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシラン、トリフルオロメチルトリメトキシシラン、トリフルオロメチルトリメトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、2−(3,4エポキシシクロヘキシル)エチルトリメトキシシラン、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルトリエトキシシラン、3−グリシドキシプロピルメチルジメトキシシラン、3−グリシドキシプロピルメチルジエトキシシラン、p−スチリルトリメトキシシラン、3−メタクリロキシプロピルメチルジメトキシシラン、3−メタクリロキシプロピルメチルジエトキシシラン、3−メタクリロキシプロピルトリメトキシシラン、3−メタクリロキシプロピルトリエトキシシラン、3−アクリロキシプロピルトリメトキシシラン、3−アクリロキシプロピルトリエトキシシラン、3−クロロプロピルトリエトキシシラン、3−メルカプトプロピルメチルジメトキシシラン、3−メルカプトプロピルトリメトキシシラン、3−イソシアネートプロピルトリエトキシシラン等のアルコキシシラン類や、テトラメトキシチタン、テトラエトキシチタン、チタニウムイソプロポキシド、アルミニウムブトキシド、ジルコニウムテトラ−n−ブトキシド、ジルコニウムテトライソプロポキシド、バナジルエトキシド、バリウムイソプロポキシド、カルシウムエトキシドなどの金属アルコキシド類、四塩化ケイ素、四塩化ジルコニウム、四塩化チタン、塩化アルミニウムなどの塩化物、オキシ塩化ジルコニウム、オキシ塩化アルミニウムなどのオキシ塩化物、硝酸イットリウムや硝酸ニッケルなどの硝酸塩、インジウムアセチルアセトネートや亜鉛アセチルアセトネートなどの金属アセチルアセトネート、酢酸鉛、ステアリン酸イットリウム、シュウ酸バリウムなどの金属カルボキシレートなどをあげることができる。
この反応を行う際にアミノ基を有するアルコキシシランを用いると、アミノ基がポリ乳酸系樹脂のエステル基と反応することにより、ポリ乳酸系樹脂に金属酸化物を共有結合で導入することができる。この反応はポリ乳酸系樹脂の主鎖の切断を伴うため、分子量が低下するが、ゾル−ゲル反応による金属酸化物の生成により、フィルムの機械的強度は保たれる。アミノ基を有するアルコキシシランは分子内にアミノ基とアルコキシ基の2つの反応基を持つため、ポリ乳酸系樹脂存在下に反応を行う場合は、アミノ基とエステル基との反応を行った後にゾル−ゲル反応を行う方法と、両者を同時に進行させる方法、およびその中間的な方法があり、目的とする複合体構造によりいずれかを選択できる。アミノ基との反応を優先させるとより均一な構造になり、ゾル−ゲル反応を優先させると分離構造になる傾向となる。
上記アミノ基を有するアルコキシシランは、3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、3−アミノプロピルメチルジメトキシシラン、3−アミノプロピルメチルジエトキシシラン、N−2(アミノエチル)3−アミノプロピルメチルジメトキシシラン、N−2(アミノエチル)3−アミノプロピルトリメトキシシラン、2−アミノエチルアミノメチルトリメトキシシラン、3−アミノプロピルジメチルエトキシシラン、2−(2−アミノエチルチオエチル)トリエトキシシラン、p−アミノフェニルトリメトキシシラン、N−フェニル−3−アミノプロピルメチルジメトキシシラン、N−フェニル−3−アミノプロピルメチルジエトキシシラン、N−フェニル−3−アミノプロピルトリメトキシシラン、N−フェニル−3−アミノプロピルトリエトキシシラン等をあげることができるが、これらに限定されるものではなく、これらの中から選ばれる2種以上を組み合わせて使うこともできる。
ゾル−ゲル反応は、公知の方法に従って実施する。高分子存在下にゾル−ゲル反応を行う場合には、高分子化合物と電解質塩とをともに溶解できる溶剤中で、水を微量添加して、必要に応じて酸触媒あるいは塩基触媒を添加して、室温から溶媒の沸点までの温度範囲で撹拌下、必要に応じて脱水しながら行なわれる。
本発明で使用される層状無機化合物は、粘土鉱物、層状リン酸塩、ハイドロタルサイトがある。粘土鉱物は、天然鉱物あるいは水熱合成、溶融法、固相法等による合成鉱物であっても良く、結晶質、非晶質の何れであっても良い。本発明で使用される粘土鉱物の例としては、モンモリロナイト、バイデライト、サポナイト、ヘクトライト等のスメクタイト族、カオリナイト、ハロサイト等のカオリナイト族、ジオクタヘドラルバーミキュライト、トリオクタヘドラルバーミキュライト等のバーミキュライト族、テニオライト、テトラシリシックマイカ、マスコバイト、イライト、セリサイト、フロゴバイト、バイオタイト等のマイカ、カネマイト、マカタイト、マガディアイト、ケニアイト等の層状珪酸塩やタルク、クロライト(緑泥石)等が挙げられる。
これらの層状無機化合物は、予め有機カチオン処理を施すことにより、ポリ乳酸系樹脂中での分散性が向上し、透明性の良い複合樹脂になるため好ましい。有機カチオンはオクチルアミン、ドデシルアミン、オクタデシルアミン、トリオクチルアミン、ジメチルドデシルアミン、ジドデシルモノメチルアミン、テトラエチルアンモニウム塩、オクタデシルトリメチルアンモニウム塩、ジメチルジオクタデシルアンモニウム塩、ジヒドロキシエチルメチルオクタデシルアンモニウム塩、メチルドデシルビス(ポリエチレングリコール)アンモニウム塩、メチルジエチル(ポリプロピレングリコール)アンモニウム塩等の有機アンモニウム塩、テトラエチルホスホニウム、テトラブチルホスホニウム、ヘキサデシルトリブチルホスホニウム、テトラキス(ヒドロキシメチル)ホスホニウム、2−ヒドロキシエチルトリフェニルホスホニウム等の有機ホスホニウム塩、n−ブチルピリジニウム塩、ドデシルピリジニウム塩、ヘキサデシルピリジニウム塩等の有機ピリジニウム塩、有機スルホニウム塩等が挙げられる。
ポリ乳酸系樹脂−無機化合物複合構造
これらの無機化合物は、ポリ乳酸系樹脂マトリックス中に無機化合物が相分離した構造、無機マトリックス中にポリ乳酸系樹脂が相分離した構造、さらにポリ乳酸と無機化合物が分子レベルで混合した、所謂IPN(相互侵入高分子網目)構造の何れをとることも可能である。相分離構造は層状、ラメラ状、シリンダー状のような連続した形状でも良いし、海島構造のような不連続な構造でも良い。一般的に連続した構造をとる場合は、無機化合物をゾルゲル反応で製造する場合により作製することができる。一方、不連続構造はマトリックス中にもう一方の成分が粒子状に分散した構造になるのが一般的であり、その粒子の大きさは概ね1nm〜10μmの範囲にあり、ポリ乳酸系樹脂と無機化合物とを混合・分散させる方法で作られることが多い。粒子の大きさは、複合体の透明性が要求されるような用途に対しては、この範囲の中でもできる限り微細化されていたほうが好ましく、500nm以下、より好ましくは250nm以下、さらに好ましくは100nm以下である。粒子が微細になると単に透明性が改良されるだけではなく、圧電性そのものも向上する傾向があり、延伸、折り曲げ、切断、接着、塗工、蒸着などの加工性も改良されることがあるため、通常はより微細化されるような複合化方法がとられる。金属酸化物の場合には、前述のように微粒子の表面修飾を行う方法やゾル−ゲル法を適用することによって、構造または分散状態を制御することが可能であり、また微粒子の大きさを制御することも可能である。
層状無機化合物の場合は粒子が分散した構造であるが、未処理のものを使うと透明性が不良になる場合がある。有機カチオン処理を行うことにより層状無機化合物の層間距離が十分に広がり、層間剥離や層間にポリ乳酸系樹脂が挿入されて分散性が向上して透明性の良いフィルムが得られる。層状化合物の場合にも、分散性を改良することによって単に透明性が良好になるだけではなく、圧電性そのものや加工性が向上するため、有機カチオン処理を行う方法が好ましい場合が多い。
複合フィルムの延伸
ポリ乳酸系樹脂−無機化合物複合フィルムの延伸は、一軸延伸、二軸延伸、多軸延伸の何れでも良い。延伸条件は使用される無機化合物により異なり、通常はポリ乳酸系樹脂のガラス転移温度以上で、概ね60℃〜200℃、好ましくは80〜180℃の温度範囲で行なわれるが、ガラス転移温度以下のいわゆる冷延伸を行うことも可能である。高温度で延伸する場合には必要に応じて不活性ガス雰囲気下で行なわれる。延伸方法は、公知の方法であればとくに制限はなく、通常はテンター法により2〜10倍、好ましくは2〜6倍程度に延伸される。
(実施の形態)
以下、実施例を示して本発明についてさらに詳細に説明する。これらの実施例は、発明の一実施態様を説明するものであって、これにより本発明が制限されるものではない。なお、樹脂組成物等の物性の測定および評価は以下の方法に従って行った。
(1)透明性(ヘイズ値)
所定の方法で得たシートまたはフィルムについて、23℃、相対湿度50%の条件中に3日間放置した後、ヘイズメーター(日本電色工業(株)製)を用いて、ヘイズを測定した。なお、ヘイズ値が小さいほど透明性に優れることがわかる。
(2)圧電性
所定の方法で得た厚さ0.24〜0.72μmの一軸延伸フィルムについて、東洋精機製作所製の「レオログラフリソッドS-1型」を用いて、周波数 0.8〜140Hzの範囲で該試験片の複素圧電率 d14=d14'- id14"を室温にて測定した。なお、複素圧電率が高いほど圧電性に優れることを示す。なお測定は、ヘイズを測定した後に行った。
(3)粒子径
粒子径は、それぞれのサイズや状態に応じて、レーザー回折式粒度分布測定、走査型電子顕微鏡(SEM)観察、TEM(透過型電子顕微鏡)観察等によって求め、それらの平均値(メディアン径)を示した。
(製造例1)
攪拌機、温度計、pHメーターを備えた丸底セパラブルフラスコに水酸化カルシウム(入交産業製)55.3g、蒸留水1744.7gを入れ、激しく攪拌して懸濁液とした。懸濁液の温度を40℃に調整した後、75%リン酸(三井化学製)を20.0%に希釈した水溶液211.4g、蒸留水988.6gを混合溶解した水溶液を、ミクロチューブポンプを用いて連続的に2時間かけて添加した。添加後さらに40℃で2時間反応を行い、リン酸カルシウム微粒子分散溶液を得た。この反応は同一の条件で2度行った。これらの反応液は1夜放置でそれぞれ50vol%が沈降した。上澄み液を捨てて両液を混合し、さらに2日放置して分離した上澄み液を取り除き、リン酸カルシウム分散スラリーを調整した。このスラリーの固形分濃度は5.92%であった。また、ポリ乳酸との複合化で用いるリン酸カルシウム(A)粉末は、奈良機械製作所製の媒体流動乾燥機(MSD−100A:ジルコニア製媒体φ2mmを使用)を用いて、熱風温度150℃の条件下で乾燥することにより調製した。リン酸カルシウム(A)粉末を蒸留水中に分散し、その粒子径を島津製作所製レーザー回折式粒度分布測定装置SALD-2000Jにより測定したところ、6.5μmであった。また、粉末表面にPt蒸着を施して、日立製作所製走査型電子顕微鏡(SEM)観察を行なったところ、粒子は25〜40nmの一次粒子の集合体となっている様子が観察された。
(製造例2)
攪拌機、温度計を備えた丸底セパラブルフラスコにクエン酸一水和物(純正化学社製、特級)12.124g に蒸留水427.188gを入れ均一に攪拌溶解した後、40%水酸化ナトリウム水溶液11.186gを添加した。水酸化カルシウム(入交産業製)29.50gを攪拌しながら加えて懸濁液とした。懸濁液は室温下、攪拌速度300rpmで攪拌しながら、75%リン酸(三井化学社製)を20.8%に希釈したリン酸水溶液112.77g と蒸留水207.23gを混合した水溶液をミクロチューブポンプで連続的に30分間かけて添加した後さらに1時間攪拌を行い、クエン酸ナトリウム/リン酸カルシウム複合体(1.25:98.75)分散溶液を得た。添加前に18.4℃であった懸濁液は、反応後は25.7℃まで上昇した。得られた分散溶液のpHは12.22であった。この反応は同一の条件で5度行った。これらの反応液を混合して1夜放置すると50vol%が沈降した。上澄み液を捨ててさらに1週間放置して分離した上澄み液を取り除き、リン酸カルシウム分散スラリーを調整した。このスラリーの固形分濃度は7.2%であった。ポリ乳酸との複合化で用いるクエン酸処理型リン酸カルシウム(B)粉末は、奈良機械製作所製の媒体流動乾燥機(MSD−100A:ジルコニア製媒体φ2mmを使用)を用いて、熱風温度150℃の条件下で乾燥することにより調製した。リン酸カルシウム(A)粉末を蒸留水中に分散し、その粒子径を島津製作所製レーザー回折式粒度分布測定装置SALD-2000Jにより測定したところ、6.8μmであった。
充分に乾燥させたポリ乳酸 (三井化学製、登録商標レイシア、H−100)10重量部をクロロホルム10重量部に溶解し、製造例1で製造したリン酸カルシウム(A)粉末0.53重量部を混合した後ガラスシャーレに移してキャストフィルムを作製した。このフィルムはHAp粉末の分散状態が不良であったため、フィルムを細かく砕き、120℃で溶融させ、10MPaで10分間圧縮したのち、85℃に設定した圧縮成形機で再び10MPaで圧縮冷却し、厚さ15mmのシートを成形した。このポリ乳酸−HAp複合フィルムを80℃で2.0倍に一軸延伸して、厚さ26μmのフィルムを得た。得られたフィルムに対し、圧電性を評価した。その結果を表1に示す。ここでは複素圧電率の絶対値dを示す。
充分に乾燥させたポリ乳酸 (三井化学製、登録商標レイシア、H−100)10重量部をクロロホルム10重量部に溶解し、製造例2で製造したクエン酸処理型リン酸カルシウム(B)粉末0.20重量部を混合した後ガラスシャーレ移してキャストフィルムを作製した。このフィルムはHAp粉末の分散状態が不良であったため、フィルムを細かく砕き、120℃で溶融させ、10MPaで10分間圧縮したのち、85℃に設定した圧縮成形機で再び10MPaで圧縮冷却し、厚さ15mmのシートを成形した。このポリ乳酸−HAp複合フィルムを80℃で2.5倍に一軸延伸して、厚さ31μmのフィルムを得た。得られたフィルムに対し、圧電性を評価した。その結果を表1に示す。
80℃で3.0倍に一軸延伸した以外には実施例2と同様に操作を行い、厚さ50μmのポリ乳酸−リン酸カルシウム(B)複合フィルムを得た。得られたフィルムに対し、圧電性を評価した。その結果を表1に示す。
四塩化チタン(和光試薬特級)15ml (0.138mol)を200ml三口フラスコに窒素雰囲気中で測り取り、反応系を0℃に保った後、イオン交換水15mlを一滴づつ加え、黄色油状のチタンオキシクロライド(TiOCl)溶液(9.2mol/l)を得た。エタノール600mlとイオン交換水400ml混合液を1l三口フラスコにとり、油浴中につけ窒素雰囲気中で攪拌した。温度が60℃に達し安定した後、先に調製したTiOCl溶液4mlをイオン交換水36.8mlで希釈した1mol/lのTiOCl溶液を滴下した。6時間後、生成した二酸化チタン超微粒子の沈殿を遠心分離し、酢酸エチル50mlで洗浄した。この遠心分離、洗浄の操作を計三回実施した後、酢酸エチルを除去し、二酸化チタン超微粒子を得た。二酸化チタン超微粒子を酢酸50mlに分散させ、室温で60時間攪拌した。沈殿を遠心分離した後、酢酸エチルで三回洗浄した。一部を取りだし、120℃減圧、6時間乾燥後KBr錠剤法で赤外線スペクトルを測定したところ、二酸化チタン表面の酢酸修飾を示すカルボキシレート基(−COO-)のピ−クが測定されたこのようにして得られた酢酸修飾二酸化チタン超微粒子(乾燥状態で1g)を湿潤状態で1-ブタノール100ml中に加え、超音波処理を一時間実施した。これにトルエン100mlを加え、二酸化チタン超微粒子が均一に分散した透明な溶液を得た。この溶液にn-ヘキシルアミン50mlを添加し、1時間攪拌した後、生成した沈殿を遠心分離して回収し、メタノール洗浄と遠心分離の操作を二回繰り返した。一部を取りだし、乾燥後、KBr錠剤で赤外線スペクトル測定を行い、二酸化チタン超微粒子の表面が酢酸とアミンの両方で修飾されていることが確認された。この酢酸・n-ヘキシルアミン修飾二酸化チタン超微粒子をクロロホルム40ml中に加えたところ、均一に分散した透明な溶液が得られた。十分に乾燥したポリ乳酸(三井化学製、登録商標レイシア、H−100)9gをクロロホルム80mlに溶解させた溶液を別に調製し、二酸化チタン超微粒子の溶液と混合し、室温にて30分間攪拌した。この溶液をさらにヘプタン500ml中に投入し再沈殿させた後、沈殿物を濾過により回収した。沈殿を60℃で10時間乾燥した後、粉末を100kg/cm2の圧力、180℃で2分間プレスしたところ、厚み100μmの無色透明なフィルムが得られた。得られたフィルムの透過電子顕微鏡観察から粒子径3〜5nmの二酸化チタン超微粒子がポリマー中に全く凝集することなく均一に分散していることが確認できた。また、熱重量変化の測定により、フィルム中の二酸化チタン超微粒子の配合量は10重量%であることを確認した。
充分に乾燥させたポリ乳酸 (三井化学製、登録商標レイシア、H−100)10重量部をTHF90重量部に溶解し、テトラメトキシシラン(信越化学社製)0.28重量部、3−アミノプロピルトリメトキシシラン(信越化学社製)0.03重量部、0.1N−塩酸水溶液0.11重量部を添加して均一に混合して60℃で5時間反応を行った。この温度で透明な反応液を大量のメタノール中に投じて生じた白色固体をろ別し、メタノールで十分に洗浄した後に真空乾燥した。このポリ乳酸−シリカ複合体中に含まれるシリカ量は、TGAで800℃まで空気中で加熱した際の残分により調べたところ、約0.5%であった。この複合体をクロロホルムに溶解し、ガラスシャーレにキャストしてフィルムを形成した。さらに、キャストフィルムを井元社製ロール延伸機にて、70℃で2倍にロール延伸し、次いで70℃で1.5倍に一軸延伸して、厚さ23μmのフィルムを得た。得られたフィルムに対し、圧電性を評価した。その結果を表1に示す。
充分に乾燥させたポリ乳酸 (三井化学製、登録商標レイシア、H−100)10重量部をTHF90重量部に溶解し、テトラメトキシシラン(信越化学社製)0.64重量部、N−2(アミノエチル)3−アミノプロピルトリメトキシシラン(信越化学社製)0.07重量部、0.1N−塩酸水溶液0.28重量部を添加して均一に混合して60℃で5時間反応を行った。この温度で透明な反応液を大量のメタノール中に投じて生じた白色固体をろ別し、メタノールで十分に洗浄した後に真空乾燥した。このポリ乳酸−シリカ複合体の重量平均分子量は168,800であり、その中に含まれるシリカ量は、TGAで800℃まで空気中で加熱した際の残分により調べたところ、約1.3%であった。この複合体をクロロホルムに溶解し、ガラスシャーレにキャストしてフィルムを形成した。さらに、キャストフィルムを井元社製ロール延伸機にて、70℃で2倍にロール延伸し、次いで70℃で1.5倍に一軸延伸して、厚さ23μmのフィルムを得た。得られたフィルムに対し、圧電性を評価した。その結果を表1に示す。
実施例6と同様にして得られたキャストフィルムを井元社製延伸機にて、60℃で3倍に一軸延伸し、厚さ59μmのフィルムを得た。得られたフィルムに対し、圧電性を評価した。その結果を表1に示す。
ポリ乳酸(ベーリンガー社製、L207)を用いた以外には、実施例7と同様の方法でキャストフィルムを得た。さらに、キャストフィルムを井元社製延伸機にて、60℃で3倍に一軸延伸し、厚さ76μmのフィルムを得た。得られたフィルムに対し、圧電性を評価した。その結果を表1に示す。
ポリ乳酸(島津製作所製、ラクティー5000)を用いた以外には、実施例7と同様の方法でキャストフィルムを得た。さらに、キャストフィルムを井元社製延伸機にて、60℃で3倍に一軸延伸し、厚さ61μmのフィルムを得た。得られたフィルムに対し、圧電性を評価した。その結果を表1に示す。
充分に乾燥させたポリ乳酸 (三井化学製、登録商標レイシア、H−100)100重量部と、有機化処理を施していないモンモリロナイト(商品名ベンゲルA、豊順洋行社製)5重量部とをHAAKE社製二軸押出機にて、シリンダー温度200℃の条件で溶融、混合し、樹脂組成物(A)を得た。次いで樹脂組成物(A1)を良く乾燥させ、2枚の真鍮板、アルミ板および離型フィルムの間に所定量はさみ、200℃で溶融させ、10MPaで3分間圧縮したのち、20℃に設定した圧縮成形機で再び10MPaで圧縮冷却し、厚さ0.2mmのシートを成形した。得られたシートの透明性(全へイズ値)は37.6%であった。さらに、成形したシートを井元社製延伸機にて、60℃で3倍に一軸延伸し、厚さ57μmのフィルムを得た。得られたフィルムに対し、圧電性を評価した。その結果を表1に示す。
充分に乾燥させたポリ乳酸 (三井化学製、登録商標レイシア、H−100)100重量部と、4級アンモニウムカチオンを用いて有機カチオン処理を施したモンモリロナイト(商品名エスベンE、豊順洋行社製)5重量部とをHAAKE社製二軸押出機にて、シリンダー温度200℃の条件で溶融、混合し、樹脂組成物(B)を得た。次いでこれを実施例10と同様に混合、成形した。得られたシートの透明性(全へイズ値)は18.6%であった。実施例10と同様に延伸して得られたフィルムに対し、圧電性を評価した。結果を表1に示す。
充分に乾燥させたポリ乳酸 (三井化学製、登録商標レイシア、H−100)100重量部と、4級アンモニウムカチオンを用いて有機カチオン処理を施したモンモリロナイト(商品名エスベンNX、HOJUN社製)5重量部とを、実施例10と同様の方法で混合し樹脂組成物(C)を得た。次いでこれを実施例10と同様に混合、成形した。得られたシートの透明性(全へイズ値)は24.7%であった。実施例10と同様に延伸して得られたフィルムに対し、圧電性を評価した。結果を表1に示す。
(比較例1)
実施例1で用いたのと同じポリ乳酸100重量部のみを用い、実施例1と同様の条件で成形、評価を行った。ただし延伸条件は無機材料がない場合の好条件を選択した。結果を表1に示す。
(比較例2)
実施例1で用いたのと同じポリ乳酸100重量部のみを用い、実施例1と同様の条件で成形、評価を行った。ただし延伸条件は無機材料がない場合の好条件を選択した。結果を表1に示す。
なお実施例11および実施例12で、モンモリロナイトを有機カチオンで処理すると分散状態が良好になり、ヘイズが低くなった。これは。ヘイズ値が小さいため、ディスプレイ用途や目視性や意匠性が要求されるされるような用途での遮音材料、防音材料、スピーカー等の用途に用いることができる。
本発明の高分子圧電材料は、ポーリング処理が不要で緩和現象のないポリ乳酸に無機化合物を複合化することで、圧電性を向上することができ、さらに無機化合物の大きさをナノメートルサイズに小さくすることで、加工性や透明性に優れた圧電性フィルムとして、ヘッドホン、スピーカー、マイクロホン、水中マイクロホン、加速度センサー、衝撃センサー、振動センサー、感圧センサー、触覚センサー、電界センサー、音圧センサー、ディスプレイ、ファン、ポンプ、可変焦点ミラー、超音波トランスデューサー、圧電トランス、遮音材料、防音材料、アクチュエーター、キーボードなど、音響機器、情報処理機、計測機器、医用機器その他の分野で利用することができる。
Figure 0004445277

Claims (4)

  1. ポリ乳酸系樹脂と無機化合物からなる高分子圧電材料であって、
    前記無機化合物はリン酸カルシウム、ケイ素酸化物、二酸化チタン、及び粘土鉱物からなる群から選ばれる少なくとも1種の化合物である、高分子圧電材料。
  2. 前記無機化合物はシリカである、請求項1に記載の高分子圧電材料。
  3. 前記無機化合物は、有機カチオンにより処理されている粘土鉱物である、請求項1に記載の高分子圧電材料。
  4. 延伸処理してなる請求項1乃至請求項のいずれか一項に記載の高分子圧電材料。
JP2004022056A 2004-01-29 2004-01-29 ポリ乳酸系樹脂と無機化合物からなる高分子圧電材料 Expired - Lifetime JP4445277B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004022056A JP4445277B2 (ja) 2004-01-29 2004-01-29 ポリ乳酸系樹脂と無機化合物からなる高分子圧電材料

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004022056A JP4445277B2 (ja) 2004-01-29 2004-01-29 ポリ乳酸系樹脂と無機化合物からなる高分子圧電材料

Publications (2)

Publication Number Publication Date
JP2005213376A JP2005213376A (ja) 2005-08-11
JP4445277B2 true JP4445277B2 (ja) 2010-04-07

Family

ID=34905508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004022056A Expired - Lifetime JP4445277B2 (ja) 2004-01-29 2004-01-29 ポリ乳酸系樹脂と無機化合物からなる高分子圧電材料

Country Status (1)

Country Link
JP (1) JP4445277B2 (ja)

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5114651B2 (ja) * 2006-10-18 2013-01-09 愛知県 ポリ乳酸系樹脂組成物、並びに成形品及びその製造方法
JP5078362B2 (ja) * 2007-01-10 2012-11-21 株式会社クレハ 高分子圧電体フィルムの製造方法および高分子圧電体フィルム
EP2290719B1 (en) * 2008-05-12 2015-08-12 Murata Manufacturing Co., Ltd. Piezoelectric element and audio equipment
WO2009144972A1 (ja) * 2008-05-29 2009-12-03 株式会社村田製作所 シート型振動体および音響機器
CN102037740B (zh) 2008-05-29 2014-08-27 株式会社村田制作所 压电扬声器、扬声器装置以及触觉反馈装置
US20110021917A1 (en) * 2008-07-22 2011-01-27 Konica Minolta Medical & Graphic, Inc. Organic piezoelectric material film, method for production of the same, method for production of ultrasonic oscillator using the same, and ultrasonic medical imaging instrument
KR101302780B1 (ko) 2009-03-13 2013-09-02 어 스쿨 코포레이션 칸사이 유니버시티 고분자 압전 재료, 그의 제조방법, 및 압전 소자
US20120004555A1 (en) * 2009-03-18 2012-01-05 Konica Minolta Medical & Graphic, Inc. Method of stretching organic piezoelectric material, method of manufacturing organic piezoelectric material, ultrasonic transducer, ultrasonic wave probe and ultrasonic wave medical image diagnosis device
JP5916270B2 (ja) * 2009-03-18 2016-05-11 住友理工株式会社 誘電膜およびそれを用いたトランスデューサ
EP2442213B1 (en) * 2009-06-11 2022-05-18 Murata Manufacturing Co., Ltd. Touch screen and touch-type input device
JP5318203B2 (ja) * 2009-06-15 2013-10-16 株式会社村田製作所 圧電体シート、ならびに圧電体シートの製造方法および製造装置
JP5662191B2 (ja) * 2010-02-26 2015-01-28 イビデン株式会社 ポリ乳酸/シリカ系ハイブリッド材料、及びその合成方法
KR101254784B1 (ko) 2010-04-28 2013-04-17 인하대학교 산학협력단 셀룰로오스-ZnO 압전 종이 및 이의 제조 방법
EP2469618A4 (en) * 2010-08-25 2017-01-25 Mitsui Chemicals, Inc. Macromolecular piezoelectric material and manufacturing method therefor
JP5399352B2 (ja) * 2010-09-10 2014-01-29 三井化学株式会社 圧電性積層体及びその製造方法
EP2781886B1 (en) * 2011-04-08 2017-06-14 Murata Manufacturing Co., Ltd. Operation device including displacement sensor
JP5780303B2 (ja) * 2011-08-11 2015-09-16 株式会社村田製作所 タッチパネル
JP5867803B2 (ja) * 2011-08-30 2016-02-24 国立大学法人 名古屋工業大学 圧電材、電子部品及び圧電材の製造方法
KR101467721B1 (ko) * 2011-10-13 2014-12-01 미쓰이 가가쿠 가부시키가이샤 고분자 압전 재료 및 그의 제조방법
KR101415636B1 (ko) 2011-10-26 2014-07-09 인하대학교 산학협력단 산화아연-셀룰로오스 나노 복합재 및 이의 제조 방법
US20140051825A1 (en) 2011-12-13 2014-02-20 Mitsui Chemicals, Inc. Polymeric piezoelectric material, and process for producing the same
JP5733432B2 (ja) 2012-02-15 2015-06-10 株式会社村田製作所 タッチ式入力端末
KR101685783B1 (ko) 2012-06-05 2016-12-12 미쓰이 가가쿠 가부시키가이샤 압전 디바이스, 및 압전 디바이스의 제조 방법
WO2014119577A1 (ja) 2013-02-01 2014-08-07 三井化学株式会社 表示装置及び積層光学フィルム
KR101743379B1 (ko) 2013-04-10 2017-06-02 미쯔이가가꾸가부시끼가이샤 적층체
CN105164621B (zh) * 2013-05-29 2018-04-10 株式会社村田制作所 触摸式输入装置以及显示装置
US20160130387A1 (en) * 2013-07-04 2016-05-12 Mitsui Chemicals., Inc. Film and polymeric piezoelectric material
CN105451994B (zh) 2013-09-02 2018-05-11 三井化学株式会社 层合体
WO2015083723A1 (ja) 2013-12-03 2015-06-11 帝人株式会社 高分子圧電材料用延伸積層フィルムおよびその製造方法
WO2015115131A1 (ja) * 2014-01-31 2015-08-06 学校法人 関西大学 圧電性高分子の成形方法および成形体
JP6592780B2 (ja) * 2014-02-26 2019-10-23 学校法人 関西大学 圧電性高分子の造形方法
JP6473896B2 (ja) * 2014-05-07 2019-02-27 パナソニックIpマネジメント株式会社 圧電デバイスおよびそれの製造方法
WO2016002604A1 (ja) 2014-07-02 2016-01-07 三井化学株式会社 高分子圧電材料、積層体、高分子圧電材料の製造方法および積層体の製造方法
WO2016076071A1 (ja) 2014-11-14 2016-05-19 三井化学株式会社 高分子圧電フィルム
US10669397B2 (en) 2015-02-13 2020-06-02 Mitsui Chemicals, Inc. Polymeric piezoelectric film and method for manufacturing thereof
TWI715738B (zh) 2016-03-09 2021-01-11 日商三井化學股份有限公司 積層體
CN115524544B (zh) * 2022-11-24 2023-03-14 西安交通大学 一种压电驱动的水平谐振式微型电场传感器及其工作方法

Also Published As

Publication number Publication date
JP2005213376A (ja) 2005-08-11

Similar Documents

Publication Publication Date Title
JP4445277B2 (ja) ポリ乳酸系樹脂と無機化合物からなる高分子圧電材料
Wang et al. Increasing the energy efficiency and breakdown strength of high-energy-density polymer nanocomposites by engineering the Ba0. 7Sr0. 3TiO3 nanowire surface via reversible addition–fragmentation chain transfer polymerization
Zhang et al. Progress in lead-free piezoelectric nanofiller materials and related composite nanogenerator devices
Pan et al. Ultrafast discharge and high-energy-density of polymer nanocomposites achieved via optimizing the structure design of barium titanates
Choi et al. Improving piezoelectric performance of lead-free polymer composites with high aspect ratio BaTiO3 nanowires
JP5683966B2 (ja) 有機−無機ハイブリッド材料、該材料製の光学薄層、これを含む光学材料、およびその製造方法
Fu et al. Comparative study of dielectric properties of the PVDF composites filled with spherical and rod-like BaTiO3 derived by molten salt synthesis method
Nan et al. Direct ink writing of macroporous lead‐free piezoelectric Ba0. 85Ca0. 15Zr0. 1Ti0. 9O3
JP2011184274A (ja) 薄片状チタン酸化物を配合した有機溶媒分散体及びその製造方法並びにそれを用いたチタン酸化物薄膜及びその製造方法
Illaik et al. Unusual polystyrene nanocomposite structure using emulsifier-modified layered double hydroxide as nanofiller
JP5659371B2 (ja) 薄片状酸化チタンを配合した有機溶媒分散体及びその製造方法並びにそれを用いた酸化チタン膜及びその製造方法
Chang et al. Formation mechanism of (001) oriented perovskite SrTiO3 microplatelets synthesized by topochemical microcrystal conversion
Taleb et al. From synthesis to application: High-quality flexible piezoelectric sensors fabricated from tetragonal BaTiO3/P (VDF-TrFE) composites
Ramdani Polymer and ceramic composite materials: Emergent properties and applications
Omar et al. Investigation of morphological, structural and electronic transformation of PVDF and ZnO/rGO/PVDF hybrid membranes
Venugopal et al. Structural and mechanical properties of MgO-poly (vinyl alcohol) nanocomposite film
Zhou et al. Molten salt synthesis and characterization of lead-free (1-x) Na0. 5Bi0. 5TiO3-xSrTiO3 (x= 0, 0.10, 0.26) whiskers
Fu et al. Topochemical conversion of (111) BaTiO3 piezoelectric microplatelets using Ba6Ti17O40 as the precursor
Han et al. Fluorine ligand exchange effect in poly (vinylidenefluoride-co-hexafluoropropylene) with embedded fluorinated barium titanate nanoparticles
Khankhuean et al. Nano-silver-coated porous clay heterostructure fillers for PLA and biaxially oriented poly (lactic acid) dielectric films
JP2009095764A (ja) 多層構造体の製造方法
WO2021132315A1 (ja) 被覆ジルコニア微粒子及びその製造方法
Ren et al. Shape evolution of Pb (Zr, Ti) O3 nanocrystals under hydrothermal conditions
Teixeira et al. Perovskite-Based Mesostructures and Related Composites—Influence Exerted by Morphology and Interface
Masud et al. Dielectric properties of dielectrophoretically aligned ZNO-PDMS composites

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060612

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090302

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090324

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090327

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090721

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090910

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091222

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100115

R150 Certificate of patent or registration of utility model

Ref document number: 4445277

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140122

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term