JP4443733B2 - レーザアブレーション成膜方法 - Google Patents

レーザアブレーション成膜方法 Download PDF

Info

Publication number
JP4443733B2
JP4443733B2 JP2000203862A JP2000203862A JP4443733B2 JP 4443733 B2 JP4443733 B2 JP 4443733B2 JP 2000203862 A JP2000203862 A JP 2000203862A JP 2000203862 A JP2000203862 A JP 2000203862A JP 4443733 B2 JP4443733 B2 JP 4443733B2
Authority
JP
Japan
Prior art keywords
target
heating
substrate
film
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000203862A
Other languages
English (en)
Other versions
JP2002020859A (ja
Inventor
典男 市川
孝 鈴木
正 北原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP2000203862A priority Critical patent/JP4443733B2/ja
Publication of JP2002020859A publication Critical patent/JP2002020859A/ja
Application granted granted Critical
Publication of JP4443733B2 publication Critical patent/JP4443733B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、レーザ光を照射したターゲットからの原料物質を基板上に堆積させて薄膜を形成するレーザアブレーション成膜方法に関する。
【0002】
【従来の技術】
レーザアブレーションを用いた成膜方法においては、薄膜の形成に用いる基板に対向して配置されたターゲットに対してレーザ光を照射する。そして、レーザ光の有する高密度の光子により、ターゲットを構成する原子、分子、あるいはイオン等を原料物質として放出させるとともに、放出された原料物質を基板上に堆積させて薄膜を成膜する。
【0003】
このような成膜法は、形成する薄膜の組成制御が容易であること、高融点の物質でも成膜できることから、誘電体や磁性体などの薄膜を形成する方法として広く用いられている。
【0004】
上記したレーザアブレーションによる成膜に用いられる成膜装置は、排気装置が付設された真空容器を有して構成される。この真空容器の内部には、薄膜を形成するための原料物質を供給するターゲットを支持するターゲット支持台と、薄膜形成用の基板を保持する基板保持台とが設けられる。また、真空容器の外部には、レーザ光源と、レーザ光源から出力されるレーザ光をターゲットへと導くための光学系とが設けられる。このような構成からなる成膜装置において、レーザ光源から出力されたレーザ光が光学系によって導かれてターゲットに照射されると、ターゲット表面から放出された原料物質は、プルームと呼ばれる発光柱を形成する。そして、基板に到達した原料物質は基板上へ吸着して堆積され、これによって、ターゲットから供給された原料物質を構成種として、所望の薄膜が堆積される。
【0005】
【発明が解決しようとする課題】
レーザアブレーション成膜方法によって形成した薄膜においては、突起状、粒状、塊状、あるいは薄片状等の異常堆積物(以下、微粒子という)が含まれていることが知られている。このような微粒子が薄膜に多数含まれると、電気的デバイスに利用した場合の電気的リークや、ミラーに用いた場合の均一性、平滑性の劣化など、薄膜の特性が劣化する。
【0006】
上記した薄膜上の微粒子の影響を低減する方法としては、ターゲットから発生、放出された微粒子を取り除く方法がある。このような方法としては、例えば、ターゲットと基板の間にフィルターまたはメッシュを設けて、成膜中に微粒子を取り除く方法がある(特開平08−176805号公報、特開平07−180042号公報)。あるいは、レーザ光を用いて微粒子を分解することによって、成膜後に微粒子を取り除く方法がある(特開平05−279848号公報)。
【0007】
上記した方法は、ターゲットから微粒子が発生した後に取り除く方法であったが、いずれも微粒子の影響を充分に低減することができない。これに対して、ターゲットからの微粒子の発生そのものを抑える方法が、特開平10−36959号公報に記載されている。この成膜方法では、レーザアブレーション成膜中にターゲットを加熱するという方法が開示されている。すなわち、レーザ光をターゲットに照射して基板上に薄膜を堆積している間に、ターゲット支持台内部に付設された抵抗加熱方式によるヒータによりターゲットを加熱するというものである。
【0008】
しかしながら、上記のように、成膜中にターゲットを加熱した場合、加熱されたターゲットからの輻射熱によって、薄膜形成用の基板が同時に加熱されてしまうという問題がある。このように基板が加熱されて基板温度が上昇すると、成膜工程において様々な問題を生じる。例えば、低融点物質からなる基板を使用した場合には、成膜中に基板が変形してしまったり、溶融してしまったりすることがある。また、堆積する薄膜と化学反応し易い物質からなる基板を使用した場合には、基板が加熱されることにより化学反応が促進され、所望の薄膜が得られなくなる。
【0009】
さらに、堆積する薄膜の品質は基板温度に影響されるため、たとえば、基板の温度が室温の時に良質な薄膜が得られる場合には、薄膜の品質が劣化してしまう。
【0010】
一方、成膜中にターゲットの加熱を行いつつ基板温度の上昇を抑えようとすると、基板を冷却する冷却機構等を付設する必要がある。したがって、装置構成が複雑化するとともに、このような方法では、充分に成膜条件を改善することは難しく、所望の薄膜を得ることができない。
【0011】
さらに、ターゲットの加熱にランプヒータを使用する場合は、成膜中に、ターゲットから放出された原料物質がランプヒータに付着し、光及び熱の放射効率を下げる原因となる。
【0012】
本発明は、上記の問題点に鑑みてなされたものであり、形成される薄膜中の微粒子が低減されるとともに、成膜工程における基板温度の上昇を避けることのできるレーザアブレーション成膜方法を提供することを課題としている。
【0013】
【課題を解決するための手段】
上記課題を解決するために、本発明によるレーザアブレーション成膜方法は、ターゲットにレーザ光を照射することによってターゲットから原料物質を放出させるとともに、放出された原料物質を基板上に堆積させて薄膜を形成する成膜方法であって、加熱手段を用いてターゲットを加熱する加熱工程と、加熱されたターゲットを、所定の温度まで冷却する冷却工程と、加熱されたターゲットにレーザ光源からのレーザ光を照射して、基板上に薄膜を形成する成膜工程とを備えることを特徴とする。
【0014】
上記したレーザアブレーション成膜方法によれば、ターゲットを加熱するので、ターゲット中に含まれる微粒子あるいは微粒子の発生源を取り除くことができる。また、ターゲットの加熱を成膜の前処理として行なうので、成膜中の基板の加熱を防ぐことができる。さらに、ターゲットを加熱した後に冷却するので、基板が加熱されてしまうことなく成膜開始時から良好な条件にて、薄膜を形成することができる。
【0015】
また、加熱工程において、ターゲットを加熱手段に対して回転させつつ加熱を行なうことを特徴とする。これによって、ターゲットを一様に加熱することができ、ターゲット中の微粒子の発生源を充分に取り除くことができる。
【0016】
さらに、加熱工程において、加熱手段またはターゲットを所定の方向から覆って、加熱手段からの熱をターゲットへと集める加熱制御部材を用いることを特徴とする。これにより、効率的にターゲットを加熱することができる。したがって、ターゲット中の微粒子の発生源を効率良く取り除くことができる。
【0017】
【発明の実施の形態】
以下、図面と共に本発明によるレーザアブレーション成膜方法の好適な実施形態について説明する。なお、同一の要素には同一の符号を用いることとし、重複する説明は省略する。また、図面の寸法比率は、説明のものとは必ずしも一致していない。
【0018】
図1は、本発明によるレーザアブレーション成膜方法に用いられるレーザアブレーション成膜装置の一実施形態の構成を概略的に示す垂直断面図である。ここで、図1は、後述するターゲットの加熱工程における状態でのアブレーション成膜装置を示している。また、図2には、成膜工程における状態でのレーザアブレーション成膜装置を示してある。
【0019】
図1に示すように、本実施形態に係るレーザアブレーション成膜装置1は、成膜を行なう真空容器2と、レーザ光を出力するレーザ光源3と、成膜手順を自動制御する制御装置4とを備えている。真空容器2の内部には、薄膜を形成する基板5を保持するための基板保持台6と、薄膜の原料物質を供給するターゲット7を支持するためのターゲット支持台8とが設けられている。基板保持台6とターゲット支持台8は、基板保持台6が中央上部、ターゲット支持台8が中央下部にあり、それぞれの基板保持面とターゲット支持面とが垂直方向に対向して設置されている。このターゲット支持台8には、ターゲット7を回転するための回転駆動部9が備えられている。また、基板5とターゲット7との間には、垂直方向を回転軸として一定角度回転させることによって、基板5とターゲット7の間を遮らない位置(開状態)と遮る位置(閉状態)とに移動することが可能なシャッター10が備えられている。さらに、回転によってシャッター10を開閉させるための回転駆動部11が設けられている。
【0020】
真空容器2の外部には、レーザ光源3が設けられている。また、真空容器2には、レーザ光源3から出力されるレーザ光が通る照射光路L(図2参照)を含む側壁上の部位に、レーザ光導入窓12が設けられている。このレーザ光導入窓12は好ましくは石英製であり、真空容器2の気密を保つように設けられている。また、真空容器2の外部には、ミラー13とレンズ14とからなる光学系が備えられている。この光学系により、レーザ光源3から出力されるレーザ光は、レーザ光導入窓12を介してターゲット7へと導かれる。ここで、レンズ14を照射光路Lと直交する方向へ移動できるよう設け、レーザ光をターゲット7表面上でスキャンすることができるようするのが好ましい。なお、レーザ光源3は、ターゲット7を構成している原料物質及びターゲット7の大きさ等に応じて、適宜選択して用いれば良い。使用可能なレーザ光源としては、例えばエキシマレーザやYAGレーザ等がある。
【0021】
真空容器2の内部には、ターゲット7を加熱する加熱手段としてのランプ15と、このランプ15を支持するランプ支持台16が設けられている。ランプ支持台16の下部には、ランプ15を垂直方向を回転軸として一定角度回転させるための回転駆動部17が設けられている。ランプ15としては、ターゲット7を充分に加熱できるランプであればよく、例えばハロゲンランプ等を用いることが好ましい。図3は、図1に示したランプ15等の構成を拡大して示す斜視図である。ランプ15の周囲には、ランプ15の側方部と上方部を覆う形状の遮蔽板18が設けられている。この遮蔽板18は、光を反射するとともに、熱を空間的に閉じ込めて、ランプ15からの熱をターゲット7へと集める加熱制御部材としての役割を果たし、これにより、効率的にターゲット7を加熱することができる。この遮蔽板18は、ランプ15からの輻射熱によって高温となるので、耐熱性を考慮して、モリブデン等の高融点材料にて作製するのが好ましい。また、遮蔽板18から熱が逃げてしまうとターゲット7の加熱効率が悪くなるので、熱容量を小さくして熱伝導を抑えるため、遮蔽板18をできるだけ薄く作製することが好ましい。なお、遮蔽板18とは逆に、ランプ支持台16は、ランプ15の特に電極部の熱を逃しやすくするために、銅やアルミニウム等の熱伝導性の良い材料を用いるとともに、厚板と太い棒状の部材で構成することが好ましい。
【0022】
また、ターゲット支持台8より下方には、同じく加熱制御部材として機能する反射板19が設けられている。この反射板19は、ランプ15からの熱輻射を遮蔽することによって真空容器2の底部が加熱されるのを防ぐとともに、ランプ15からの光を反射することにより、ターゲット7をさらに効率良く加熱する役割を果たす。
【0023】
また、真空容器2の内部には、基板5及び基板保持台6を支持する支持棒6aを側方から囲むように、支持棒6aを中心とした螺旋状の銅パイプ20が備えられている。この銅パイプ20は、その内部へ液体窒素を流して銅パイプ20自体を冷却することにより、成膜中の真空容器2内部に残留している窒素ガスなどを吸着するコールドトラップとして機能する。さらに、真空容器2には排気装置(図示せず)が接続された開口21が設けられており、この排気装置により真空容器2内部は高真空に排気される。
【0024】
制御装置4は、レーザ光源3、ランプ15及び回転駆動部9,11,17等に接続され、これら各部の動作を制御する。
【0025】
次に、図1及び図2に示したレーザアブレーション成膜装置1を用いて薄膜を形成する成膜方法について説明する。なお、成膜装置の以下に述べる各動作は、自動または操作者の操作に基づき、制御装置4によって制御される。
【0026】
始めに、基板5とターゲット7とを、それぞれ基板保持台6とターゲット支持台8とに、互いに対向するように設置する。その後、真空容器2内部を排気装置により真空引きする。次に、シャッター10を閉じるとともに、ランプ15をターゲット7の上方へと回転移動する。このとき、シャッター10とランプ15は、図1に示す位置にある。
【0027】
ターゲット支持台8に付設された回転駆動部9を起動してターゲット7を一定速度で回転させる。そして、ランプ15を点灯し、回転しているターゲット7に対する加熱を開始する。ターゲット7の温度が所定温度(例えば、1000℃)となった後に、さらに同温度に保って所定時間加熱を行なう(加熱工程)。
【0028】
ターゲット7の加熱を終了したら、ランプ15を消灯し、ターゲット7の温度が下がるまで一定時間放置して所定の温度まで冷却する(冷却工程)。ターゲット7の温度が下がるのを待つ間に、予冷として銅パイプ20へ窒素ガスを流した後に液体窒素の流入を開始し、さらにレーザ光源3の電源を入れて待機状態としておく。
【0029】
ターゲット7の温度が室温になった後に、ランプ15を、ターゲット7から放出される原料物質が基板に堆積されるのを妨げない位置へと回転移動し、レーザ光をターゲット7に照射する。シャッター10を開いて成膜を開始する(成膜工程)。レーザ光源3から出力されたレーザ光が光学系によって導かれてターゲット7に照射され、ターゲット7表面から放出された原料物質は、プルームと呼ばれる発光柱を形成する。そして、基板5に到達した原料物質は基板5上へ吸着して堆積され、これによって、ターゲット7から供給された原料物質を構成種として、所望の薄膜が形成される。このとき、成膜中はシャッター10とランプ15は、図2に示す通り、ターゲット7から放出される原料物質が基板に堆積するのを妨げない位置にある。また、成膜中もターゲット7は回転を継続している。
【0030】
薄膜が所定の膜厚になったら、シャッター10を閉じるとともに、レーザ光の照射を止めて成膜を終了する。
【0031】
以上説明したように、本実施形態のレーザアブレーション成膜方法によれば、ターゲット7を加熱するので、ターゲット7中に含まれる微粒子あるいは微粒子の発生源を取り除くことができる。また、成膜の前処理としてターゲット7の加熱を行なうために、成膜中の基板の加熱を防ぐことができる。さらに、ターゲット7を加熱した後に冷却するため、成膜開始時から基板が加熱されることなしに良好な条件にて、薄膜を形成することができる。
【0032】
また、ターゲット7を回転させながら加熱するため、ターゲット7を一様に加熱することができるので、ターゲット7中の微粒子の発生源を充分に取り除くことができる。
【0033】
さらに、ターゲット7を加熱する際に、加熱手段であるランプ15またはターゲット7を所定の方向から覆うように構成された加熱制御部材として遮蔽板18及び反射板19を用いることによって、ランプ15からの光及び熱をターゲット7に集められるので、効率的にターゲット7を加熱することができる。そのため、ターゲット7中の微粒子の発生源を効率良く取り除くことができる。
【0034】
加熱効率を向上させる加熱制御部材としては、図3に示した遮蔽板18以外にも様々な構成が可能である。例えば、図4に示すように、ランプ15に加えて、ターゲット7及びターゲット支持台8の一部を囲む形状の遮蔽板30を用いてもよい。さらに、この遮蔽板30とともに、同じく図4に示す遮蔽板31を用いて、より効率的に光や熱を閉じ込めるようにしても良い。ただし、この図4に示した遮蔽板30,31を用いる場合には、ランプ支持台を回転してランプ15及び遮蔽板30を回転移動することはできないため、遮蔽板30が付設されているランプ支持台を水平方向に平行移動する機構と、遮蔽板31をこのランプ支持台の移動する方向と交差する方向に移動する機構とが必要である。
【0035】
一方、ターゲット7の加熱効率については、加熱されたターゲット7から熱が逃げないようにすることも重要である。そこで、図5(a)に示すように、ターゲット支持台8のターゲット7を載置する部位に、ターゲット7と点接触するような突起60を設けてターゲット7を支持するのが好ましい。また、図5(b)の通り、ターゲット7を載置する部位の側壁を低くして、ターゲット7との接触面積を少なくするようにしてもよい。
【0036】
また、ターゲット7は例えば1000℃以上の高温に加熱されるので、ターゲット支持台8はモリブデンのような高融点材料、あるいはターゲット7と同じ材質で作製されるのが好ましい。さらには、図5(c)に示すように、ターゲット7と同じ材質で作製したターゲット支持台40の一部をターゲット7として用いる、すなわち、ターゲット支持台40そのものにレーザ光を照射するようにしてもよい。
【0037】
また、上記の実施形態においては、ランプ15をターゲット7の上方に設けたが、図6に示すようにランプ15をターゲット7の下方に設けるようにしてもよい。このとき、ターゲット支持台8のターゲット7を置く部位には開口50を設け、ターゲット7よりも下方に位置するランプ15から放射される光をターゲット7に直接照射させ、ターゲット7を効率良く加熱することが好ましい。さらに、ランプ15の光を反射あるいは集光するために、ランプ15及びターゲット支持台8の一部を覆う遮蔽板33を加熱制御部材として設けるようにしてもよい。
【0038】
上記したレーザアブレーション成膜方法について、実施例により更に具体的に説明する。
【0039】
本実施例においては、薄膜としてアモルファスダイアモンドを成膜した。
【0040】
本実施例において用いたターゲット7は、直径20cm、厚さ5mmの円盤状のガラス様カーボン(日清紡製)である。基板には両面研磨されたサファイアc面基板を使用した。ガラス様カーボンとサファイア基板の間隔は、40mmとした。上記ガラス様カーボンの加熱は、1050℃にて30分間行なった。使用したハロゲンランプは定格500Wであり、加熱中は95Vの電圧を印加した。
【0041】
加熱終了後、ガラス様カーボンを1時間放置して冷却した。1時間放置後のガラス様カーボンの温度は約50℃であり、ほぼ室温となった。
【0042】
成膜には、発振波長193nmのエキシマレーザをレーザ出力12J/cm2、パルス周波数10Hzの条件で使用した。また、レーザ光をガラス様カーボンに照射した後、シャッター10を開けて成膜を開始するのに先だって、レンズ14を周期的に往復移動させることによりレーザ光をガラス様カーボンの表面上でスキャンして、加熱では取れなかった酸化物や不純物等の除去を行なった。なお、本実施例で用いたレンズ14は、合成石英製レンズ(f400)である。また、レンズ14をレーザ光の照射光路Lと直交する方向に照射光路Lを中心として±2.5mm往復運動させ、ガラス様カーボンの表面をむらなく均一にスキャンした。真空容器2内部の真空度は、銅パイプ20への液体窒素流入後約30分で約4×10-5Pa(3×10-7Torr)に達した。成膜時間は1時間とした。以上の条件で成膜したアモルファスダイヤモンドの膜厚は、約1μmであった。
【0043】
得られたアモルファスダイヤモンドの表面平坦性をAFM測定法により評価した結果について説明する。図7は、本実施例によるアモルファスダイヤモンド薄膜の表面のAFM像を模式的に示す図である。図7からわかるように、本実施例において成膜したアモルファスダイヤモンド薄膜の表面平坦性は極めて優れていることがわかる。
【0044】
比較例として、従来のアブレーション成膜方法によってアモルファスダイヤモンドの成膜を行なった。すなわち、ターゲットと基板とをそれぞれターゲット支持台と基板保持台とに設置し、真空容器内を高真空排気した後に、成膜開始前のターゲットの加熱と冷却を行なわずに、レーザ光をターゲットに照射して成膜を行なった。ターゲットの加熱と冷却を行なわなかった以外は、ターゲット(ガラス様カーボン)及び基板(両面研磨サファイアc面基板)を始めとして、他の成膜条件もすべて上記実施例と同じである。図8は、上記比較例によるアモルファスダイヤモンド薄膜の表面のAFM像を模式的に示す図である。図8から、従来のアブレーション成膜方法によるアモルファスダイヤモンド薄膜には、高さ約10nmを超える突起状の微粒子(例えば図8中に符号Pで示した微粒子)が発生していることがわかる。
【0045】
なお、比較例においても上記実施例と同様に、成膜開始の直前に、レーザ光によるガラス様カーボン表面のスキャンを行なった。したがって、比較例によるアモルファスダイヤモンドの表面(図8)に比べ、上記実施例によるアモルファスダイヤモンドの表面(図7)の平坦性が優れているのは、このスキャンの効果ではなく、上記実施例においてガラス様カーボンに対して行なった加熱工程と冷却工程によるものであることは明らかである。
【0046】
以上説明したように、従来のレーザアブレーション成膜方法において堆積した薄膜(図8)には、高さが10nmを超える微粒子が多数含まれているのに対し、本発明のレーザアブレーション成膜方法によれば、微粒子のない平坦性に優れた薄膜(図7)が得られる。
【0047】
また、上記実施例においては、ガラス様カーボンをターゲットとして用いたが、グラファイトをターゲットに用いて同様の成膜を試みた。成膜条件及び手順は、ターゲットが異なる以外、すべて上記のガラス様カーボンをターゲットに用いた場合と同じである。ターゲットをグラファイトとして本発明に係るレーザアブレーション成膜方法により成膜したアモルファスダイヤモンドは、図7に示したのと同様に平坦性に優れた表面を有していた。一方、従来の成膜方法により成膜した場合には、ガラス様カーボンを用いて従来の成膜方法により成膜したアモルファスダイヤモンドの結果(図8)と同様であった。この結果より、ターゲットにグラファイトを使用した場合においても同様に、本発明によるレーザアブレーション成膜方法の効果が示された。
【0048】
また、上記実施例においては、融点の高いサファイアを基板として用いたが、低融点物質であるアルミニウムからなる基板を用いた場合にも、基板が変形することなく、本発明のレーザアブレーション成膜方法によって表面平坦性の良い薄膜が得られた。
【0049】
さらに、ターゲットとして超伝導材料YBa2Cu37を用い、YBa2Cu37の薄膜をSrTiO3(100)基板上に堆積することを試みたが、上記の実施例と同様に、本発明のレーザアブレーション成膜方法により微粒子の極めて少ない薄膜が得られた。
【0050】
なお、特開平05−051734号公報には、スパッタ成膜法において成膜開始に先立ってターゲットを加熱するという方法が開示されている。しかしながら、スパッタ成膜法は、プラズマにより生成された高エネルギー粒子をターゲットに衝突させて、ターゲットを構成する原子等を叩き出して成膜を行なう方法であり、レーザ光によりターゲットを構成する原子等を放出させるレーザアブレーション成膜法とは、まったく異なる成膜方法である。また、このスパッタ成膜方法ではターゲット加熱後の冷却工程は行なっていないため、ターゲットが高温の状態のままで成膜を始めることとなる。したがって、ターゲットからの輻射熱による成膜中の基板温度の上昇は避けられない。
【0051】
これに対し、本発明の成膜方法は、レーザアブレーション成膜方法に関するものであり、さらに、ターゲットを加熱した後にターゲットを冷却してから成膜を開始することを特徴としている。そのため、成膜開始時から基板温度は上昇しないので、低融点物質からなる基板を用いることができるとともに、堆積する薄膜の品質が劣化してしまうのを防ぐことができる。
【0052】
本発明によるレーザアブレーション成膜方法は、上記した実施形態及び実施例に限られず、様々な変形が可能である。例えば、ターゲット加熱工程における加熱温度及び時間は、ターゲット7を構成している原料物質やターゲット7の大きさにより、適宜決定して良い。
【0053】
また、上記の実施例においてはターゲットを室温まで冷却したが、何度まで冷却するかについては、場合に応じて最適な温度を見い出すべきことはいうまでもない。また、真空容器2に質量分析計などの分析機器を付設して、ターゲット加熱中にターゲットから放出されるガス等の成分や発生量をモニターすることにより、適切な加熱温度や加熱時間を決めるようにしても良い。
【0054】
さらに、上記の実施形態においては、ターゲット7の加熱と冷却とを成膜を行なう真空容器2の内部にて実施するよう構成したが、別室を設けて別室内で行なうようにしても良い。また、基板用の別室を設け、ターゲットの加熱工程の際に、基板を別室に保持するようにしても良い。
【0055】
【発明の効果】
以上説明したように、本発明に係るレーザアブレーション成膜方法は、加熱手段を用いてターゲットを加熱する加熱工程と、加熱されたターゲットを、所定の温度まで冷却する冷却工程と、加熱されたターゲットにレーザ光源からのレーザ光を照射して、基板上に薄膜を形成する成膜工程とを備えている。このように、成膜開始前にターゲットの加熱を行なっているので、ターゲット中に含まれる微粒子あるいは微粒子の発生源を取り除くことができる。そのため、薄膜中に微粒子が発生するのを抑えることができる。さらに、加熱を前処理として行なうとともに、加熱後にターゲットを冷却するため、成膜中に基板温度が上昇してしまうことなく成膜を行うことができる。
【0056】
これにより、低融点基板を含む様々な基板を使用することができるとともに、基板温度上昇にともなう膜質の劣化を防ぐことができる。また、成膜中に基板温度が上昇してしまうことがないので、基板温度を制御する冷却機構などの付加的な構成を必要としない。したがって、装置を複雑化することなく、薄膜中の微粒子の低減を実現することが可能となる。
【図面の簡単な説明】
【図1】本発明のレーザアブレーション成膜方法に用いられるレーザアブレーション成膜装置の一実施形態の構成を加熱工程の状態で概略的に示す垂直断面図である。
【図2】図1に示したレーザアブレーション成膜装置を成膜工程の状態で示す垂直断面図である。
【図3】ランプ及び遮蔽板の構成の一例を示す斜視図である。
【図4】ランプ及び遮蔽板の構成の他の例を示す斜視図である。
【図5】ターゲット支持台の構成例を示す断面図である。
【図6】ランプをターゲット支持台の内部に設ける構成例を示す断面図である。
【図7】実施例によるアモルファスダイヤモンド薄膜の表面のAFM像を示す模式図である。
【図8】比較例によるアモルファスダイヤモンド薄膜の表面のAFM像を示す模式図である。
【符号の説明】
1…レーザアブレーション装置、2…真空容器、3…レーザ光源、4…制御装置、5…基板、6…基板保持台、7…ターゲット、8…ターゲット支持台、10…シャッター、12…レーザ光導入窓、13…ミラー、14…レンズ、15…ランプ、16…ランプ支持台、18…遮蔽板、19…反射板、L…照射光路。

Claims (3)

  1. ターゲットにレーザ光を照射することによって前記ターゲットから原料物質を放出させるとともに、放出された前記原料物質を基板上に堆積させて薄膜を形成する成膜方法であって、
    加熱手段を用いてターゲットを加熱する加熱工程と、
    加熱された前記ターゲットを、所定の温度まで冷却する冷却工程と、
    冷却された前記ターゲットにレーザ光源からの前記レーザ光を照射して、前記基板上に前記薄膜を形成する成膜工程と、を備えることを特徴とするレーザアブレーション成膜方法。
  2. 前記加熱工程において、前記ターゲットを前記加熱手段に対して回転させつつ加熱を行なうことを特徴とする請求項1記載のレーザアブレーション成膜方法。
  3. 前記加熱工程において、前記加熱手段または前記ターゲットを所定の方向から覆って、前記加熱手段からの熱を前記ターゲットへと集める加熱制御部材を用いることを特徴とする請求項1または2記載のレーザアブレーション成膜方法。
JP2000203862A 2000-07-05 2000-07-05 レーザアブレーション成膜方法 Expired - Fee Related JP4443733B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000203862A JP4443733B2 (ja) 2000-07-05 2000-07-05 レーザアブレーション成膜方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000203862A JP4443733B2 (ja) 2000-07-05 2000-07-05 レーザアブレーション成膜方法

Publications (2)

Publication Number Publication Date
JP2002020859A JP2002020859A (ja) 2002-01-23
JP4443733B2 true JP4443733B2 (ja) 2010-03-31

Family

ID=18701216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000203862A Expired - Fee Related JP4443733B2 (ja) 2000-07-05 2000-07-05 レーザアブレーション成膜方法

Country Status (1)

Country Link
JP (1) JP4443733B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3833899B2 (ja) * 2001-03-27 2006-10-18 独立行政法人産業技術総合研究所 酸化処理装置
JP5441235B2 (ja) * 2005-12-28 2014-03-12 浜松ホトニクス株式会社 回転ターゲット式電子線補助照射レーザアブレーション成膜装置及び回転ターゲット式電子線照射成膜装置
US20090246413A1 (en) * 2008-03-27 2009-10-01 Imra America, Inc. Method for fabricating thin films

Also Published As

Publication number Publication date
JP2002020859A (ja) 2002-01-23

Similar Documents

Publication Publication Date Title
JP3255469B2 (ja) レーザ薄膜形成装置
JP4443733B2 (ja) レーザアブレーション成膜方法
JPH01179410A (ja) Cvdによる薄膜の製造方法及びそれに使用される装置
JPS6223450B2 (ja)
JPH11106911A (ja) 薄膜形成装置及びそれを用いた化合物薄膜の形成法
US20040266189A1 (en) Method of crystallizing amorphous silicon layer and crystallizing apparatus thereof
JPH09228032A (ja) 真空蒸着装置およびその真空蒸着装置を用いた真空蒸着方法
JPH11152562A (ja) スパッター装置および該装置による成膜方法
JPH09186095A (ja) 成膜方法ならびにその装置及び半導体装置の製造方法
KR100248120B1 (ko) 레이저 어닐 장치
JPH03174307A (ja) 酸化物超電導体の製造方法
JPH11246965A (ja) レーザ蒸着法による薄膜の形成方法、およびその方法に使用するレーザ蒸着装置
JPH0625844A (ja) 成膜装置及びターゲット材料
JPH0644553B2 (ja) 光気相成長方法及び光気相成長装置
JP4193951B2 (ja) 光学基体上に反射防止膜を蒸着する方法
GB2300426A (en) Thin film forming apparatus using laser and secoindary sputtering means
JP2011074442A (ja) 真空蒸着装置
JP4161711B2 (ja) 成膜方法及び成膜装置
JP2000234165A (ja) アモルファスダイヤモンド膜の形成装置および形成方法
JPH10140342A (ja) スパッタ装置及びその装置による基板の成膜方法
JPH0762527A (ja) レーザpvd装置
JP5653128B2 (ja) レーザアブレーション装置
JPH01125922A (ja) 放射線cvdによる薄膜の製造方法及びそれに使用される装置
JPS62127469A (ja) 気相成長装置
JPH04303921A (ja) 半導体薄膜製造装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070628

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091006

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100112

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100113

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140122

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees