JP4442270B2 - 車両用操舵装置 - Google Patents

車両用操舵装置 Download PDF

Info

Publication number
JP4442270B2
JP4442270B2 JP2004078882A JP2004078882A JP4442270B2 JP 4442270 B2 JP4442270 B2 JP 4442270B2 JP 2004078882 A JP2004078882 A JP 2004078882A JP 2004078882 A JP2004078882 A JP 2004078882A JP 4442270 B2 JP4442270 B2 JP 4442270B2
Authority
JP
Japan
Prior art keywords
steering
reaction force
driver
characteristic
road surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004078882A
Other languages
English (en)
Other versions
JP2005263031A (ja
Inventor
良太 白土
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2004078882A priority Critical patent/JP4442270B2/ja
Publication of JP2005263031A publication Critical patent/JP2005263031A/ja
Application granted granted Critical
Publication of JP4442270B2 publication Critical patent/JP4442270B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Steering Control In Accordance With Driving Conditions (AREA)
  • Power Steering Mechanism (AREA)

Description

本発明は、ステアリング操作手段と転舵装置とが機械的に切り離された、いわゆるステアバイワイヤ方式の車両用操舵装置の技術分野に属する。
従来の車両用操舵装置は、車速センサ、操舵角センサおよびタイロッド変位センサ等の出力から、セルフアライニングトルク、弾性抵抗トルクおよび慣性トルク等を推定し、これらの推定値に基づいて目標操舵反力を算出している。そして、この目標操舵反力が得られるように操舵反力モータを制御し、路面から操向輪に加わる路面反力を操舵反力に反映させている(例えば、特許文献1参照)。
特開平10−226346号公報
しかしながら、操舵反力からの情報をステアリング操作に活用しているドライバと、活用していないドライバとでは、理想の操舵反力が異なる。すなわち、ドライバによって理想的な操舵反力特性が異なるため、上記従来技術にあっては、ドライバの操舵特性に応じた最適な操舵反力が付加されないという問題があった。
本発明は、上記問題に着目してなされたもので、その目的とするところは、ドライバの操舵特性に応じた最適な操舵反力を付加できる車両用操舵装置を提供することにある。
上述の目的を達成するため、本発明の車両用操舵装置では、操向輪を転舵させる転舵装置と機械的に切り離されたステアリング操作手段と、
前記転舵装置を駆動する転舵アクチュエータと、
前記ステアリング操作手段に操舵反力を与える操舵反力アクチュエータと、
前記ステアリング操作手段の操舵角を検出する操舵角検出手段と、
ドライバの操舵トルクを検出する操舵トルク検出手段と、
路面から前記操向輪に加わる路面反力を検出する路面反力検出手段と、
を備えた車両用操舵装置において、
操舵角と操舵トルクとの関係を操舵履歴として記憶する記憶手段と、
記憶された操舵履歴における操舵角と操舵トルクとの関係を二次元座標にプロットしたとき、操舵トルクに対する操舵角の分布傾向が正比例であるか反比例であるかを判断するドライバ特性判断手段と、
操舵トルクに対する操舵角の分布傾向が正比例であると判断された場合、検出された路面反力を反映させた操舵反力が付与されるように前記操舵反力アクチュエータの操舵反力特性を変更し、反比例であると判断された場合、検出された路面反力を反映させない操舵反力が付与されるように前記操舵反力アクチュエータの操舵反力特性を変更する操舵反力特性変更手段と、
を設けたことを特徴とする。
本発明にあっては、操舵反力の情報を活用しているドライバに対しては、ドライバに路面情報を伝えることにより、低μ路走行時において必要以上の切り増し操舵を防止できる。一方、操舵反力の情報を活用していないドライバに対しては、ドライバに路面情報を伝えないことで、低μ路走行時において必要以上の切り増し操舵を防止できる。
以下に、本発明の車両用操舵装置を実施するための最良の形態を、実施例1および参考例1〜3に基づいて説明する。
まず、構成を説明する。
図1は、実施例1のステアバイワイヤシステムを備えた車両用操舵装置の全体構成図である。
実施例1の車両用操舵装置は、ステアリングホイール101と、操舵反力アクチュエータ102と、操舵トルクセンサ103と、操舵角センサ104と、前輪105(左前輪105L,右前輪105R)と、ラック軸力センサ106(106L,106R)と、ステアリングギア107と、転舵アクチュエータ108と、転舵角センサ109と、制御装置110と、車速センサ111とを備えている。
操舵トルクセンサ103は、ステアリングホイール101と操舵反力アクチュエータ102の間で発生しているトルク(操舵トルク)を検出する。操舵角センサ104は、ステアリングホイール101が操作された操作量を検出する。ラック軸力センサ106は、ステアリングラックのラック軸方向の力を検出する。車速センサ111は、車両の車速を検出する。転舵角センサ109は、前輪105の転舵角を検出する。
操舵反力アクチュエータ102は、ドライバの操作を伝えるステアリングホイール101に操舵反力を発生させる。転舵アクチュエータ108は、ステアリングギア107を操作して前輪105を操向するための力を発生させる。
制御装置110は、操舵トルクセンサ103、操舵角センサ104、ラック軸力センサ106および車速センサ111の検出値に基づいて、前輪105に転舵角を発生させるための制御量と、操舵反力アクチュエータ102に操舵反力を発生させるための制御量を算出する。
上述の構成により、ドライバの操作入力に対して任意に転舵角の特性を変化することができる、いわゆるステアバイワイヤの機能を実現することができる。
図2は、実施例1の制御装置110の制御ブロック図であり、制御装置110は、ドライバ特性判断手段110a、操舵反力特性変更手段110b、操舵反力算出手段110c、操舵反力指令値算出手段110dを備えている。
ドライバ特性判断手段110aは、操舵角センサ104と操舵トルクセンサ103の出力を入力し、ドライバが路面μ変化による操舵反力の変化に応じて操舵量を変化させているかどうか判断し、操舵反力特性変更手段110bへ出力する。
操舵反力特性変更手段110bは、ドライバ特性に応じた適切な操舵反力が算出されるような操舵反力特性を設定し、操舵反力算出手段110cへ出力する。操舵反力算出手段110cでは、操舵反力特性変更手段110bにより設定された操舵反力特性に基づき、車速センサ111、操舵角センサ104およびラック軸力センサ106から操舵反力を算出し、操舵反力指令値算出手段110dへ出力する。
操舵反力指令値算出手段110dでは、操舵反力算出手段110cから得られる目標操舵反力と操舵トルクセンサ103から得られる現在の操舵トルクから、操舵反力アクチュエータ102へ出力する制御量を算出する。操舵反力アクチュエータ102では、制御装置110より得られる指令値に基づいて操舵反力を発生する。
次に、作用を説明する。
[ドライバ特性変更制御処理]
図3は、実施例1の制御装置110で実行されるドライバ特性変更制御処理の流れを示すフローチャートで、以下、各ステップについて説明する。
ステップ301では、車両のイグニッションスイッチなどにより本システムが起動され、ステップ302へ移行する。
ステップ302では、ドライバの操舵特性を判断するためのデータ数をカウントするカウンタNをリセット(=0)し、ステップ303へ移行する。
ステップ303では、操舵角センサ104から操舵角θ、操舵トルクセンサ103から操舵トルクTを入力し、ステップ304へ移行する。
ステップ304では、操舵角θの絶対値が第1しきい値θth0より小さいかどうかを判定する。YESの場合にはステップ305へ移行し、NOの場合にはステップ306へ移行する。
ステップ305では、θmaxをθth0とし、ステップ306へ移行する。
ステップ306では、操舵角の絶対値がθmax以上であるか判定する。YESの場合にはステップ307へ移行し、NOの場合にはステップ308へ移行する。
ステップ307では、現在の操舵角の絶対値をθmaxとし、ステップ303へ移行する。
ステップ308では、θmaxが、第2しきい値θth1(>θth0)より大きいかどうかを判定する。YESの場合にはステップ309へ移行し、NOの場合にはステップ303へ移行する。
ステップ309では、操舵角θ、操舵トルクTの値をメモリに保存、カウンタNをインクリメント、θmaxをリセットし、ステップ310へ移行する。
ステップ310では、カウンタNしきい値Nthとなったかどうかを判定する。YESの場合にはステップ311へ移行し、NOの場合にはステップ303へ移行する。
ステップ311では、これまでの処理で集められたN個のデータを処理してドライバの操舵特性を判断し、ステップ312へ移行する。
ステップ312では、311での判断結果に基づいて、ラック軸力に応じた操舵反力分を調整するよう、操舵反力特性を変更し、ステップ302へ移行する。
[ドライバ特性変更制御作動]
ドライバが切り増し操舵している場合には、図3のフローチャートにおいて、ステップ301→ステップ302→ステップ303→ステップ304→ステップ305→ステップ306→ステップ307→ステップ303へと進む流れが繰り返され、ステップ307において、θmaxを|θ|とする処理が繰り返される。
ドライバが切り戻し操舵または保舵している場合には、カウンタNがしきい値Nthとなるまで、ステップ30→ステップ308→ステップ309→ステップ310→ステップ303へと進む流れが繰り返され、ステップ309において、操舵角θ、操舵トルクTの値がメモリに保存される。
カウンタNがしきい値Nthとなった場合には、ステップ310→ステップ311→ステップ312→302へと進む流れとなり、ステップ311において、これまでに保存したN個のデータからドライバの操舵特性を判断し、ステップ312において、ラック軸力に応じた操舵反力分を調整するように操舵反力特性が変更される。
[ドライバの操舵特性判断]
実施例1では、図4に示すように、操舵トルクと操舵角の関係を2次元にプロットし、ドライバの操舵履歴の傾向から、ドライバの操舵特性を判断する。
このとき、ドライバの操舵特性は、図4中のA群のように、同じ操舵角に対する操舵トルク特性が軽くなると、操舵角が小さくなる特性をもつ傾向と、図中のB群のように、同じ操舵角に対する操舵トルク特性が軽くなると、操舵角が大きくなる特性をもつ傾向とに分けることができる。
ここで、A群のドライバは、操舵反力が小さくなると路面μが低下していると予測しているドライバであると考えられるので、このようなドライバには、路面反力を反映した操舵反力特性を付加するほうが望ましい。また、B群のドライバは、操舵反力が小さくなるとより大きく操舵(切り増し操舵)するために、低μ路での切り過ぎやカウンタステアの遅れを生じるおそれがある。よって、このようなドライバには、路面反力を反映しない操舵反力特性を付加するほうが望ましい。
[従来制御の問題点]
特開平10−226346号公報に記載のシフトバイワイヤシステムでは、車速センサと操舵角センサとタイロッド変位センサの検出結果に基づいて、セルフアライニングトルク項、弾性抵抗トルク項および慣性抵抗トルク項を推定し、これら推定値から反力トルクの目標値を求め、この目標値を得るべく反力モータ(操舵反力アクチュエータ)を制御している。
ところが、理想的な操舵反力特性は、ドライバの操舵特性により異なるため、特に路面μの低い状態などでは、ドライバの操舵特性に応じた適切な操舵反力を付加できないという問題があった。
すなわち、操舵反力の情報をステアリング操作に活用しているドライバは、路面の状態を操舵反力から的確にとらえているので、たとえば低μ路ではタイヤが力を出さないので操舵トルクは軽くなると、「これ以上ステアリングホイールを切るとタイヤの力は逆に小さくなり過ぎ、万一後輪が滑った場合、カウンタをあてるために逆方向に切る量も大きくなる」と判断し、ステアリングホイールを必要以上に切ることはない。
しかし、ステアバイワイヤで路面μが低いときにもドライ路面走行と同様の操舵反力を与えると、ドライバは「まだグリップする」と判断し、ステアリングホイールを切り増し操舵する。その結果、カウンタステアの遅れ、不必要なアンダステアの発生等が生じるおそれがある。
一方、操舵反力の情報をステアリング操作に活用していないドライバは、操舵反力情報からタイヤのグリップ状態を推定しないので、一般に低μ路でステアリングホイールが軽くなると、重くなるまでステアリングホイールを切り続ける。その結果、アンダステアが強烈に出てしまったり、またはカウンタステアが遅れて発散する。
[ドライバの操舵特性に応じた操舵反力特性変更作用]
これに対し、実施例1の車両用操舵装置では、図4に示したドライバの操舵履歴の傾向からドライバの操舵特性を判断し、操舵特性に応じて操舵反力特性を変更することにより、ドライバの操舵特性に応じた最適な操舵反力を付加できる。
すなわち、操舵反力の情報を活用しているドライバに対しては、路面反力を反映した操舵反力特性を付加し、ドライバに路面情報を伝えることにより、必要以上の切り増し操舵を防止している。
一方、操舵反力の情報を活用していないドライバに対しては、路面反力を反映しない操舵反力特性を付加し、操舵反力をドライ走行時に近い特性としておくことで、ドライバに操舵中立位置を伝えやすくするとともに、大きな操舵反力を付加することにより、必要以上の切り増し操舵を防止している。
次に、効果を説明する。
実施例1の車両用操舵装置にあっては、下記に列挙する効果が得られる。
(1) ドライバの操舵履歴の傾向からドライバの操舵特性を判断するドライバ特性判断手段110aと、このドライバ特性判断手段110aの判断結果に応じて、操舵反力アクチュエータ102の操舵反力特性を変更する操舵反力特性変更手段110bと、を設けたため、ドライバの操舵特性に応じて最適な操舵反力を付加できる。
(2) 操舵反力特性変更手段110bは、路面から前輪105に加わる路面反力に応じた分の操舵反力特性を変更するため、操舵反力の変化から路面状況を把握するドライバと把握しないドライバのどちらに対しても、適切な操舵反力を付加できる。
(3) ドライバ特性判断手段110aは、ステアリングホイール101の操舵角と操舵トルクとの関係に基づいて操舵特性を判断するため、操舵角と操舵反力との関係から、ドライバが操舵反力の変化から路面を把握するドライバか否かを判断でき、ドライバの操舵特性に応じた適切な操舵反力を付加できる。
(4) ドライバ特性判断手段110aは、最大操舵角が所定値以上となったときの操舵履歴の傾向に基づいて操舵特性を判断するため、ドライバの操舵特性が比較的顕著に表れる状況で操舵特性を判断でき、より正確に路面状況を把握するドライバか否かを判断できる。
(5) 操舵反力特性変更手段110bは、ドライバ特性判断手段110aの判断結果に応じて、路面から前輪105に加わる路面反力に応じた分を加減算するため、操舵反力の変化から路面状況を把握するドライバと把握しないドライバのどちらに対しても、適切な操舵反力を付加できる。
[参考例1]
参考例1の構成は、実施例1の構成に対し、道路曲率情報を収集する手段として、カーナビゲーションシステムを設けた点で実施例1と異なり、他の構成は同一であるため、同一の構成部分には同一符号を付して説明を省略する。
図5は参考例1のステアバイワイヤシステムを備えた車両用操舵装置の全体構成図であり、参考例1の車両用操舵装置は、図1に示した実施例1の構成に加え、道路曲率情報を収集するためのカーナビゲーションシステム112を備えている。
図6は、参考例1の制御装置110の制御ブロック図であり、カーナビゲーションシステム112からの道路曲率情報は、ドライバ特性判断手段110aに入力される。ドライバ特性判断手段110aは、操舵角と道路曲率に基づいて、ドライバが道路曲率の変化による操舵反力の変化に応じて操舵量を変化させているかどうかを判断する。
また、操舵反力特性変更手段110bは、ドライバ特性判断手段110aの判断結果に応じて、路面から前輪105に加わる路面反力に応じた分が連続的に可変するよう、操舵反力特性を変更する。
次に、作用を説明する。
[ドライバ特性変更制御処理]
図7は、参考例1の制御装置110で実行されるドライバ特性変更制御処理の流れを示すフローチャートで、以下、各ステップについて説明する。なお、ステップ701、ステップ702、ステップ709〜ステップ712は、図3に示したフローチャートのステップ301、ステップ302、ステップ309〜ステップ312と同一の処理を実施するため、異なるステップのみ説明する。
ステップ703では、操舵角センサ104から操舵角θ、操舵トルクセンサ103から操舵トルクT、カーナビゲーションシステム112から道路曲率ρ(曲線道路の半径の逆数)を入力し、ステップ704へ移行する。
ステップ704では、道路曲率の絶対値|ρ|がしきい値ρth0より小さいかどうかを判定する。YESの場合にはステップ705へ移行し、NOの場合にはステップ706へ移行する。
ステップ705では、ρmaxをρth0とし、ステップ706へ移行する。
ステップ706では、道路曲率の絶対値|ρ|がρmax以上であるかどうかを判定する。YESの場合にはステップ707へ移行し、NOの場合にはステップ708へ移行する。
ステップ707では、現在の道路曲率の絶対値をρmaxとし、ステップ703へ移行する。
ステップ708では、ρmaxが、ρth0よりも大きい第2しきい値ρth1より大きいかどうかを判定する。YESの場合にはステップ709へ移行し、NOの場合にはステップ703へ移行する。
なお、図7のフローチャートに基づくドライバ特性変更制御作用については、図3のフローチャートの操舵角θを道路曲率ρに置き換えたものと同一であり、以上の処理により、ステップ711において、実際の道路曲率ρとの相関が高いドライバの操舵特性が得られ、操舵特性の推定を高精度で実施できる。
次に、効果を説明する。
参考例1の車両用操舵装置にあっては、実施例1の効果(1),(2)に加え、下記に列挙する効果が得られる。
(6) ドライバ特性判断手段110aは、ステアリングホイール101の操舵角と道路曲率との関係に基づいて操舵特性を判断するため、操舵角と道路曲率との関係から、ドライバが操舵反力の変化から路面を把握するドライバか否かを判断でき、ドライバの操舵特性に応じた適切な操舵反力を付加できる。
(7) ドライバ特性判断手段110aは、車両が走行している道路曲率が所定値以上となったときの操舵履歴の傾向に基づいて操舵特性を判断するため、ドライバの操舵特性が比較的顕著に表れる状況で操舵特性を判断でき、より正確に路面状況を把握するドライバか否かを判断できる。
(8) 操舵反力特性変更手段110bは、ドライバ特性判断手段110aの判断結果に応じて、路面から前輪105に加わる路面反力に応じた分を連続的に可変するため、操舵反力の変化から路面状況を把握するドライバと把握しないドライバのどちらに対しても、適切な操舵反力を付加できる。
[参考例2]
参考例2の車両用操舵装置は、操舵角と車両ヨーレイトとの関係に基づいて、ドライバの操舵特性を判断する点で実施例1と異なり、他の構成は実施例1と同一であるため、構成の説明は省略する。
図8は参考例2のステアバイワイヤシステムを備えた車両用操舵装置の全体構成図であり、参考例2の車両用操舵装置は、実施例1に加え、車両のヨーレイトを検出するためのヨーレイトセンサ113を備えている。
図9は、参考例2の制御装置110の制御ブロック図であり、ヨーレイトセンサ113により検出された車両のヨーレイトは、ドライバ特性判断手段110aに入力される。ドライバ特性判断手段110aは、操舵角とヨーレイトに基づいて、ドライバがヨーレイトの変化による操舵反力の変化に応じて操舵量を変化させているかどうかを判断する。
次に、作用を説明する。
[ドライバ特性変更制御処理]
図10は、参考例2の制御装置110で実行されるドライバ特性変更制御処理の流れを示すフローチャートで、以下、各ステップについて説明する。なお、ステップ1001、ステップ1002、ステップ1009〜ステップ1012は、図3に示したフローチャートのステップ301、ステップ302、ステップ309〜ステップ312と同一の処理を実施するため、異なるステップのみ説明する。
ステップ1003では、操舵角センサ104から操舵角θ、操舵トルクセンサ103から操舵トルクT、ヨーレイトセンサ113から車両のヨーレイトψ'を入力し、ステップ1004へ移行する。
ステップ1004では、ヨーレイトの絶対値|ψ'|がしきい値ψ'th0より小さいかどうかを判定する。YESの場合にはステップ1005へ移行し、NOの場合にはステップ1006へ移行する。
ステップ1005では、ψ'maxをψ'th0とし、ステップ1006へ移行する。
ステップ1006では、ヨーレイトの絶対値|ψ'|がψ'max以上であるかどうかを判定する。YESの場合にはステップ1007へ移行し、NOの場合にはステップ1008へ移行する。
ステップ1007では、現在のヨーレイトの絶対値をψ'maxとし、ステップ1003へ移行する。
ステップ1008では、ψ'maxが、ψ'th0よりも大きい第2しきい値ψ'th1より大きいかどうかを判定する。YESの場合にはステップ1009へ移行し、NOの場合にはステップ1003へ移行する。
なお、図10のフローチャートに基づくドライバ特性変更制御作用については、図3のフローチャートの操舵角θをヨーレイトψ'に置き換えたものと同一であり、以上の処理により、ステップ1011において、実際のヨーレイトψ'との相関が高いドライバの操舵特性が得られ、操舵特性の推定を高精度で実施できる。
次に、効果を説明する。
参考例2の車両用操舵装置にあっては、実施例1の効果(1),(2)に加え、下記に列挙する効果が得られる。
(9) ドライバ特性判断手段110aは、ステアリングホイール101の操舵角と車両のヨーレイトとの関係に基づいて操舵特性を判断するため、操舵角とヨーレイトとの関係から、ドライバが操舵反力の変化から路面を把握するドライバか否かを判断でき、ドライバの操舵特性に応じた適切な操舵反力を付加できる。
(10) ドライバ特性判断手段110aは、ヨーレイトの最大値が所定値以上となったときの操舵履歴の傾向に基づいて操舵特性を判断するため、ドライバの操舵特性が比較的顕著に表れる状況で操舵特性を判断でき、より正確に路面状況を把握するドライバか否かを判断できる。
[参考例3]
参考例3の車両用操舵装置は、操舵角とステアリングラックのラック軸方向に印加される力との関係に基づいて、ドライバの操舵特性を判断する点で実施例1と異なり、他の構成は実施例1と同一であるため、構成の説明は省略する。
図11は、参考例3の制御装置110の制御ブロック図であり、ラック軸力センサ106により検出されたステアリングラックのラック軸方向の力は、ドライバ特性判断手段110aに入力される。ドライバ特性判断手段110aは、操舵角およびラック軸力に基づいて、ドライバがラック軸力の変化による操舵反力の変化に応じて操舵量を変化させているかどうかを判断する。
次に、作用を説明する。
[ドライバ特性変更制御処理]
図12は、参考例3の制御装置110で実行されるドライバ特性変更制御処理の流れを示すフローチャートで、以下、各ステップについて説明する。なお、ステップ1201、ステップ1202、ステップ1209〜ステップ1212は、図3に示したフローチャートのステップ301、ステップ302、ステップ309〜ステップ312と同一の処理を実施するため、異なるステップのみ説明する。
ステップ1203では、操舵角センサ104から操舵角θ、操舵トルクセンサ103から操舵トルクT、ラック軸力センサ106からラック軸力Fを入力し、ステップ1204へ移行する。
ステップ1204では、ラック軸力Fの絶対値|F|がしきい値Fth0より小さいかどうかを判定する。YESの場合にはステップ1205へ移行し、NOの場合にはステップ1206へ移行する。
ステップ1205では、FmaxをFth0とし、ステップ1206へ移行する。
ステップ1206では、ラック軸力Fの絶対値|F|がFmax以上であるかどうかを判定する。YESの場合にはステップ1207へ移行し、NOの場合にはステップ1208へ移行する。
ステップ1207では、現在のラック軸力Fの絶対値をFmaxとし、ステップ1203へ移行する。
ステップ1208では、Fmaxが、Fth0よりも大きい第2しきい値Fth1より大きいかどうかを判定する。YESの場合にはステップ1209へ移行し、NOの場合にはステップ1203へ移行する。
なお、図12のフローチャートに基づくドライバ特性変更制御作用については、図3のフローチャートの操舵角θをラック軸力Fに置き換えたものと同一であり、以上の処理により、ステップ1211において、ラック軸力Fとの相関が高いドライバの操舵特性が得られ、操舵特性の推定を高精度で実施できる。
次に、効果を説明する。
参考例3の車両用操舵装置にあっては、実施例1の効果(1),(2)に加え、下記に列挙する効果が得られる。
(11) ドライバ特性判断手段110aは、ステアリングホイール101の操舵角とラック軸力との関係に基づいて操舵特性を判断するため、操舵角とラック軸力との関係から、ドライバが操舵反力の変化から路面を把握するドライバか否かを判断でき、ドライバの操舵特性に応じた適切な操舵反力を付加できる。
(12) ドライバ特性判断手段110aは、ラック軸力が所定値以上となったときの操舵履歴の傾向に基づいて操舵特性を判断するため、ドライバの操舵特性が比較的顕著に表れる状況で操舵特性を判断でき、より正確に路面状況を把握するドライバか否かを判断できる。
実施例1のステアバイワイヤシステムを備えた車両用操舵装置の全体構成図である。 実施例1の制御装置の制御ブロック図である。 実施例1の制御装置で実行されるドライバ特性変更制御処理の流れを示すフローチャートである。 ドライバの操舵特性判断マップである。 参考例1のステアバイワイヤシステムを備えた車両用操舵装置の全体構成図である。 参考例1の制御装置の制御ブロック図である。 参考例1の制御装置で実行されるドライバ特性変更制御処理の流れを示すフローチャートである。 参考例2のステアバイワイヤシステムを備えた車両用操舵装置の全体構成図である。 参考例2の制御装置の制御ブロック図である。 参考例2の制御装置で実行されるドライバ特性変更制御処理の流れを示すフローチャートである。 参考例3の制御装置の制御ブロック図である。 参考例3の制御装置で実行されるドライバ特性変更制御処理の流れを示すフローチャートである。
101 ステアリングホイール
102 操舵反力アクチュエータ
103 操舵トルクセンサ
104 操舵角センサ
105 前輪
106 ラック軸力センサ
107 ステアリングギア
108 転舵アクチュエータ
109 転舵角センサ
110 制御装置
110a ドライバ特性判断手段
110b 操舵反力特性変更手段
110c 操舵反力算出手段
110d 操舵反力指令値算出手段
111 車速センサ
112 カーナビゲーションシステム
113 ヨーレイトセンサ

Claims (1)

  1. 操向輪を転舵させる転舵装置と機械的に切り離されたステアリング操作手段と、
    前記転舵装置を駆動する転舵アクチュエータと、
    前記ステアリング操作手段に操舵反力を与える操舵反力アクチュエータと、
    前記ステアリング操作手段の操舵角を検出する操舵角検出手段と、
    ドライバの操舵トルクを検出する操舵トルク検出手段と、
    路面から前記操向輪に加わる路面反力を検出する路面反力検出手段と、
    を備えた車両用操舵装置において、
    操舵角と操舵トルクとの関係を操舵履歴として記憶する記憶手段と、
    記憶された操舵履歴における操舵角と操舵トルクとの関係を二次元座標にプロットしたとき、操舵トルクに対する操舵角の分布傾向が正比例であるか反比例であるかを判断するドライバ特性判断手段と、
    操舵トルクに対する操舵角の分布傾向が正比例であると判断された場合、検出された路面反力を反映させた操舵反力が付与されるように前記操舵反力アクチュエータの操舵反力特性を変更し、反比例であると判断された場合、検出された路面反力を反映させない操舵反力が付与されるように前記操舵反力アクチュエータの操舵反力特性を変更する操舵反力特性変更手段と、
    を設けたことを特徴とする車両用操舵装置。
JP2004078882A 2004-03-18 2004-03-18 車両用操舵装置 Expired - Fee Related JP4442270B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004078882A JP4442270B2 (ja) 2004-03-18 2004-03-18 車両用操舵装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004078882A JP4442270B2 (ja) 2004-03-18 2004-03-18 車両用操舵装置

Publications (2)

Publication Number Publication Date
JP2005263031A JP2005263031A (ja) 2005-09-29
JP4442270B2 true JP4442270B2 (ja) 2010-03-31

Family

ID=35088034

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004078882A Expired - Fee Related JP4442270B2 (ja) 2004-03-18 2004-03-18 車両用操舵装置

Country Status (1)

Country Link
JP (1) JP4442270B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4362137B2 (ja) * 2007-02-28 2009-11-11 三菱電機株式会社 車両用操舵装置
JP4980774B2 (ja) * 2007-03-30 2012-07-18 本田技研工業株式会社 車両の走行安全装置
JP5056351B2 (ja) * 2007-10-30 2012-10-24 トヨタ自動車株式会社 電動パワーステアリング装置
JP5477204B2 (ja) * 2010-07-02 2014-04-23 日産自動車株式会社 車両用操舵制御装置
KR101500084B1 (ko) * 2013-06-13 2015-03-06 현대오트론 주식회사 조향 제어 방법 및 장치

Also Published As

Publication number Publication date
JP2005263031A (ja) 2005-09-29

Similar Documents

Publication Publication Date Title
US8489281B2 (en) Method for operating an automobile and an automobile with an environmental detection device
JP6652045B2 (ja) 自動運転車両
CN103029703B (zh) 车辆的车道变换辅助***及其方法
JP4341665B2 (ja) 車両操舵制御装置
US9937954B2 (en) Steering reaction force control apparatus for vehicle
JP4380697B2 (ja) 車両用操舵制御装置
JP2004082862A (ja) 電動式パワーステアリング装置
JP2017052353A (ja) 車両の操舵反力制御装置
JP4530880B2 (ja) 車両の運動状態制御装置
JP5396269B2 (ja) 車両操縦性制御装置
JP5403055B2 (ja) 操舵制御装置
JP5380861B2 (ja) 車線維持支援装置及び車線維持支援方法
CN114450217A (zh) 跨骑型车辆的转向辅助装置
JP2009101809A (ja) 車両用運転支援装置
JP4442270B2 (ja) 車両用操舵装置
JP5380860B2 (ja) 車線維持支援装置及び車線維持支援方法
JP2007168641A (ja) 可変舵角操舵装置及びその方法、並びにその可変舵角操舵装置を搭載した自動車
JP2008037132A (ja) 電動パワーステアリング装置
WO2016194862A1 (ja) 車両制御装置及び車両制御方法
JP5302044B2 (ja) 電動パワーステアリング装置
JP6868173B2 (ja) 車両制御装置、車両制御方法および電動パワーステアリング装置
JP5119691B2 (ja) 操舵制御装置
JP4576881B2 (ja) 車両用自動操舵装置
JP3565264B2 (ja) 車両用操舵制御装置
JPH06298112A (ja) 車両の後輪操舵制御装置

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20051117

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090721

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091222

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100104

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140122

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees