JP4440130B2 - Method for producing positive electrode for organic electrolyte battery - Google Patents

Method for producing positive electrode for organic electrolyte battery Download PDF

Info

Publication number
JP4440130B2
JP4440130B2 JP2005031387A JP2005031387A JP4440130B2 JP 4440130 B2 JP4440130 B2 JP 4440130B2 JP 2005031387 A JP2005031387 A JP 2005031387A JP 2005031387 A JP2005031387 A JP 2005031387A JP 4440130 B2 JP4440130 B2 JP 4440130B2
Authority
JP
Japan
Prior art keywords
positive electrode
core material
titanium core
organic electrolyte
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005031387A
Other languages
Japanese (ja)
Other versions
JP2006221834A (en
Inventor
宏正 平松
敏之 清水
幸宏 五反田
真一 川口
伸一郎 田原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2005031387A priority Critical patent/JP4440130B2/en
Publication of JP2006221834A publication Critical patent/JP2006221834A/en
Application granted granted Critical
Publication of JP4440130B2 publication Critical patent/JP4440130B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Primary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、負極にリチウムあるいはリチウム合金、正極にフッ化カーボンを用いた有機電解液電池正極の製造方法に関するものである。 The present invention relates to a method for producing a positive electrode for an organic electrolyte battery using lithium or a lithium alloy as a negative electrode and carbon fluoride as a positive electrode.

負極にリチウムあるいはリチウム合金、正極にフッ化カーボンを用いた有機電解液電池は、高電圧・高エネルギー密度であり、かつ熱的、化学的安定性から、広い温度範囲での長期使用用途に適した電池として、各種メーター主電源およびメモリーのバックアップ電源として用いられてきた。   Organic electrolyte batteries using lithium or lithium alloy for the negative electrode and carbon fluoride for the positive electrode are suitable for long-term use in a wide temperature range because of their high voltage and high energy density and thermal and chemical stability. As a battery, it has been used as a main power source for various meters and a backup power source for memories.

この有機電解液電池を構成している正極の集電体には金属チタンが使用されてきたが、その理由は、正極活物質であるフッ化カーボンに対する化学的安定性、および有機電解液に対する耐食性とともに、金属チタン表面に薄い酸化皮膜が形成されているということであった。(例えば、特許文献1参照)。   Titanium metal has been used for the current collector of the positive electrode constituting this organic electrolyte battery because the chemical stability against carbon fluoride, which is the positive electrode active material, and the corrosion resistance against organic electrolyte. At the same time, a thin oxide film was formed on the metal titanium surface. (For example, refer to Patent Document 1).

また、高温保存特性を向上させるために、金属チタン表面に酸化皮膜を形成する方法が開示されている(例えば、特許文献2参照)。
特公昭52−45888号公報 特開昭59−186263号公報
Moreover, in order to improve high temperature storage characteristics, a method for forming an oxide film on the surface of titanium metal is disclosed (for example, see Patent Document 2).
Japanese Patent Publication No. 52-45888 JP 59-186263 A

しかしながら、前記金属チタン表面に酸化皮膜を作製する方法では、酸化皮膜が不均一であったり、高温処理が必要であるといった製造装置の簡便性に課題があり、正極の量産しいては電池の量産に課題を有するものであった。   However, in the method for producing an oxide film on the surface of the metal titanium, there is a problem in the simplicity of the production apparatus such that the oxide film is non-uniform or high temperature treatment is required. Have problems.

また、その量産における酸化皮膜形成におけるバラツキは、高温保存における電池内部抵抗上昇として現れ、バックアップ用途で消費される数マイクロアンペアから数ミリアンペアのローレート放電では問題とならなかったが、昨今、市場が拡大しつつあるセキリュティ・車載用途の主電源として用いられる場合の数百ミリアンペアのパルス放電では、放電できないことがあるという課題を有していた。   In addition, the variation in oxide film formation in mass production appeared as an increase in internal resistance of the battery during high temperature storage, and it was not a problem with low rate discharge of several microamperes to several milliamperes consumed for backup applications, but the market has recently expanded. However, the pulse discharge of several hundred milliamperes when used as the main power source for security and in-vehicle applications has been problematic in that it sometimes cannot be discharged.

前記従来の課題を解決するために、本発明の有機電解液電池用正極の製造方法は、正極活物質としてのフッ化カーボンと導電剤と結着剤からなる正極合剤と、金属チタン製芯材を有する有機電解液電池用正極の製造方法であって、正極活物質と導電剤と結着剤と水と
を練合して正極合剤を作製する工程と、金属チタン製芯材を加熱加湿処理する工程と、正極合剤を金属チタン製芯材に充填後圧延する工程を有し、正極合剤を金属チタン製芯材に充填後圧延する工程の後に、金属チタン製芯材を加熱加湿処理する工程を行うというものである。
In order to solve the above-mentioned conventional problems, a method for producing a positive electrode for an organic electrolyte battery according to the present invention comprises a positive electrode mixture comprising carbon fluoride as a positive electrode active material, a conductive agent and a binder, and a metallic titanium core. A method for producing a positive electrode for an organic electrolyte battery having a material, the step of kneading a positive electrode active material, a conductive agent, a binder, and water to produce a positive electrode mixture, and heating a metallic titanium core material heating the steps of moistening, a positive electrode mixture have a step of rolling by filling the metal titanium core material, a positive electrode mixture after the step of rolling by filling the metal titanium core material, a metal titanium core material A humidifying process is performed .

本発明の有機電解液電池用正極の製造方法における工程において金属チタン製芯材を加熱加湿処理する工程を含ませることにより、容易に金属チタン表面に酸化皮膜を形成することで、高温保存後の電池の内部抵抗上昇を抑え、数百ミリアンペアのパルス放電が可能となる。 By including a step of heating and humidifying the metallic titanium core material in the step of the method for producing a positive electrode for an organic electrolyte battery according to the present invention, an oxide film is easily formed on the surface of the metallic titanium, so that The rise in internal resistance of the battery is suppressed, and pulse discharge of several hundred milliamperes becomes possible.

本発明によると、前記金属チタン製芯材を加熱加湿処理することで、容易に金属チタン芯材表面に均一な酸化皮膜が形成されていることが確認された。   According to the present invention, it was confirmed that a uniform oxide film was easily formed on the surface of the metal titanium core by heating and humidifying the metal titanium core.

その結果、高温保存時に正極中や電解液中に存在する遊離フッ素と微量の水分によって形成されるフッ酸による金属チタン製芯材腐食が軽減されたことで電池内部抵抗の上昇が抑えられ、ローレート放電だけでなく、数百ミリアンペア程度のパルス放電も可能にするものである。   As a result, the increase in the internal resistance of the battery is suppressed by reducing the corrosion of the metallic titanium core material due to hydrofluoric acid formed by free fluorine and a small amount of moisture present in the positive electrode and electrolyte during high-temperature storage. In addition to discharge, pulse discharge of several hundred milliamperes is also possible.

本発明は前記のように、正極を作製するにあたり、金属チタン製芯材を加熱加湿処理することにより、電解液を注液する前に金属チタン表面に均一な酸化皮膜を形成し、高温保存時の正極中や電解液中に存在する遊離フッ素と微量の水分によって形成されるフッ酸による金属チタン製芯材腐食を軽減させる効果を持たせることができる。これにより、高温保存後の正極金属チタン製芯材の導電性低下、および金属チタン製芯材と正極活物質の反応抵抗の増大に伴う電池内部抵抗の上昇が抑えられ、数百ミリアンペア程度のパルス放電が可能になることを見出したものである。   As described above, the present invention, when producing the positive electrode, by heating and humidifying the metallic titanium core material, a uniform oxide film is formed on the metallic titanium surface before pouring the electrolytic solution, and during high-temperature storage. It is possible to have an effect of reducing the corrosion of the metallic titanium core material due to hydrofluoric acid formed by free fluorine and a small amount of water present in the positive electrode and the electrolyte. This suppresses the decrease in electrical conductivity of the positive electrode metal titanium core material after high-temperature storage and the increase in battery internal resistance accompanying an increase in the reaction resistance between the metal titanium core material and the positive electrode active material, and a pulse of about several hundred milliamps. It has been found that discharge is possible.

また、その際、正極の金属チタン製芯材を加熱加湿処理する工程は、正極活物質であるフッ化カーボンが前記金属チタン製芯材に充填・圧延された後に処理することが好ましい。これは、インラインもしくはバッチ処理で、あらかじめ加熱加湿処理された金属チタン製芯材を次工程である充填・圧延工程に送り出す場合、金属チタン製芯材が送られる途中で金属チタン製芯材と送りローラーとの機械的摩擦、もしくは充填・圧延工程において充填されない金属チタン製芯材面が同様の送りローラー等でこすられることにより、金属チタン製芯材表面の酸化皮膜に損傷を与え、その形成が不均一になる場合があるためである。   At that time, the step of heating and humidifying the metal titanium core material of the positive electrode is preferably performed after carbon fluoride as a positive electrode active material is filled and rolled into the metal titanium core material. This is because in-line or batch processing, when the metal titanium core material that has been heated and humidified in advance is sent to the filling and rolling process, which is the next process, the metal titanium core material and the metal titanium core material are sent in the middle of the process. Mechanical friction with the roller, or the surface of the metallic titanium core material that is not filled in the filling / rolling process is rubbed with the same feed roller, etc., damaging the oxide film on the surface of the metallic titanium core material. This is because it may become non-uniform.

本発明の負極にはリチウムあるいはリチウムとアルミニウム、水銀、亜鉛、カドミウムなどとのリチウム合金が用いられるが、環境保全や保存特性などの観点から、リチウムアルミニウム合金であることが好ましい。   For the negative electrode of the present invention, lithium or a lithium alloy of lithium and aluminum, mercury, zinc, cadmium or the like is used. From the viewpoints of environmental conservation and storage characteristics, a lithium aluminum alloy is preferable.

正極にはフッ化カーボン(CFx)nが活物質として用いられるが、エネルギー密度の高いものを得るため、xは0.5≦x≦1であることが好ましい。   Carbon fluoride (CFx) n is used as the active material for the positive electrode, but x is preferably 0.5 ≦ x ≦ 1 in order to obtain a material having a high energy density.

また、正極合剤としては、このフッ化カーボン活物質と導電剤としてのアセチレンブラック、フッ素系結着剤を混合したものを用いることができる。   Moreover, as a positive electrode mixture, what mixed this fluorinated carbon active material, acetylene black as a electrically conductive agent, and a fluorine-type binder can be used.

有機電解液には溶媒として、γ−ブチロラクトン、プロピレンカーボネート、エチレンカーボネート、1,2−ジメトキシエタン、溶質として、ホウフッ化リチウム(LiBF4)、トリフルオロスルホン酸リチウム(LiCF3SO3)が用いられるが、溶媒はγ−ブチロラクトン、溶質はホウフッ化リチウム(LiBF4)が好ましい。 The organic electrolyte uses γ-butyrolactone, propylene carbonate, ethylene carbonate, 1,2-dimethoxyethane as a solvent, and lithium borofluoride (LiBF 4 ) and lithium trifluorosulfonate (LiCF 3 SO 3 ) as solutes. However, the solvent is preferably γ-butyrolactone and the solute is preferably lithium borofluoride (LiBF 4 ).

また、前記の正極、負極はセパレータを挟んで接触しないように捲回させて電極体とし、Niめっきを施した鉄製もしくはステンレス製ケースに前記有機電解液とともに封入し、ガスケットを備えた封口板をケース開口部でかしめて電池を構成するものである。   Further, the positive electrode and the negative electrode are wound so as not to contact each other with a separator interposed therebetween to form an electrode body, which is sealed together with the organic electrolyte in an iron or stainless steel case plated with Ni, and a sealing plate having a gasket is provided. The battery is formed by caulking at the case opening.

また、電池形状は円筒型、コイン型、角型のどの形状にも適用されるものであり、形状によって限定されるものではない。   The battery shape is applicable to any shape of a cylindrical shape, a coin shape, and a square shape, and is not limited by the shape.

参考例1)
(1)正極の作製
図1の正極作製工程フロー図と図3の電池断面図を示し、以下にこの内容を説明する。
( Reference Example 1)
(1) Production of Positive Electrode The positive electrode production process flow chart of FIG. 1 and the battery cross-sectional view of FIG. 3 are shown, and the contents will be described below.

まず、黒鉛とフッ素ガスを400℃で反応させることによりフッ化カーボンを作製し、このフッ化カーボン(CF)nと導電剤としてのアセチレンブラック(AB)を、(CF)n:AB=100:10の質量比で乾式混合したものに、結着剤としてのポリテトラフルオロエチレン(PTFE)および純水を、(CF)nとABの混合物:PTFE:純水=100:30:80の質量比で練合した後、脱水したものを正極合剤とする。次に、これを65℃・90%RH雰囲気で8時間保管した金属チタン製金属チタン製芯材に充填後、乾燥、圧延して、フープ状の正極を作製する。その後、リード接合部の正極合剤を剥離して所定の寸法に打抜いた後、正極リード6をスポット溶接して正極1を作製した。   First, carbon fluoride is produced by reacting graphite and fluorine gas at 400 ° C., and this carbon fluoride (CF) n and acetylene black (AB) as a conductive agent are converted into (CF) n: AB = 100: A mixture obtained by dry mixing at a mass ratio of 10 was mixed with polytetrafluoroethylene (PTFE) and pure water as a binder, and a mixture of (CF) n and AB: mass ratio of PTFE: pure water = 100: 30: 80 After kneading with, dehydrated is used as the positive electrode mixture. Next, this is filled in a metallic titanium core material made of metallic titanium that has been stored at 65 ° C. and 90% RH for 8 hours, and then dried and rolled to produce a hoop-shaped positive electrode. Thereafter, the positive electrode mixture at the lead joint was peeled and punched out to a predetermined size, and then the positive electrode lead 6 was spot welded to produce the positive electrode 1.

(2)円筒型有機電解液電池の作製
前記の正極1を用いて、後述する負極、セパレータ、電解液等から機電解液電池を作製した。その断面図を図3に示す。
(2) using a cylindrical organic electrolyte cathode 1 of Preparation said battery, which will be described later negative electrode, a separator, to prepare an organic electrolyte battery from the electrolyte and the like. A cross-sectional view thereof is shown in FIG.

負極2は金属リチウムに負極リード7を圧着して作製し、正極1、負極2をポリプロピレン不織布からなるセパレータ3を挟んで接触しないように捲回して電極体4を構成し、これをポリプロンピレン製の上部絶縁リング8、下部絶縁板9で挟んで、ニッケルめっきした鉄製電池ケース5に収納する。   The negative electrode 2 is prepared by press-bonding a negative electrode lead 7 to metallic lithium, and the positive electrode 1 and the negative electrode 2 are wound so as not to contact with a separator 3 made of a polypropylene non-woven fabric to form an electrode body 4, which is made of polypropylene. The battery is housed in a nickel-plated iron battery case 5 sandwiched between an upper insulating ring 8 and a lower insulating plate 9.

電解液は1mol/Lのホウフッ化リチウム(LiBF4)をγ−ブチロラクトンに溶解したものを注液し、最後にポリプロンピレン製の封口板10を電池ケース5の開口部にセットし、かしめて封口することで参考例1の電池を作製した。 The electrolyte was prepared by injecting 1 mol / L lithium borofluoride (LiBF 4 ) dissolved in γ-butyrolactone, and finally setting the sealing plate 10 made of polypropylene on the opening of the battery case 5 and caulking. The battery of Reference Example 1 was produced by sealing.

(実施例
前記正極の作製において、図2に示すように寸法打抜き工程の次に正極を65℃・90%RH雰囲気で8時間加熱加湿処理を行うこと以外は参考例1と同様にして電池を作製し
、これを実施例とした。
(Example 1 )
In the production of the positive electrode, as shown in FIG. 2, a battery was produced in the same manner as in Reference Example 1 except that the positive electrode was heated and humidified in an atmosphere of 65 ° C. and 90% RH for 8 hours after the dimension punching step. This was designated Example 1 .

(比較例1)
金属チタン製芯材に加熱加湿処理をしなかったこと以外は参考例1と同様にして電池を作製し、これを比較例1とした。
(Comparative Example 1)
A battery was produced in the same manner as in Reference Example 1 except that the metal titanium core was not heated and humidified, and this was used as Comparative Example 1.

以上のようにして作製した各電池を用いて、85℃で1ヶ月保存した前後の電池内部抵抗の変化を表1に示す。   Table 1 shows changes in the internal resistance of the battery before and after being stored at 85 ° C. for one month using each battery produced as described above.

なお、85℃・1ヶ月の保存試験は、常温で5年程度の経時劣化を知るための加速試験の目安となるものであり、この結果の良否を性能目標のひとつの判断基準としている。 The storage test at 85 ° C. for one month is a standard for an accelerated test for knowing the deterioration over time of about 5 years at room temperature, and the quality of this result is used as one criterion for performance.

表1からわかるように、保存後でも参考例1、実施例の電池内部抵抗は平均値が1Ω以下なのに対して、比較例1の電池は内部抵抗の上昇が大きく、300mAでのパルス放電ができなかった。 As can be seen from Table 1, Reference Example 1 even after storage, the battery internal resistance of Example 1 with respect to the average value of a following 1 [Omega, the battery of Comparative Example 1 has a large increase in internal resistance, a pulse discharge at 300mA could not.

参考例1が実施例より保存試験後の内部抵抗が上昇した理由は、金属チタン芯材単独で加熱加湿処理を施した参考例1の場合、後工程での金属チタン芯材と送りローラーとの機械的摩擦、もしくは充填・圧延工程において充填されない金属チタン芯材面が送りローラー等でこすられることにより、酸化皮膜への損傷が避けられず、高温保存中に形成されたフッ酸による腐食防止にバラツキがでたことが原因と推察される。 Reason for Reference Example 1 the internal resistance after storage test than in Example 1 was increased in the case of Reference Example 1 and was heated humidification treatment with metallic titanium core material alone, and rollers and feed metallic titanium core material in a later step Damage to the oxide film is unavoidable by rubbing the metal titanium core material surface that is not filled in the mechanical friction or filling / rolling process with a feed roller, etc., preventing corrosion due to hydrofluoric acid formed during high-temperature storage This is probably due to the variation.

なお、参考例1、実施例ともに、本実施例では加熱加湿処理環境を65℃・90%RH雰囲気で行ったが、目的とする酸化皮膜が得られれば、処理時間を適正化することで、雰囲気温度45℃〜85℃、湿度80%RH〜90%RHの範囲で行ってもよく、雰囲気温度・湿度を限定するものではない。 In both of Reference Example 1 and Example 1 , in this example, the heating and humidification processing environment was performed in an atmosphere of 65 ° C. and 90% RH. However, if the target oxide film is obtained, the processing time can be optimized. The ambient temperature may be 45 ° C. to 85 ° C. and the humidity may be in the range of 80% RH to 90% RH, and the ambient temperature and humidity are not limited.

本発明の有機電解液電池用正極の製造方法によって作製された有機電解液電池は、高温保存後の電池内部抵抗の上昇の抑制により、数百ミリアンペアのパルス放電が可能となるもので、昨今の車載、セキリュティ用途での仕様の要望に応えるものとして有用である。 The organic electrolyte battery produced by the method for producing a positive electrode for an organic electrolyte battery according to the present invention is capable of pulse discharge of several hundred milliamps by suppressing increase in battery internal resistance after high-temperature storage. It is useful as a response to requests for specifications for in-vehicle and security applications.

参考例1の正極作製工程フロー図Positive electrode manufacturing process flow chart of Reference Example 1 本発明の実施例の正極作製工程フロー図Flow chart of positive electrode manufacturing process of Example 1 of the present invention 本発明の実施例の有機電解液電池の断面図Sectional drawing of the organic electrolyte battery of the Example of this invention

符号の説明Explanation of symbols

1 正極
2 負極
3 セパレータ
4 電極体
5 電池ケース
6 正極リード
7 負極リード
8 上部絶縁リング
9 下部絶縁板
10 封口板

DESCRIPTION OF SYMBOLS 1 Positive electrode 2 Negative electrode 3 Separator 4 Electrode body 5 Battery case 6 Positive electrode lead 7 Negative electrode lead 8 Upper insulating ring 9 Lower insulating plate 10 Sealing plate

Claims (1)

正極活物質としてのフッ化カーボンと導電剤と結着剤からなる正極合剤と、金属チタン製芯材を有する有機電解液電池用正極の製造方法であって、正極活物質と導電剤と結着剤と水とを練合して正極合剤を作製する工程と、金属チタン製芯材を加熱加湿処理する工程と、正極合剤を金属チタン製芯材に充填後圧延する工程を有し、正極合剤を金属チタン製芯材に充填後圧延する工程の後に、金属チタン製芯材を加熱加湿処理する工程を行うことを特徴とする有機電解液電池用正極の製造方法。 A method for producing a positive electrode for an organic electrolyte battery having a positive electrode mixture comprising carbon fluoride as a positive electrode active material, a conductive agent and a binder, and a metal titanium core, wherein the positive electrode active material and the conductive agent are bonded together. possess a step of preparing a wear agent and kneaded by cathode mix and water, and heating humidification metallic titanium core material, a step of the positive electrode mixture rolling after filling the metallic titanium core material A method for producing a positive electrode for an organic electrolyte battery, comprising performing a step of heating and humidifying the metallic titanium core material after the step of rolling the positive electrode mixture in the metallic titanium core material and rolling .
JP2005031387A 2005-02-08 2005-02-08 Method for producing positive electrode for organic electrolyte battery Expired - Fee Related JP4440130B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005031387A JP4440130B2 (en) 2005-02-08 2005-02-08 Method for producing positive electrode for organic electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005031387A JP4440130B2 (en) 2005-02-08 2005-02-08 Method for producing positive electrode for organic electrolyte battery

Publications (2)

Publication Number Publication Date
JP2006221834A JP2006221834A (en) 2006-08-24
JP4440130B2 true JP4440130B2 (en) 2010-03-24

Family

ID=36984022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005031387A Expired - Fee Related JP4440130B2 (en) 2005-02-08 2005-02-08 Method for producing positive electrode for organic electrolyte battery

Country Status (1)

Country Link
JP (1) JP4440130B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109917300B (en) * 2019-01-24 2021-10-29 合肥国轩高科动力能源有限公司 Measuring method for improving voltage internal resistance of single winding core in lithium battery

Also Published As

Publication number Publication date
JP2006221834A (en) 2006-08-24

Similar Documents

Publication Publication Date Title
JP3959708B2 (en) Method for producing positive electrode for lithium battery and positive electrode for lithium battery
CN1267926A (en) Gel electrolyte and gel electrolytic cell
JP4873889B2 (en) Lithium primary battery
KR101882975B1 (en) Method for menufacturing a cathode of lithium primary battery
JP2001266941A (en) Manufacturing method of gel electrolyte battery
JP5219449B2 (en) Method for producing non-aqueous electrolyte battery
JP2015115283A (en) Sodium secondary battery, and method for manufacturing positive electrode material used therefor
EP2951335B1 (en) Coated iron electrode and method of making same
JP2008108462A (en) Lithium secondary battery and its manufacturing method
JP5533110B2 (en) Lithium primary battery
JP2001250536A (en) Method of producing negative electrode plate for nonaqueous electrolyte secondary battery
JP4440130B2 (en) Method for producing positive electrode for organic electrolyte battery
JP4867145B2 (en) Non-aqueous electrolyte battery
JP2003157836A (en) Manufacturing method of positive electrode for lithium battery and positive electrode for lithium battery
JP2006260945A (en) Non-aqueous electrolyte primary battery
JP3877147B2 (en) Method for producing positive electrode for lithium battery
JP2003151559A (en) Organic electrolyte battery
WO1999062133A1 (en) Battery plate and battery
JP2009283291A (en) Manufacturing method of positive electrode for lithium battery and positive electrode for lithium battery
JP5278332B2 (en) Electrolytic manganese dioxide for lithium primary battery, production method thereof and lithium primary battery using the same
JP4474717B2 (en) Non-aqueous secondary battery and manufacturing method thereof
JP2009152030A (en) Method of manufacturing nonaqueous electrolyte cell
JP3451602B2 (en) Non-aqueous electrolyte battery
JP2007273279A (en) Nonaqueous electrolyte battery
JP2020177890A (en) Non-aqueous secondary battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090728

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090925

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091208

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100106

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees