JP4439876B2 - Chain antimony oxide fine particles, method for producing the fine particle dispersion and use thereof - Google Patents

Chain antimony oxide fine particles, method for producing the fine particle dispersion and use thereof Download PDF

Info

Publication number
JP4439876B2
JP4439876B2 JP2003376812A JP2003376812A JP4439876B2 JP 4439876 B2 JP4439876 B2 JP 4439876B2 JP 2003376812 A JP2003376812 A JP 2003376812A JP 2003376812 A JP2003376812 A JP 2003376812A JP 4439876 B2 JP4439876 B2 JP 4439876B2
Authority
JP
Japan
Prior art keywords
antimony oxide
oxide fine
chain
fine particle
particle dispersion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003376812A
Other languages
Japanese (ja)
Other versions
JP2005139026A (en
Inventor
良 村口
政幸 松田
広泰 西田
俊晴 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Catalysts and Chemicals Ltd
Original Assignee
JGC Catalysts and Chemicals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JGC Catalysts and Chemicals Ltd filed Critical JGC Catalysts and Chemicals Ltd
Priority to JP2003376812A priority Critical patent/JP4439876B2/en
Priority to KR1020040089148A priority patent/KR101163539B1/en
Priority to US10/981,845 priority patent/US7309457B2/en
Priority to TW093133783A priority patent/TWI365170B/en
Priority to CN2004100905486A priority patent/CN1626584B/en
Publication of JP2005139026A publication Critical patent/JP2005139026A/en
Application granted granted Critical
Publication of JP4439876B2 publication Critical patent/JP4439876B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

本発明は、鎖状酸化アンチモン微粒子と該微粒子分散液の製造方法および用途に関する。さらに詳しくは、平均粒子径が非常に小さくしかも粒子径分布が非常に狭い酸化アンチモン微粒子(コロイド)が鎖状に連結しているために、導電性が高く、透明性に優れ、このため帯電防止性能に優れた透明性被膜の形成に好適に用いることが可能な鎖状酸化アンチモン微粒子およびその微粒子分散液の製造方法および用途に関する。   The present invention relates to chain antimony oxide fine particles, a method for producing the fine particle dispersion, and applications. More specifically, antimony oxide fine particles (colloid) with a very small average particle size and a very narrow particle size distribution are linked in a chain form, so that the conductivity is high and the transparency is excellent. The present invention relates to a chain antimony oxide fine particle that can be suitably used for forming a transparent film having excellent performance, and a method for producing the fine particle dispersion and use thereof.

従来、酸化アンチモン微粒子は、プラスチック、織物、繊維などの難燃助剤、プラスチック、ガラスのコーティング剤、あるいは帯電防止性能、電磁波遮蔽能等を有する透明被膜などとして使用されており、種々の酸化アンチモンゾルの製造方法が知られている。   Conventionally, antimony oxide fine particles have been used as flame retardant aids for plastics, fabrics, fibers, etc., plastics, glass coating agents, or transparent coatings having antistatic performance, electromagnetic wave shielding ability, etc. A method for producing a sol is known.

特公昭57−11848号公報(特許文献1)には、Sb23をKOHおよびH22
約1:2.1:2モルの割合で反応させてアンチモン酸カリウムを形成させた後、脱イオ
ンを行うことにより2〜100nmの粒子径を有するSb23のコロイドゾルを製造する
方法が開示されている。また、三酸化アンチモンと過酸化水素を反応させて酸化アンチモンのコロイドゾルを形成する際に、反応系にLi,K,Na,Mg,Ca,Ba,リン酸ナト
リウムなどの無機系アルカリ物質をSb23に対して1.5〜30モル%添加すると、Sb23とH22との反応速度が加速され、微細粒子径のコロイド状酸化アンチモンが得られ
ることも知られている。さらに、特開昭60−137828号公報(特許文献2)には、Sb23とH22とを反応させて酸化アンチモンのコロイドゾルを形成させる際に、Sb2
3とH22とのモル比を1:1.25〜1.8とし、且つ反応系に無機アルカリ物質を添
加することを特徴とした微細な粒子径で化学的に安定なコロイド状酸化アンチモンの製造方法が記載されている。
In Japanese Patent Publication No. 57-11848 (Patent Document 1), Sb 2 O 3 is reacted with KOH and H 2 O 2 at a ratio of about 1: 2.1: 2 to form potassium antimonate. A method of producing a colloidal sol of Sb 2 O 3 having a particle size of 2 to 100 nm by performing deionization is disclosed. Further, when an antimony trioxide and hydrogen peroxide are reacted to form an antimony oxide colloidal sol, an inorganic alkaline substance such as Li, K, Na, Mg, Ca, Ba, sodium phosphate or the like is added to the reaction system as Sb 2. It is also known that the addition of 1.5 to 30 mol% with respect to O 3 accelerates the reaction rate between Sb 2 O 3 and H 2 O 2 and provides colloidal antimony oxide having a fine particle size. Further, JP-A-60-137828 (Patent Document 2) discloses that when Sb 2 O 3 and H 2 O 2 are reacted to form a colloidal sol of antimony oxide, Sb 2
Chemically stable colloidal form with a fine particle size characterized in that the molar ratio of O 3 and H 2 O 2 is 1: 1.25 to 1.8 and an inorganic alkaline substance is added to the reaction system. A method for producing antimony oxide is described.

特開昭60−41536号公報(特許文献3)には、アンチモン酸アルカリを化学量論比で0.7〜5倍量の一価または二価の無機酸と反応させて五酸化アンチモンゲルを生成
し、次いでこのゲルを分離、水洗後、アミンなどの有機塩基で解膠すると高濃度で低粘度の安定な五酸化アンチモンゾルが得られることが開示されている。
In JP-A-60-41536 (Patent Document 3), an antimony pentoxide gel is prepared by reacting an alkali antimonate with a monovalent or divalent inorganic acid in a stoichiometric ratio of 0.7 to 5 times. It is disclosed that a stable antimony pentoxide sol having a high concentration and a low viscosity can be obtained by forming, then separating and washing the gel and then peptizing with an organic base such as an amine.

特開昭61−227918号公報(特許文献4)には、アンチモン酸アルカリと一価またはニ価の無機酸と反応させて得られる五酸化アンチモンゾルを解膠して五酸化アンチモンゲルを製造する方法において、反応時および/または解膠時に燐酸をP25/Sb23
重量%が0.2〜5.0%になるよう添加すると、有機溶媒で溶媒置換してオルガノゾル化する際に安定性に優れた五酸化アンチモンゾルが得られることが開示されている。
In JP-A-61-227918 (Patent Document 4), an antimony pentoxide sol obtained by reacting an alkali antimonate with a monovalent or divalent inorganic acid is peptized to produce an antimony pentoxide gel. In the process, phosphoric acid is converted to P 2 O 5 / Sb 2 O 3 during reaction and / or peptization.
It is disclosed that antimony pentoxide sol excellent in stability can be obtained when the solvent is substituted with an organic solvent to form an organosol by adding 0.2% to 5.0% by weight.

特開昭61−227919号公報(特許文献5)には、五酸化アンチモンゾルと、三価および/または四価の金属の塩基性塩の少なくとも1種の水溶液とを所定の割合で混合す
ることにより、有機溶媒を加えても凝集しない特性を有するコロイド粒子の表面が三価及び/又は四価の金属で覆われた五酸化アンチモンゾル製造方法が開示されている。
In JP-A-61-227919 (Patent Document 5), antimony pentoxide sol and at least one aqueous solution of a trivalent and / or tetravalent metal basic salt are mixed in a predetermined ratio. Discloses a method for producing an antimony pentoxide sol in which the surface of colloidal particles having the property of not aggregating even when an organic solvent is added is covered with a trivalent and / or tetravalent metal.

さらに、本願出願人は、特開平2−180717号公報(特許文献6)に、三酸化アンチモン、アルカリ物質及び過酸化水素を反応きせてアンチモンゾルを製造するに際し、三酸化アンチモンとアルカリ物質と過酸化水素のモル比を1:2.0〜2.5:0.8〜1.5とし、三酸化アンチモンとアルカリ物質を含む系に、過酸化水素を三酸化アンチモン1モル当り、0.2モル/hr以下の速度で添加することにより微細で粒子径分布の均一な酸化アンチモンゾルが得られることを開示している。
特公昭57−11848号公報 特開昭60−137828号公報 特開昭60−41536号公報 特開昭61−227918号公報 特開昭61−227919号公報 特開平2−180717号公報
Further, the applicant of the present application disclosed in Japanese Patent Application Laid-Open No. 2-180717 (Patent Document 6), when antimony trioxide, an alkaline substance and hydrogen peroxide are reacted to produce an antimony sol, The molar ratio of hydrogen oxide was 1: 2.0 to 2.5: 0.8 to 1.5, and hydrogen peroxide was added to the system containing antimony trioxide and an alkaline substance in an amount of 0.2 per mole of antimony trioxide. It is disclosed that an antimony oxide sol having a fine and uniform particle size distribution can be obtained by adding at a rate of not more than mol / hr.
Japanese Patent Publication No.57-11848 JP-A-60-137828 JP 60-41536 A JP-A 61-227918 JP-A 61-227919 JP-A-2-180717

しかしながら、従来の単分散酸化アンチモン微粒子を帯電防止性能等が要求される透明被膜に用いた場合、用途によっては帯電防止性能が不充分で、ゴミや埃の付着を防止することができない場合があった。このため酸化アンチモン微粒子の配合量を多くしたり、膜厚を厚くすると被膜の強度や透明性が低下したり、経済性に劣る問題があった。   However, when conventional monodispersed antimony oxide fine particles are used in transparent coatings that require antistatic performance, the antistatic performance may be insufficient depending on the application, and adhesion of dust and dirt may not be prevented. It was. For this reason, when the blending amount of the antimony oxide fine particles is increased or the film thickness is increased, there are problems that the strength and transparency of the coating film are lowered and the economy is inferior.

本発明者等は上記問題点に鑑み鋭意検討した結果、特定の粒径範囲の酸化アンチモン微粒子が鎖状に繋がった微粒子を用いれば、得られる透明被膜は帯電防止性能に優れることを見出して本発明を完成するに至った。   As a result of intensive investigations in view of the above problems, the present inventors have found that if fine particles in which antimony oxide fine particles having a specific particle size range are connected in a chain form, the resulting transparent coating has excellent antistatic performance. The invention has been completed.

鎖状酸化アンチモン微粒子は、平均粒子径が5〜50nmの範囲にある酸化アンチモン微粒子が鎖状に連結し、平均連結数が2〜30個の範囲にある。   In the chain antimony oxide fine particles, the antimony oxide fine particles having an average particle diameter in the range of 5 to 50 nm are linked in a chain shape, and the average number of connections is in the range of 2 to 30.

鎖状酸化アンチモン微粒子の体積抵抗値が5〜2000Ω・cmの範囲にあることが好ましい。   The volume resistance value of the chain antimony oxide fine particles is preferably in the range of 5 to 2000 Ω · cm.

本発明に係る鎖状酸化アンチモン微粒子分散液の製造方法は、
アンチモン酸アルカリ水溶液を陽イオン交換樹脂で処理してアンチモン酸(ゲル)分散液を調製し、ついで、
分散液に陰イオン交換樹脂で処理する、および/または分散液に塩基を加えることを特徴としている。
The method for producing a chain antimony oxide fine particle dispersion according to the present invention comprises:
An antimonic acid (gel) dispersion is prepared by treating an alkali antimonate aqueous solution with a cation exchange resin,
The dispersion is treated with an anion exchange resin and / or a base is added to the dispersion.

さらに、得られた鎖状酸化アンチモン微粒子分散液を30〜250℃の温度範囲で熟成してもよい。   Further, the obtained chain antimony oxide fine particle dispersion may be aged in a temperature range of 30 to 250 ° C.

前記アンチモン酸(ゲル)分散液の濃度が固形分として1〜20重量%の範囲にあり、電導度が1〜10mS/cmの範囲にあり、pHが1〜4の範囲にあることが好ましい。   It is preferable that the concentration of the antimonic acid (gel) dispersion is in the range of 1 to 20% by weight as the solid content, the conductivity is in the range of 1 to 10 mS / cm, and the pH is in the range of 1 to 4.

鎖状酸化アンチモン微粒子分散液の電導度が0.01〜10mS/cmの範囲にあり、pHが1〜9の範囲にあることが好ましい。   The conductivity of the chain antimony oxide fine particle dispersion is preferably in the range of 0.01 to 10 mS / cm, and the pH is preferably in the range of 1 to 9.

前記アンチモン酸アルカリ水溶液が、三酸化アンチモン、アルカリおよび過酸化水素を反応させて得たものが好ましい。   The alkali antimonate aqueous solution is preferably obtained by reacting antimony trioxide, alkali and hydrogen peroxide.

本発明に係る被膜付基材は、前記記載の鎖状酸化アンチモン微粒子と被膜形成用マトリックスとを含む被膜が単独でまたは他の被膜とともに基材表面上に形成されてなる。   The substrate with a coating according to the present invention is formed by forming a coating containing the above-described chain antimony oxide fine particles and a coating-forming matrix alone or together with another coating on the surface of the substrate.

本発明によれば、鎖状であるために単分散の酸化アンチモン微粒子に比べて体積抵抗値が低く、基材との密着性、帯電防止性能、ハードコート機能等に優れた透明被膜に用いることのできる鎖状酸化アンチモン粒子の分散液、該微粒子分散液の製造方法および該微粒
子を含んでなる被膜付基材を提供することができる。
According to the present invention, since it is a chain, it has a lower volume resistance value than monodispersed antimony oxide fine particles, and it is used for a transparent film excellent in adhesion to a substrate, antistatic performance, hard coat function, etc. It is possible to provide a dispersion of chain antimony oxide particles, a method for producing the fine particle dispersion, and a coated substrate containing the fine particles.

鎖状酸化アンチモン微粒子
本発明の酸化アンチモン微粒子は、平均粒子径が5〜50nm、好ましくは10〜40nmの範囲の範囲にある。酸化アンチモンは三酸化物または、五酸化物のいずれであってもよい。通常導電性を有しているのは五酸化アンチモンである。さらに、酸化アンチモンに、酸化インジウム、酸化錫などがドーピングされていてもよい。
Chain antimony oxide fine particles The antimony oxide fine particles of the present invention have an average particle diameter in the range of 5 to 50 nm, preferably 10 to 40 nm. Antimony oxide may be either trioxide or pentoxide. It is usually antimony pentoxide that has electrical conductivity. Furthermore, antimony oxide may be doped with indium oxide, tin oxide, or the like.

酸化アンチモン微粒子の平均粒子径が5nm未満の場合は、酸化アンチモン微粒子が凝集する傾向にあり、鎖状酸化アンチモン微粒子が得にくくなり、酸化アンチモン微粒子の平均粒子径が50nmを越えると、長鎖の鎖状酸化アンチモン微粒子が得にくくなったり、得られたとしても、これを透明性被膜付基材等に用いた場合、透明性が低下したり、ヘーズが悪化することがある。   When the average particle size of the antimony oxide fine particles is less than 5 nm, the antimony oxide fine particles tend to aggregate, and it becomes difficult to obtain chain antimony oxide fine particles. When the average particle size of the antimony oxide fine particles exceeds 50 nm, long chain Even if the chain antimony oxide fine particles are difficult to obtain or are obtained, when they are used for a substrate with a transparent film, the transparency may be lowered or the haze may be deteriorated.

本発明に係る鎖状酸化アンチモン微粒子は前記酸化アンチモン微粒子が鎖状に、平均連結数が2〜30個、好ましくは5〜30個の範囲で連結している。   In the chain antimony oxide fine particles according to the present invention, the antimony oxide fine particles are connected in a chain form with an average number of connections of 2 to 30, preferably 5 to 30.

平均粒子径および平均連結数が上記範囲にあれば、単分散粒子が実質的に存在せず、粒界抵抗が小さいために導電性の高い鎖状酸化アンチモン微粒子が得られる。   If the average particle diameter and the average number of connections are in the above ranges, monodisperse particles are not substantially present and the grain boundary resistance is small, so that highly conductive chain antimony oxide fine particles can be obtained.

酸化アンチモン微粒子の平均連結数が2個未満の場合は実質的に単分散粒子と変わらず、後述する体積抵抗値が大きくなってしまい、透明被膜等に配合して用いた場合に充分な帯電防止効果が得られないことがある。   When the average number of connections of antimony oxide fine particles is less than 2, it is substantially the same as monodisperse particles, and the volume resistance value described later becomes large, which is sufficient for preventing static charge when used in a transparent film. The effect may not be obtained.

酸化アンチモン微粒子の平均連結数が30個を越えると鎖状粒子を得ることが困難で、鎖状粒子を形成することなく凝集体となる傾向があり、また鎖状粒子が得られたとしても長すぎて、粒子間で絡み合ったりするので、体積抵抗値を低下させる効果が少なくなってしまうことがある。   When the average number of connections of antimony oxide fine particles exceeds 30, it is difficult to obtain chain particles, and there is a tendency to form aggregates without forming chain particles. Even if chain particles are obtained, they are long. In this case, the particles are entangled with each other, and the effect of reducing the volume resistance value may be reduced.

鎖状酸化アンチモン微粒子の連結数は、鎖状酸化アンチモン微粒子の走査型電子顕微鏡写真を撮影し、約100個の鎖状粒子が存在する領域内の鎖状化アンチモン微粒子について連結数を数え、これを平均して求める。また、鎖状粒子を構成する酸化アンチモン微粒子の平均粒子径は、鎖状粒子を構成する酸化アンチモン微粒子の中の最大の粒子と最小の粒子との平均値を前記約100個の鎖状酸化アンチモン微粒子のそれぞれについて求め、さらにこれらの値を平均値として表した。   The number of linkages of the chain antimony oxide fine particles is obtained by taking a scanning electron micrograph of the chain antimony oxide fine particles and counting the number of linkages of the chain antimony oxide fine particles in the region where about 100 chain particles exist. Is obtained by averaging. The average particle diameter of the antimony oxide fine particles constituting the chain particles is the average value of the largest and smallest particles of the antimony oxide fine particles constituting the chain particles. It calculated | required about each of microparticles | fine-particles, and also represented these values as an average value.

本発明に係る鎖状酸化アンチモン微粒子は、次に定義する体積抵抗値が5〜2000Ω・cm、好ましくは10〜1000Ω・cmの範囲にあることが望ましい。このような体積抵抗値であれば、導電性に優れ、帯電防止性能に優れた被膜を形成することができる。   It is desirable that the chain antimony oxide fine particles according to the present invention have a volume resistance value defined below in the range of 5 to 2000 Ω · cm, preferably 10 to 1000 Ω · cm. With such a volume resistance value, it is possible to form a film having excellent conductivity and excellent antistatic performance.

なお、本発明における体積抵抗値はセラミック製セル(内部に円柱状のくりぬき(断面
積:0.5cm2)を有する)を用い、まず、架台電極上にセルをおき、内部に試料紛体0.6gを
充填し、円柱状突起を有する上部電極の突起を挿入し、油圧機にて上下電極を加圧し、100kg/cm2(9.80MPa)加圧時の抵抗値(Ω)と試料の高さ(cm)を測定し、抵抗値を高さで
乗することによって求めた。
The volume resistance value in the present invention is a ceramic cell (with a cylindrical hollow (with a cross-sectional area of 0.5 cm 2 ) inside). First, the cell is placed on the gantry electrode, and 0.6 g of sample powder is placed inside. Fill and insert the projections of the upper electrode with cylindrical projections, pressurize the upper and lower electrodes with a hydraulic machine, and the resistance value (Ω) and the height of the sample (cm) at 100 kg / cm 2 (9.80 MPa) pressurization ) And the resistance value was multiplied by the height.

なお、前記鎖状酸化アンチモン微粒子にはスズ、リン等のドーピング剤が含まれていてもよい。このようなドーピング剤が含まれているとさらに体積抵抗値の低い鎖状酸化アンチモン微粒子が得られる。   The chain antimony oxide fine particles may contain a doping agent such as tin or phosphorus. When such a doping agent is contained, chain antimony oxide fine particles having a lower volume resistivity can be obtained.

このような鎖状酸化アンチモン微粒子は、乾燥して使用されてもよいが、製法上、分散液として得られ、分散液の状態では、安定に存在し、しかも、輸送等の操作も簡便になるので、鎖状酸化アンチモン微粒子分散液として使用されることが望ましい。   Such chain antimony oxide fine particles may be used after being dried, but are obtained as a dispersion liquid in the manufacturing method, exist stably in the state of the dispersion liquid, and also facilitate operations such as transportation. Therefore, it is desirable to be used as a chain antimony oxide fine particle dispersion.

鎖状酸化アンチモン微粒子の分散液としては、前記鎖状酸化アンチモン微粒子が、水に分散したものである。固形分濃度(酸化アンチモン換算)としては、通常1〜50重量%、
好適には2〜40重量%の範囲にあることが望ましい。
As the dispersion of the chain antimony oxide fine particles, the chain antimony oxide fine particles are dispersed in water. As solid content concentration (antimony oxide conversion), usually 1-50% by weight,
Preferably it is in the range of 2 to 40% by weight.

また、鎖状酸化アンチモン微粒子分散液のpHは1〜9、さらには2〜8の範囲にあることが好ましい。   The pH of the chain antimony oxide fine particle dispersion is preferably in the range of 1 to 9, more preferably 2 to 8.

鎖状酸化アンチモン微粒子分散液のpHが1未満の場合は、鎖状粒子の長さが減少する傾向があり、鎖状酸化アンチモン微粒子粉体の導電性の向上効果が不充分となる傾向にある。鎖状酸化アンチモン微粒子分散液のpHが9を越えると、分散性や安定性が低下し、用途や用法に制限を伴うことがある。   When the pH of the chain antimony oxide fine particle dispersion is less than 1, the length of the chain particles tends to decrease, and the effect of improving the conductivity of the chain antimony oxide fine particle powder tends to be insufficient. . When the pH of the chain antimony oxide fine particle dispersion exceeds 9, the dispersibility and stability are lowered, and there are cases where the use and usage are restricted.

鎖状酸化アンチモン微粒子分散液は、水以外に、必要に応じて、メタノール、エタノール、プロパノール、ブタノール、ジアセトンアルコール、フルフリルアルコール、テトラヒドロフルフリルアルコール、エチレングリコール、ヘキシレングリコールなどのアルコール類;酢酸メチルエステル、酢酸エチルエステルなどのエステル類;ジエチルエーテル、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテルなどのエーテル類;アセトン、メチルエチルケトン、アセチルアセトン、アセト酢酸エステルなどのケトン類などを単独あるいは2種以上混合して用いることが可能である。   In addition to water, the chain antimony oxide fine particle dispersion is optionally alcohols such as methanol, ethanol, propanol, butanol, diacetone alcohol, furfuryl alcohol, tetrahydrofurfuryl alcohol, ethylene glycol, hexylene glycol; Esters such as methyl acetate and ethyl acetate; ethers such as diethyl ether, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether; acetone, methyl ethyl ketone, acetylacetone, It is possible to use ketones such as acetoacetate alone or in admixture of two or more.

本発明に係る鎖状酸化アンチモン微粒子分散液は、電導度が0.01〜10mS/cm、さらには0.05〜5mS/cmの範囲にあることが好ましい。   The chain antimony oxide fine particle dispersion according to the present invention preferably has a conductivity in the range of 0.01 to 10 mS / cm, more preferably 0.05 to 5 mS / cm.

鎖状酸化アンチモン微粒子分散液の電導度が0.01mS未満のものは、得ることが困難であり、得られたとしても生産性が大きく低下する傾向にある。   A chain antimony oxide fine particle dispersion having a conductivity of less than 0.01 mS is difficult to obtain, and even if it is obtained, the productivity tends to be greatly reduced.

鎖状酸化アンチモン微粒子分散液の電導度が10mS/cmを越えると、鎖状酸化アンチモン微粒子の含有量が低下する、すなわち鎖状粒子の形成が困難となる傾向がある。   If the conductivity of the chain antimony oxide fine particle dispersion exceeds 10 mS / cm, the content of the chain antimony oxide fine particles tends to decrease, that is, it becomes difficult to form the chain particles.

このような本発明に係る鎖状酸化アンチモン微粒子およびその分散液の製造方法は、前記要件を満たすものが得られれば特に制限はないが、以下の製造方法は、単分散粒子が実質的に存在せず、酸化アンチモン微粒子同士の連結が充分で、粒界抵抗が小さいために体積抵抗値の低い鎖状酸化アンチモン微粒子の分散液を得ることができるので好適である。   The production method of the chain antimony oxide fine particles and the dispersion thereof according to the present invention is not particularly limited as long as it satisfies the above requirements, but the following production method is substantially free of monodisperse particles. Therefore, the antimony oxide fine particles are sufficiently connected to each other, and since the grain boundary resistance is small, a dispersion of chain antimony oxide fine particles having a low volume resistance value can be obtained.

鎖状酸化アンチモン微粒子分散液の製造方法
つぎに、本発明に係る鎖状酸化アンチモン微粒子分散液の製造方法について説明する。
Method for Producing Chain Antimony Oxide Fine Particle Dispersion Next, a method for producing the chain antimony oxide fine particle dispersion according to the present invention will be described.

本発明に係る鎖状酸化アンチモン微粒子分散液の製造方法は、アンチモン酸アルカリ水溶液を陽イオン交換樹脂で処理してアンチモン酸(ゲル)分散液を調製し、ついで、陰イオン交換樹脂で処理するおよび/または塩基を添加することを特徴としている。   The method for producing a chain antimony oxide fine particle dispersion according to the present invention comprises preparing an antimonic acid (gel) dispersion by treating an alkali antimonate aqueous solution with a cation exchange resin, and then treating with an anion exchange resin. It is characterized by adding a base.

本発明に用いるアンチモン酸アルカリ水溶液としては、本願出願人の出願による特開平2−180717号公報に開示した酸化アンチモンゾルの製造方法で用いられるアンチモ
ン酸アルカリ水溶液が好適である。
As the alkali antimonate aqueous solution used in the present invention, an alkali antimonate aqueous solution used in the method for producing an antimony oxide sol disclosed in JP-A-2-180717 filed by the applicant of the present application is suitable.

具体的には、三酸化アンチモン、アルカリ物質および過酸化水素を反応させて得たものであることが好ましく、酸化アンチモンとアルカリ物質と過酸化水素のモル比を1:2.
0〜2.5:0.8〜1.5好ましくは、1:2.1〜2.3:0.9〜1.2とし、三酸化ア
ンチモンとアルカリ物質を含む系に、過酸化水素を三酸化アンチモン1mole当り、0.2mole/hr以下の速度で添加して得られる。
Specifically, it is preferably obtained by reacting antimony trioxide, an alkali substance and hydrogen peroxide, and the molar ratio of antimony oxide, alkali substance and hydrogen peroxide is 1: 2.
0 to 2.5: 0.8 to 1.5, preferably 1: 2.1 to 2.3: 0.9 to 1.2, and hydrogen peroxide is added to the system containing antimony trioxide and an alkaline substance. It can be obtained by adding at a rate of 0.2 mole / hr or less per mole of antimony trioxide.

このとき使用される三酸化アンチモンは粉末、特に平均粒子径が10μm以下の微粉末のものが好ましく、またアルカリ物質としては、リチウム、カリウム、ナトリウム、マグネシウム、カルシウムなどをあげることができるが中でもKOH、NaOHなどのアルカ
リ金属水酸化物が好ましい。これらのアルカリ物質は、得られるアンチモン酸溶液を安定化させる効果を有する。
The antimony trioxide used at this time is preferably a powder, particularly a fine powder having an average particle size of 10 μm or less, and examples of the alkaline substance include lithium, potassium, sodium, magnesium, calcium, etc. Among them, KOH Alkali metal hydroxides such as NaOH are preferred. These alkaline substances have the effect of stabilizing the resulting antimonic acid solution.

まず、水に所定量のアルカリ物質と三酸化アンチモンを加えて三酸化アンチモン懸濁液を調製する。この三酸化アンチモン懸濁液の三酸化アンチモン濃度は3〜15重量%の範囲とすることが望ましい。ついで、この懸濁液を50℃以上、好ましくは80℃以上に加温し、これに濃度が5〜35重量%の過酸化水素水を三酸化アンチモン1mole当り過酸化水素0.2mole/hr以下の速度で添加する。過酸化水素の添加速度が0.2mole/hrより速い場合は、得られる鎖状酸化アンチモン微粒子分散液の酸化アンチモン微粒子(一次粒子)の粒子径が大きくなり、粒子径分布が広くなるので好ましくない。   First, a predetermined amount of an alkaline substance and antimony trioxide are added to water to prepare an antimony trioxide suspension. The antimony trioxide concentration of the antimony trioxide suspension is desirably in the range of 3 to 15% by weight. Next, this suspension was heated to 50 ° C. or higher, preferably 80 ° C. or higher, and hydrogen peroxide solution having a concentration of 5 to 35% by weight was added with hydrogen peroxide of 0.2 mole / hr or less per mole of antimony trioxide. Add at a rate of When the addition rate of hydrogen peroxide is faster than 0.2 mole / hr, the particle size distribution of the antimony oxide fine particles (primary particles) of the obtained chain antimony oxide fine particle dispersion becomes large, and the particle size distribution is widened. .

また過酸化水素の添加速度が非常に遅い場合は生産量が上らないので過酸化水素の添加速度は0.04mole/hr〜0.2mole/hrの範囲、特に0.1mole/h
r〜0.15mole/hrの範囲が好ましい。また、三酸化アンチモンに対する過酸化水素のモル比が小さくなるにしたがって得られる鎖状酸化アンチモン微粒子の一次粒子の粒子径は小さくなる傾向を示すが、0.8より小さい場合は未溶解の三酸化アンチモンが
多くなるので望ましくない。またモル比が1.5よりも大きい場合は、得られる鎖状酸化
アンチモン微粒子の一次粒子の粒子径が大きくなるので好ましくない。
Further, when the addition rate of hydrogen peroxide is very slow, the production amount does not increase, so the addition rate of hydrogen peroxide is in the range of 0.04 mole / hr to 0.2 mole / hr, particularly 0.1 mole / h.
A range of r to 0.15 mole / hr is preferred. Further, as the molar ratio of hydrogen peroxide to antimony trioxide decreases, the primary particle diameter of the chain antimony oxide fine particles obtained tends to decrease. Undesirable because of increased antimony. On the other hand, when the molar ratio is larger than 1.5, the primary particle diameter of the obtained chain antimony oxide fine particles becomes large, which is not preferable.

上記反応で得られたアンチモン酸アルカリ水溶液を、必要に応じて未溶解の残渣を分離した後、さらに必要に応じて希釈して濃度調整し、陽イオン交換樹脂で処理し、アルカリイオンを除去することによってアンチモン酸(ゲル)分散液を調製する。   After separating the undissolved residue of the alkali antimonate aqueous solution obtained by the above reaction, if necessary, further diluting as necessary to adjust the concentration, treating with a cation exchange resin to remove alkali ions To prepare an antimonic acid (gel) dispersion.

また、アンチモン酸アルカリ水溶液には、スズ酸アルカリ水溶液、リン酸ナトリウム水溶液等のドーピング剤を含む水溶液が含まれていてもよい。このようなドーピング剤が含まれているとさらに体積抵抗値の低い鎖状酸化アンチモン微粒子が得られる。   The alkali antimonate aqueous solution may contain an aqueous solution containing a doping agent such as an alkali stannate aqueous solution or a sodium phosphate aqueous solution. When such a doping agent is contained, chain antimony oxide fine particles having a lower volume resistivity can be obtained.

アンチモン酸(ゲル)は、粒子径が1〜5nm程度の微細な水和酸化アンチモン粒子が凝集し、ゲル状態を呈している。   Antimonic acid (gel) has a gel state in which fine hydrated antimony oxide particles having a particle diameter of about 1 to 5 nm are aggregated.

陽イオン交換樹脂で処理する際のアンチモン酸アルカリ水溶液の濃度は固形分として0.01〜5重量%、さらには0.1〜3重量%の範囲にあることが好ましい。   The concentration of the alkali antimonate aqueous solution in the treatment with the cation exchange resin is preferably in the range of 0.01 to 5% by weight, more preferably 0.1 to 3% by weight as the solid content.

陽イオン交換樹脂による処理は、アンチモン酸アルカリ水溶液をイオン交換樹脂の充填カラムに通液したり、また、イオン交換樹脂を水溶液に加え混合した後、イオン交換樹脂のみを分離させたりすることによって行われる。   The treatment with the cation exchange resin is carried out by passing the alkali antimonate aqueous solution through the ion exchange resin packed column or separating the ion exchange resin only after adding the ion exchange resin to the aqueous solution and mixing. Is called.

アンチモン酸アルカリ水溶液の固形分濃度が0.01重量%未満の場合は、生産効率が
低く、5重量%を越えると、大きなアンチモン酸(ゲル)が生成し、前記した本発明に係
る鎖状酸化アンチモンを得ることが困難となる。
When the solid content concentration of the alkali antimonate aqueous solution is less than 0.01% by weight, the production efficiency is low, and when it exceeds 5% by weight, a large antimonic acid (gel) is formed, and the above-described chain oxidation according to the present invention is performed. It becomes difficult to obtain antimony.

また、陽イオン交換樹脂の使用量は、電導度および/またはpHが以下の範囲になるように用いることが好ましい。   Moreover, it is preferable to use the usage-amount of a cation exchange resin so that electrical conductivity and / or pH may become the following ranges.

得られたアンチモン酸(ゲル)分散液は、電導度が1〜10mS/cm、さらには2〜5mS/cm、pHが1〜4、さらには1〜3の範囲にあることが好ましい。   The obtained antimonic acid (gel) dispersion preferably has an electric conductivity of 1 to 10 mS / cm, more preferably 2 to 5 mS / cm, and a pH of 1 to 4, and more preferably 1 to 3.

アンチモン酸(ゲル)分散液の電導度が1mS/cm未満の場合は、強く凝集した粒子が生成し、陰イオン交換樹脂で処理しても鎖状粒子を得ることが困難となることがあり、アンチモン酸(ゲル)分散液の電導度が10mS/cmを越えると、単分散粒子が生成する傾向にある。   When the conductivity of the antimonic acid (gel) dispersion is less than 1 mS / cm, strongly agglomerated particles are generated, and it may be difficult to obtain chain particles even when treated with an anion exchange resin. When the conductivity of the antimonic acid (gel) dispersion exceeds 10 mS / cm, monodispersed particles tend to be generated.

また、アンチモン酸(ゲル)分散液のpHが1未満の場合は、鎖状粒子にならず凝集粒子が生成する傾向にあり、アンチモン酸(ゲル)分散液のpHが4を越えると単分散粒子が生成する傾向にある。   Further, when the pH of the antimonic acid (gel) dispersion is less than 1, there is a tendency that aggregate particles are formed instead of chain particles. When the pH of the antimonic acid (gel) dispersion exceeds 4, monodispersed particles Tend to generate.

ついで、アンチモン酸(ゲル)分散液を陰イオン交換樹脂で処理するか、あるいは塩基を加える。陰イオン交換樹脂での処理や塩基の添加によって本発明に係る鎖状酸化アンチモン微粒子が形成される。なお、本発明では、陰イオン交換樹脂での処理と塩基の添加処理の双方を行ってもよい。   The antimonic acid (gel) dispersion is then treated with an anion exchange resin or a base is added. The chain antimony oxide fine particles according to the present invention are formed by treatment with an anion exchange resin or addition of a base. In the present invention, both an anion exchange resin treatment and a base addition treatment may be performed.

陰イオン交換樹脂による処理は、アンチモン酸アルカリ水溶液をイオン交換樹脂の充填カラムに通液したり、また、イオン交換樹脂を水溶液に加え混合した後、イオン交換樹脂のみを分離させたりすることによって行われる。   Treatment with an anion exchange resin is carried out by passing an alkali antimonate aqueous solution through a column packed with an ion exchange resin, or by adding and mixing the ion exchange resin to the aqueous solution and then separating only the ion exchange resin. Is called.

陰イオン処理での処理は、分散液の電導度が0.01〜10mS/cm、さらには0.05〜5mS/cmの範囲にあり、pHが1〜9、さらには2〜8の範囲にあることが好ましい。   In the treatment with anion treatment, the conductivity of the dispersion is preferably in the range of 0.01 to 10 mS / cm, more preferably 0.05 to 5 mS / cm, and the pH is preferably in the range of 1 to 9, more preferably 2 to 8. .

塩基を添加する場合、NH3、NaOH、KOH、テトラメチルアンモニウムハイドロキシド(TMAH)などの塩基を、分散液の電導度が0.01〜10mS/cm、さらには0.05〜5mS/cmの範囲にあり、pHが1〜9、好ましくは2〜8となるように添加することが望ましい。 When adding a base, NH 3 , NaOH, KOH, tetramethylammonium hydroxide (TMAH), etc., the conductivity of the dispersion is in the range of 0.01-10 mS / cm, more preferably 0.05-5 mS / cm, It is desirable to add so that the pH is 1 to 9, preferably 2 to 8.

この範囲を外れると、鎖状酸化アンチモン微粒子を得ることが困難であったり、得られたとしても収率が低下することがある。   Outside this range, it is difficult to obtain chain antimony oxide fine particles, and even if it is obtained, the yield may be lowered.

このとき、アンチモン酸(ゲル)分散液を陰イオン交換樹脂で処理したり、液を添加することで鎖状粒子が形成される理由は明らかではないが、酸化アンチモン粒子(一次粒子)の表面帯電量が減少し、強く凝集することなく鎖状に連結するものと考えられる。   At this time, it is not clear why the antimonic acid (gel) dispersion is treated with an anion exchange resin or the liquid is added to form chain particles, but the surface charge of the antimony oxide particles (primary particles) is not clear. It is considered that the amount is reduced and the chain is linked without strong aggregation.

鎖状酸化アンチモン微粒子分散液の電導度、pHが前記範囲にあれば、鎖状酸化アンチモン微粒子分散液の安定性が高く、鎖状粒子が崩壊することもなく、また、鎖状粒子が凝集して、塊状となることもない。   If the conductivity and pH of the chain antimony oxide fine particle dispersion are within the above ranges, the stability of the chain antimony oxide fine particle dispersion is high, the chain particles do not collapse, and the chain particles aggregate. It does not become a lump.

本発明の方法では、さらに、必要に応じて前記鎖状酸化アンチモン微粒子分散液を30〜250℃、さらには50〜200℃の温度範囲で熟成することが好ましい。   In the method of the present invention, it is preferable that the chain antimony oxide fine particle dispersion is aged in a temperature range of 30 to 250 ° C., more preferably 50 to 200 ° C., if necessary.

鎖状酸化アンチモン微粒子分散液を熟成する際の温度が30℃未満では、単分散の酸化アンチモン微粒子が残存することがあり、また鎖状粒子を構成する酸化アンチモン微粒子の接合が不充分で、鎖状粒子が容易に崩壊したり、酸化アンチモンの結晶性の向上が不充
分で体積抵抗値の低い鎖状酸化アンチモン微粒子の分散液が得られないことがある。
When the temperature at the time of aging the chain antimony oxide fine particle dispersion is less than 30 ° C., monodispersed antimony oxide fine particles may remain, and bonding of antimony oxide fine particles constituting the chain particles is insufficient. In some cases, a dispersion of chain antimony oxide fine particles having a low volume resistance value due to insufficient disintegration of the particle-like particles or insufficient improvement in crystallinity of antimony oxide may be obtained.

また、熟成する際の温度が250℃を越えてもさらに酸化アンチモン微粒子の接合が促進されたり、酸化アンチモン微粒子の結晶性が向上することもない。   Further, even when the aging temperature exceeds 250 ° C., the bonding of the antimony oxide fine particles is not further promoted, and the crystallinity of the antimony oxide fine particles is not improved.

このようにして得られた鎖状酸化アンチモン微粒子分散液は、電導度が0.01〜10mS/cm、さらには0.05〜5mS/cmの範囲にあり、pHが1〜9、さらには2〜8の範
囲にあることが好ましい。
The thus obtained chain antimony oxide fine particle dispersion has a conductivity in the range of 0.01 to 10 mS / cm, more preferably 0.05 to 5 mS / cm, and a pH in the range of 1 to 9, and further 2 to 8. It is preferable that it exists in.

鎖状酸化アンチモン微粒子分散液の電導度、pHが前記範囲にあれば、鎖状酸化アンチモン微粒子分散液の安定性が高く、鎖状粒子が崩壊することもなく、また、鎖状粒子が凝集して、塊状となることもない。   If the conductivity and pH of the chain antimony oxide fine particle dispersion are within the above ranges, the stability of the chain antimony oxide fine particle dispersion is high, the chain particles do not collapse, and the chain particles aggregate. It does not become a lump.

このようなpHの変化は以下のように考察される。まず、アンチモン酸ゲルをイオン交換樹脂で処理するとイオン濃度の低下により電導度が低下し、これに付随してpHが上昇する。そして熟成しても、実質的に電導度、pHは変わらないか、電導度は低下する。   Such a change in pH is considered as follows. First, when antimonic acid gel is treated with an ion exchange resin, the conductivity decreases due to a decrease in ion concentration, and the pH increases accordingly. And even if it age | cure | ripens, electrical conductivity and pH do not change substantially, or electrical conductivity falls.

得られた鎖状酸化アンチモン微粒子分散液中の鎖状酸化アンチモン微粒子はこれを構成する平均粒子径が5〜50nmの酸化アンチモン微粒子(一次粒子)が鎖状に、平均連結数が2〜30個、好ましくは5〜30個の範囲で連結している。   The chain antimony oxide fine particles in the obtained chain antimony oxide fine particle dispersion are composed of chain antimony oxide fine particles (primary particles) having an average particle diameter of 5 to 50 nm and an average number of linkages of 2 to 30. , Preferably they are connected in the range of 5-30.

このようにして得られた鎖状酸化アンチモン微粒子分散液は、必要に応じて限外膜法等で濃縮し、あるいは水を加えて希釈し、所望の濃度、通常固形分濃度(酸化アンチモン換
算)として5〜40重量%の分散液とすることができる。
The chain antimony oxide fine particle dispersion obtained in this way is concentrated by an outer membrane method or the like, if necessary, or diluted by adding water to obtain a desired concentration, a normal solid content concentration (antimony oxide conversion). As a dispersion of 5 to 40% by weight.

さらに、水を有機溶媒に置換して鎖状酸化アンチモン微粒子の有機溶媒分散液とすることもできる。有機溶媒としては前記したと同様の有機溶媒を用いることができる。   Furthermore, water can be substituted with an organic solvent to obtain an organic solvent dispersion of chain antimony oxide fine particles. As the organic solvent, the same organic solvent as described above can be used.

被膜付基材
続いて、本発明に係る被膜付基材について説明する。
Next, the coated substrate according to the present invention will be described.

本発明に係る被膜付基材は、前記鎖状酸化アンチモン微粒子と被膜形成用マトリックスとを含む被膜が単独でまたは他の被膜とともに基材表面上に反射防止、帯電防止、ハードコート等の目的で形成されている。   In the base material with a coating according to the present invention, the coating containing the chain antimony oxide fine particles and the matrix for forming the coating is used alone or together with other coatings on the surface of the base for antireflection, antistatic, hard coating and the like. Is formed.

基材としては、ガラス、ポリカーボネート、アクリル樹脂、PET、TAC等のプラスチックシート、プラスチックフィルム、プラスチックレンズ、プラスチックパネル等の基材、偏光フィルム、陰極線管、蛍光表示管、液晶ディスプレイ、プロジェクションディスプレイ、プラズマディスプレイ、ELディスプレイなどが挙げられる。   Base materials include glass, polycarbonate, acrylic resin, plastic sheets such as PET and TAC, plastic films, plastic lenses, plastic panels and other substrates, polarizing films, cathode ray tubes, fluorescent display tubes, liquid crystal displays, projection displays, and plasmas. A display, an EL display, etc. are mentioned.

用途によって異なるものの、前記鎖状酸化アンチモン微粒子を含む被膜が単独で形成されていてもよいが、基材上に保護膜、平坦化膜、高屈折率膜、絶縁膜、導電性樹脂膜、導電性金属微粒子膜、導電性金属酸化物微粒子膜、その他必要に応じて用いるプライマー膜等と組み合わせて形成されていてもよい。なお、組み合わせて用いる場合、本発明の被膜が必ずしも最外表面に形成されている必要はない。   Although the film containing the chain antimony oxide fine particles may be formed independently, depending on the application, a protective film, a planarizing film, a high refractive index film, an insulating film, a conductive resin film, a conductive film may be formed on the substrate. It may be formed in combination with a conductive metal fine particle film, a conductive metal oxide fine particle film, or a primer film used as necessary. When used in combination, the coating of the present invention is not necessarily formed on the outermost surface.

本発明の被膜付基材の製造に用いる被膜形成用塗布液は、前記した鎖状酸化アンチモン微粒子分散液と被膜形成用マトリックスとの混合液であり、必要により有機溶媒が混合されることもある。   The coating liquid for forming a film used in the production of the coated substrate of the present invention is a mixed liquid of the above-described chain antimony oxide fine particle dispersion and the film forming matrix, and an organic solvent may be mixed as necessary. .

被膜形成用マトリックスとは、基材の表面に被膜を形成し得る成分をいい、基材との密着性や硬度、塗工性等の条件に適合する樹脂等から選択して用いることができる。例えば、従来から用いられているポリエステル樹脂、アクリル樹脂、ウレタン樹脂、塩化ビニル樹脂、エポキシ樹脂、メラミン樹脂、フッ素樹脂、シリコン樹脂、ブチラール樹脂、フェノール樹脂、酢酸ビニル樹脂、紫外線硬化樹脂、電子線硬化樹脂、エマルジョン樹脂、水溶性樹脂、親水性樹脂、これら樹脂の混合物、さらにはこれら樹脂の共重合体や変性体などの塗料用樹脂、または、アルコキシシラン等の加水分解性有機珪素化合物およびこれらの部分加水分解物等が挙げられる。   The film-forming matrix refers to a component that can form a film on the surface of the substrate, and can be selected from resins and the like that meet conditions such as adhesion to the substrate, hardness, and coatability. For example, conventionally used polyester resin, acrylic resin, urethane resin, vinyl chloride resin, epoxy resin, melamine resin, fluorine resin, silicon resin, butyral resin, phenol resin, vinyl acetate resin, UV curable resin, electron beam curing Resins, emulsion resins, water-soluble resins, hydrophilic resins, mixtures of these resins, resins for coatings such as copolymers and modified products of these resins, hydrolyzable organosilicon compounds such as alkoxysilanes, and the like A partial hydrolyzate etc. are mentioned.

マトリックスとして塗料用樹脂を用いる場合には、例えば、前記鎖状酸化アンチモン微粒子分散液の分散媒としての水をアルコール等の有機溶媒で置換した有機溶媒分散液、好ましくは鎖状酸化アンチモン微粒子を公知のカップリング剤で処理した後、有機溶媒に分散させた有機溶媒分散液と塗料用樹脂とを適当な有機溶剤で希釈して、塗布液とすることができる。   When a coating resin is used as the matrix, for example, an organic solvent dispersion obtained by replacing water as a dispersion medium of the chain antimony oxide fine particle dispersion with an organic solvent such as alcohol, preferably a chain antimony oxide fine particle is known. After the treatment with this coupling agent, the organic solvent dispersion dispersed in the organic solvent and the coating resin can be diluted with an appropriate organic solvent to obtain a coating solution.

一方、マトリックスとして加水分解性有機珪素化合物を用いる場合には、例えば、アルコキシシランとアルコールの混合液に、水および触媒としての酸またはアルカリを加えることにより、アルコキシシランの部分加水分解物を得、これに前記鎖状酸化アンチモン微粒子分散液を混合し、必要に応じて有機溶剤で希釈して、塗布液とすることができる。   On the other hand, when using a hydrolyzable organosilicon compound as a matrix, for example, by adding water or an acid or alkali as a catalyst to a mixture of alkoxysilane and alcohol, a partially hydrolyzed product of alkoxysilane is obtained, The chain antimony oxide fine particle dispersion can be mixed with this and diluted with an organic solvent as necessary to obtain a coating solution.

被膜形成用塗布液中の鎖状酸化アンチモン微粒子とマトリックスの重量割合は、鎖状酸化アンチモン微粒子/マトリックス=1/99〜9/1の範囲が好ましい。重量比が9/1を越えると被膜の強度や基材との密着性が低下して実用性に欠ける一方、1/99未満では当該鎖状酸化アンチモン微粒子の添加による被膜の帯電防止性能、基材との密着性向上、被膜強度向上等の効果が不充分となる。   The weight ratio between the chain antimony oxide fine particles and the matrix in the coating liquid for forming a film is preferably in the range of chain antimony oxide fine particles / matrix = 1/99 to 9/1. When the weight ratio exceeds 9/1, the strength of the film and the adhesion to the substrate are lowered, and the practicality is lacking. On the other hand, when the weight ratio is less than 1/99, the antistatic performance of the film by adding the chain antimony oxide fine particles, Effects such as improved adhesion to the material and improved coating strength are insufficient.

上記被膜形成用塗布液をディップ法、スプレー法、スピナー法、ロールコート法などの周知の方法で基材に塗布し、乾燥し、更に必要に応じて、加熱あるいは紫外線照射等により硬化して得ることで被膜が形成される。   The coating liquid for forming a film is applied to a substrate by a known method such as a dipping method, a spray method, a spinner method or a roll coating method, dried, and further cured by heating or ultraviolet irradiation as necessary. Thus, a film is formed.

[実施例]
以下に示す実施例により、本発明を更に具体的に説明する。
[Example]
The following examples further illustrate the present invention.

実施例1
鎖状酸化アンチモン微粒子分散液(1)の調製
純水1800gに苛性カリ(旭硝子(株)製:純度85重量%)57gを溶解した溶液中に三酸化アンチモン(住友金属鉱山(株)製:KN 純度98.5重量%)111gを懸濁させた。この懸濁液を95℃に加熱し、次いで、過酸化水素水(林純薬(株)製:特級、純度35重量%)32.8gを純水110.7gで希釈した水溶液を9時間で添加(0.1mole/hr)し、三酸化アンチモンを溶解し、その後11時間熟成した。冷却後、得られた溶液から1000gを取り、この溶液を純水6000gで希釈した後、陽イオン交換樹脂層(三菱化学(株)製:pk-216)に通して脱イオン処理を行った。このときのpHは2.1、電導度は
2.4mS/cmであった。
Example 1
Preparation of chain antimony oxide fine particle dispersion (1) Antimony trioxide (manufactured by Sumitomo Metal Mining Co., Ltd .: KN purity) in a solution obtained by dissolving 57 g of caustic potash (Asahi Glass Co., Ltd .: purity 85% by weight) in 1800 g of pure water 98.5% by weight) was suspended. This suspension was heated to 95 ° C., and then an aqueous solution obtained by diluting 32.8 g of hydrogen peroxide water (manufactured by Hayashi Junyaku Co., Ltd .: special grade, purity 35% by weight) with 110.7 g of pure water in 9 hours. It was added (0.1 mole / hr) to dissolve antimony trioxide, and then aged for 11 hours. After cooling, 1000 g was taken from the resulting solution, and this solution was diluted with 6000 g of pure water, and then passed through a cation exchange resin layer (Mitsubishi Chemical Corporation: pk-216) for deionization treatment. The pH at this time was 2.1, and the conductivity was 2.4 mS / cm.

ついで、陰イオン交換樹脂層(三菱化学(株)製:SA-20A)に通してpHが2.5、電導
度が1.0mS/cmになるまで脱イオン処理を行った。
Subsequently, it was passed through an anion exchange resin layer (manufactured by Mitsubishi Chemical Co., Ltd .: SA-20A), and deionization treatment was performed until the pH reached 2.5 and the conductivity reached 1.0 mS / cm.

脱イオンして得た溶液を温度70℃で10時間熟成した後、限外膜で濃縮して固形分濃度14重量%(酸化アンチモン換算)の鎖状酸化アンチモン微粒子分散液(1)を調製した
。得られた鎖状酸化アンチモン微粒子分散液(1)のpHは3.0、電導度は0.1mS/cm
であった。
The solution obtained by deionization was aged at a temperature of 70 ° C. for 10 hours, and then concentrated on the outer membrane to prepare a chain antimony oxide fine particle dispersion (1) having a solid concentration of 14% by weight (in terms of antimony oxide). . The obtained chain antimony oxide fine particle dispersion (1) has a pH of 3.0 and an electric conductivity of 0.1 mS / cm.
Met.

また、電子顕微鏡写真を撮影し、100個の粒子について測定した結果、酸化アンチモン微粒子(一次粒子)の平均粒子径は15nm、平均連結数は5であった。   Moreover, as a result of taking an electron micrograph and measuring 100 particles, the average particle diameter of the antimony oxide fine particles (primary particles) was 15 nm, and the average number of connections was 5.

ハードコート膜(透明被膜)形成用塗布液(H-1)の調製
鎖状酸化アンチモン微粒子分散液(1)を溶媒置換により水をエチルセロソルブ/エタノ
ール混合溶媒(重量比=44/66)に置換し、固形分濃度20重量%に調整した。
Preparation of coating liquid (H-1) for forming hard coat film (transparent film) Replacing chain antimony oxide fine particle dispersion (1) with solvent, replacing water with ethyl cellosolve / ethanol mixed solvent (weight ratio = 44/66) The solid content was adjusted to 20% by weight.

この分散液200gに紫外線硬化樹脂(大日本インキ(株)製:ユニデック17-824-9、固形分濃度79重量%)203gとエチルセロソルブ264gとを混合してハードコート膜形成用塗布液(H-1)を調製した。   200 g of this dispersion was mixed with 203 g of an ultraviolet curable resin (Dainippon Ink Co., Ltd .: Unidec 17-824-9, solid concentration 79% by weight) and 264 g of ethyl cellosolve to form a hard coat film forming coating solution (H -1) was prepared.

ハードコート膜付基材(F-1)の製造
ハードコート膜形成用塗布液(H-1)をPETフィルム(厚さ:188μm、屈折率:1.65)にバーコーター法で塗布し、80℃で1分間乾燥した後、高圧水銀灯(80W/
cm)を1分間照射して硬化させ、ハードコート膜付基材(F-1)を調製した。このときのハードコート膜の厚さは5μmであった。
Production of base material with hard coat film (F-1) Coating liquid (H-1) for forming a hard coat film was applied to a PET film (thickness: 188 μm, refractive index: 1.65) by a bar coater method. After drying at 1 ° C. for 1 minute, a high-pressure mercury lamp (80 W /
cm) was cured by irradiation for 1 minute to prepare a base material with hard coat film (F-1). At this time, the thickness of the hard coat film was 5 μm.

得られたハードコート膜の表面抵抗を、表面抵抗計(三菱化学(株)製:ハイレスタ)にて測定し、結果を表1に示す。   The surface resistance of the obtained hard coat film was measured with a surface resistance meter (manufactured by Mitsubishi Chemical Corporation: Hiresta), and the results are shown in Table 1.

また、全光線透過率およびヘーズをヘーズメーター(スガ試験機(株)製)により測定し、結果を表1に示す。   Further, the total light transmittance and haze were measured with a haze meter (manufactured by Suga Test Instruments Co., Ltd.), and the results are shown in Table 1.

さらに、鉛筆硬度、耐擦傷性および密着性を以下の方法および評価基準で評価し、結果を表1に示す。   Further, pencil hardness, scratch resistance and adhesion were evaluated by the following methods and evaluation criteria, and the results are shown in Table 1.

鉛筆硬度の測定
JIS−K−5400に準じて鉛筆硬度試験器により測定した。
Measurement of pencil hardness It measured with the pencil hardness tester according to JIS-K-5400.

耐擦傷性の測定
#0000スチールウールを用い、荷重500g/cm2で50回摺動し、膜の表面を
目視観察し、以下の基準で評価し、結果を表に示す。
Measurement of scratch resistance Using # 0000 steel wool, sliding 50 times at a load of 500 g / cm 2 , visually observing the surface of the film, evaluating according to the following criteria, and the results are shown in the table.

評価基準:
筋条の傷が認められない :◎
筋条に傷が僅かに認められる:○
筋条に傷が多数認められる :△
面が全体的に削られている :×
密着性
反射防止膜付基材(F-1)の表面にナイフで縦横1mmの間隔で11本の平行な傷を付
け100個の升目を作り、これにセロハンテープ(登録商標)を接着し、ついで、セロハンテープ(登録商標)を剥離したときに被膜が剥離せず残存している升目の数を、以下の4段階に分類することによって密着性を評価した。結果を表1に示す。
Evaluation criteria:
No streak injury is found: ◎
Slightly scratched streak: ○
Many scratches are found in the streak: △
The surface has been cut entirely: ×
Adhesive antireflection film-coated substrate (F-1) surface with 11 parallel scratches at 1mm vertical and horizontal intervals with a knife to make 100 squares, cellophane tape (registered trademark) is adhered to this Next, the adhesion was evaluated by classifying the number of cells that were not peeled off when the cellophane tape (registered trademark) was peeled into the following four stages. The results are shown in Table 1.

残存升目の数95個以上 :◎
残存升目の数90〜94個:○
残存升目の数85〜89個:△
残存升目の数84個以下 :×
実施例2
鎖状酸化アンチモン微粒子分散液(2)の調製
実施例1において、陰イオン交換樹脂に通して脱イオンを行う際に、pH2.8、電導
度0.5mS/cmになるまで脱イオンした以外は実施例1と同様にして鎖状酸化アンチモン微粒子分散液(2)を調製した。酸化アンチモン微粒子(一次粒子)の平均粒子径は15
nm、平均連結数は10であった。
Number of remaining cells: 95 or more: ◎
Number of remaining squares 90-94: ○
Number of remaining squares: 85-89:
Number of remaining squares: 84 or less: ×
Example 2
Preparation of Chain Antimony Oxide Fine Particle Dispersion (2) In Example 1, except that deionization was performed until pH 2.8 and conductivity 0.5 mS / cm when deionization was performed through an anion exchange resin. In the same manner as in Example 1, a chain antimony oxide fine particle dispersion (2) was prepared. The average particle diameter of the antimony oxide fine particles (primary particles) is 15
nm, the average number of connections was 10.

ハードコート膜付基材(F-2)の製造
鎖状酸化アンチモン微粒子分散液(2)を用いた以外は実施例1と同様にしてハードコー
ト膜(透明被膜)形成用塗布液(H-2)を調製し、ついでハードコート膜付基材(F-2)を調製した。このときのハードコート膜の厚さは5μmであった。
Production of substrate with hard coat film (F-2) Coating liquid for forming hard coat film (transparent film) (H-2) in the same manner as in Example 1 except that the chain antimony oxide fine particle dispersion liquid (2) was used. Then, a base material with a hard coat film (F-2) was prepared. At this time, the thickness of the hard coat film was 5 μm.

得られたハードコート膜について表面抵抗、全光線透過率、ヘーズ、鉛筆硬度、耐擦傷性および密着性を評価し、結果を表1に示す。   The obtained hard coat film was evaluated for surface resistance, total light transmittance, haze, pencil hardness, scratch resistance and adhesion, and the results are shown in Table 1.

実施例3
鎖状酸化アンチモン微粒子分散液(3)の調製
実施例1において、陰イオン交換樹脂に通して脱イオンを行う際に、pH5.0、電導
度0.5mS/cmになるまで脱イオンした以外は実施例1と同様にして鎖状酸化アンチモン微粒子分散液(3)を調製した。酸化アンチモン微粒子(一次粒子)の平均粒子径は15
nm、平均連結数は15であった。
Example 3
Preparation of chain antimony oxide fine particle dispersion (3) In Example 1, except that deionization was performed until pH 5.0 and conductivity 0.5 mS / cm when deionization was performed through an anion exchange resin. In the same manner as in Example 1, a chain antimony oxide fine particle dispersion (3) was prepared. The average particle diameter of the antimony oxide fine particles (primary particles) is 15
nm, the average number of connections was 15.

ハードコート膜付基材(F-3)の製造
鎖状酸化アンチモン微粒子分散液(3)を用いた以外は実施例1と同様にしてハードコー
ト膜(透明被膜)形成用塗布液(H-3)を調製し、ついでハードコート膜付基材(F-3)を調製した。このときのハードコート膜の厚さは5μmであった。
Production of substrate with hard coat film (F-3) Coating liquid for forming hard coat film (transparent film) (H-3) in the same manner as in Example 1 except that the chain antimony oxide fine particle dispersion liquid (3) was used. Then, a base material with a hard coat film (F-3) was prepared. At this time, the thickness of the hard coat film was 5 μm.

得られたハードコート膜について表面抵抗、全光線透過率、ヘーズ、鉛筆硬度、耐擦傷性および密着性を評価し、結果を表1に示す。   The obtained hard coat film was evaluated for surface resistance, total light transmittance, haze, pencil hardness, scratch resistance and adhesion, and the results are shown in Table 1.

実施例4
鎖状酸化アンチモン微粒子分散液(4)の調製
純水1800gに苛性カリ(旭硝子(株)製:純度85重量%)57gを溶解した溶液中に三酸化アンチモン(住友金属鉱山(株)製:KN 純度98.5重量%)111gを懸濁させた。この懸濁液を95℃に加熱し、次いで、過酸化水素水(林純薬(株)製:特級、純度35重量%)59.2gを純水194.9gで希釈した水溶液を6時間で添加(0.27mole/hr)し、三酸化アンチモンを溶解し、その後14時間熟成した。冷却後、得られた溶液か
ら1000gを取り、この溶液を純水6000gで希釈した後、陽イオン交換樹脂層(三菱化学(株)製:pk-216)に通して脱イオン処理を行った。このときのpHは2.2、電導
度は2.3mS/cmであった。
Example 4
Preparation of chain antimony oxide fine particle dispersion (4) Antimony trioxide (manufactured by Sumitomo Metal Mining Co., Ltd .: KN purity) in a solution obtained by dissolving 57 g of caustic potash (Asahi Glass Co., Ltd .: purity 85% by weight) in 1800 g of pure water 98.5% by weight) was suspended. This suspension was heated to 95 ° C., and then an aqueous solution obtained by diluting 59.2 g of hydrogen peroxide solution (manufactured by Hayashi Junyaku Co., Ltd .: special grade, purity 35% by weight) with 194.9 g of pure water in 6 hours. It was added (0.27 mole / hr) to dissolve antimony trioxide, and then aged for 14 hours. After cooling, 1000 g was taken from the resulting solution, and this solution was diluted with 6000 g of pure water, and then passed through a cation exchange resin layer (Mitsubishi Chemical Corporation: pk-216) for deionization treatment. The pH at this time was 2.2, and the conductivity was 2.3 mS / cm.

ついで、陰イオン交換樹脂層(三菱化学(株)製:SA-20A)に通してpHが2.5、電導
度が1.0mS/cmになるまで脱イオン処理を行った。
Subsequently, it was passed through an anion exchange resin layer (manufactured by Mitsubishi Chemical Corporation: SA-20A), and deionization treatment was performed until the pH reached 2.5 and the conductivity reached 1.0 mS / cm.

脱イオンして得た溶液を温度70℃で10時間熟成した後、限外膜で濃縮して固形分濃度14重量%の鎖状酸化アンチモン微粒子分散液(2)を調製した。得られた鎖状酸化アン
チモン微粒子分散液(1)のpHは3.2、電導度は0.1mS/cmであった。
The solution obtained by deionization was aged at a temperature of 70 ° C. for 10 hours, and then concentrated with an ultra-fine membrane to prepare a chain antimony oxide fine particle dispersion (2) having a solid content of 14% by weight. The obtained chain antimony oxide fine particle dispersion (1) had a pH of 3.2 and an electrical conductivity of 0.1 mS / cm.

また、電子顕微鏡写真を撮影し、100個の粒子について測定した結果、酸化アンチモン微粒子(一次粒子)の平均粒子径は20nm、平均連結数は5であった。   Moreover, as a result of taking an electron micrograph and measuring 100 particles, the average particle diameter of the antimony oxide fine particles (primary particles) was 20 nm, and the average number of connections was 5.

ハードコート膜付基材(F-4)の製造
鎖状酸化アンチモン微粒子分散液(4)を用いた以外は実施例1と同様にしてハードコー
ト膜(透明被膜)形成用塗布液(H-4)を調製し、ついでハードコート膜付基材(F-4)を調製した。このときのハードコート膜の厚さは5μmであった。
Production of substrate with hard coat film (F-4) Coating liquid for forming hard coat film (transparent film) (H-4) in the same manner as in Example 1 except that the chain antimony oxide fine particle dispersion (4) was used. ), And then a base material with a hard coat film (F-4) was prepared. At this time, the thickness of the hard coat film was 5 μm.

得られたハードコート膜について表面抵抗、全光線透過率、ヘーズ、鉛筆硬度、耐擦傷性および密着性を評価し、結果を表1に示す。   The obtained hard coat film was evaluated for surface resistance, total light transmittance, haze, pencil hardness, scratch resistance and adhesion, and the results are shown in Table 1.

実施例5
鎖状酸化アンチモン微粒子分散液(5)の調製
純水1800gに苛性カリ(旭硝子(株)製:純度85重量%)57gを溶解した溶液中に三酸化アンチモン(住友金属鉱山(株)製:KN 純度98.5重量%)111gを懸濁させた。この懸濁液を95℃に加熱し、次いで、過酸化水素水(林純薬(株)製:特級、純度35重量%)59.2gを純水194.9gで希釈した水溶液を6時間で添加(0.27mole/hr)し、三酸化アンチモンを溶解し、その後14時間熟成した。冷却後、得られた溶液か
ら1000gを取り、この溶液を純水6000gで希釈した後、陽イオン交換樹脂層(三菱化学(株)製:pk-216)に通して脱イオン処理を行った。このときのpHは2.2、電導
度は2.4mS/cmであった。
Example 5
Preparation of chain antimony oxide fine particle dispersion (5) Antimony trioxide (Sumitomo Metal Mining Co., Ltd .: KN purity) in a solution of 57 g of caustic potash (Asahi Glass Co., Ltd .: purity 85% by weight) dissolved in 1800 g of pure water 98.5% by weight) was suspended. This suspension was heated to 95 ° C., and then an aqueous solution obtained by diluting 59.2 g of hydrogen peroxide solution (manufactured by Hayashi Junyaku Co., Ltd .: special grade, purity 35% by weight) with 194.9 g of pure water in 6 hours. It was added (0.27 mole / hr) to dissolve antimony trioxide, and then aged for 14 hours. After cooling, 1000 g was taken from the resulting solution, and this solution was diluted with 6000 g of pure water, and then passed through a cation exchange resin layer (Mitsubishi Chemical Corporation: pk-216) for deionization treatment. The pH at this time was 2.2 and the conductivity was 2.4 mS / cm.

ついで、陰イオン交換樹脂層(三菱化学(株)製:SA-20A)に通してpHが2.8、電導
度が0.5mS/cmになるまで脱イオン処理を行った。
Subsequently, it was passed through an anion exchange resin layer (manufactured by Mitsubishi Chemical Co., Ltd .: SA-20A), and deionization treatment was performed until the pH was 2.8 and the conductivity was 0.5 mS / cm.

脱イオンして得た溶液を温度70℃で10時間熟成した後、限外膜で濃縮して固形分濃度14重量%の鎖状酸化アンチモン微粒子分散液(2)を調製した。得られた鎖状酸化アン
チモン微粒子分散液(5)のpHは3.3、電導度は0.1mS/cmであった。
The solution obtained by deionization was aged at a temperature of 70 ° C. for 10 hours, and then concentrated with an ultra-fine membrane to prepare a chain antimony oxide fine particle dispersion (2) having a solid content of 14% by weight. The obtained chain antimony oxide fine particle dispersion (5) had a pH of 3.3 and an electrical conductivity of 0.1 mS / cm.

また、電子顕微鏡写真を撮影し、100個の粒子について測定した結果、酸化アンチモン微粒子(一次粒子)の平均粒子径は20nm、平均連結数は10であった。   Moreover, as a result of taking an electron micrograph and measuring 100 particles, the average particle diameter of the antimony oxide fine particles (primary particles) was 20 nm, and the average number of connections was 10.

ハードコート膜付基材(F-5)の製造
鎖状酸化アンチモン微粒子分散液(5)を用いた以外は実施例1と同様にしてハードコー
ト膜(透明被膜)形成用塗布液(H-5)を調製し、ついでハードコート膜付基材(F-5)を調製した。このときのハードコート膜の厚さは5μmであった。
Production of base material with hard coat film (F-5) Coating liquid for forming hard coat film (transparent film) (H-5) in the same manner as in Example 1 except that the chain antimony oxide fine particle dispersion liquid (5) was used. Then, a base material with a hard coat film (F-5) was prepared. At this time, the thickness of the hard coat film was 5 μm.

得られたハードコート膜について表面抵抗、全光線透過率、ヘーズ、鉛筆硬度、耐擦傷性および密着性を評価し、結果を表1に示す。   The obtained hard coat film was evaluated for surface resistance, total light transmittance, haze, pencil hardness, scratch resistance and adhesion, and the results are shown in Table 1.

実施例6
ハードコート膜(透明被膜)形成用塗布液(H-6)の調製
鎖状酸化アンチモン微粒子分散液(5)を溶媒置換により水をエチルセロソルブ/エタノ
ール混合溶媒(重量比=44/66)に置換し、固形分濃度20重量%に調整した。
Example 6
Preparation of coating liquid (H-6) for forming hard coat film (transparent film) Replacing the chain antimony oxide fine particle dispersion (5) with solvent, replacing water with ethyl cellosolve / ethanol mixed solvent (weight ratio = 44/66) The solid content was adjusted to 20% by weight.

この分散液200gに紫外線硬化樹脂(大日本インキ(株)製:ユニデック17-824-9、固形分濃度79重量%)50.6gとエチルセロソルブ16.1gとを混合してハードコート膜形成用塗布液(H-6)を調製した。   UV dispersion resin (Dainippon Ink Co., Ltd .: Unidec 17-824-9, solid concentration 79% by weight) 50.6 g and ethyl cellosolve 16.1 g were mixed with 200 g of this dispersion to form a hard coat film. A coating solution (H-6) was prepared.

ハードコート膜付基材(F-6)の製造
実施例1において、ハードコート膜(透明被膜)形成用塗布液(H-6)を用いた以外は
同様にしてハードコート膜付基材(F-6)を調製した。このときのハードコート膜の厚さ
は5μmであった。
Production of base material with hard coat film (F-6) In Example 1 of the base material with hard coat film (F-6), except that the coating liquid (H-6) for forming the hard coat film (transparent film) was used. -6) was prepared. At this time, the thickness of the hard coat film was 5 μm.

得られたハードコート膜について表面抵抗、全光線透過率、ヘーズ、鉛筆硬度、耐擦傷性および密着性を評価し、結果を表1に示す。   The obtained hard coat film was evaluated for surface resistance, total light transmittance, haze, pencil hardness, scratch resistance and adhesion, and the results are shown in Table 1.

実施例7
ハードコート膜(透明被膜)形成用塗布液(H-7)の調製
鎖状酸化アンチモン微粒子分散液(5)を溶媒置換により水をエチルセロソルブ/エタノ
ール混合溶媒(重量比=44/66)に置換し、固形分濃度20重量%に調整した。
Example 7
Preparation of coating liquid (H-7) for forming hard coat film (transparent film) Replacing chain antimony oxide fine particle dispersion (5) with solvent, replacing water with ethyl cellosolve / ethanol mixed solvent (weight ratio = 44/66) The solid content was adjusted to 20% by weight.

この分散液200gとアクリル樹脂(日立化成(株)製:ヒタロイド1007)40gとエチルセロソルブ26.7gとを混合してハードコート膜形成用塗布液(H-7)を調製し
た。
200 g of this dispersion, 40 g of acrylic resin (manufactured by Hitachi Chemical Co., Ltd .: Hitaloid 1007) and 26.7 g of ethyl cellosolve were mixed to prepare a coating liquid for forming a hard coat film (H-7).

ハードコート膜付基材(F-7)の製造
実施例1において、ハードコート膜(透明被膜)形成用塗布液(H-7)を用いた以外は
同様にしてハードコート膜付基材(F-7)を調製した。このときのハードコート膜の厚さ
は5μmであった。
Production of base material with hard coat film (F-7) In Example 1 of the base material with hard coat film (F-7), except that the coating liquid for forming a hard coat film (transparent film) (H-7) was used. -7) was prepared. At this time, the thickness of the hard coat film was 5 μm.

得られたハードコート膜について表面抵抗、全光線透過率、ヘーズ、鉛筆硬度、耐擦傷性および密着性を評価し、結果を表1に示す。   The obtained hard coat film was evaluated for surface resistance, total light transmittance, haze, pencil hardness, scratch resistance and adhesion, and the results are shown in Table 1.

実施例8
鎖状酸化アンチモン微粒子分散液(6)の調製
実施例5において陰イオン交換樹脂に通して脱イオンを行う際に、pH5.0、電導度
0.5mS/cmになるまで脱イオンした以外は実施例5と同様にして鎖状酸化アンチモン微粒子分散液(6)を調製した。得られた鎖状酸化アンチモン微粒子分散液(6)のpHは6.
5、電導度は0.1mS/cmであった。
Example 8
Preparation of chain antimony oxide fine particle dispersion (6) When deionization was conducted through an anion exchange resin in Example 5, deionization was carried out except for deionization until pH 5.0 and conductivity of 0.5 mS / cm. In the same manner as in Example 5, a chain antimony oxide fine particle dispersion (6) was prepared. The chain antimony oxide fine particle dispersion (6) obtained had a pH of 6.
5. The conductivity was 0.1 mS / cm.

また、電子顕微鏡写真を撮影し、100個の粒子について測定した結果、酸化アンチモン微粒子(一次粒子)の平均粒子径は20nm、平均連結数は15であった。   Moreover, as a result of taking an electron micrograph and measuring about 100 particles, the average particle diameter of the antimony oxide fine particles (primary particles) was 20 nm, and the average number of connections was 15.

ハードコート膜付基材(F-8)の製造
鎖状酸化アンチモン微粒子分散液(6)を用いた以外は実施例1と同様にしてハードコー
ト膜(透明被膜)形成用塗布液(H-8)を調製し、ついでハードコート膜付基材(F-8)を調製した。このときのハードコート膜の厚さは5μmであった。
Production of substrate with hard coat film (F-8) Coating liquid for forming hard coat film (transparent film) (H-8) in the same manner as in Example 1 except that the chain antimony oxide fine particle dispersion (6) was used. Then, a base material with a hard coat film (F-8) was prepared. At this time, the thickness of the hard coat film was 5 μm.

得られたハードコート膜について表面抵抗、全光線透過率、ヘーズ、鉛筆硬度、耐擦傷性および密着性を評価し、結果を表1に示す。   The obtained hard coat film was evaluated for surface resistance, total light transmittance, haze, pencil hardness, scratch resistance and adhesion, and the results are shown in Table 1.

実施例9
鎖状酸化アンチモン微粒子分散液(7)の調製
純水1800gに苛性カリ(旭硝子(株)製:純度85重量%)57gを溶解した溶液中に三酸化アンチモン(住友金属鉱山(株)製:KN 純度98.5重量%)111gを懸濁させた。この懸濁液を95℃に加熱し、次いで、過酸化水素水(林純薬(株)製:特級、純度35重量%)72.9gを純水246gで希釈した水溶液を7時間で添加(0.29mole/hr)し、三酸化アンチモンを溶解し、その後13時間熟成した。冷却後、得られた溶液から1000gを取り、この溶液を純水6000gで希釈した後、陽イオン交換樹脂層(三菱化学(株)製:pk-216)に通して脱イオン処理を行った。このときのpHは2.0、電導度
は3.0mS/cmであった。
Example 9
Preparation of chain antimony oxide fine particle dispersion (7) Antimony trioxide (manufactured by Sumitomo Metal Mining Co., Ltd .: KN purity) in a solution obtained by dissolving 57 g of caustic potash (Asahi Glass Co., Ltd .: purity 85% by weight) in 1800 g of pure water 98.5% by weight) was suspended. This suspension was heated to 95 ° C., and then an aqueous solution obtained by diluting 72.9 g of hydrogen peroxide solution (produced by Hayashi Junyaku Co., Ltd .: special grade, purity 35% by weight) with 246 g of pure water was added in 7 hours ( 0.29 mole / hr), antimony trioxide was dissolved, and then aged for 13 hours. After cooling, 1000 g was taken from the resulting solution, and this solution was diluted with 6000 g of pure water, and then passed through a cation exchange resin layer (Mitsubishi Chemical Corporation: pk-216) for deionization treatment. The pH at this time was 2.0, and the conductivity was 3.0 mS / cm.

ついで、陰イオン交換樹脂層(三菱化学(株)製:SA-20A)に通してpHが2.8、電導
度が0.5mS/cmになるまで脱イオン処理を行った。
Subsequently, it was passed through an anion exchange resin layer (manufactured by Mitsubishi Chemical Co., Ltd .: SA-20A), and deionization treatment was performed until the pH was 2.8 and the conductivity was 0.5 mS / cm.

脱イオンして得た溶液を温度70℃で10時間熟成した後、限外膜で濃縮して固形分濃度14重量%の鎖状酸化アンチモン微粒子分散液(7)を調製した。得られた鎖状酸化アン
チモン微粒子分散液(7)のpHは3.2、電導度は0.2mS/cmであった。
The solution obtained by deionization was aged at a temperature of 70 ° C. for 10 hours, and then concentrated with an ultra-fine membrane to prepare a chain antimony oxide fine particle dispersion (7) having a solid concentration of 14% by weight. The obtained chain antimony oxide fine particle dispersion (7) had a pH of 3.2 and an electric conductivity of 0.2 mS / cm.

また、電子顕微鏡写真を撮影し、100個の粒子について測定した結果、酸化アンチモン微粒子(一次粒子)の平均粒子径は35nm、平均連結数は10であった。   Moreover, as a result of taking an electron micrograph and measuring about 100 particles, the average particle diameter of the antimony oxide fine particles (primary particles) was 35 nm, and the average number of connections was 10.

ハードコート膜付基材(F-9)の製造
鎖状酸化アンチモン微粒子分散液(7)を用いた以外は実施例1と同様にしてハードコー
ト膜(透明被膜)形成用塗布液(H-9)を調製し、ついでハードコート膜付基材(F-9)を調製した。このときのハードコート膜の厚さは5μmであった。
Production of substrate with hard coat film (F-9) Coating solution for forming hard coat film (transparent film) (H-9) in the same manner as in Example 1 except that the chain antimony oxide fine particle dispersion liquid (7) was used. Then, a base material with a hard coat film (F-9) was prepared. At this time, the thickness of the hard coat film was 5 μm.

得られたハードコート膜について表面抵抗、全光線透過率、ヘーズ、鉛筆硬度、耐擦傷性および密着性を評価し、結果を表1に示す。   The obtained hard coat film was evaluated for surface resistance, total light transmittance, haze, pencil hardness, scratch resistance and adhesion, and the results are shown in Table 1.

実施例10
鎖状酸化アンチモン微粒子分散液(8)の調製
純水1800gに苛性カリ(旭硝子(株)製:純度85重量%)57gを溶解した溶液中に三酸化アンチモン(住友金属鉱山(株)製:KN 純度98.5重量%)111gを懸濁させた。この懸濁液を95℃に加熱し、次いで、過酸化水素水(林純薬(株)製:特級、純度35重量%)59.2gを純水194.9gで希釈した水溶液を6時間で添加(0.27mole/hr)し、三酸化アンチモンを溶解し、その後14時間熟成した。冷却後、得られた溶液か
ら1000gを取り、この溶液を純水6000gで希釈した後、陽イオン交換樹脂層(三菱化学(株)製:pk-216)に通して脱イオン処理を行った。このときのpHは2.1、電導
度は3.1mS/cmであった。
Example 10
Preparation of chain antimony oxide fine particle dispersion (8) Antimony trioxide (manufactured by Sumitomo Metal Mining Co., Ltd .: KN purity) in a solution of 57 g of caustic potash (Asahi Glass Co., Ltd .: purity 85% by weight) dissolved in 1800 g of pure water 98.5% by weight) was suspended. This suspension was heated to 95 ° C., and then an aqueous solution obtained by diluting 59.2 g of hydrogen peroxide solution (manufactured by Hayashi Junyaku Co., Ltd .: special grade, purity 35% by weight) with 194.9 g of pure water in 6 hours. It was added (0.27 mole / hr) to dissolve antimony trioxide, and then aged for 14 hours. After cooling, 1000 g was taken from the resulting solution, and this solution was diluted with 6000 g of pure water, and then passed through a cation exchange resin layer (Mitsubishi Chemical Corporation: pk-216) for deionization treatment. The pH at this time was 2.1, and the conductivity was 3.1 mS / cm.

ついで、濃度3重量%のアンモニア水を添加してpHを5.0にした。このときの電導
度は4.5mS/cmであった。
Then, ammonia water having a concentration of 3 wt% was added to adjust the pH to 5.0. The conductivity at this time was 4.5 mS / cm.

得られた溶液を、温度70℃で10時間熟成した後、陰イオン交換樹脂(三菱化学(株)
製:SA-20A)に通してpHが3.0、電導度が0.4になるまで脱イオン処理を行い、ついで限外
濾過膜で濃縮し、固形分濃度14重量%の鎖状酸化アンチモン微粒子分散液(8)を調製し
た。得られた鎖状酸化アンチモン微粒子分散液(8)のpHは3.8、電導度は0.5mS/cmであった。
The resulting solution was aged at 70 ° C. for 10 hours, and then an anion exchange resin (Mitsubishi Chemical Corporation).
Manufactured by SA-20A), deionized until the pH is 3.0 and the conductivity is 0.4, and then concentrated with an ultrafiltration membrane. 8) was prepared. The obtained chain antimony oxide fine particle dispersion (8) had a pH of 3.8 and an electrical conductivity of 0.5 mS / cm.

また、電子顕微鏡写真を撮影し、100個の粒子について測定した結果、酸化アンチモン微粒子(一次粒子)の平均粒子径は20nm、平均連結数は20であった。   Moreover, as a result of taking an electron micrograph and measuring about 100 particles, the average particle diameter of the antimony oxide fine particles (primary particles) was 20 nm, and the average number of connections was 20.

ハードコート膜(透明被膜)形成用塗布液(H-10)の調製
鎖状酸化アンチモン微粒子分散液(8)を用いた以外は実施例1と同様にしてハードコー
ト膜(透明被膜)形成用塗布液(H-10)を調製し、ついでハードコート膜付基材(F-10)を調製した。このときのハードコート膜の厚さは5μmであった。
Preparation of coating liquid for forming hard coat film (transparent coating) (H-10) Coating for forming hard coat film (transparent coating) in the same manner as in Example 1 except that the chain antimony oxide fine particle dispersion (8) was used. A liquid (H-10) was prepared, and then a base material with a hard coat film (F-10) was prepared. At this time, the thickness of the hard coat film was 5 μm.

得られたハードコート膜について表面抵抗、全光線透過率、ヘーズ、鉛筆硬度、耐擦傷性および密着性を評価し、結果を表1に示す。   The obtained hard coat film was evaluated for surface resistance, total light transmittance, haze, pencil hardness, scratch resistance and adhesion, and the results are shown in Table 1.

比較例1
ハードコート膜形成用塗布液(RH-1)の調製
紫外線硬化樹脂(大日本インキ(株)製:ユニデック17-824-9、固形分濃度79重量%)380gとエチルセロソルブ620gとを混合してハードコート膜形成用塗布液(RH-1)を調製した。
Comparative Example 1
Preparation of hard coat film forming coating solution (RH-1 ) 380 g of UV curable resin (Dainippon Ink Co., Ltd .: Unidec 17-824-9, solid content concentration 79% by weight) and 620 g of ethyl cellosolv were mixed. A coating solution for forming a hard coat film (RH-1) was prepared.

ハードコート膜付基材(RF-1)の製造
実施例1において、ハードコート膜形成用塗布液(RH-1)を用いた以外は同様にしてハ
ードコート膜付基材(RF-1)を調製した。このときのハードコート膜の厚さは5μmであ
った。
Production of base material with hard coat film (RF-1) In Example 1, the base material with hard coat film (RF-1) was prepared in the same manner except that the coating liquid for forming a hard coat film (RH-1) was used. Prepared. At this time, the thickness of the hard coat film was 5 μm.

得られたハードコート膜について表面抵抗、全光線透過率、ヘーズ、鉛筆硬度、耐擦傷性および密着性を評価し、結果を表1に示す。   The obtained hard coat film was evaluated for surface resistance, total light transmittance, haze, pencil hardness, scratch resistance and adhesion, and the results are shown in Table 1.

比較例2
ハードコート膜形成用塗布液(RH-2)の調製
アクリル樹脂(ヒタロイド1007、日立化成(株)製)300gとエチルセロソルブ700gとを混合してハードコート膜形成用塗布液(RH-2)を調製した。
Comparative Example 2
Preparation of hard coat film forming coating solution (RH-2) 300 g of acrylic resin (Hitaroid 1007, manufactured by Hitachi Chemical Co., Ltd.) and 700 g of ethyl cellosolve were mixed to prepare a hard coat film forming coating solution (RH-2). Prepared.

ハードコート膜付基材(RF-2)の製造
実施例1において、ハードコート膜形成用塗布液(RH-2)を用いた以外は同様にしてハ
ードコート膜付基材(RF-2)を調製した。このときのハードコート膜の厚さは5μmであ
った。
Production of base material with hard coat film (RF-2) In Example 1, the base material with hard coat film (RF-2) was prepared in the same manner except that the coating liquid for forming a hard coat film (RH-2) was used. Prepared. At this time, the thickness of the hard coat film was 5 μm.

得られたハードコート膜について表面抵抗、全光線透過率、ヘーズ、鉛筆硬度、耐擦傷性および密着性を評価し、結果を表1に示す。   The obtained hard coat film was evaluated for surface resistance, total light transmittance, haze, pencil hardness, scratch resistance and adhesion, and the results are shown in Table 1.

比較例3
ハードコート膜形成用塗布液(RH-3)の調製
シリカオルガノゾル(触媒化成工業(株)製;OSCAL−1432、平均粒子径12nm、SiO2濃度20重量%、分散媒:イソプロピルアルコール)200gに紫外線硬化樹脂(大日本インキ(株)製:ユニデック17-824-9、固形分濃度79重量%)203gとエチルセロソルブ264gとを混合してハードコート膜形成用塗布液(RH-3)を調製した
Comparative Example 3
Preparation of Hard Coat Film Forming Coating Liquid (RH-3 ) To 200 g of silica organosol (manufactured by Catalyst Chemical Industry Co., Ltd .; OSCAL-1432, average particle size 12 nm, SiO 2 concentration 20 wt%, dispersion medium: isopropyl alcohol) UV coating resin (Dai Nippon Ink Co., Ltd .: Unidec 17-824-9, solid concentration 79% by weight) 203g and ethyl cellosolve 264g were mixed to prepare a hard coat film forming coating solution (RH-3). did.

ハードコート膜付基材(RF-3)の製造
実施例1において、ハードコート膜形成用塗布液(RH-3)を用いた以外は同様にしてハ
ードコート膜付基材(RF-3)を調製した。このときのハードコート膜の厚さは5μmであ
った。
Production of base material with hard coat film (RF-3) In Example 1, the base material with hard coat film (RF-3) was prepared in the same manner except that the coating liquid for forming a hard coat film (RH-3) was used. Prepared. At this time, the thickness of the hard coat film was 5 μm.

得られたハードコート膜について表面抵抗、全光線透過率、ヘーズ、鉛筆硬度、耐擦傷性および密着性を評価し、結果を表1に示した。   The obtained hard coat film was evaluated for surface resistance, total light transmittance, haze, pencil hardness, scratch resistance and adhesion, and the results are shown in Table 1.

比較例4
ハードコート膜形成用塗布液(RH-4)の調製
三酸化アンチモン粒子(平均粒子径150μm)を濃度30重量%になるようにイソプロピルアルコールに分散させ、サンドミルにて30℃で5時間粉砕した。これにイソプロピルアルコールを加えて濃度20重量%の三酸化アンチモン微粒子分散液(平均粒子径50nm)を調製した。この分散液200gに紫外線硬化樹脂(大日本インキ(株)製:ユニデック17-824-9、固形分濃度79重量%)203gとエチルセロソルブ264gとを混
合してハードコート膜形成用塗布液(RH-4)を調製した。(この酸化アンチモン粒子は鎖状に連結していない)
ハードコート膜付基材(RF-4)の製造
実施例1において、ハードコート膜形成用塗布液(RH-4)を用いた以外は同様にしてハ
ードコート膜付基材(RF-4)を調製した。このときのハードコート膜の厚さは5μmであ
った。
Comparative Example 4
Preparation of Hard Coat Film Forming Coating Liquid (RH-4) Antimony trioxide particles (average particle size 150 μm) were dispersed in isopropyl alcohol so as to have a concentration of 30% by weight, and pulverized with a sand mill at 30 ° C. for 5 hours. Isopropyl alcohol was added thereto to prepare an antimony trioxide fine particle dispersion (average particle size 50 nm) having a concentration of 20% by weight. 200 g of this dispersion was mixed with 203 g of an ultraviolet curable resin (Dainippon Ink Co., Ltd .: Unidec 17-824-9, solid concentration 79% by weight) and 264 g of ethyl cellosolve to form a hard coat film forming coating solution (RH -4) was prepared. (The antimony oxide particles are not linked in a chain)
Production of base material with hard coat film (RF-4) In Example 1, the base material with hard coat film (RF-4) was prepared in the same manner except that the coating liquid for forming a hard coat film (RH-4) was used. Prepared. At this time, the thickness of the hard coat film was 5 μm.

得られたハードコート膜について表面抵抗、全光線透過率、ヘーズ、鉛筆硬度、耐擦傷性および密着性を評価し、結果を表1に示した。   The obtained hard coat film was evaluated for surface resistance, total light transmittance, haze, pencil hardness, scratch resistance and adhesion, and the results are shown in Table 1.

比較例5
酸化アンチモン微粒子分散液(R-1)の調製
純水1800gに苛性カリ(旭硝子(株)製:純度85重量%)57gを溶解した溶液中に三酸化アンチモン(住友金属鉱山(株)製:KN 純度98.5重量%)111gを懸濁させた。この懸濁液を95℃に加熱し、次いで、過酸化水素水(林純薬(株)製:特級、純度35重量%)59.2gを純水194.9gで希釈した水溶液を6時間で添加(0.27mole/hr)し、三酸化アンチモンを溶解し、その後14時間熟成した。冷却後、得られた溶液か
ら1000gを取り、この溶液を純水6000gで希釈した後、陽イオン交換樹脂層(三菱化学(株)製:pk-216)に通して脱イオン処理を行った。このときのpHは2.0、電導
度は3.1mS/cmであった。
Comparative Example 5
Preparation of antimony oxide fine particle dispersion (R-1) Antimony trioxide (manufactured by Sumitomo Metal Mining Co., Ltd .: KN purity) in a solution obtained by dissolving 57 g of caustic potash (Asahi Glass Co., Ltd .: purity 85% by weight) in 1800 g of pure water 98.5% by weight) was suspended. This suspension was heated to 95 ° C., and then an aqueous solution obtained by diluting 59.2 g of hydrogen peroxide solution (manufactured by Hayashi Junyaku Co., Ltd .: special grade, purity 35% by weight) with 194.9 g of pure water in 6 hours. It was added (0.27 mole / hr) to dissolve antimony trioxide, and then aged for 14 hours. After cooling, 1000 g was taken from the resulting solution, and this solution was diluted with 6000 g of pure water, and then passed through a cation exchange resin layer (Mitsubishi Chemical Corporation: pk-216) for deionization treatment. At this time, the pH was 2.0, and the conductivity was 3.1 mS / cm.

ついで、温度70℃で10時間熟成した後、限外膜で濃縮して固形分濃度14重量%の酸化アンチモン微粒子分散液(R-1)を調製した。得られた酸化アンチモン微粒子分散液(R-1)のpHは2.1、電導度は1.2mS/cmであった。   Subsequently, after aging for 10 hours at a temperature of 70 ° C., the mixture was concentrated with an ultra-thin film to prepare an antimony oxide fine particle dispersion (R-1) having a solid concentration of 14% by weight. The obtained antimony oxide fine particle dispersion (R-1) had a pH of 2.1 and an electric conductivity of 1.2 mS / cm.

また、電子顕微鏡写真を撮影し、100個の粒子について測定した結果、鎖状粒子は認められず、酸化アンチモン微粒子の平均粒子径は20nmであった。   Further, as a result of taking an electron micrograph and measuring 100 particles, no chain particles were observed, and the average particle diameter of the antimony oxide fine particles was 20 nm.

ハードコート膜(透明被膜)形成用塗布液(RH-5)の調製
酸化アンチモン微粒子分散液(R-1)を溶媒置換により水をエチルセロソルブ/エタノー
ル混合溶媒(重量比=44/66)に置換し、固形分濃度20重量%に調整した。
Preparation of coating liquid (RH-5) for forming hard coat film (transparent film) Antimony oxide fine particle dispersion (R-1) was replaced with solvent by replacing water with ethyl cellosolve / ethanol mixed solvent (weight ratio = 44/66) The solid content was adjusted to 20% by weight.

この分散液200gに紫外線硬化樹脂(大日本インキ(株)製:ユニデック17-824-9、固形分濃度79重量%)203gとエチルセロソルブ264gとを混合してハードコート膜形成用塗布液(H-5)を調製した。   200 g of this dispersion was mixed with 203 g of an ultraviolet curable resin (Dainippon Ink Co., Ltd .: Unidec 17-824-9, solid concentration 79% by weight) and 264 g of ethyl cellosolve to form a hard coat film forming coating solution (H -5) was prepared.

ハードコート膜付基材(RF-5)の製造
実施例1において、ハードコート膜(透明被膜)形成用塗布液(RH-5)を用いた以外は同様にしてハードコート膜付基材(RF-5)を調製した。このときのハードコート膜の厚さは5μmであった。
Production of substrate with hard coat film (RF-5) Substrate with hard coat film (RF-5) was produced in the same manner as in Example 1 except that the coating liquid (RH-5) for forming a hard coat film (transparent film) was used. -5) was prepared. At this time, the thickness of the hard coat film was 5 μm.

得られたハードコート膜について表面抵抗、全光線透過率、ヘーズ、鉛筆硬度、耐擦傷性および密着性を評価し、結果を表1に示す。   The obtained hard coat film was evaluated for surface resistance, total light transmittance, haze, pencil hardness, scratch resistance and adhesion, and the results are shown in Table 1.

Figure 0004439876
Figure 0004439876

Claims (8)

平均粒子径が5〜50nmの範囲にある酸化アンチモン微粒子が鎖状に連結し、平均連結数が〜30個の範囲にあることを特徴とする鎖状酸化アンチモン微粒子。 Antimony oxide fine particles having an average particle diameter in the range of 5 to 50 nm are connected in a chain, and the average number of connections is in the range of 5 to 30. 前記鎖状酸化アンチモン微粒子の体積抵抗値が5〜2000Ω・cmの範囲にあることを特徴とする請求項1に記載の鎖状酸化アンチモン微粒子。   2. The chain antimony oxide fine particles according to claim 1, wherein the volume resistance value of the chain antimony oxide fine particles is in the range of 5 to 2000 Ω · cm. アンチモン酸アルカリ水溶液を陽イオン交換樹脂で処理してアンチモン酸(ゲル)分散液を調製し、ついで、
分散液に陰イオン交換樹脂で処理する、および/または分散液にアンモニア水を加えることを特徴とする鎖状酸化アンチモン微粒子分散液の製造方法。
An antimonic acid (gel) dispersion is prepared by treating an alkali antimonate aqueous solution with a cation exchange resin,
A process for producing a dispersion of chain antimony oxide particles, characterized by treating the dispersion with an anion exchange resin and / or adding aqueous ammonia to the dispersion.
さらに、得られた鎖状酸化アンチモン微粒子分散液を30〜250℃の温度範囲で熟成することを特徴とする請求項3に記載の鎖状酸化アンチモン微粒子分散液の製造方法。   The method for producing a chain antimony oxide fine particle dispersion according to claim 3, further comprising aging the obtained chain antimony oxide fine particle dispersion in a temperature range of 30 to 250 ° C. 前記アンチモン酸(ゲル)分散液の濃度が固形分として1〜20重量%の範囲にあり、電導度が1〜10mS/cmの範囲にあり、pHが1〜4の範囲にあることを特徴とする請求項3または4に記載の鎖状酸化アンチモン微粒子分散液の製造方法。   The concentration of the antimonic acid (gel) dispersion is in the range of 1 to 20% by weight as the solid content, the conductivity is in the range of 1 to 10 mS / cm, and the pH is in the range of 1 to 4. The method for producing a chain antimony oxide fine particle dispersion according to claim 3 or 4. 鎖状酸化アンチモン微粒子分散液の電導度が0.01〜10mS/cmに範囲にあり、pHが1〜9の範囲にあることを特徴とする請求項3〜5のいずれかに記載の鎖状酸化アンチモン微粒子分散液の製造方法。   6. The chain antimony oxide fine particle dispersion has a conductivity in the range of 0.01 to 10 mS / cm and a pH in the range of 1 to 9. 6. A method for producing a fine particle dispersion. 前記アンチモン酸アルカリ水溶液が、三酸化アンチモン、アルカリおよび過酸化水素を反応させて得たものであることを特徴とする請求項3〜6のいずれかに記載の鎖状酸化アンチモン微粒子分散液の製造方法。   The production of chain antimony oxide fine particle dispersion according to any one of claims 3 to 6, wherein the alkali antimonate aqueous solution is obtained by reacting antimony trioxide, alkali and hydrogen peroxide. Method. 請求項1または2に記載の鎖状酸化アンチモン微粒子と被膜形成用マトリックスとを含む被膜が基材表面上に形成された被膜付基材。   A coated substrate in which a coating comprising the chain antimony oxide fine particles according to claim 1 or 2 and a coating-forming matrix is formed on the surface of the substrate.
JP2003376812A 2003-11-06 2003-11-06 Chain antimony oxide fine particles, method for producing the fine particle dispersion and use thereof Expired - Lifetime JP4439876B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2003376812A JP4439876B2 (en) 2003-11-06 2003-11-06 Chain antimony oxide fine particles, method for producing the fine particle dispersion and use thereof
KR1020040089148A KR101163539B1 (en) 2003-11-06 2004-11-04 Chain inorganic oxide fine particle groups, process for preparing dispersion of the fine particle groups, and uses of the fine particle groups
US10/981,845 US7309457B2 (en) 2003-11-06 2004-11-05 Chain inorganic oxide fine particle groups
TW093133783A TWI365170B (en) 2003-11-06 2004-11-05 Chain inorganic oxide fine particle groups, process for preparing dispersion of the fine particle groups, and uses of the fine particle groups
CN2004100905486A CN1626584B (en) 2003-11-06 2004-11-08 Chain inorganic oxide fine particle groups, process for preparing dispersion of the fine particle groups, and uses of the fine particle groups

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003376812A JP4439876B2 (en) 2003-11-06 2003-11-06 Chain antimony oxide fine particles, method for producing the fine particle dispersion and use thereof

Publications (2)

Publication Number Publication Date
JP2005139026A JP2005139026A (en) 2005-06-02
JP4439876B2 true JP4439876B2 (en) 2010-03-24

Family

ID=34687742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003376812A Expired - Lifetime JP4439876B2 (en) 2003-11-06 2003-11-06 Chain antimony oxide fine particles, method for producing the fine particle dispersion and use thereof

Country Status (1)

Country Link
JP (1) JP4439876B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5096666B2 (en) * 2005-06-06 2012-12-12 日揮触媒化成株式会社 Method for producing chain conductive oxide fine particles, chain conductive oxide fine particles, transparent conductive film-forming coating material, and substrate with transparent conductive film
JP4657098B2 (en) * 2005-12-27 2011-03-23 日揮触媒化成株式会社 Method for producing antimony oxide sol
JP2009059506A (en) * 2007-08-30 2009-03-19 Jgc Catalysts & Chemicals Ltd Substrate with transparent conductive film, and coating liquid for transparent conductive film formation
JP5395418B2 (en) * 2008-12-12 2014-01-22 日揮触媒化成株式会社 Process for producing chain antimony pentoxide fine particles and coated substrate containing the fine particles
JP5534758B2 (en) * 2009-09-17 2014-07-02 日揮触媒化成株式会社 Phosphorus-containing antimony pentoxide fine particles, a transparent conductive film-forming coating solution containing the fine particles, and a substrate with a transparent conductive film
JP2012190646A (en) * 2011-03-10 2012-10-04 Panasonic Corp Photoelectric conversion element and method for manufacturing the same
TWI541534B (en) * 2011-10-17 2016-07-11 Dainippon Printing Co Ltd Optical film, polarizing plate and image display device
JP5974587B2 (en) * 2012-03-29 2016-08-23 大日本印刷株式会社 Transparent conductive member
JP6016548B2 (en) * 2012-09-19 2016-10-26 日揮触媒化成株式会社 Coating liquid for forming transparent film and substrate with transparent film
JP2014177552A (en) * 2013-03-14 2014-09-25 Hitachi Maxell Ltd Transparent electroconductive coating composition, transparent electroconductive film, and touch panel function-internalized horizontal electric field-style liquid crystal display panel
CN106029798B (en) 2014-02-14 2019-06-07 日挥触媒化成株式会社 It is used to form the coating fluid of transparent coating and the manufacturing method of the substrate with transparent coating
JP7063617B2 (en) * 2017-12-28 2022-05-09 日揮触媒化成株式会社 Method for manufacturing composite metal oxide particle conjugate
JP6470860B1 (en) 2018-03-15 2019-02-13 マクセルホールディングス株式会社 Coating composition, conductive film and liquid crystal display panel
CN113462219B (en) * 2020-03-31 2024-03-12 日挥触媒化成株式会社 Coating liquid for forming conductive film

Also Published As

Publication number Publication date
JP2005139026A (en) 2005-06-02

Similar Documents

Publication Publication Date Title
JP4439876B2 (en) Chain antimony oxide fine particles, method for producing the fine particle dispersion and use thereof
JP3302186B2 (en) Substrate with transparent conductive film, method for producing the same, and display device provided with the substrate
EP2305607A1 (en) Core-shell particle and method for producing core-shell particle
JP4592274B2 (en) Antimony oxide-coated silica fine particles, method for producing the fine particles, and coated substrate containing the fine particles
JP5096666B2 (en) Method for producing chain conductive oxide fine particles, chain conductive oxide fine particles, transparent conductive film-forming coating material, and substrate with transparent conductive film
JP5580153B2 (en) Metal fine particle dispersion, metal fine particle, production method of metal fine particle dispersion, etc.
KR20120010141A (en) Coating solution for forming transparent film and substrate coated by transparent film
JP4540979B2 (en) Base material with hard coat film and coating liquid for forming hard coat film
US7309457B2 (en) Chain inorganic oxide fine particle groups
JPH10110123A (en) Coating material for forming transparent conductive membrane and its production, transparent conductive low reflective membrane and its production, and display with the transparent conductive low reflective membrane
JP4979876B2 (en) Base material with hard coat film
JP5534758B2 (en) Phosphorus-containing antimony pentoxide fine particles, a transparent conductive film-forming coating solution containing the fine particles, and a substrate with a transparent conductive film
JP4002435B2 (en) Transparent conductive film-forming coating liquid, transparent conductive film-coated substrate, and display device
JP5395418B2 (en) Process for producing chain antimony pentoxide fine particles and coated substrate containing the fine particles
US7625635B2 (en) Transparent film-forming coating liquid, substrate with transparent film, and display device
JP4425530B2 (en) Method for producing indium oxide fine particles, coating liquid for forming transparent conductive film containing fine particles, substrate with transparent conductive film, and display device
JP4240905B2 (en) Indium-based oxide fine particles and production method thereof, coating liquid for forming transparent conductive film containing indium-based oxide fine particles, substrate with transparent conductive film, and display device
JP6530673B2 (en) Composition for forming phosphorus-doped tin oxide conductive film and phosphorus-doped tin oxide conductive film
JP6530644B2 (en) Composition for forming ITO conductive film and ITO conductive film
JP5046267B2 (en) Transparent conductive film, coating liquid for forming transparent conductive film, and method for producing transparent conductive film
JP2022183000A (en) Liquid dispersion of fluoride particles, composition for forming optical film, and optical film
JP2011093754A (en) Antimony pentoxide based complex oxide fine particle, coating liquid for forming transparency coating film containing the fine particle, and base material with transparency coating film
JP2003261326A (en) Indium based oxide fine particle, method of producing the fine particle, coating solution for forming transparent electrically conductive film containing the fine particle, base material with transparent electrically conductive film and display
JP4782054B2 (en) Substrate with transparent conductive film and display device
KR20230137963A (en) Dispersion of chain-shaped particles and method for producing the same, paint for forming a film, and method for producing a substrate with a film attached thereto

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060920

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091222

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100106

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4439876

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140115

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term