JP4432592B2 - Tuning frequency estimation device and intake pressure estimation device for internal combustion engine - Google Patents

Tuning frequency estimation device and intake pressure estimation device for internal combustion engine Download PDF

Info

Publication number
JP4432592B2
JP4432592B2 JP2004124022A JP2004124022A JP4432592B2 JP 4432592 B2 JP4432592 B2 JP 4432592B2 JP 2004124022 A JP2004124022 A JP 2004124022A JP 2004124022 A JP2004124022 A JP 2004124022A JP 4432592 B2 JP4432592 B2 JP 4432592B2
Authority
JP
Japan
Prior art keywords
intake
tuning
frequency
air temperature
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004124022A
Other languages
Japanese (ja)
Other versions
JP2005307800A (en
Inventor
孝志 中沢
岳 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2004124022A priority Critical patent/JP4432592B2/en
Priority to US11/066,553 priority patent/US7139655B2/en
Priority to EP05007544A priority patent/EP1589209A3/en
Priority to KR1020050032139A priority patent/KR100684250B1/en
Publication of JP2005307800A publication Critical patent/JP2005307800A/en
Application granted granted Critical
Publication of JP4432592B2 publication Critical patent/JP4432592B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Combined Controls Of Internal Combustion Engines (AREA)

Description

本発明は、内燃機関の同調周波数推定技術に関し、特に、吸気弁付近の吸気圧の推定精度を向上する技術に関する。   The present invention relates to a tuning frequency estimation technique for an internal combustion engine, and more particularly to a technique for improving the estimation accuracy of the intake pressure near the intake valve.

内燃機関の筒内ガス組成は、新たに吸入される新気と残留ガスからなり、筒内ガス組成を知るには、残留ガス量を推定する必要がある。残留ガスには、筒内の隙間容積に残留するガスの他に、吸気弁開期間と排気弁開期間のオーバーラップ期間中に排気側から吸気側に吹き抜ける排気(以下、吹抜ガスとする)とがある。従って、残留ガス量を精度良く推定するには吹抜ガス量を精度良く求める必要がある。吹抜ガス量は、排気側と吸気側の圧力差に依存し、オーバーラップ期間における吸気弁付近の吸気圧を精度良く推定する必要がある。   The in-cylinder gas composition of the internal combustion engine is composed of newly sucked fresh air and residual gas. To know the in-cylinder gas composition, it is necessary to estimate the residual gas amount. In addition to the gas remaining in the gap volume in the cylinder, the residual gas includes exhaust that blows from the exhaust side to the intake side during the overlap period of the intake valve open period and the exhaust valve open period (hereinafter referred to as blowout gas). There is. Therefore, in order to estimate the residual gas amount with high accuracy, it is necessary to obtain the blown gas amount with high accuracy. The blown-out gas amount depends on the pressure difference between the exhaust side and the intake side, and it is necessary to accurately estimate the intake pressure near the intake valve during the overlap period.

吹抜ガスによる逆流を考慮して吸気圧状態を推定する技術を開示したものとして、次のものがある(例えば、特許文献1参照)。
これは、逆流によるエアフローメータの検出誤差を補正する技術であり、この技術において、逆流分の誤差を補正する際に、吸気温度を検出してエンジン同調回転数を補正し、空気流量の脈動影響の誤差補正を行っている。
特開平10−153465号公報
The following is disclosed as a technique for estimating the intake pressure state in consideration of the backflow caused by the blown-out gas (see, for example, Patent Document 1).
This is a technology that corrects the detection error of the air flow meter due to the backflow. In this technology, when correcting the backflow error, the intake air temperature is detected and the engine tuned rotation speed is corrected, and the pulsation effect of the air flow rate is corrected. Error correction is performed.
Japanese Patent Laid-Open No. 10-153465

しかしながら、エンジンの同調回転数の変化を吸気温度の変化だけで求めている上述の従来技術では、エンジンの同調回転数の推定精度が良いとは言えず、エンジン回転数に同調する吸気圧の同調周波数の推定精度が良いとは言えない。吸気弁が閉じた後に吸気管内には次第に減衰していく圧力振動が残る。この圧力波の正圧波が次のサイクルの吸入行程に同調すると吸入期間の圧力を高めるが、負圧波が同調すると吸入期間の圧力は低下する。このような圧力波の重なり状態は、圧力波の周波数と毎秒吸入回数に関係し、同調次数(=(圧力波の周波数)/(毎秒吸入回数))として表せることが知られている。即ち、吸気圧の周波数はエンジン回転数にも影響を受ける。従って、吸気温度しか考慮しない従来技術では、エンジン回転数に同調する吸気圧力波の同調周波数を精度良く推定できず、吸気弁付近の吸気圧を精度良く推定できるとは言えない。   However, in the above-described prior art in which the change in the engine rotation speed is determined only by the change in the intake air temperature, it cannot be said that the estimation accuracy of the engine rotation speed is good, and the intake pressure is synchronized with the engine rotation speed. It cannot be said that the frequency estimation accuracy is good. After the intake valve is closed, pressure vibration that gradually attenuates remains in the intake pipe. When the positive pressure wave of this pressure wave synchronizes with the suction stroke of the next cycle, the pressure during the suction period increases, but when the negative pressure wave synchronizes, the pressure during the suction period decreases. It is known that such a pressure wave overlapping state is related to the frequency of the pressure wave and the number of suctions per second, and can be expressed as a tuning order (= (pressure wave frequency) / (number of suctions per second)). That is, the frequency of the intake pressure is also affected by the engine speed. Therefore, in the prior art that considers only the intake air temperature, the tuning frequency of the intake pressure wave that synchronizes with the engine speed cannot be accurately estimated, and it cannot be said that the intake pressure near the intake valve can be accurately estimated.

本発明は上記問題点に着目してなされたもので、吸気圧力波の同調周波数の推定精度を高めることにより、吸気弁付近の吸気圧の推定精度を向上することを目的とする。   The present invention has been made paying attention to the above problems, and an object thereof is to improve the estimation accuracy of the intake pressure near the intake valve by increasing the estimation accuracy of the tuning frequency of the intake pressure wave.

このため、本発明に係る内燃機関の同調周波数推定装置及び吸気圧力推定装置は、吸気管をモデル化した等価管長と音速とに基づいて基準吸気温度における吸気管内の圧力波の基本周波数を算出する基本周波数算出手段と、前記基本周波数とエンジン回転数とから同調次数を算出する手段と、前記同調次数を、実際の吸気管形状で得られる吸気管内の圧力波の基準吸気温度における同調次数に基づいて補正して基本同調次数を算出する手段と、前記基本同調次数を吸気温度に応じて変化する前記基本周波数であって、検出した吸気温度における基本周波数に基づいて補正する手段と、この補正した基本同調次数に基づいてエンジン回転数と同調する吸気圧力波の同調周波数を算出する同調周波数算出手段とを備え、及び算出した同調周波数に基づいて吸気圧力を算出する手段を備える。 For this reason, the internal combustion engine tuning frequency estimation apparatus and intake pressure estimation apparatus according to the present invention calculate the fundamental frequency of the pressure wave in the intake pipe at the reference intake air temperature based on the equivalent pipe length and sound velocity modeling the intake pipe. Basic frequency calculating means, means for calculating a tuning order from the basic frequency and the engine speed, and the tuning order based on the tuning order at the reference intake air temperature of the pressure wave in the intake pipe obtained by an actual intake pipe shape And a means for calculating a basic tuning order by correcting the basic tuning order, a means for correcting the basic tuning order based on the fundamental frequency at the detected intake air temperature, the basic frequency changing according to the intake air temperature, and the correction. A tuning frequency calculating means for calculating a tuning frequency of the intake pressure wave that is synchronized with the engine speed based on the basic tuning order, and the calculated tuning frequency And means for calculating the intake pressure Zui.

本発明によれば、吸気温度の変化で変化する基本周波数とエンジン回転数を用いて吸気圧力の同調周波数を算出するので、吸気温度だけでなくエンジン回転数によっても変化する吸気圧力の同調周波数の算出精度を向上でき、吸気圧力を高精度に推定できる。   According to the present invention, since the tuning frequency of the intake pressure is calculated using the fundamental frequency that changes with the change of the intake air temperature and the engine speed, the tuning frequency of the intake pressure that changes not only with the intake air temperature but also with the engine speed is calculated. Calculation accuracy can be improved and intake pressure can be estimated with high accuracy.

以下、本発明の実施形態を図面に基づいて説明する。
図1は、本発明の一実施形態に係るエンジンの構成を示している。
吸気通路11の導入部には、エアクリーナ12が取り付けられており、エアクリーナ12により吸入空気中の粉塵等が除去される。吸気通路11において、エアクリーナ12の下流には、電子制御式のスロットル弁13が設置されている。スロットル弁13の下流には、サージタンク14が取り付けられており、サージタンク14にブランチ15が取り付けられ、吸気マニホールドが構成されている。サージタンク14内の吸入空気は、ブランチ15及びシリンダヘッドに形成された吸気ポート16を介して筒内に流入する。各気筒の吸気ポート16には、燃料供給用のインジェクタ17が設置されている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows the configuration of an engine according to an embodiment of the present invention.
An air cleaner 12 is attached to the introduction portion of the intake passage 11, and dust or the like in the intake air is removed by the air cleaner 12. In the intake passage 11, an electronically controlled throttle valve 13 is installed downstream of the air cleaner 12. A surge tank 14 is attached downstream of the throttle valve 13, and a branch 15 is attached to the surge tank 14 to constitute an intake manifold. The intake air in the surge tank 14 flows into the cylinder through the branch 15 and the intake port 16 formed in the cylinder head. A fuel supply injector 17 is installed in the intake port 16 of each cylinder.

エンジン本体において、燃焼室18は、シリンダヘッド及びピストン19により挟まれた空間として形成される。燃焼室18は、気筒中心軸を基準とした一側で吸気ポート16と接続しており、吸気ポート16は、吸気弁20により開放及び遮断される。吸気弁20は、吸気カム21により駆動される。また、燃焼室18は、吸気ポート16とは反対の一側で排気ポート22と接続しており、排気ポート22は、排気弁23により開放及び遮断される。排気弁23は、排気カム24により駆動される。吸気カム21に対して吸気側可変動弁装置25が、排気カム24に対して排気側可変動弁装置26が設けられており、これらの可変動弁装置25,26により吸気カム21又は排気カム24の各カムシャフトに対する位相を変化させることで、吸気弁20又は排気弁23の作動特性を変化させ得るように構成されている。可変動弁装置25,26は、油圧型及びソレノイド型等のいかなる形態のものを採用してもよいが、本実施形態では、吸気弁20又は排気弁23の開閉時期(即ち、バルブタイミング)を変化させることで、吸気弁開期間と排気弁開期間とのオーバーラップ期間(以下、単に「オーバーラップ期間」という)を変化させ得るものを採用している。シリンダヘッドには、燃焼室18の上部略中央に臨ませて点火プラグ27が設置されている。   In the engine body, the combustion chamber 18 is formed as a space sandwiched between the cylinder head and the piston 19. The combustion chamber 18 is connected to the intake port 16 on one side with respect to the cylinder center axis, and the intake port 16 is opened and closed by the intake valve 20. The intake valve 20 is driven by an intake cam 21. In addition, the combustion chamber 18 is connected to the exhaust port 22 on one side opposite to the intake port 16, and the exhaust port 22 is opened and closed by an exhaust valve 23. The exhaust valve 23 is driven by an exhaust cam 24. An intake side variable valve device 25 is provided for the intake cam 21, and an exhaust side variable valve device 26 is provided for the exhaust cam 24, and the intake cam 21 or the exhaust cam is provided by these variable valve devices 25, 26. The operation characteristic of the intake valve 20 or the exhaust valve 23 can be changed by changing the phase of each of the 24 camshafts. The variable valve operating devices 25 and 26 may adopt any type such as a hydraulic type and a solenoid type, but in this embodiment, the opening / closing timing (that is, the valve timing) of the intake valve 20 or the exhaust valve 23 is determined. By changing, an overlap period between the intake valve opening period and the exhaust valve opening period (hereinafter simply referred to as “overlap period”) is adopted. A spark plug 27 is installed in the cylinder head so as to face the substantially upper center of the combustion chamber 18.

排気通路28には、排気マニホールドの直後に第1の触媒コンバータ29が介装されるとともに、その下流に第2の触媒コンバータ30が介装されている。排気ポート22に流出した排気は、これらの触媒コンバータ29,30及びマフラー31を通過して、大気中に放出される。
インジェクタ17、点火プラグ27及び各可変動弁装置25,26の動作は、エンジンコントロールユニット(以下「ECU」という)41により制御される。ECU41には、エアフローメータ51からの吸入空気量検出信号、圧力センサ52からのマニホールド圧力検出信号、温度センサ53からの吸気温度検出信号、温度センサ54からの冷却水温度検出信号、クランク角センサ55からの単位クランク角及び基準クランク角検出信号(ECU41は、これをもとに、エンジン回転数NEを算出する)、圧力センサ56からの排気圧力検出信号、温度センサ57からの排気温度検出信号、酸素センサ58からの空燃比検出信号、アクセルセンサ59からのアクセル開度検出信号、及びカム角センサ60,61からのカム角検出信号(これをもとに、カムとカムシャフトとの実際の位相差を検出可能である)が入力される。ECU41は、入力した各信号をもとに、上記の各デバイスの制御量を設定する。
A first catalytic converter 29 is interposed in the exhaust passage 28 immediately after the exhaust manifold, and a second catalytic converter 30 is interposed downstream thereof. The exhaust gas flowing out to the exhaust port 22 passes through the catalytic converters 29 and 30 and the muffler 31 and is released into the atmosphere.
The operations of the injector 17, the spark plug 27, and the variable valve gears 25 and 26 are controlled by an engine control unit (hereinafter referred to as “ECU”) 41. The ECU 41 includes an intake air amount detection signal from the air flow meter 51, a manifold pressure detection signal from the pressure sensor 52, an intake air temperature detection signal from the temperature sensor 53, a coolant temperature detection signal from the temperature sensor 54, and a crank angle sensor 55. Unit crank angle and reference crank angle detection signal (the ECU 41 calculates the engine speed NE based on this), an exhaust pressure detection signal from the pressure sensor 56, an exhaust temperature detection signal from the temperature sensor 57, The air-fuel ratio detection signal from the oxygen sensor 58, the accelerator opening detection signal from the accelerator sensor 59, and the cam angle detection signals from the cam angle sensors 60 and 61 (based on this, the actual position of the cam and the camshaft). The phase difference can be detected). The ECU 41 sets the control amount of each device described above based on each input signal.

本実施形態では、ECU41が同調周波数推定装置としての機能を備えている。
以下に、ECU41による同調周波数の推定について説明する。
本実施形態では、吸気管形状と音速とに基づいて算出した基本周波数とエンジン回転数から同調次数を算出し、この同調次数を用いて吸気圧力波の同調周波数を算出する。尚、吸気圧力波の同調周波数は、エンジン回転数と同調する周波数のことでエンジンの同調回転数と同義であり、本実施形態では、吸気圧力波の同調周波数をエンジンの同調回転数として算出している。
In the present embodiment, the ECU 41 has a function as a tuning frequency estimation device.
Below, estimation of the tuning frequency by ECU41 is demonstrated.
In this embodiment, the tuning order is calculated from the fundamental frequency calculated based on the intake pipe shape and the sound speed and the engine speed, and the tuning frequency of the intake pressure wave is calculated using this tuning order. Note that the tuning frequency of the intake pressure wave is a frequency that is synchronized with the engine speed, and is synonymous with the tuning speed of the engine. In this embodiment, the tuning frequency of the intake pressure wave is calculated as the tuning speed of the engine. ing.

図2は、同調回転数(同調周波数)算出ルーチンのフローチャートである。
ECU41には、図6に示す同調次数テーブル(図6の実線で示す直線L2)が記憶されており、この同調次数テーブルを用いて、実際の運転条件に応じた同調回転数を、図2のステップ1(図中S1で示し、以下同様とする)及びステップ2のようにして算出する。
FIG. 2 is a flowchart of a tuning rotation speed (tuning frequency) calculation routine.
The ECU 41 stores a tuning order table shown in FIG. 6 (a straight line L2 indicated by a solid line in FIG. 6). Using this tuning order table, the tuning rotational speed corresponding to the actual operating conditions is obtained as shown in FIG. Calculation is performed as in step 1 (indicated by S1 in the figure, the same shall apply hereinafter) and step 2.

ここで、上記の同調次数テーブルの作成過程を図3のフローチャートに示し説明する。
同調次数テーブルは、基準吸気温度(例えば25℃)での同調次数の理論式を、シミュレーション又は実験の結果により補正して設定する。
ステップ11では、吸気弁閉時の等価管長Leを下記(1)式のように設定する。
Le=2(Lint+ΔLint) ・・・(1)
Lintは吸気通路の実管長、ΔLintは開放端補正である。
Here, the process of creating the tuning order table will be described with reference to the flowchart of FIG.
The tuning order table is set by correcting the theoretical expression of the tuning order at the reference intake air temperature (for example, 25 ° C.) by the result of simulation or experiment.
In step 11, the equivalent pipe length Le when the intake valve is closed is set as shown in the following equation (1).
Le = 2 (Lint + ΔLint) (1)
Lint is the actual pipe length of the intake passage, and ΔLint is the open end correction.

ステップ12では、音速Spsdと等価管長Leから基本周波数Fintを算出する下記(2)式と音速を算出する(3)式から、基準吸気温度25℃における基本周波数Fintを算出する。
Fint=Spsd/(2×Le) ・・・(2)
Spsd=√{κair×Rair×Tint} ・・・(3)
ここで、Tintは吸気温度、κairは比熱比、Rairはガス定数である。このステップ12で、Tint=25℃とする。
In step 12, the fundamental frequency Fint at the reference intake air temperature of 25 ° C. is calculated from the following equation (2) for calculating the fundamental frequency Fint from the sound velocity Spsd and the equivalent pipe length Le and the equation (3) for calculating the sound velocity.
Fint = Spsd / (2 × Le) (2)
Spsd = √ {κair × Rair × Tint} (3)
Here, Tint is the intake air temperature, κair is the specific heat ratio, and Rair is the gas constant. In this step 12, Tint = 25 ° C.

ステップ13では、吸気管内の圧力波を定在波と仮定した場合の同調次数特性を求める。これは、ステップ12の基本周波数Fintとエンジン回転数NEから、基準吸気温度25℃でのエンジン回転数NEに応じた、モデル化した等価管長Leでの同調次数Mint0を算出し、図4の点線で示す直線L1で表される同調次数特性を求める。尚、直線L1は、同調次数Mint0の逆数を示しており、次式により表される。   In step 13, the tuning order characteristic when the pressure wave in the intake pipe is assumed to be a standing wave is obtained. This calculates the tuning order Mint0 at the modeled equivalent pipe length Le corresponding to the engine speed NE at the reference intake air temperature of 25 ° C. from the basic frequency Fint and the engine speed NE in step 12, and is shown by the dotted line in FIG. The tuning order characteristic represented by the straight line L1 is obtained. The straight line L1 indicates the reciprocal of the tuning order Mint0 and is expressed by the following equation.

1/Mint0=(1/(120×Fint))×NE ・・・(4)
ステップ14では、ステップ13の同調次数特性に対して進行波補正を行い、図4に実線で示す直線L2の進行波補正後の同調次数特性を求め、基本同調次数を設定する。これは、実際の吸気管形状で得られるエンジン回転数NEに応じた基準吸気温度(本実施形態では25℃)での吸気/排気圧力比Pprを、マニホールド圧力をパラメータとしてシミュレーション又は実験等により求める。例えば、マニホールド圧力Pmani=1とした場合の吸気/排気圧力比Pprの波形を図5に示す。得られた図5の波形から実際の同調次数Mint=Aを読み取り、同調次数Mint=Aに相当する点のエンジン回転数NEa1を読み取る。このエンジン回転数NEa1と、図4の直線L1における同一同調次数でのエンジン回転数NEa0の比を求め、下記(5)式により補正係数Kを設定する。この補正係数Kを用いて、ステップ13のモデル化した同調次数Mint0が実際の同調次数Mintと一致するよう、直線L1の傾きを下記(6)式により補正し、図4の直線L2で示す同調次数特性を求め、これを基本同調次数とする。
1 / Mint0 = (1 / (120 × Fint)) × NE (4)
In step 14, the traveling wave correction is performed on the tuning order characteristic in step 13, the tuning order characteristic after the traveling wave correction of the straight line L2 shown by a solid line in FIG. 4 is obtained, and the basic tuning order is set. This is to obtain the intake / exhaust pressure ratio Ppr at the reference intake air temperature (25 ° C. in the present embodiment) corresponding to the engine speed NE obtained with the actual intake pipe shape by simulation or experiment using the manifold pressure as a parameter. . For example, the waveform of the intake / exhaust pressure ratio Ppr when the manifold pressure Pmani = 1 is shown in FIG. The actual tuning order Mint = A is read from the obtained waveform of FIG. 5, and the engine speed NEa1 at the point corresponding to the tuning order Mint = A is read. A ratio between the engine speed NEa1 and the engine speed NEa0 at the same tuning order in the straight line L1 in FIG. 4 is obtained, and a correction coefficient K is set by the following equation (5). Using this correction coefficient K, the slope of the straight line L1 is corrected by the following equation (6) so that the modeled tuning order Mint0 in step 13 matches the actual tuning order Mint, and the tuning shown by the straight line L2 in FIG. The order characteristic is obtained, and this is set as the basic tuning order.

K=NEa0/NEa1 ・・・(5)
1/Mint=(1/(120×Fint))×K×NE ・・・(6)
ECU41には、このステップ14で求めた進行波補正後の基本同調次数特性(直線L2)が同調次数テーブルとして記憶される。尚、この基本同調次数特性は、テーブルに代えて、関数として記憶してもよい。
K = NEa0 / NEa1 (5)
1 / Mint = (1 / (120 × Fint)) × K × NE (6)
In the ECU 41, the basic tuning order characteristic (straight line L2) after traveling wave correction obtained in step 14 is stored as a tuning order table. The basic tuning order characteristic may be stored as a function instead of the table.

実際に同調回転数を算出する場合、図2のステップ1で、吸気温度Tint及びエンジン回転数NEを読み込む。ステップ2で、検出した吸気温度Tintにおける同調回転数NEKを算出する。ここでは、検出したエンジン回転数NE(NEa1)における同調次数Aを、図6の同調次数テーブルに示す基準吸気温度での基本同調次数特性(直線L2)から検索する。また、(2)式と(3)式から検出吸気温度Tint(例えば70℃)での基本周波数Fintを算出する。そして、検索した同調次数Aと算出した基本周波数Fintから、(6)式を用いて算出されたエンジン回転数NEa2を実際の同調回転数NEKとする。   When actually calculating the tuning rotational speed, the intake air temperature Tint and the engine rotational speed NE are read in Step 1 of FIG. In step 2, a tuning rotational speed NEK at the detected intake air temperature Tint is calculated. Here, the tuning order A at the detected engine speed NE (NEa1) is searched from the basic tuning order characteristic (straight line L2) at the reference intake air temperature shown in the tuning order table of FIG. Further, the fundamental frequency Fint at the detected intake air temperature Tint (for example, 70 ° C.) is calculated from the equations (2) and (3). Then, from the retrieved tuning order A and the calculated fundamental frequency Fint, the engine speed NEa2 calculated using the equation (6) is set as the actual tuning speed NEK.

このように、吸気の基本周波数とエンジン回転数から同調次数を算出し、この同調次数を用いて、エンジンの同調回転数(吸気圧力波の同調周波数)を算出することで、吸気温度だけでなくエンジン回転数も考慮した吸気圧力波の同調周波数を算出でき、吸気圧力波の同調周波数の推定精度が向上する。また、本実施形態では、少なくとも基本同調次数特性を示したテーブルを1つ備えればよく、ECU41のメモリ容量を節約できる。ただし、(6)式を用いて図6の直線L3で示すような吸気温度70℃での同調次数特性を求めておき、この同調次数特性線上の1/Mint=1/Aに対応するエンジン回転数NEa2を同調回転数NEKとして算出するようにしてもよい。   Thus, by calculating the tuning order from the basic frequency of intake air and the engine speed, and using this tuning order to calculate the tuning speed of the engine (the tuning frequency of the intake pressure wave), not only the intake air temperature, The tuning frequency of the intake pressure wave considering the engine speed can be calculated, and the estimation accuracy of the tuning frequency of the intake pressure wave is improved. In the present embodiment, it is sufficient to provide at least one table showing the basic tuning order characteristics, and the memory capacity of the ECU 41 can be saved. However, a tuning order characteristic at an intake air temperature of 70 ° C. as shown by a straight line L3 in FIG. 6 is obtained using the equation (6), and the engine speed corresponding to 1 / Mint = 1 / A on the tuning order characteristic line is obtained. The number NEa2 may be calculated as the tuning rotation speed NEK.

また、ステップ14の補正した同調次数特性(基本同調次数特性)を用いることにより、吸気開始から次の吸気開始までの期間における減衰を考慮したものとなり、他気筒の吸気行程の影響を考慮したものとなって、より一層吸気圧力波の同調周波数の推定精度を高めることができる。
次に、本実施形態の同調周波数推定装置を用いて、脈動分を考慮した吸気弁付近の吸気圧力の推定について説明する。
In addition, by using the tuning order characteristic (basic tuning order characteristic) corrected in step 14, the attenuation in the period from the start of intake to the start of the next intake is taken into account, and the influence of the intake stroke of other cylinders is taken into account. Thus, the estimation accuracy of the tuning frequency of the intake pressure wave can be further enhanced.
Next, estimation of the intake pressure in the vicinity of the intake valve in consideration of the pulsation will be described using the tuning frequency estimation apparatus of the present embodiment.

図7は、本実施形態の吸気圧力検出ルーチンのフローチャートである。このルーチンは所定の時間毎に実行される。
ECU41には、図6の同調次数テーブルに加えて、図8の脈動補正テーブルが記憶されている。ECU41は、実際の運転条件に応じた同調回転数NEKの、基準吸気温度における同調回転数に対する変化量DNEを算出し、算出した変化量DNE分、脈動補正テーブルの脈動補正値DPintの特性曲線をエンジン回転数NEに関してずらし、ずらした後の特性曲線(図8の実線で示す曲線)を参照して、実際の脈動補正値DPintを検索する。検索した脈動補正値DPintを、検出した吸気圧力Pmaniに加算して、吸気弁付近の脈動を考慮した吸気圧力PDintを算出する。
FIG. 7 is a flowchart of the intake pressure detection routine of the present embodiment. This routine is executed every predetermined time.
In addition to the tuning order table of FIG. 6, the ECU 41 stores a pulsation correction table of FIG. The ECU 41 calculates a change amount DNE of the tuning rotation speed NEK corresponding to the actual driving condition with respect to the tuning rotation speed at the reference intake air temperature, and calculates a characteristic curve of the pulsation correction value DPint of the pulsation correction table by the calculated change amount DNE. The actual pulsation correction value DPint is searched with reference to the characteristic curve (curve indicated by the solid line in FIG. 8) after shifting with respect to the engine speed NE. The retrieved pulsation correction value DPint is added to the detected intake pressure Pmani to calculate the intake pressure PDint considering the pulsation near the intake valve.

ここで、脈動補正テーブルについて説明する。
脈動補正テーブルは、次のようにして設定する。実際の吸気管形状で得られるエンジン回転数NEに応じた基準吸気温度25℃での脈動を考慮した吸気/排気圧力比Pprを、スロットル開度をパラメータとしてシミュレーション又は実験等により求める。求めた吸気/排気圧力比Pprの、平滑化されている吸気/排気圧力比Ppr0に対する差分を求める。この差分を圧力値に換算して、図5のように脈動補正値DPintとしてテーブル化し、図8の脈動補正テーブルをECU41に記憶する。尚、図5では、スロットル開度が全開の場合だけを例として示してある。
Here, the pulsation correction table will be described.
The pulsation correction table is set as follows. An intake / exhaust pressure ratio Ppr considering pulsation at a reference intake air temperature of 25 ° C. according to the engine speed NE obtained in the actual intake pipe shape is obtained by simulation or experiment using the throttle opening as a parameter. The difference between the obtained intake / exhaust pressure ratio Ppr and the smoothed intake / exhaust pressure ratio Ppr0 is obtained. This difference is converted into a pressure value and tabulated as a pulsation correction value DPint as shown in FIG. 5, and the pulsation correction table of FIG. In FIG. 5, only the case where the throttle opening is fully open is shown as an example.

ステップ21で、吸気温度Tint、吸気圧力Pmani、排気圧力Pex及びエンジン回転数NEを読込む。
ステップ22では、前述のようにして検出された吸気温度Tintでの同調回転数NEKを算出する。例えば、同調次数Mint=A、検出された吸気温度Tint=70℃であれば、エンジン回転数NEa2を同調回転数NEKとして算出する。
In step 21, the intake air temperature Tint, the intake air pressure Pmani, the exhaust gas pressure Pex, and the engine speed NE are read.
In step 22, the tuning rotational speed NEK at the intake air temperature Tint detected as described above is calculated. For example, if the tuning order Mint = A and the detected intake air temperature Tint = 70 ° C., the engine speed NEa2 is calculated as the tuning speed NEK.

ステップ23では、ステップ22で算出した同調回転数NEK(=NEa2)と、基準吸気温度下で同調次数Mint=Aとするエンジン回転数NEa1との差DNEを算出し、脈動補正テーブルにおける、検出された吸気圧力Pmaniと排気圧力Pexの比に対応する脈動補正値DPintの特性曲線(図8に破線で示す)を、エンジン回転数に関して差DNEだけずらし、脈動補正値DPintの特性を、図8の実線のように修正する。   In step 23, a difference DNE between the tuning rotational speed NEK (= NEa2) calculated in step 22 and the engine rotational speed NEa1 with the tuning order Mint = A under the reference intake air temperature is calculated and detected in the pulsation correction table. The characteristic curve of the pulsation correction value DPint (shown by a broken line in FIG. 8) corresponding to the ratio of the intake pressure Pmani and the exhaust pressure Pex is shifted by the difference DNE with respect to the engine speed, and the characteristic of the pulsation correction value DPint is shown in FIG. Correct as shown by the solid line.

ステップ24では、修正した脈動補正値DPintの特性曲線を用いて、検出されたエンジン回転数NEにおける脈動補正値DPint(図8の点X)を検索する。
ステップ25では、検出したマニホールド圧力Pmaniに、検索した脈動補正値DPintを加算して、脈動分を考慮した吸気弁付近の吸気圧力PDintを算出する。
PDint=Pmani+DPint ・・・(7)
このように、吸気温度により変化する吸気圧力の基本周波数とエンジン回転数を用いて算出した同調周波数から吸気圧力を推定するので、吸気弁付近の吸気圧力の推定精度を向上できる。
In step 24, using the characteristic curve of the corrected pulsation correction value DPint, the pulsation correction value DPint (point X in FIG. 8) at the detected engine speed NE is searched.
In step 25, the detected pulsation correction value DPint is added to the detected manifold pressure Pmani to calculate the intake pressure PDint near the intake valve considering the pulsation.
PDint = Pmani + DPint (7)
In this way, the intake pressure is estimated from the tuning frequency calculated using the basic frequency of the intake pressure that changes according to the intake air temperature and the engine speed, so that the estimation accuracy of the intake pressure near the intake valve can be improved.

本発明の一実施形態に係るエンジンの構成図Configuration diagram of an engine according to an embodiment of the present invention 同調回転数算出ルーチンのフローチャートFlow chart of tuning rotation speed calculation routine 同調次数テーブル作成過程を説明するフローチャートFlow chart explaining the tuning order table creation process 基本同調次数特性の作成の説明図Illustration of creation of basic tuning order characteristics 実際の吸気/排気圧力比とエンジン回転数の関係図Relationship diagram between actual intake / exhaust pressure ratio and engine speed 同調次数テーブルを示す図Diagram showing tuning order table 吸気圧力検出ルーチンのフローチャートFlow chart of intake pressure detection routine 脈動補正テーブルを示す図Figure showing a pulsation correction table

符号の説明Explanation of symbols

1 エンジン
11 吸気通路
13 スロットル弁
16 吸気ポート
18 燃焼室
20 吸気弁
22 排気ポート
23 排気弁
28 排気通路
41 エンジンコントロールユニット
52 マニホールド圧力センサ
53 吸気温度センサ
55 クランク角センサ
56 排気圧力センサ
DESCRIPTION OF SYMBOLS 1 Engine 11 Intake passage 13 Throttle valve 16 Intake port 18 Combustion chamber 20 Intake valve 22 Exhaust port 23 Exhaust valve 28 Exhaust passage 41 Engine control unit 52 Manifold pressure sensor 53 Intake temperature sensor 55 Crank angle sensor 56 Exhaust pressure sensor

Claims (2)

吸気管をモデル化した等価管長と音速とに基づいて基準吸気温度における吸気管内の圧力波の基本周波数を算出する基本周波数算出手段と、
前記基本周波数とエンジン回転数とから同調次数を算出する手段と、
前記同調次数を、実際の吸気管形状で得られる吸気管内の圧力波の基準吸気温度における同調次数に基づいて補正して基本同調次数を算出する手段と、
前記基本同調次数を、吸気温度に応じて変化する前記基本周波数であって、検出した吸気温度における基本周波数に基づいて補正する手段と、
この補正した基本同調次数に基づいてエンジン回転数と同調する吸気圧力波の同調周波数を算出する同調周波数算出手段と、
を備えることを特徴とする内燃機関の同調周波数推定装置。
A fundamental frequency calculating means for calculating a fundamental frequency of a pressure wave in the intake pipe at a reference intake air temperature based on an equivalent pipe length and sound velocity modeling the intake pipe;
Means for calculating a tuning order from the fundamental frequency and the engine speed;
Means for correcting the tuning order based on the tuning order at the reference intake air temperature of the pressure wave in the intake pipe obtained in an actual intake pipe shape, and calculating the basic tuning order;
Means for correcting the basic tuning order based on the fundamental frequency at the detected intake air temperature, the fundamental frequency changing according to the intake air temperature ;
A tuning frequency calculating means for calculating a tuning frequency of an intake pressure wave that synchronizes with the engine speed based on the corrected basic tuning order;
A tuning frequency estimation apparatus for an internal combustion engine, comprising:
請求項1に記載の内燃機関の同調周波数推定装置により算出した吸気圧力波の同調周波数に基づいて吸気圧力を算出する手段を備えたことを特徴とする内燃機関の吸気圧力推定装置。 An intake pressure estimating device for an internal combustion engine, comprising means for calculating an intake pressure based on a tuning frequency of an intake pressure wave calculated by the tuning frequency estimating device for an internal combustion engine according to claim 1 .
JP2004124022A 2004-04-20 2004-04-20 Tuning frequency estimation device and intake pressure estimation device for internal combustion engine Expired - Fee Related JP4432592B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2004124022A JP4432592B2 (en) 2004-04-20 2004-04-20 Tuning frequency estimation device and intake pressure estimation device for internal combustion engine
US11/066,553 US7139655B2 (en) 2004-04-20 2005-02-28 Intake air parameter estimating device for internal combustion engine
EP05007544A EP1589209A3 (en) 2004-04-20 2005-04-06 Intake air parameter estimating device for internal combustion engine
KR1020050032139A KR100684250B1 (en) 2004-04-20 2005-04-19 Intake air parameter estimating device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004124022A JP4432592B2 (en) 2004-04-20 2004-04-20 Tuning frequency estimation device and intake pressure estimation device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2005307800A JP2005307800A (en) 2005-11-04
JP4432592B2 true JP4432592B2 (en) 2010-03-17

Family

ID=35436861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004124022A Expired - Fee Related JP4432592B2 (en) 2004-04-20 2004-04-20 Tuning frequency estimation device and intake pressure estimation device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4432592B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022026884A (en) 2020-07-31 2022-02-10 ナブテスコ株式会社 Engine condition estimation device, engine condition estimation method, and engine condition estimation program
JP2022026885A (en) 2020-07-31 2022-02-10 ナブテスコ株式会社 Engine characteristic estimation device, engine characteristic estimation method, and engine characteristic estimation program

Also Published As

Publication number Publication date
JP2005307800A (en) 2005-11-04

Similar Documents

Publication Publication Date Title
JP5905066B1 (en) Control device and control method for internal combustion engine
JP5115629B2 (en) Control device for internal combustion engine
KR100684250B1 (en) Intake air parameter estimating device for internal combustion engine
US9322349B2 (en) Internal combustion engine control apparatus
JP4314585B2 (en) Control device for internal combustion engine
JP3703037B2 (en) Multi-cylinder engine air-fuel ratio control method
JP4114574B2 (en) Intake air amount control device and intake air amount control method for internal combustion engine
JP6827974B2 (en) Internal combustion engine control device
JP2010084549A (en) Control device and method for internal combustion engine
JP2007332944A (en) Fuel injection control device of internal combustion engine
JP2006307668A (en) Egr flow rate estimating device of engine
JP5120301B2 (en) Vehicle engine torque calculation device
JP4432592B2 (en) Tuning frequency estimation device and intake pressure estimation device for internal combustion engine
JP2008025404A (en) Calibrating device for cylinder pressure sensor
JP5287298B2 (en) Diesel engine control device
JP4432593B2 (en) Intake pressure estimation device for internal combustion engine
JP2005307804A (en) Exhaust pressure estimating device for internal combustion engine
JP4244851B2 (en) Engine internal EGR amount estimation device
JP4412216B2 (en) Engine control apparatus and control method
JP3815959B2 (en) Electronic control device for internal combustion engine
WO2023233605A1 (en) Method and device for detecting pressure difference of particulate filter
JP4304415B2 (en) Control device for internal combustion engine
JP2005307802A (en) Intake pressure estimating device for internal combustion engine
JP4241560B2 (en) Intake air amount estimation device for internal combustion engine
JP2019090330A (en) Intake pressure estimation device for engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060829

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080319

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080805

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090331

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091214

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140108

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees