JP2007332944A - Fuel injection control device of internal combustion engine - Google Patents

Fuel injection control device of internal combustion engine Download PDF

Info

Publication number
JP2007332944A
JP2007332944A JP2006169272A JP2006169272A JP2007332944A JP 2007332944 A JP2007332944 A JP 2007332944A JP 2006169272 A JP2006169272 A JP 2006169272A JP 2006169272 A JP2006169272 A JP 2006169272A JP 2007332944 A JP2007332944 A JP 2007332944A
Authority
JP
Japan
Prior art keywords
injection amount
fuel
injection
intake
calculated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006169272A
Other languages
Japanese (ja)
Inventor
Futoshi Yoshimura
太 吉村
Kenichi Sato
健一 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2006169272A priority Critical patent/JP2007332944A/en
Publication of JP2007332944A publication Critical patent/JP2007332944A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enhance a correlation with the cylinder suction air volume, by making both compatible in promoting vaporization of fuel and improving transitional responsiveness. <P>SOLUTION: The newest request injection quantity is calculated in an exhaust stroke of respective cylinders, and a part of this newest request injection quantity is injected as a first time injection quantity. Afterwards, the newest request injection quantity is calculated in the same piston position as the intake valve closing timing after the bottom dead center before the bottom dead center of an intake stroke of the respective cylinders, and a second time injection quantity is calculated by subtracting the first time injection quantity injected in an exhaust stroke from this newest request injection quantity. The fuel of this second time injection quantity is injected so as to finish fuel injection up to the intake valve closing timing. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、吸気通路に各気筒毎に燃料噴射弁を備える内燃機関の燃料噴射制御装置に関する。   The present invention relates to a fuel injection control device for an internal combustion engine provided with a fuel injection valve for each cylinder in an intake passage.

特許文献1では、吸気通路に各気筒毎に燃料噴射弁を備える内燃機関において、燃料噴射を2回に分割し、1回目の燃料噴射は、そのときの要求噴射量から所定量を減じた先行噴射量の燃料を噴射し、2回目の燃料噴射では、そのときの要求噴射量から先行噴射量を減じた後行噴射量の燃料を噴射するようにして、先行噴射による燃料の気化の促進と、最新の要求噴射量に基づくことによる過渡応答性の向上とを両立させている。
特開平4−292543号公報
In Patent Document 1, in an internal combustion engine provided with a fuel injection valve for each cylinder in an intake passage, fuel injection is divided into two times, and the first fuel injection is preceded by subtracting a predetermined amount from the required injection amount at that time. Injecting the fuel of the injection amount, and in the second fuel injection, the fuel injection of the fuel by the preceding injection is promoted by injecting the fuel of the subsequent injection amount obtained by subtracting the preceding injection amount from the required injection amount at that time. In addition, the transient response is improved by being based on the latest required injection amount.
JP-A-4-292543

しかしながら、特許文献1に記載の技術では、2回目の燃料噴射を排気行程若しくは吸気行程にて行うとしているが、単にその燃料噴射時期に先立って噴射量の演算時期を設定するだけでは、実際にシリンダに吸入される空気量に対応するような噴射量を算出することができず、シリンダ吸入空気量に合わせて分割噴射を行うことができないという問題点があった。   However, in the technique described in Patent Document 1, the second fuel injection is performed in the exhaust stroke or the intake stroke. However, if the injection amount calculation timing is simply set prior to the fuel injection timing, There is a problem that it is impossible to calculate the injection amount corresponding to the amount of air sucked into the cylinder, and it is impossible to perform divided injection in accordance with the cylinder intake air amount.

本発明は、このような従来の問題点に鑑み、燃料の気化促進と、過渡応答性の向上との両立を図り、更にシリンダ吸入空気量との相関を高めることを目的とする。   SUMMARY OF THE INVENTION The present invention has been made in view of the above-described problems of the prior art, and aims to achieve both the acceleration of fuel vaporization and the improvement of transient response and further increase the correlation with the amount of cylinder intake air.

このため、請求項1に係る発明では、各気筒の吸気行程前に最新の要求噴射量を算出し、この最新の要求噴射量の一部を1回目の噴射量として算出し、吸気行程前にこの1回目の噴射量の燃料を噴射させる。その後、各気筒の吸気行程の吸気下死点前であって、吸気下死点後の吸気弁閉時期と同じピストン位置にて、最新の要求噴射量を算出し、この最新の要求噴射量から吸気行程前に噴射した1回目の噴射量を減算して、2回目の噴射量を算出する。そして、吸気弁閉時期までに燃料噴射を終了するように、この2回目の噴射量の燃料を噴射させる。   For this reason, in the invention according to claim 1, the latest required injection amount is calculated before the intake stroke of each cylinder, a part of the latest required injection amount is calculated as the first injection amount, and before the intake stroke, This first injection amount of fuel is injected. After that, calculate the latest required injection amount at the same piston position as the intake valve closing timing after the intake bottom dead center before the intake bottom dead center of the intake stroke of each cylinder, and from this latest required injection amount A second injection amount is calculated by subtracting the first injection amount injected before the intake stroke. Then, the second injection amount of fuel is injected so that the fuel injection is completed by the intake valve closing timing.

また、請求項2に係る発明では、各気筒の吸気行程前に最新の要求噴射量を算出し、この最新の要求噴射量の一部を1回目の噴射量として算出し、吸気行程前にこの1回目の噴射量の燃料を噴射させる。その後、各気筒の吸気行程にて一定時間間隔で最新の要求噴射量を算出し、最新の要求噴射量を算出する毎に、最新の要求噴射量から吸気行程前に噴射した1回目の噴射量を減算して、2回目の噴射量を算出する。そして、吸気弁閉時期までに燃料噴射を終了するように、吸気弁閉時期までに燃料噴射を終了可能な範囲で、最も遅い時期に算出した2回目の噴射量の燃料を噴射させる。   In the invention according to claim 2, the latest required injection amount is calculated before the intake stroke of each cylinder, a part of the latest required injection amount is calculated as the first injection amount, and before the intake stroke, The first injection amount of fuel is injected. After that, the latest required injection amount is calculated at regular time intervals in the intake stroke of each cylinder, and every time the latest required injection amount is calculated, the first injection amount injected before the intake stroke from the latest required injection amount Is subtracted to calculate the second injection amount. Then, the fuel of the second injection amount calculated at the latest timing is injected within a range in which the fuel injection can be completed by the intake valve closing timing so that the fuel injection is completed by the intake valve closing timing.

請求項1に係る発明によれば、2回目の噴射量の演算は、吸気弁閉時期と同じピストン位置にて行うため、吸気弁閉時期のシリンダ吸入空気量と同等の空気量にて、噴射量の演算を行うことができ、噴射量演算時の空気量と実際のシリンダ吸入空気量との誤差を大幅に低減できる。
請求項2に係る発明によれば、2回目の噴射量の演算時期を可能な限り吸気弁閉時期に近づけることができ、吸気弁閉時期のシリンダ吸入空気量に近い空気量にて、噴射量の演算を行うことができ、噴射量演算時の空気量と実際のシリンダ吸入空気量との誤差を大幅に低減できる。
According to the first aspect of the invention, since the second injection amount calculation is performed at the same piston position as the intake valve closing timing, the injection amount is equal to the cylinder intake air amount at the intake valve closing timing. The amount can be calculated, and the error between the air amount during the injection amount calculation and the actual cylinder intake air amount can be greatly reduced.
According to the second aspect of the present invention, the calculation timing of the second injection amount can be as close as possible to the intake valve closing timing, and the injection amount is equal to the cylinder intake air amount at the intake valve closing timing. Thus, the error between the air amount at the time of calculating the injection amount and the actual cylinder intake air amount can be greatly reduced.

以下に本発明の実施の形態を図面に基づいて説明する。
図1は本発明の一実施形態を示す内燃機関(エンジン)のシステム図である。
エンジン1の各気筒のピストン2により画成される燃焼室3には、点火プラグ4を囲むように、吸気弁5及び排気弁6を備えている。吸気弁5及び排気弁6は、可変動弁装置7、8により開閉時期を調整可能である。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a system diagram of an internal combustion engine (engine) showing an embodiment of the present invention.
The combustion chamber 3 defined by the piston 2 of each cylinder of the engine 1 is provided with an intake valve 5 and an exhaust valve 6 so as to surround the spark plug 4. The intake valve 5 and the exhaust valve 6 can be adjusted in opening / closing timing by the variable valve gears 7 and 8.

吸気通路9には、吸気マニホールドの上流側に、モータ駆動の電制スロットル弁10が設けられている。吸気通路9にはまた、吸気マニホールドの各ブランチ部(シリンダヘッド側の吸気ポートに臨む位置)に、各気筒毎に、電磁式の燃料噴射弁11が設けられており、吸気弁5の弁傘部に向けて燃料を噴射することができる。
排気通路12には、排気浄化触媒13が設けられている。
In the intake passage 9, a motor-driven electric throttle valve 10 is provided on the upstream side of the intake manifold. The intake passage 9 is also provided with an electromagnetic fuel injection valve 11 for each cylinder at each branch portion (position facing the intake port on the cylinder head side) of the intake manifold. The fuel can be injected toward the part.
An exhaust purification catalyst 13 is provided in the exhaust passage 12.

ここにおいて、可変動弁装置7、8、電制スロットル弁10、燃料噴射弁11及び点火プラグ4の作動は、エンジンコントロールユニット(以下ECUという)20により制御され、このECU20には、エンジン回転に同期してクランク角信号を出力しこれによりクランク角位置と共にエンジン回転数Neを検出可能なクランク角センサ21、アクセルペダルの操作量(アクセル開度)APOを検出するアクセル開度センサ22、吸気通路9の電制スロットル弁10上流にて吸入空気量Qaを検出するエアフローメータ23、エンジン冷却水温Twを検出する水温センサ24などから、信号が入力されている。   Here, the operations of the variable valve gears 7 and 8, the electric throttle valve 10, the fuel injection valve 11 and the spark plug 4 are controlled by an engine control unit (hereinafter referred to as ECU) 20, and the ECU 20 controls the engine rotation. A crank angle sensor 21 that can output a crank angle signal in synchronization and detect the engine speed Ne together with the crank angle position, an accelerator opening sensor 22 that detects an accelerator pedal operation amount (accelerator opening) APO, an intake passage Signals are input from an air flow meter 23 for detecting the intake air amount Qa upstream of the electronic throttle valve 10 and a water temperature sensor 24 for detecting the engine coolant temperature Tw.

燃料噴射弁11による燃料噴射量の制御は、吸入空気量Qaとエンジン回転数Neとから基本噴射量Tp=K・Qa/Ne(Kは定数)を算出し、これを各種補正係数COEFで補正して、最終的な噴射量(要求噴射量)Ti=Tp・COEFを算出し、制御する。尚、燃料噴射弁11は所定圧力に調圧された燃料を噴射するので、燃料噴射弁11の開時間(噴射時間)より噴射量を制御できることから、噴射量は噴射時間(噴射パルス幅)として算出する。   The control of the fuel injection amount by the fuel injection valve 11 is performed by calculating the basic injection amount Tp = K · Qa / Ne (K is a constant) from the intake air amount Qa and the engine speed Ne, and correcting this with various correction coefficients COEF. Then, the final injection amount (required injection amount) Ti = Tp · COEF is calculated and controlled. In addition, since the fuel injection valve 11 injects the fuel adjusted to a predetermined pressure, the injection amount can be controlled from the open time (injection time) of the fuel injection valve 11, so the injection amount is set as the injection time (injection pulse width). calculate.

ここで、通常は、要求噴射量Tiの燃料を排気行程などにおいて1回で噴射するが、本発明では、特に始動時を含む過渡時において、燃料噴射を2回に分割することで、気化の促進と、過渡応答性の向上とを両立させる。
かかる分割噴射の制御について、フローチャートにより説明する。
図2は第1実施形態での分割噴射の制御のフローチャートである。
Here, normally, the fuel of the required injection amount Ti is injected once in the exhaust stroke or the like. However, in the present invention, the fuel injection is divided into two times, especially during the transition including the start-up. Both promotion and improvement of transient response are achieved.
The control of the divided injection will be described with reference to a flowchart.
FIG. 2 is a flowchart of split injection control in the first embodiment.

S1では、排気行程の所定の噴射量演算時期か否かを判定し、YESの場合に、S2〜S4の処理を実行する。
S2では、排気行程の所定の噴射量演算時期(予め定めた時期)において、現在の運転条件に基づく、最新の要求噴射量Tiを算出する。具体的には、現時点の吸入空気量Qaとエンジン回転数Neとに基づいて、要求噴射量Ti=K・Qa/Ne・COEF(Kは定数、COEFは各種補正係数)を算出する。
In S1, it is determined whether or not it is a predetermined injection amount calculation time for the exhaust stroke. If YES, the processes of S2 to S4 are executed.
In S2, the latest required injection amount Ti based on the current operating conditions is calculated at a predetermined injection amount calculation time (predetermined time) in the exhaust stroke. Specifically, the required injection amount Ti = K · Qa / Ne · COEF (K is a constant, and COEF is various correction coefficients) is calculated based on the current intake air amount Qa and the engine speed Ne.

S3では、S2で算出した要求噴射量Tiの一部(大部分で、例えば80%程度)を1回目の噴射量Ti1として算出する。具体的には、最新の要求噴射量Tiから所定量CTiを減算して、1回目の噴射量Ti1=Ti−CTiを算出する。
S4では、排気行程にて、上記1回目の噴射量Ti1の燃料を噴射させる。
排気行程にて噴射された燃料は、閉弁中の吸気弁の傘裏に衝突し、熱を受けることで、吸気弁が開弁するまでの間に、気化が促進され、吸気弁の開弁により燃焼室内に吸入される。
In S3, a part of the required injection amount Ti calculated in S2 (mostly, for example, about 80%) is calculated as the first injection amount Ti1. Specifically, the first injection amount Ti1 = Ti−CTi is calculated by subtracting the predetermined amount CTi from the latest required injection amount Ti.
In S4, the fuel of the first injection amount Ti1 is injected in the exhaust stroke.
The fuel injected in the exhaust stroke collides with the back of the intake valve being closed and receives heat, so that vaporization is accelerated before the intake valve opens, and the intake valve opens. Is sucked into the combustion chamber.

S5では、吸気行程の所定の噴射量演算時期、具体的には、図4(a)又は(b)に示すように、吸気下死点前であって、吸気下死点後の吸気弁閉時期(IVC)と同じピストン位置の時期か否かを判定し、YESの場合に、S6〜S8の処理を実行する。
S6では、吸気行程の所定の噴射量演算時期において、現在の運転条件に基づく、最新の要求噴射量Tiを算出する。具体的には、現時点の吸入空気量Qaとエンジン回転数Neとに基づいて、要求噴射量Ti=K・Qa/Ne・COEF(Kは定数、COEFは各種補正係数)を算出する。
In S5, the predetermined injection amount calculation timing of the intake stroke, specifically, as shown in FIG. 4 (a) or (b), the intake valve is closed before the intake bottom dead center and after the intake bottom dead center. It is determined whether or not it is the same piston position time as the time (IVC). If YES, the processes of S6 to S8 are executed.
In S6, the latest required injection amount Ti based on the current operating conditions is calculated at a predetermined injection amount calculation timing in the intake stroke. Specifically, the required injection amount Ti = K · Qa / Ne · COEF (K is a constant, and COEF is various correction coefficients) is calculated based on the current intake air amount Qa and the engine speed Ne.

S7では、S6で算出した最新の要求噴射量Tiから、排気行程にて噴射した1回目の噴射量Ti1を減算して、2回目の噴射量Ti2=Ti−Ti1を算出する。
S8では、吸気弁閉時期IVCまでに燃料噴射を終了するように、上記2回目の噴射量Ti2の燃料を噴射させる。
尚、S1〜S3の部分が第1の噴射量算出手段に相当し、S4の部分が第1の燃料噴射手段に相当し、S5〜S7の部分が第2の噴射量算出手段に相当し、S8の部分が第2の燃料噴射手段に相当する。
In S7, the second injection amount Ti2 = Ti−Ti1 is calculated by subtracting the first injection amount Ti1 injected in the exhaust stroke from the latest required injection amount Ti calculated in S6.
In S8, the fuel of the second injection amount Ti2 is injected so that the fuel injection is completed by the intake valve closing timing IVC.
In addition, the part of S1-S3 is equivalent to a 1st injection amount calculation means, the part of S4 is equivalent to a 1st fuel injection means, the part of S5-S7 is equivalent to a 2nd injection amount calculation means, S8 corresponds to the second fuel injection means.

本フローでは、図3に示すように、各気筒の排気行程にて、そのときの吸入空気量Qa及びエンジン回転数Neに基づいて、最新の要求噴射量Tiを算出し、この最新の要求噴射量の一部(大部分)を1回目の噴射量Ti1として算出し、排気行程にてこの1回目の噴射量の燃料を噴射させることにより、吸気弁開弁までに燃料の気化を促進して、燃焼性の改善を図る。また、吸気行程で燃料を噴射すると均質度の低下による燃焼の悪化や、燃料の排気側への吹き抜けによるエンジンアウトHCの悪化を生じるが、必要な燃料の大部分を排気行程で噴射することにより、このような問題も回避できる。   In this flow, as shown in FIG. 3, in the exhaust stroke of each cylinder, the latest required injection amount Ti is calculated based on the intake air amount Qa and the engine speed Ne at that time, and this latest required injection A part (most part) of the amount is calculated as the first injection amount Ti1, and the fuel of the first injection amount is injected in the exhaust stroke to promote the vaporization of the fuel until the intake valve opens. , To improve combustibility. In addition, when fuel is injected in the intake stroke, deterioration of combustion due to a decrease in homogeneity and deterioration of engine-out HC due to blow-out of fuel to the exhaust side occur, but by injecting most of the necessary fuel in the exhaust stroke, Such a problem can also be avoided.

その一方、各気筒の吸気行程の吸気下死点前であって、吸気下死点後の吸気弁閉時期(IVC)と同じピストン位置にて、そのときの吸入空気量Qa及びエンジン回転数Neに基づいて、最新の要求噴射量Tiを算出し、この最新の要求噴射量Tiから1回目の噴射量Ti1を減算して、2回目の噴射量Ti2を算出し、吸気弁閉時期IVCまでに燃料噴射を終了するように、この2回目の噴射量Ti2の燃料を噴射させる。   On the other hand, at the same piston position as the intake valve closing timing (IVC) after the intake bottom dead center before the intake bottom dead center of the intake stroke of each cylinder, the intake air amount Qa and the engine speed Ne at that time The latest required injection amount Ti is calculated, the first injection amount Ti1 is subtracted from the latest required injection amount Ti, the second injection amount Ti2 is calculated, and the intake valve closing timing IVC is reached. The fuel of the second injection amount Ti2 is injected so as to end the fuel injection.

ここで、1回目に算出した要求噴射量をTiold 、2回目に算出した要求噴射量をTinew とすると、1回目の噴射量Ti1に対し、2回目の噴射量Ti2は、Ti2=Tinew −Ti1であるので、1回目と2回目の噴射量の合計値は、Ti1+Ti2=Ti1+(Tinew −Ti1)=Tinew となり、2回目に算出した最新の要求噴射量Tinew と等しくなることから、過渡応答性を向上させることができる。   Here, if the required injection amount calculated for the first time is Tiold, and the required injection amount calculated for the second time is Tinew, the second injection amount Ti2 is Ti2 = Tinew−Ti1 with respect to the first injection amount Ti1. Therefore, the total value of the first and second injection amounts is Ti1 + Ti2 = Ti1 + (Tinew−Ti1) = Tinew, which is equal to the latest required injection amount Tinew calculated the second time, thus improving the transient response. Can be made.

また、2回目の噴射量の演算は、図4(a)又は(b)に示すように、吸気弁閉時期IVCと同じピストン位置にて行うため、吸気弁閉時期IVCのシリンダ吸入空気量と同等の空気量にて、噴射量の演算を行うことができ、噴射量演算時の空気量と実際のシリンダ吸入空気量との誤差を大幅に低減できる。これにより、噴射量の制御精度を向上させ、始動時を含む過渡時の排気性能などを大幅に向上できる。   Further, as shown in FIG. 4 (a) or (b), the calculation of the second injection amount is performed at the same piston position as the intake valve closing timing IVC, and therefore the cylinder intake air amount at the intake valve closing timing IVC and The injection amount can be calculated with the same air amount, and the error between the air amount during the injection amount calculation and the actual cylinder intake air amount can be greatly reduced. Thereby, the control accuracy of the injection amount can be improved, and the exhaust performance at the time of transition including the start time can be greatly improved.

尚、本実施形態は、他気筒の吸気による自気筒の圧力変化が無視できる場合、具体的には、図4(a)のように、各気筒の吸気行程が重ならないバルブタイミングの場合や、図4(b)のように、吸気弁閉時期IVCが下死点に近く、他気筒の吸気体積変化が小さく無視できる場合に、特に有効である。
また、本実施形態によれば、最新の要求噴射量Tiの一部(大部分)を1回目の噴射量Ti1として算出する際、最新の要求噴射量Tiから所定量CTiを減算して、1回目の噴射量Ti1=Ti−CTiを算出するので、容易に算出できる。
In the present embodiment, when the pressure change of the own cylinder due to the intake of the other cylinders can be ignored, specifically, as shown in FIG. 4A, in the case of the valve timing where the intake strokes of the respective cylinders do not overlap, As shown in FIG. 4B, this is particularly effective when the intake valve closing timing IVC is close to bottom dead center and the intake volume change of other cylinders is small and can be ignored.
Further, according to the present embodiment, when a part (most part) of the latest required injection amount Ti is calculated as the first injection amount Ti1, the predetermined amount CTi is subtracted from the latest required injection amount Ti. Since the second injection amount Ti1 = Ti-CTi is calculated, it can be easily calculated.

また、本実施形態によれば、各気筒の排気行程にて、1回目の噴射量を算出し、噴射させることにより、必要かつ十分な気化性能を得ることができる。
尚、バルブタイミングによっては、吸気弁閉時期IVCまでに2回目の燃料噴射を終了できないことが考えられるが、その場合は、可変動弁装置を用いて、バルブタイミングを適宜変更すればよい。
Further, according to the present embodiment, necessary and sufficient vaporization performance can be obtained by calculating and injecting the first injection amount in the exhaust stroke of each cylinder.
Note that, depending on the valve timing, it is conceivable that the second fuel injection cannot be completed by the intake valve closing timing IVC. In this case, the valve timing may be appropriately changed using a variable valve operating device.

図5は第2実施形態のフローチャートを示している。
S11〜S14での排気行程での1回目の噴射量演算、噴射制御については、第1実施形態(図2)のS1〜S4と同じであり、説明を省略する。
S15では、吸気行程の所定の噴射量演算時期(予め定めた演算開始時期)か否かを判定し、YESの場合に、S16以降の処理を実行する。
FIG. 5 shows a flowchart of the second embodiment.
The first injection amount calculation and the injection control in the exhaust stroke in S11 to S14 are the same as S1 to S4 in the first embodiment (FIG. 2), and the description is omitted.
In S15, it is determined whether or not it is a predetermined injection amount calculation time (predetermined calculation start time) of the intake stroke. If YES, the processing after S16 is executed.

S16では、現在の運転条件に基づく、最新の要求噴射量Tiを算出する。具体的には、現時点の吸入空気量Qaとエンジン回転数Neとに基づいて、要求噴射量Ti=K・Qa/Ne・COEF(Kは定数、COEFは各種補正係数)を算出する。
S17では、S16で算出した最新の要求噴射量Tiから、排気行程にて噴射した1回目の噴射量Ti1を減算して、2回目の噴射量Ti2=Ti−Ti1を算出する。
In S16, the latest required injection amount Ti based on the current operating conditions is calculated. Specifically, the required injection amount Ti = K · Qa / Ne · COEF (K is a constant, and COEF is various correction coefficients) is calculated based on the current intake air amount Qa and the engine speed Ne.
In S17, the second injection amount Ti2 = Ti−Ti1 is calculated by subtracting the first injection amount Ti1 injected in the exhaust stroke from the latest required injection amount Ti calculated in S16.

S18では、現在のエンジン回転数Neと、吸気弁閉時期IVC(クランク角度)より、吸気弁閉時期IVCまでの時間TIVCを算出する。
S19では、吸気弁閉時期IVCまでの時間TIVCから、2回目の噴射量(噴射時間)Ti2を減算して、余裕時間(TIVC−Ti2)を求め、これが所定値未満か否かを判定する。
In S18, a time TIVC to the intake valve closing timing IVC is calculated from the current engine speed Ne and the intake valve closing timing IVC (crank angle).
In S19, the second injection amount (injection time) Ti2 is subtracted from the time TIVC until the intake valve closing timing IVC to obtain a margin time (TIVC-Ti2), and it is determined whether this is less than a predetermined value.

TIVC−Ti2≧所定値であれば、まだ十分に、吸気弁閉時期IVCまでに2回目の燃料噴射を終了する余裕があると判断して、S16へ戻り、最新の要求噴射量Tiの演算(S16)と、2回目の噴射量Ti2の演算(S17)と、吸気弁閉時期IVCまでの時間TIVCの算出(S18)と、余裕時間の判定(S19)とを、一定時間間隔で繰り返す。   If TIVC−Ti2 ≧ predetermined value, it is determined that there is still enough room to finish the second fuel injection by the intake valve closing timing IVC, and the process returns to S16 to calculate the latest required injection amount Ti ( S16), the calculation of the second injection amount Ti2 (S17), the calculation of the time TIVC to the intake valve closing timing IVC (S18), and the allowance time determination (S19) are repeated at regular time intervals.

この結果、S19での判定で、TIVC−Ti2<所定値となると、吸気弁閉時期IVCまでに燃料噴射を終了可能な範囲で、最も遅い時期であると判断し、S20へ進む。
S20では、吸気弁閉時期IVCまでに燃料噴射を終了するように、吸気弁閉時期IVCまでに燃料噴射を終了可能な範囲で、最も遅い時期に算出した、上記2回目の噴射量Ti2の燃料を噴射させる。
As a result, if TIVC-Ti2 <predetermined value is determined in S19, it is determined that it is the latest time within the range in which fuel injection can be completed by the intake valve closing timing IVC, and the process proceeds to S20.
In S20, the fuel of the second injection amount Ti2 calculated at the latest time within the range in which the fuel injection can be completed by the intake valve closing timing IVC so that the fuel injection is completed by the intake valve closing timing IVC. To spray.

尚、S11〜S13の部分が第1の噴射量算出手段に相当し、S14の部分が第1の燃料噴射手段に相当し、S15〜S17の部分が第2の噴射量算出手段に相当し、S18〜S20の部分が第2の燃料噴射手段に相当する。
本フローでは、図6に示すように、各気筒の排気行程にて、そのときの吸入空気量Qa及びエンジン回転数Neに基づいて、最新の要求噴射量Tiを算出し、この最新の要求噴射量の一部(大部分)を1回目の噴射量Ti1として算出し、排気行程にてこの1回目の噴射量の燃料を噴射させることにより、吸気弁開弁までに燃料の気化を促進して、燃焼性の改善などを図る。この点は第1実施形態と同じ。
The portions S11 to S13 correspond to the first injection amount calculation means, the portion S14 corresponds to the first fuel injection means, the portions S15 to S17 correspond to the second injection amount calculation means, S18 to S20 correspond to the second fuel injection means.
In this flow, as shown in FIG. 6, in the exhaust stroke of each cylinder, the latest required injection amount Ti is calculated based on the intake air amount Qa and the engine speed Ne at that time, and this latest required injection A part (most part) of the amount is calculated as the first injection amount Ti1, and the fuel of the first injection amount is injected in the exhaust stroke to promote the vaporization of the fuel until the intake valve opens. , Improve combustibility. This is the same as in the first embodiment.

その一方、各気筒の吸気行程にて一定時間間隔で、最新の吸入空気量Qa及びエンジン回転数Neに基づいて、最新の要求噴射量Tiを算出し、最新の要求噴射量Tiを算出する毎に、最新の要求噴射量Tiから1回目の噴射量Ti1を減算して、2回目の噴射量Ti2を算出し、吸気弁閉時期IVCまでに燃料噴射を終了するように、吸気弁閉時期IVCまでに燃料噴射を終了可能な範囲で、最も遅い時期に算出した2回目の噴射量Ti2の燃料を噴射させる。   On the other hand, every time the latest required injection amount Ti is calculated based on the latest intake air amount Qa and the engine speed Ne at regular time intervals in the intake stroke of each cylinder. Then, the first injection amount Ti1 is subtracted from the latest required injection amount Ti to calculate the second injection amount Ti2, and the fuel injection is terminated by the intake valve closing timing IVC. The fuel of the second injection amount Ti2 calculated at the latest time is injected within a range where the fuel injection can be completed by the time.

従って、1回目と2回目の噴射量の合計値は、第1実施形態と同様、Ti1+Ti2=Ti1+(Tinew −Ti1)=Tinew となり、2回目の噴射量として最後に演算した時に用いた最新の要求噴射量Tinew と等しくなることから、過渡応答性を向上させることができる。
また、2回目の噴射量の演算時期を、図7に示すように、可能な限り吸気弁閉時期IVCに近づけることができ、吸気弁閉時期IVCのシリンダ吸入空気量に近い空気量にて、噴射量の演算を行うことができ、噴射量演算時の空気量と実際のシリンダ吸入空気量との誤差を大幅に低減できる。これにより、噴射量の制御精度を向上させ、始動時を含む過渡時の排気性能などを大幅に向上できる。
Accordingly, the total value of the first and second injection amounts is Ti1 + Ti2 = Ti1 + (Tinew−Ti1) = Tinew as in the first embodiment, and the latest request used when the last injection amount is calculated last. Since it becomes equal to the injection amount Tinew, the transient response can be improved.
Further, as shown in FIG. 7, the calculation timing of the second injection amount can be as close as possible to the intake valve closing timing IVC, and with an air amount close to the cylinder intake air amount at the intake valve closing timing IVC, The injection amount can be calculated, and the error between the air amount at the time of calculating the injection amount and the actual cylinder intake air amount can be greatly reduced. Thereby, the control accuracy of the injection amount can be improved, and the exhaust performance at the time of transition including the start time can be greatly improved.

尚、本実施形態は、図7のように、他気筒での吸気行程が自気筒の吸気圧力に影響があるバルブタイミングの場合(他気筒の吸気により自気筒の圧力が変化する場合)に、特に有効である。
また、本実施形態によれば、吸気行程にて2回目の噴射量Ti2が算出される毎に、吸気弁閉時期IVCまでの時間TIVCと2回目の噴射量の燃料噴射に要する時間Ti2との差を算出し、この差が所定値未満となっているときに、2回目の噴射量の燃料を噴射させる制御構成とすることで、簡単な制御ロジックで実施できる。
In this embodiment, as shown in FIG. 7, when the intake stroke in the other cylinder has a valve timing that affects the intake pressure of the own cylinder (when the pressure of the own cylinder changes due to the intake of the other cylinder), It is particularly effective.
Further, according to the present embodiment, every time the second injection amount Ti2 is calculated in the intake stroke, the time TIVC until the intake valve closing timing IVC and the time Ti2 required for fuel injection of the second injection amount are calculated. By calculating the difference, and when the difference is less than a predetermined value, a control configuration in which the fuel of the second injection amount is injected can be implemented with simple control logic.

本発明の一実施形態を示すエンジンのシステム図Engine system diagram showing an embodiment of the present invention 第1実施形態での分割噴射の制御のフローチャートFlowchart of split injection control in the first embodiment 第1実施形態でのタイミングチャートTiming chart in the first embodiment 第1実施形態での吸気弁開閉時期と関連を示す図The figure which shows the relationship with the intake valve opening and closing timing in 1st Embodiment 第2実施形態での分割噴射の制御のフローチャートFlowchart of split injection control in the second embodiment 第2実施形態でのタイミングチャートTiming chart in the second embodiment 第2実施形態での吸気弁開閉時期との関連を示す図The figure which shows the relationship with the intake valve opening and closing timing in 2nd Embodiment

符号の説明Explanation of symbols

1 エンジン
2 ピストン
3 燃焼室
4 点火プラグ
5 吸気弁
6 排気弁
7、8 可変動弁装置
9 吸気通路
10 電制スロットル弁
11 燃料噴射弁
12 排気通路
13 排気浄化触媒
20 ECU
21 クランク角センサ
22 アクセル開度センサ
23 エアフローメータ
24 水温センサ
DESCRIPTION OF SYMBOLS 1 Engine 2 Piston 3 Combustion chamber 4 Spark plug 5 Intake valve 6 Exhaust valve 7, 8 Variable valve gear 9 Intake passage 10 Electric throttle valve 11 Fuel injection valve 12 Exhaust passage 13 Exhaust purification catalyst 20 ECU
21 Crank angle sensor 22 Accelerator opening sensor 23 Air flow meter 24 Water temperature sensor

Claims (5)

吸気通路に各気筒毎に燃料噴射弁を備える内燃機関において、
各気筒の吸気行程前に最新の要求噴射量を算出し、この最新の要求噴射量の一部を1回目の噴射量として算出する第1の噴射量算出手段と、
吸気行程前にこの1回目の噴射量の燃料を噴射させる第1の燃料噴射手段と、
各気筒の吸気行程の吸気下死点前であって、吸気下死点後の吸気弁閉時期と同じピストン位置にて、最新の要求噴射量を算出し、この最新の要求噴射量から吸気行程前に噴射した1回目の噴射量を減算して、2回目の噴射量を算出する第2の噴射量算出手段と、
吸気弁閉時期までに燃料噴射を終了するように、この2回目の噴射量の燃料を噴射させる第2の燃料噴射手段と、
を備えることを特徴とする内燃機関の燃料噴射制御装置。
In an internal combustion engine provided with a fuel injection valve for each cylinder in the intake passage,
A first injection amount calculating means for calculating the latest required injection amount before the intake stroke of each cylinder and calculating a part of the latest required injection amount as a first injection amount;
First fuel injection means for injecting fuel of the first injection amount before the intake stroke;
The latest required injection amount is calculated at the same piston position as the intake valve closing timing after the intake bottom dead center before the intake bottom dead center of the intake stroke of each cylinder, and the intake stroke is calculated from this latest required injection amount. A second injection amount calculating means for subtracting the first injection amount injected before and calculating a second injection amount;
A second fuel injection means for injecting fuel of the second injection amount so as to finish fuel injection by the intake valve closing timing;
A fuel injection control device for an internal combustion engine, comprising:
吸気通路に各気筒毎に燃料噴射弁を備える内燃機関において、
各気筒の吸気行程前に最新の要求噴射量を算出し、この最新の要求噴射量の一部を1回目の噴射量として算出する第1の噴射量算出手段と、
吸気行程前にこの1回目の噴射量の燃料を噴射させる第1の燃料噴射手段と、
各気筒の吸気行程にて一定時間間隔で最新の要求噴射量を算出し、最新の要求噴射量を算出する毎に、最新の要求噴射量から吸気行程前に噴射した1回目の噴射量を減算して、2回目の噴射量を算出する第2の噴射量算出手段と、
吸気弁閉時期までに燃料噴射を終了するように、吸気弁閉時期までに燃料噴射を終了可能な範囲で、最も遅い時期に算出した2回目の噴射量の燃料を噴射させる第2の燃料噴射手段と、
を備えることを特徴とする内燃機関の燃料噴射制御装置。
In an internal combustion engine provided with a fuel injection valve for each cylinder in the intake passage,
A first injection amount calculating means for calculating the latest required injection amount before the intake stroke of each cylinder and calculating a part of the latest required injection amount as a first injection amount;
First fuel injection means for injecting fuel of the first injection amount before the intake stroke;
The latest required injection amount is calculated at regular time intervals in the intake stroke of each cylinder, and every time the latest required injection amount is calculated, the first injection amount injected before the intake stroke is subtracted from the latest required injection amount. A second injection amount calculating means for calculating a second injection amount;
Second fuel injection for injecting fuel of the second injection amount calculated at the latest time within a range in which fuel injection can be completed by the intake valve closing timing so that the fuel injection is completed by the intake valve closing timing Means,
A fuel injection control device for an internal combustion engine, comprising:
前記第2の燃料噴射手段は、前記第2の噴射量算出手段により2回目の噴射量が算出される毎に、吸気弁閉時期までの時間と2回目の噴射量の燃料噴射に要する時間との差を算出し、この差が所定値未満となっているときに、2回目の噴射量の燃料を噴射させることを特徴とする請求項2記載の内燃機関の燃料噴射制御装置。   Each time the second injection amount is calculated by the second injection amount calculation unit, the second fuel injection unit includes a time until the intake valve closing timing and a time required for fuel injection of the second injection amount. 3. The fuel injection control device for an internal combustion engine according to claim 2, wherein a difference between the two is calculated, and when the difference is less than a predetermined value, the second injection amount of fuel is injected. 前記第1の燃料噴射手段は、最新の要求噴射量から所定量を減算して、1回目の噴射量を算出することを特徴とする請求項1〜請求項3のいずれか1つに記載の内燃機関の燃料噴射制御装置。   4. The first fuel injection unit calculates a first injection amount by subtracting a predetermined amount from a latest required injection amount. 5. A fuel injection control device for an internal combustion engine. 前記第1の噴射量算出手段及び前記第1の燃料噴射手段は、各気筒の排気行程にて、1回目の噴射量を算出し、噴射させることを特徴とする請求項1〜請求項4のいずれか1つに記載の内燃機関の燃料噴射制御装置。   The first injection amount calculation means and the first fuel injection means calculate and inject the first injection amount in the exhaust stroke of each cylinder. The fuel injection control device for an internal combustion engine according to any one of the above.
JP2006169272A 2006-06-19 2006-06-19 Fuel injection control device of internal combustion engine Pending JP2007332944A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006169272A JP2007332944A (en) 2006-06-19 2006-06-19 Fuel injection control device of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006169272A JP2007332944A (en) 2006-06-19 2006-06-19 Fuel injection control device of internal combustion engine

Publications (1)

Publication Number Publication Date
JP2007332944A true JP2007332944A (en) 2007-12-27

Family

ID=38932636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006169272A Pending JP2007332944A (en) 2006-06-19 2006-06-19 Fuel injection control device of internal combustion engine

Country Status (1)

Country Link
JP (1) JP2007332944A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009250082A (en) * 2008-04-03 2009-10-29 Hitachi Ltd Apparatus for controlling fuel injection of engine
JP2009281275A (en) * 2008-05-22 2009-12-03 Hitachi Automotive Systems Ltd Fuel injection control system for engine
DE102008061698A1 (en) 2007-12-25 2009-12-03 Futaba Corp., Mobara-shi Motor control for radio remote control
US7881856B2 (en) 2008-04-03 2011-02-01 Hitachi, Ltd. Apparatus for and method of controlling fuel injection of engine
JP2011140961A (en) * 2011-04-25 2011-07-21 Hitachi Automotive Systems Ltd Fuel injection control device for engine
JP2011190784A (en) * 2010-03-17 2011-09-29 Hitachi Automotive Systems Ltd Control device of cylinder direct injection type internal combustion engine
JP2016089740A (en) * 2014-11-06 2016-05-23 スズキ株式会社 Fuel injection device
DE102019202641B4 (en) 2018-03-02 2024-05-16 Denso Corporation INJECTION CONTROL DEVICE AND METHOD FOR CONTROLLING A FUEL INJECTION VALVE

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008061698A1 (en) 2007-12-25 2009-12-03 Futaba Corp., Mobara-shi Motor control for radio remote control
JP2009250082A (en) * 2008-04-03 2009-10-29 Hitachi Ltd Apparatus for controlling fuel injection of engine
US7881856B2 (en) 2008-04-03 2011-02-01 Hitachi, Ltd. Apparatus for and method of controlling fuel injection of engine
JP2009281275A (en) * 2008-05-22 2009-12-03 Hitachi Automotive Systems Ltd Fuel injection control system for engine
JP2011190784A (en) * 2010-03-17 2011-09-29 Hitachi Automotive Systems Ltd Control device of cylinder direct injection type internal combustion engine
JP2011140961A (en) * 2011-04-25 2011-07-21 Hitachi Automotive Systems Ltd Fuel injection control device for engine
JP2016089740A (en) * 2014-11-06 2016-05-23 スズキ株式会社 Fuel injection device
US9897032B2 (en) 2014-11-06 2018-02-20 Suzuki Motor Corporation Fuel injection device
DE102019202641B4 (en) 2018-03-02 2024-05-16 Denso Corporation INJECTION CONTROL DEVICE AND METHOD FOR CONTROLLING A FUEL INJECTION VALVE

Similar Documents

Publication Publication Date Title
JP2007332944A (en) Fuel injection control device of internal combustion engine
KR100827587B1 (en) Apparatus and method for controlling internal combustion engine
JP4605512B2 (en) Control device for internal combustion engine
JP5844225B2 (en) Internal EGR amount calculation device for internal combustion engine
US9470169B2 (en) Control device for internal combustion engine
EP2975249B1 (en) Fuel injection control apparatus of internal combustion engine
JP2008184915A (en) Fuel injection control device of internal combustion engine
WO2018096986A1 (en) Control device for internal combustion engine
JP2006307668A (en) Egr flow rate estimating device of engine
JP2013007303A (en) Fuel injection control device of internal combustion engine
JP2010223219A (en) Engine control system
JP2015014257A (en) Ignition timing control device for internal combustion engine
JP2001342885A (en) Fuel injection control device for internal combustion engine
JP4892460B2 (en) Air quantity estimation device for internal combustion engine
JP4269124B2 (en) Fuel injection control device for internal combustion engine
JP2009197711A (en) Air volume estimation device of internal combustion engine
JP2004360535A (en) Air intake pressure detection device and exhaust gas recirculation controller of internal combustion engine
JP4000972B2 (en) In-cylinder gas state acquisition device for internal combustion engine
JP2006063802A (en) Air amount estimating device for internal combustion engine
JP2019090330A (en) Intake pressure estimation device for engine
JP4956473B2 (en) Fuel injection control device
JP2011196263A (en) Control device for internal combustion engine
JP5076983B2 (en) Engine fuel injection control device
JP2006329035A (en) Control device of internal combustion engine
JP2008298028A (en) Fuel injection control device of in cylinder injection type internal combustion engine

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080326

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080326

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080331