JP4429522B2 - Receptoscope device - Google Patents

Receptoscope device Download PDF

Info

Publication number
JP4429522B2
JP4429522B2 JP2000384191A JP2000384191A JP4429522B2 JP 4429522 B2 JP4429522 B2 JP 4429522B2 JP 2000384191 A JP2000384191 A JP 2000384191A JP 2000384191 A JP2000384191 A JP 2000384191A JP 4429522 B2 JP4429522 B2 JP 4429522B2
Authority
JP
Japan
Prior art keywords
electrode
treatment
treatment electrode
return electrode
return
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000384191A
Other languages
Japanese (ja)
Other versions
JP2002177298A (en
Inventor
雅英 大山
健二 原野
一也 肘井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2000384191A priority Critical patent/JP4429522B2/en
Publication of JP2002177298A publication Critical patent/JP2002177298A/en
Application granted granted Critical
Publication of JP4429522B2 publication Critical patent/JP4429522B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は内視鏡下で体組織の切開、切除、蒸散等を電気切除で行うレゼクトスコープ装置に関する。
【0002】
【従来の技術】
一般に、レゼクトスコープは、経尿道的切除術(Transurethral resection:TUR)や経頚管的切除術(Transcervical resection:TCR)に用いられ、体腔内に挿入される細長で中空のシース内に、観察用の内視鏡である光学視管(スコープとも記載する)及び生体組織切除用の電極ユニットとを主に備えたものである。
【0003】
例えば、レゼクトスコープとして実公平4−45694号公報には電気絶縁材の焼けを防止するため、電気絶縁部材の先端部分と素線との間へ素線外周に密着するように硬性の耐熱性部材を介在させた硬性鏡の処置具用電極が開示されている。
【0004】
前記レゼクトスコープを用いて前立腺切除等の処置を行う場合、狭い腔内を拡張する灌流液として絶縁性を有する透明な液体であるD−ソルビトール等を供給して腔を拡張させ、レゼクトスコープのシースを腔内に挿入していた。
【0005】
そして、このシース内に配置されているスコープで病変部表面の観察を行いながらシースの先端部開口に配置されている電極ユニットの処置電極に高周波電流を通電していた。このことによって、処置電極から放電により腔内に充満されている液体を通って体外に配置されている外部電極に電流が流れ、操作部の操作で前記処置電極を進退操作して病変部の処置を行っていた。
【0006】
このとき、腔内に充満されている灌流液が絶縁性の液体であることにより、処置電極から外部電極に向かう電流の分散が防止されて効率良い処置が行える。
【0007】
ところが、腔内に絶縁性の液体を充満させて処置を行う場合、処置時間が長時間に渡ることによって、この液体が血管内に吸収され、人体に悪影響が及ぶおそれがあることにより手術時間に制約を受けていた。
【0008】
この問題に対処するため、灌流液に導電性液体である生理食塩水などを用いて腔内に充満させることも考えられるが、導電性液体を腔内に充満させることによって、処置電極から外部電極に向かって流れるべき電流が液体中を伝って分散することにより病変部に対して放電が発生せず、効果的な処置を行えなくなるという不具合が生じる。
【0009】
そこで、例えば特開2000−201946号公報では、導電性を有する液体が充満された体腔内に挿入される細長で中空のシース先端部近傍内に配置され、高周波焼灼電流を用いて体組織の処置を行う処置電極と、前記導電性を有する液体中に配置され前記処置電極からの電流を受けるリターン電極とを有し、処置電極の少なくとも体組織非接触面側に絶縁部を設けることで、導電性を有する液体で満たされた腔内に配置した処置電極に供給された高周波電流が処置電極の体組織非接触面側に設けた絶縁部から液体中に漏れることなく、体組織に接触した処置電極の体組織接触面から効率良く放電させリターン電極に向かって流れるレゼクトスコープ装置を提案している。
【0010】
【発明が解決しようとする課題】
しかしながら、上記特開2000−201946号公報のレゼクトスコープ装置では、処置電極とリターン電極との配置距離が短いため、誤って大気中あるいは非導電性液体中下で通電を行うと、過大な電圧が発生し電極間で絶縁破壊が発生する可能性があるといった問題がある。
【0011】
本発明は、上記事情に鑑みてなされたものであり、灌流液の電気的特性を判別し出力を適正に制御することのできるレゼクトスコープ装置を提供することを目的としている。
【0012】
【発明が解決しようとする課題】
本発明のレゼクトスコープ装置は、体腔内の導電性溶液中に配置される処置電極及び戻り電極と、前記処置電極から生体組織に高周波電流を放電させ、前記生体組織を切除及び凝固するように、前記処置電極及び戻り電極間に前記高周波電流を供給する高周波電流供給手段と、前記処置電極及び前記戻り電極が導電性溶液中にある状況の前記処置電極及び前記戻り電極の周辺における抵抗値よりも高く、また、前記処置電極及び前記戻り電極が非導電性水溶液中又は大気中にある状況の前記処置電極及び前記戻り電極の周辺における抵抗値よりも低く設定される閾値と、前記処置電極及び前記戻り電極に流れる電流値から求めた前記処置電極及び前記戻り電極の周辺における抵抗値とを比較するための比較手段と、前記比較手段の比較結果に基づき前記高周波電流供給手段の出力を制御する制御手段とを備えて構成される。
【0013】
【発明の実施の形態】
以下、図面を参照しながら本発明の実施の形態について述べる。
【0014】
図1ないし図14は本発明の一実施の形態に係わり、図1はレゼクトスコープ装置の構成を示す構成図、図2は図1の処置電極の構成を示す構成図、図3は図1の高周波電源装置の構成を示す構成図、図4は図3の検知理回路の構成を示す構成図、図5は図4の接続検知回路の作用を説明する第1の図、図6は図4の接続検知回路の作用を説明する第2の図、図7は図3の出力トランス回路の供給電力の負荷特性を示す図、図8は図3の出力トランス回路から供給された電力による処置電極の作用を説明する図、図9は導電性液体下での図1の処置電極及びリターン電極間に流れる電流を示す図、図10は絶縁性液体下での図1の処置電極及びリターン電極間に流れる電流を示す図、図11は導電性液体下及び絶縁性液体下での図1の処置電極及びリターン電極間の抵抗を示す図、図12の図1のレゼクトスコープ装置の作用を説明するフローチャート、図13は図1のレゼクトスコープ装置の変形例を示す図、図14は図13のレゼクトスコープ装置の作用を説明するフローチャートである。
【0015】
図1に示すようにレゼクトスコープ装置1は、貫通孔を有する中空のシース2と、このシース2の孔内に配置され、病変部等を観察するスコープ3及び病変部に対する処置を行う細長なワイヤ形状の電極である処置電極41を先端側に備えた電極ユニット4と、前記シース2の先端部孔内に配設され前記処置電極41からの出力電流が帰還するリターン電極45と、操作部を構成するハンドル部5とを具備したレゼクトスコープ6と、後述する電極ユニット4の処置電極41への通電手段であるとともに前記リターン電極45からの帰還電流が帰還する高周波電源装置7とで主に構成されている。なお、前記高周波電源装置7から前記電極ユニット4の処置電極41への電力供給のオン・オフは、高周波電源装置7に接続されたフットスイッチ75により制御される。
【0016】
前記シース2は、例えば尿道を介して体腔内に挿入される挿入部21と、この挿入部21の後端に設けられた手元本体部22とで構成され、この手元本体部22の側周部には処置部に灌流液として導電性を有する生理食塩水等を送水するコック付きの送水口金23が設けられている。
【0017】
前記挿入部21内には前記スコープ3と電極ユニット4とが挿通配置されるようになっており、この挿入部21の先端には絶縁部材である例えば硬質な樹脂部材などで形成された先端部材24が設けられている。
【0018】
前記スコープ3は、観察光学系を内蔵した細長で前記挿入部21及び先端部材24内に挿通配置される硬質な挿入管31と、この挿入管31の基端に配設された手元部32とで構成されている。この手元部32の基端には術者が目視観察を行う接眼部33が設けられ、前記手元部32の側部には観察部位に対して観察用の照明光を供給する図示しないライトガイドが着脱自在に接続されるライトガイド接続部34が設けられている。
【0019】
前記挿入部21内に挿通配置される電極ユニット4は、図1及び図2に示すように先端側に位置して硬質な金属部材をループ形状に形成した処置電極41と、この処置電極41のスコープ3の挿入軸に対する位置関係を固定保持する硬質で透孔を有する先端側の一端部が二股に分離した二股アーム部材43と、この二股アーム部材43の基端部を先端部に配設した細長な金属パイプ44とで主に構成されている。なお、前記金属パイプ44の外周には図示しない絶縁チューブが被覆されており、この絶縁チューブの後端部に前記金属パイプ44の基端部が電極接続部として露出している。
【0020】
前記電極ユニット4は、挿入部21内に進退自在に配置され、前記処置電極41が前記シース2の先端部開口25に対して突没自在に配置されるようになっている。
【0021】
前記処置電極41及び二股アーム部材43を先端側に設けた金属パイプ44の基端部は、前記挿入部21及び手元本体部22内を挿通して手元本体部22の基端面から延出して後述するスライダ53に配置されている。
【0022】
前記ハンドル部5は、前記シース2の手元本体部22に対して着脱自在に接続されるシース接続部51と、このシース接続部51の後端面から後方に突設して前記挿入管31が挿通する案内管52と、この案内管52に摺動自在に保持される略パイプ形状のスライダ53とで主に形成されている。
【0023】
前記スライダ53には前記電極ユニット4の後端部を形成する前記電極接続部との電気的接続部になる電極固定部54と、前記高周波電源装置7から延出する電源コード71が着脱自在に接続される高周波電源用コネクタ55と、術者の親指を掛けるリング形状の親指掛けリング56とが設けられている。
【0024】
そして、前記スライダ53と前記シース接続部51とは板ばね57を介して連結されている。すなわち、この板ばね57の一端部は、前記シース接続部51に一体的に固設されたレバー形状の指掛け58に固定され、他端部は前記スライダ53に固定されている。このことにより、前記スライダ53は、前記板ばね57によって常に接眼部33側へ付勢されている。
【0025】
したがって、前記スライダ53に設けられている親指掛けリング56を適宜操作することによって、スライダ53が進退操作されて、前記電極ユニット4の処置電極41がシース2の先端部開口25から突没する進退移動を行うようになっている。
【0026】
前記手元本体部22の側周部には前記高周波電源装置7から延出する帰還電流用コード72が着脱自在に接続される帰還電流用コネクタ26が設けられている。そして、この帰還電流用コネクタ26と前記リターン電極45とは例えば実線に示すリード線46によって電気的に接続している。
【0027】
一方、前記高周波電源用コネクタ55と前記電極固定部54とは例えば破線に示すリード線61によって電気的に接続されている。このため、前記高周波電源装置7の電源コード71を高周波電源用コネクタ55に接続することによって、前記電極ユニット4の処置電極41と通電状態になって、病変部の処置を行える。なお、前記処置電極41に供給される電流値と帰還電流の電流値との差を求めることによって、漏れ電流を測定することができるようになっている。
【0028】
さらに、前記案内管52の基端部にはスライダ位置決め用固定部材62が設けられており、このスライダ位置決め用固定部材62によって前記スライダ53が案内管52から抜け落ちるのが防止されるとともに、前記案内管52に挿入された挿入管31の手元部32がスライダ位置決め用固定部材62に対して一体的に固定されている。
【0029】
電源コード71及び帰還電流用コード72は接続ケーブル73内に挿通されており、接続ケーブル73の基端側に設けられた図示しない接続コネクタにより高周波電源装置7に接続される。
【0030】
図3に示すように、高周波電源装置7は、フットスイッチ75からの信号を受けて電力供給の制御を行う制御回路101と、制御回路101に制御され直流電力を発生する電源回路102と、電源回路102からの直流電力をスイッチングして高周波電力を発生する高周波発生回路103と、制御回路101に制御され高周波発生回路103が発生する高周波電力の波形信号を高周波発生回路103に供給する波形回路104と、高周波発生回路103が発生した高周波電力の高周波電圧を増幅し処置電極41とリターン電極45間に印加し高周波電流を処置電極41に供給する出力トランス回路105と、出力トランス回路105より出力される高周波電流を検出する電流センサ106a,106bと、電流センサ106a,106bにより検出された電流値をA/D変換するセンサ信号処理回路107と、帰還電流用コード72の状態を検知すると共に接続ケーブル73の基端側に設けられた図示しない接続コネクタの接続状態を検知する検知回路108とを備え、制御回路101は、センサ信号処理回路107からのデジタル化された電流データ及び検知回路108の出力に基づいて電源回路102及び波形回路104を制御するようになっている。
【0031】
図4に示すように、前記検知回路108においては、出力トランス回路105のリターン電極45側が出力前段で2つのリターン線R1,R2に分離されコンデンサを介して出力されており、前記検知回路108は、接続ケーブル73の基端側に設けられた図示しない接続コネクタの接続状態を検知する接続検知回路110と、分離された2つのリターン線R1,R2に電流を通電させることでリターン電極45の抵抗を測定し2つのリターン線R1,R2の断線をチェックする抵抗検知回路113とから構成されている。
【0032】
そして、接続検知回路110の検知結果により接続ケーブル73の基端側に設けられた図示しない接続コネクタが接続されていない場合は、制御回路101の制御により出力が禁止され、また、機器使用前あるいは使用中に抵抗検知回路113の検知結果により2つのリターン線R1,R2のいずれか一方あるいは両方の断線が判明すると、制御回路101の制御により出力が停止されると共に警告表示及び警告音を操作パネル109より行うようになっている。
【0033】
図5及び図6に示すように、接続ケーブル73の基端側に設けられた接続コネクタ121は、絶縁部材で形成された高周波電源装置7の外装122に設けられたコネクタ受け123に挿入されるようになっており、コネクタ受け123及び接続コネクタ121の外装は金属等の導電性部材よりなり、接続コネクタ121がコネクタ受け123に挿入されると、接続コネクタ121の外装とコネクタ受け123とが電気的に接続されるようになっている。また、コネクタ受け123の高周波電源装置7の外装122内側近傍には略L字状の導電性の板バネ124が周囲を絶縁部材125に覆われネジ止めされており、接続コネクタ121がコネクタ受け123に挿入されると、接続コネクタ121の基端側に設けられた凹部126と板バネ124とが電気的に接続されるようになっている。そして、接続検知回路110はコネクタ受け123と板バネ124との導通状態を検知しており、接続コネクタ121がコネクタ受け123に挿入されると、コネクタ受け123と板バネ124とが導通することで接続コネクタ121の接続を検知している。
【0034】
出力トランス回路105は、図7の負荷特性に示すように、導電性液体の抵抗R1で供給電力が最大になるように、制御回路101が電源回路102及び波形回路104を制御する。
【0035】
このような出力トランス回路105の負荷特性の電力により、図8(a)に示すように、本実施の形態のレゼクトスコープ6の処置電極41を導電性液体151下で生体組織152に接触させた状態で処置電極41に高周波電流を通電すると、処置電極41及びリターン電極45間に高周波電流が流れ処置電極41が発熱し、図8(b)に示すように、処置電極41の外周面の導電性液体151が気泡153となって処置電極41を覆うことで、処置電極41及びリターン電極45間の電極間抵抗が抵抗R1から上昇し高抵抗となって略絶縁状態となり、それに伴い電圧も上昇し処置電極41と生体組織152との間で放電が生じ、この放電による高周波電流によって生体組織が切除・凝固されながら処置が行われる。
【0036】
図9に示すように、生理食塩水など導電性液体151下で本実施の形態のレゼクトスコープ6を使用した場合、処置電極41から流れる電流は、実線で示すように導電性液体151から直接リターン電極45に戻る電流と処置電極41が接触する生体組織152及び導電性液体151を介してリターン電極45に戻る電流とからなる。
【0037】
また、図10に示すように、誤ってD−ソルビトール等の絶縁性液体161下で本実施の形態のレゼクトスコープ6を使用した場合も、処置電極41から流れる電流は、破線で示すように絶縁性液体161から直接リターン電極45に戻る電流と処置電極41が接触する生体組織152及び絶縁性液体161を介してリターン電極45に戻る電流とからなる。
【0038】
しかし、図11に示すように、導電性液体151下での処置電極41とリターン電極45間の抵抗と絶縁性液体161下での処置電極41とリターン電極45間の抵抗とでは抵抗値が異なり、また処置電極41とリターン電極45とが近接して配置されているため、導電性液体151下で通電可能な電力で絶縁性液体161下で通電させると印可電圧が上昇し処置電極41とリターン電極45間で絶縁破壊が生じ機器が損傷する可能性がある。
【0039】
そこで本実施の形態では、出力トランス回路105より絶縁性液体161下あるいは大気中でも絶縁破壊を生じない電力で所定の検知電流を流し、処置電極41とリターン電極45の抵抗を検知し、検知した抵抗に基づき処置電極41とリターン電極45とが導電性液体151にあるのか絶縁性液体161下あるいは大気中にあるのかを判断する。
【0040】
詳細には、本実施の形態のレゼクトスコープ装置1を使用して処置を行う場合、図12に示すように、ステップS1でフットスイッチ75がONされると、まず、出力前に処置電極41とリターン電極45とが導電性液体151にあるのか絶縁性液体161下あるいは大気中にあるのかを判断する処理を行う。
【0041】
すなわち、制御回路101の制御により、ステップS2で出力トランス回路105より絶縁性液体161下あるいは大気中でも絶縁破壊を生じない電力で所定の検知電流を流し、ステップS3で出力が安定する所定時間の経過を待ち、ステップS4でセンサ信号処理回路107により電流センサ106a,106bにより検出された電流値をA/D変換して測定する。
【0042】
そして、制御回路101は、ステップS5において、測定した電流データと所定の閾値とを比較し、電流データが所定の閾値より大きい場合、すなわち所定値より抵抗が小さい場合には処置電極41とリターン電極45とが導電性液体151にあると判断し、ステップS6で予め設定した通りの電力により出力トランス回路105より出力を開始し処置を始め、ステップS7でフットスイッチ75がOFFになったかどうか検知し、フットスイッチ75がONのままならステップS6に戻り出力を続け、フットスイッチ75がOFFになったことを検知するとステップS8で出力を停止し、処置を終了する。
【0043】
また、ステップS5において、電流データが所定の閾値以下の場合、すなわち所定値以上の抵抗の場合には処置電極41とリターン電極45とが絶縁性液体161下あるいは大気中にあると判断し、制御回路101は、ステップS9において出力を禁止すると共に警告表示及び警告音を操作パネル109より行い、ステップS10及びS11でフットスイッチ75が一旦OFFになり再びフットスイッチ75がONになるのを待ち、その後ステップ12で出力を許可すると共に警告表示及び警告音をやめるリセット処理を行いステップS2に戻る。
【0044】
このように本実施の形態では、出力前に処置電極41とリターン電極45とが導電性液体151にあるのか絶縁性液体161下あるいは大気中にあるのかを判断し、絶縁性液体161下あるいは大気中にある場合には出力を禁止するので、誤って大気中あるいは非導電性液体中下で通電を行って過大な電圧が発生させ電極間で絶縁破壊を生じさせることがない。
【0045】
なお、処置電極41とリターン電極45間に検知電流を流して電流値を測定し、処置電極41とリターン電極45とが導電性液体151にあるのか絶縁性液体161下あるいは大気中にあるのかを判断するとしたが、図13に示すように、リターン電極45を2つに分けて設け、図14に示すように、ステップS21で2つのリターン電極45a,45bのそれぞれにリターン線R1,R2を接続して抵抗検知回路113により2つのリターン電極45a,45bの抵抗を測定し、ステップS22で測定した抵抗値が所定の閾値より小さいかどうか判断し、所定の閾値より小さい場合は処置電極41とリターン電極45とが導電性液体151にあると判断し、ステップS23で機能電流の設定を行い処理を終了し、所定の閾値以上の場合は処置電極41とリターン電極45とが絶縁性液体161下あるいは大気中にあると判断し、ステップS24で出力を禁止するようにしてもよい。
【0046】
また、処置電極41とリターン電極45とは別体に抵抗検知用の電極を設けてもよい。
【0047】
【発明の効果】
以上説明したように本発明によれば、灌流液の電気的特性を判別し出力を適正に制御することができるという効果がある。
【図面の簡単な説明】
【図1】本発明の一実施の形態に係るレゼクトスコープ装置の構成を示す構成図
【図2】図1の処置電極の構成を示す構成図
【図3】図1の高周波電源装置の構成を示す構成図
【図4】図3の検知理回路の構成を示す構成図
【図5】図4の接続検知回路の作用を説明する第1の図
【図6】図4の接続検知回路の作用を説明する第2の図
【図7】図3の出力トランス回路の供給電力の負荷特性を示す図
【図8】図3の出力トランス回路から供給された電力による処置電極の作用を説明する図
【図9】導電性液体下での図1の処置電極及びリターン電極間に流れる電流を示す図
【図10】絶縁性液体下での図1の処置電極及びリターン電極間に流れる電流を示す図
【図11】導電性液体下及び絶縁性液体下での図1の処置電極及びリターン電極間の抵抗を示す図
【図12】図1のレゼクトスコープ装置の作用を説明するフローチャート
【図13】図1のレゼクトスコープ装置の変形例を示す図
【図14】図13のレゼクトスコープ装置の作用を説明するフローチャート
【符号の説明】
1…レゼクトスコープ装置
3…スコープ
4…電極ユニット
6…レゼクトスコープ
7…高周波電源装置
41…処置電極
45…リターン電極
75…フットスイッチ
101…制御回路
102…電源回路
103…高周波発生回路
104…波形回路
105…出力トランス回路
106a,106b…電流センサ
107…センサ信号処理回路
108…検知回路
109…操作パネル
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a resectoscope apparatus that performs incision, excision, transpiration, and the like of body tissue by electroablation under an endoscope.
[0002]
[Prior art]
In general, a resectoscope is used for transurethral resection (TUR) and transcervical resection (TCR), and is observed in an elongated hollow sheath inserted into a body cavity. An optical endoscope (also referred to as a scope), which is an endoscope for medical use, and an electrode unit for excising a living tissue are mainly provided.
[0003]
For example, in Japanese Utility Model Publication No. 4-45694 as a reject scope, in order to prevent burning of the electrical insulating material, a hard heat resistance is provided so that the outer periphery of the wire is in close contact between the tip portion of the electrical insulating member and the wire. An electrode for a treatment instrument of a rigid endoscope having a member interposed therein is disclosed.
[0004]
When performing a procedure such as prostatectomy using the above-described resectoscope, the cavity is expanded by supplying D-sorbitol or the like, which is a transparent liquid having an insulating property, as a perfusate that expands the inside of the narrow cavity. Was inserted into the cavity.
[0005]
Then, a high-frequency current was applied to the treatment electrode of the electrode unit arranged at the distal end opening of the sheath while observing the surface of the lesioned part with a scope arranged in the sheath. As a result, a current flows from the treatment electrode to the external electrode arranged outside the body through the liquid filled in the cavity by discharge, and the treatment electrode is advanced and retracted by the operation of the operation unit. Had gone.
[0006]
At this time, since the perfusate filled in the cavity is an insulating liquid, current distribution from the treatment electrode to the external electrode is prevented, and an efficient treatment can be performed.
[0007]
However, when a treatment is performed by filling the cavity with an insulating liquid, the operation time is increased because the liquid is absorbed into the blood vessels and the human body may be adversely affected due to the long treatment time. I was restricted.
[0008]
In order to cope with this problem, it is conceivable to fill the cavity with a perfusion solution such as physiological saline which is a conductive liquid. However, by filling the cavity with a conductive liquid, the treatment electrode can be replaced with an external electrode. Dispersion of the electric current that should flow toward the surface of the liquid disperses through the liquid, so that a discharge does not occur with respect to the lesion, and an effective treatment cannot be performed.
[0009]
Therefore, for example, in Japanese Patent Laid-Open No. 2000-201946, a body tissue is treated by using a high-frequency ablation current, which is disposed in the vicinity of the distal end of an elongated hollow sheath inserted into a body cavity filled with a conductive liquid. A treatment electrode, and a return electrode that is disposed in the conductive liquid and receives a current from the treatment electrode, and an insulating portion is provided on at least the body tissue non-contact surface side of the treatment electrode. Treatment in which the high-frequency current supplied to the treatment electrode disposed in the cavity filled with the liquid having the property does not leak into the liquid from the insulating portion provided on the non-contact surface side of the treatment electrode and enters the liquid We have proposed a rejectscope device that efficiently discharges from the body tissue contact surface of the electrode and flows toward the return electrode.
[0010]
[Problems to be solved by the invention]
However, since the disposition scope of the treatment electrode and the return electrode is short in the reject scope device of the above Japanese Patent Laid-Open No. 2000-201946, an excessive voltage may be caused if the current is accidentally energized in the atmosphere or in a non-conductive liquid. And there is a possibility that dielectric breakdown may occur between the electrodes.
[0011]
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a reject scope device that can determine the electrical characteristics of perfusate and appropriately control the output.
[0012]
[Problems to be solved by the invention]
The rejectscope device of the present invention is configured to discharge a high-frequency current from a treatment electrode and a return electrode disposed in a conductive solution in a body cavity to the living tissue, and excise and coagulate the living tissue. A high-frequency current supply means for supplying the high-frequency current between the treatment electrode and the return electrode , and a resistance value around the treatment electrode and the return electrode when the treatment electrode and the return electrode are in a conductive solution. A threshold value set lower than a resistance value around the treatment electrode and the return electrode in a situation where the treatment electrode and the return electrode are in a non-conductive aqueous solution or in the atmosphere, and the treatment electrode and comparing means for comparing the resistance value in the vicinity of the return the treatment electrode was determined from the current value flowing between the electrodes and the return electrode, to a comparison result of the comparing means Hazuki constructed and control means for controlling the output of the high frequency current supply means.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
[0014]
1 to 14 relate to an embodiment of the present invention, FIG. 1 is a configuration diagram showing a configuration of a reject scope device, FIG. 2 is a configuration diagram showing a configuration of treatment electrodes in FIG. 1, and FIG. 4 is a block diagram showing the configuration of the detection logic circuit of FIG. 3, FIG. 5 is a first diagram for explaining the operation of the connection detection circuit of FIG. 4, and FIG. FIG. 7 is a diagram showing the load characteristics of the power supplied from the output transformer circuit of FIG. 3, and FIG. 8 is a treatment by the power supplied from the output transformer circuit of FIG. FIG. 9 is a diagram for explaining the action of the electrode, FIG. 9 is a diagram showing a current flowing between the treatment electrode and the return electrode of FIG. 1 under a conductive liquid, and FIG. 10 is a treatment electrode and a return electrode of FIG. 1 under an insulating liquid. FIG. 11 is a diagram showing the current flowing between them, and FIG. 11 shows the treatment voltage of FIG. 1 under a conductive liquid and an insulating liquid. FIG. 13 is a diagram illustrating the resistance between the return electrode, FIG. 12 is a flowchart illustrating the operation of the rejectscope device of FIG. 1, FIG. 13 is a diagram illustrating a modification of the rejectscope device of FIG. It is a flowchart explaining the effect | action of a reject scope apparatus.
[0015]
As shown in FIG. 1, a reject scope apparatus 1 includes a hollow sheath 2 having a through-hole, a scope 3 for observing a lesioned part and the like, which is disposed in the hole of the sheath 2, and a treatment for the lesioned part. An electrode unit 4 provided with a treatment electrode 41 which is a wire-shaped electrode on the distal end side, a return electrode 45 disposed in the distal end hole of the sheath 2 and returning an output current from the treatment electrode 41, an operation unit And a high-frequency power supply device 7 that is a means for energizing a treatment electrode 41 of an electrode unit 4 to be described later and to which a feedback current from the return electrode 45 is fed back. It is configured. The on / off of power supply from the high frequency power supply device 7 to the treatment electrode 41 of the electrode unit 4 is controlled by a foot switch 75 connected to the high frequency power supply device 7.
[0016]
The sheath 2 is composed of, for example, an insertion portion 21 that is inserted into a body cavity via the urethra, and a hand main body portion 22 provided at the rear end of the insertion portion 21, and a side peripheral portion of the hand main body portion 22. Is provided with a faucet 23 with a cock for feeding physiological saline having conductivity as a perfusate to the treatment section.
[0017]
The scope 3 and the electrode unit 4 are inserted and disposed in the insertion portion 21, and a distal end member formed of an insulating member such as a hard resin member at the distal end of the insertion portion 21. 24 is provided.
[0018]
The scope 3 is an elongated, rigid insertion tube 31 that is inserted into the insertion portion 21 and the distal end member 24 with a built-in observation optical system, and a proximal portion 32 that is disposed at the proximal end of the insertion tube 31. It consists of An eyepiece 33 for visual observation by an operator is provided at the proximal end of the hand 32, and a light guide (not shown) that supplies illumination light for observation to the observation site is provided on the side of the hand 32. There is provided a light guide connection portion 34 to which is detachably connected.
[0019]
As shown in FIGS. 1 and 2, the electrode unit 4 inserted and arranged in the insertion portion 21 includes a treatment electrode 41 formed on a distal end side and formed with a hard metal member in a loop shape, and the treatment electrode 41. A bifurcated arm member 43 having a rigid, through-holed one end portion that is fixedly held in a positional relationship with respect to the insertion axis of the scope 3 and a proximal end portion of the bifurcated arm member 43 is disposed at the distal end portion. It is mainly composed of an elongated metal pipe 44. The outer periphery of the metal pipe 44 is covered with an insulating tube (not shown), and the base end portion of the metal pipe 44 is exposed as an electrode connecting portion at the rear end portion of the insulating tube.
[0020]
The electrode unit 4 is disposed in the insertion portion 21 so as to be able to advance and retract, and the treatment electrode 41 is disposed so as to protrude and retract with respect to the distal end opening 25 of the sheath 2.
[0021]
The proximal end portion of the metal pipe 44 provided with the treatment electrode 41 and the bifurcated arm member 43 on the distal end side passes through the insertion portion 21 and the proximal body portion 22 and extends from the proximal end surface of the proximal body portion 22 to be described later. The slider 53 is arranged.
[0022]
The handle portion 5 is detachably connected to the proximal main body portion 22 of the sheath 2, and protrudes rearward from the rear end surface of the sheath connection portion 51 so that the insertion tube 31 is inserted therethrough. The guide pipe 52 and the substantially pipe-shaped slider 53 slidably held by the guide pipe 52 are mainly formed.
[0023]
The slider 53 is detachably provided with an electrode fixing portion 54 that is an electrical connection portion with the electrode connection portion that forms the rear end portion of the electrode unit 4 and a power cord 71 extending from the high-frequency power supply device 7. A high-frequency power connector 55 to be connected and a ring-shaped thumb hook ring 56 for hooking the operator's thumb are provided.
[0024]
The slider 53 and the sheath connecting portion 51 are connected via a leaf spring 57. That is, one end of the leaf spring 57 is fixed to a lever-shaped finger hook 58 integrally fixed to the sheath connecting portion 51, and the other end is fixed to the slider 53. Accordingly, the slider 53 is always urged toward the eyepiece 33 by the leaf spring 57.
[0025]
Accordingly, by appropriately operating the thumb ring 56 provided on the slider 53, the slider 53 is advanced and retracted, and the treatment electrode 41 of the electrode unit 4 is advanced and retracted from the distal end opening 25 of the sheath 2. It is supposed to move.
[0026]
A feedback current connector 26 to which a feedback current cord 72 extending from the high frequency power supply device 7 is detachably connected is provided on a side peripheral portion of the hand main body portion 22. The feedback current connector 26 and the return electrode 45 are electrically connected by, for example, a lead wire 46 shown by a solid line.
[0027]
On the other hand, the high frequency power connector 55 and the electrode fixing portion 54 are electrically connected by, for example, a lead wire 61 shown by a broken line. For this reason, by connecting the power cord 71 of the high frequency power supply device 7 to the high frequency power supply connector 55, the treatment electrode 41 of the electrode unit 4 is energized and the lesioned part can be treated. Note that the leakage current can be measured by obtaining the difference between the current value supplied to the treatment electrode 41 and the current value of the feedback current.
[0028]
Further, a slider positioning fixing member 62 is provided at the base end portion of the guide tube 52. The slider positioning fixing member 62 prevents the slider 53 from falling off the guide tube 52, and the guide The proximal portion 32 of the insertion tube 31 inserted into the tube 52 is integrally fixed to the slider positioning fixing member 62.
[0029]
The power cord 71 and the feedback current cord 72 are inserted into the connection cable 73 and are connected to the high frequency power supply device 7 by a connection connector (not shown) provided on the proximal end side of the connection cable 73.
[0030]
As shown in FIG. 3, the high-frequency power supply device 7 includes a control circuit 101 that receives a signal from the foot switch 75 and controls power supply, a power supply circuit 102 that is controlled by the control circuit 101 and generates DC power, A high frequency generation circuit 103 that generates high frequency power by switching DC power from the circuit 102, and a waveform circuit 104 that supplies the high frequency generation circuit 103 with a high frequency power waveform signal that is controlled by the control circuit 101 and generated by the high frequency generation circuit 103. An output transformer circuit 105 that amplifies a high-frequency voltage of the high-frequency power generated by the high-frequency generation circuit 103, applies the high-frequency voltage between the treatment electrode 41 and the return electrode 45, and supplies a high-frequency current to the treatment electrode 41; Current sensors 106a and 106b for detecting high-frequency currents and current sensors 106a and 106b. The sensor signal processing circuit 107 for A / D converting the detected current value and the state of the feedback current cord 72 and the connection state of a connection connector (not shown) provided on the proximal end side of the connection cable 73 are detected. The control circuit 101 is configured to control the power supply circuit 102 and the waveform circuit 104 based on the digitized current data from the sensor signal processing circuit 107 and the output of the detection circuit 108.
[0031]
As shown in FIG. 4, in the detection circuit 108, the return electrode 45 side of the output transformer circuit 105 is separated into two return lines R1 and R2 before output, and is output via a capacitor. The connection detection circuit 110 for detecting the connection state of a connection connector (not shown) provided on the base end side of the connection cable 73, and the resistance of the return electrode 45 by applying current to the two separated return lines R1 and R2. And a resistance detection circuit 113 for checking the disconnection of the two return lines R1 and R2.
[0032]
If the connection connector (not shown) provided on the proximal end side of the connection cable 73 is not connected based on the detection result of the connection detection circuit 110, the output is prohibited by the control of the control circuit 101, and before the device is used or When one or both of the two return lines R1 and R2 are found to be disconnected based on the detection result of the resistance detection circuit 113 during use, the output is stopped by the control of the control circuit 101 and a warning display and a warning sound are displayed on the operation panel. 109 is performed.
[0033]
As shown in FIGS. 5 and 6, the connection connector 121 provided on the base end side of the connection cable 73 is inserted into a connector receiver 123 provided on the exterior 122 of the high-frequency power supply device 7 formed of an insulating member. The exterior of the connector receiver 123 and the connection connector 121 is made of a conductive member such as metal. When the connection connector 121 is inserted into the connector receiver 123, the exterior of the connection connector 121 and the connector receiver 123 are electrically connected. Connected. In addition, a substantially L-shaped conductive leaf spring 124 is covered with an insulating member 125 and screwed in the vicinity of the inside of the exterior 122 of the high-frequency power supply device 7 of the connector receiver 123, and the connection connector 121 is screwed. When inserted, the recess 126 provided on the proximal end side of the connection connector 121 and the leaf spring 124 are electrically connected. The connection detection circuit 110 detects the conduction state between the connector receiver 123 and the leaf spring 124. When the connection connector 121 is inserted into the connector receptacle 123, the connector receptacle 123 and the leaf spring 124 become conductive. The connection of the connection connector 121 is detected.
[0034]
In the output transformer circuit 105, as shown in the load characteristics of FIG. 7, the control circuit 101 controls the power supply circuit 102 and the waveform circuit 104 so that the supplied power becomes maximum at the resistance R1 of the conductive liquid.
[0035]
With the power of the load characteristic of the output transformer circuit 105, the treatment electrode 41 of the reject scope 6 of the present embodiment is brought into contact with the living tissue 152 under the conductive liquid 151 as shown in FIG. When a high-frequency current is passed through the treatment electrode 41 in a state where the high-frequency current is applied, the high-frequency current flows between the treatment electrode 41 and the return electrode 45, and the treatment electrode 41 generates heat. As shown in FIG. When the conductive liquid 151 becomes a bubble 153 and covers the treatment electrode 41, the interelectrode resistance between the treatment electrode 41 and the return electrode 45 rises from the resistance R1, becomes a high resistance, and is in a substantially insulated state. The discharge rises between the treatment electrode 41 and the living tissue 152, and the treatment is performed while the living tissue is excised and coagulated by the high-frequency current generated by the discharge.
[0036]
As shown in FIG. 9, when the reject scope 6 of the present embodiment is used under the conductive liquid 151 such as physiological saline, the current flowing from the treatment electrode 41 is directly from the conductive liquid 151 as shown by the solid line. It consists of a current returning to the return electrode 45 and a current returning to the return electrode 45 via the living tissue 152 and the conductive liquid 151 in contact with the treatment electrode 41.
[0037]
Further, as shown in FIG. 10, even when the reject scope 6 of the present embodiment is used under the insulating liquid 161 such as D-sorbitol by mistake, the current flowing from the treatment electrode 41 is as shown by the broken line. It consists of a current returning directly from the insulating liquid 161 to the return electrode 45 and a current returning to the return electrode 45 via the living tissue 152 and the insulating liquid 161 in contact with the treatment electrode 41.
[0038]
However, as shown in FIG. 11, the resistance value differs between the resistance between the treatment electrode 41 and the return electrode 45 under the conductive liquid 151 and the resistance between the treatment electrode 41 and the return electrode 45 under the insulating liquid 161. In addition, since the treatment electrode 41 and the return electrode 45 are arranged close to each other, the energized voltage is increased when the energization is performed under the insulating liquid 161 with the electric power that can be energized under the conductive liquid 151, and the treatment electrode 41 and the return electrode are returned. There is a possibility that breakdown occurs between the electrodes 45 and the equipment is damaged.
[0039]
Therefore, in the present embodiment, a predetermined detection current is supplied from the output transformer circuit 105 with power that does not cause dielectric breakdown under the insulating liquid 161 or in the atmosphere, and the resistances of the treatment electrode 41 and the return electrode 45 are detected, and the detected resistances are detected. Based on this, it is determined whether the treatment electrode 41 and the return electrode 45 are in the conductive liquid 151, under the insulating liquid 161 or in the atmosphere.
[0040]
Specifically, when performing treatment using the rejectscope device 1 of the present embodiment, as shown in FIG. 12, when the foot switch 75 is turned on in step S1, first, the treatment electrode 41 is output before output. And a process of determining whether the return electrode 45 is in the conductive liquid 151 or under the insulating liquid 161 or in the atmosphere.
[0041]
That is, under the control of the control circuit 101, a predetermined detection current is passed from the output transformer circuit 105 at a power that does not cause dielectric breakdown in the output transformer circuit 105 in step S2 and the output stabilizes in step S3. In step S4, the sensor signal processing circuit 107 measures the current values detected by the current sensors 106a and 106b by A / D conversion.
[0042]
In step S5, the control circuit 101 compares the measured current data with a predetermined threshold value. When the current data is larger than the predetermined threshold value, that is, when the resistance is smaller than the predetermined value, the treatment electrode 41 and the return electrode are compared. 45 is in the conductive liquid 151, starts output from the output transformer circuit 105 with the power set in advance in step S6, starts treatment, and detects whether the foot switch 75 is turned off in step S7. If the foot switch 75 remains on, the process returns to step S6 and the output is continued. If it is detected that the foot switch 75 is turned off, the output is stopped in step S8 and the procedure is terminated.
[0043]
In step S5, if the current data is less than or equal to a predetermined threshold, that is, if the resistance is greater than or equal to a predetermined value, it is determined that the treatment electrode 41 and the return electrode 45 are under the insulating liquid 161 or in the atmosphere. In step S9, the circuit 101 prohibits output and performs a warning display and warning sound from the operation panel 109. In steps S10 and S11, the circuit 101 waits for the foot switch 75 to be turned off once and then to be turned on again. In step 12, the output is permitted and a reset process for stopping the warning display and warning sound is performed, and the process returns to step S2.
[0044]
As described above, in this embodiment, it is determined whether the treatment electrode 41 and the return electrode 45 are in the conductive liquid 151, the insulating liquid 161, or in the atmosphere before output, and the insulating liquid 161 or the atmosphere is discharged. Since the output is prohibited when it is inside, an excessive voltage is generated by accidentally conducting electricity in the atmosphere or in a non-conductive liquid, and dielectric breakdown is not caused between the electrodes.
[0045]
It should be noted that a detection current is passed between the treatment electrode 41 and the return electrode 45 to measure the current value, and whether the treatment electrode 41 and the return electrode 45 are in the conductive liquid 151, the insulating liquid 161 or in the atmosphere. As shown in FIG. 13, two return electrodes 45 are provided as shown in FIG. 13, and return lines R1 and R2 are connected to the two return electrodes 45a and 45b in step S21 as shown in FIG. Then, the resistance of the two return electrodes 45a and 45b is measured by the resistance detection circuit 113, and it is determined whether or not the resistance value measured in step S22 is smaller than a predetermined threshold value. It is determined that the electrode 45 is in the conductive liquid 151, the function current is set in step S23, and the process is terminated. Determines that the electrode 41 and the return electrode 45 is in the insulation liquid 161 or below atmospheric may be prohibited output at step S24.
[0046]
Further, a resistance detection electrode may be provided separately from the treatment electrode 41 and the return electrode 45.
[0047]
【The invention's effect】
As described above, according to the present invention, there is an effect that the electrical characteristics of the perfusate can be determined and the output can be appropriately controlled.
[Brief description of the drawings]
1 is a configuration diagram showing a configuration of a reject scope device according to an embodiment of the present invention. FIG. 2 is a configuration diagram showing a configuration of a treatment electrode in FIG. 1. FIG. 3 is a configuration of a high-frequency power supply device in FIG. FIG. 4 is a block diagram showing the configuration of the detection logic circuit in FIG. 3. FIG. 5 is a first diagram for explaining the operation of the connection detection circuit in FIG. 4. FIG. FIG. 7 is a diagram illustrating a load characteristic of power supplied from the output transformer circuit of FIG. 3. FIG. 8 is a diagram illustrating the action of the treatment electrode by the power supplied from the output transformer circuit of FIG. FIG. 9 is a diagram showing current flowing between the treatment electrode and the return electrode of FIG. 1 under a conductive liquid. FIG. 10 is a diagram showing current flowing between the treatment electrode and the return electrode of FIG. 1 under an insulating liquid. [FIG. 11] Between the treatment electrode and the return electrode in FIG. 1 under a conductive liquid and an insulating liquid. FIG. 12 is a flowchart illustrating the operation of the rejectscope device of FIG. 1. FIG. 13 is a diagram showing a modification of the rejectscope device of FIG. 1. FIG. Flow chart explaining the operation 【Explanation of symbols】
DESCRIPTION OF SYMBOLS 1 ... Rejectoscope apparatus 3 ... Scope 4 ... Electrode unit 6 ... Rejectoscope 7 ... High frequency power supply device 41 ... Treatment electrode 45 ... Return electrode 75 ... Foot switch 101 ... Control circuit 102 ... Power supply circuit 103 ... High frequency generation circuit 104 ... Waveform circuit 105 ... Output transformer circuit 106a, 106b ... Current sensor 107 ... Sensor signal processing circuit 108 ... Detection circuit 109 ... Operation panel

Claims (3)

体腔内の導電性溶液中に配置される処置電極及び戻り電極と、
前記処置電極から生体組織に高周波電流を放電させ、前記生体組織を切除及び凝固するように、前記処置電極及び戻り電極間に前記高周波電流を供給する高周波電流供給手段と、
前記処置電極及び前記戻り電極が導電性溶液中にある状況の前記処置電極及び前記戻り電極の周辺における抵抗値よりも高く、また、前記処置電極及び前記戻り電極が非導電性水溶液中又は大気中にある状況の前記処置電極及び前記戻り電極の周辺における抵抗値よりも低く設定される閾値と、前記処置電極及び前記戻り電極に流れる電流値から求めた前記処置電極及び前記戻り電極の周辺における抵抗値とを比較するための比較手段と、
前記比較手段の比較結果に基づき前記高周波電流供給手段の出力を制御する制御手段と
を備えたことを特徴とするレゼクトスコープ装置。
A treatment electrode and a return electrode disposed in a conductive solution in the body cavity ;
A high-frequency current supply means for discharging the high-frequency current from the treatment electrode to the living tissue and supplying the high-frequency current between the treatment electrode and the return electrode so as to excise and coagulate the living tissue;
The resistance value in the vicinity of the treatment electrode and the return electrode when the treatment electrode and the return electrode are in a conductive solution is higher, and the treatment electrode and the return electrode are in a non-conductive aqueous solution or in the atmosphere. The resistance in the vicinity of the treatment electrode and the return electrode determined from the threshold value set lower than the resistance value in the vicinity of the treatment electrode and the return electrode in the situation A comparison means for comparing the values ;
And a control means for controlling the output of the high-frequency current supply means based on the comparison result of the comparison means.
前記処置電極及び戻り電極のうち少なくとも一方を2つに分離して設け、前記比較手段は、分離した電極間の抵抗を測定する測定手段を備え、前記比較手段は測定した抵抗を前記閾値と比較することを特徴とする請求項1に記載のレゼクトスコープ装置。At least one of the treatment electrode and the return electrode is separated into two, and the comparison means includes measurement means for measuring a resistance value between the separated electrodes, and the comparison means uses the measured resistance value as the threshold value. The rejectscope device according to claim 1, wherein 体腔内の導電性溶液中に配置される処置電極及び戻り電極と、  A treatment electrode and a return electrode disposed in a conductive solution in the body cavity;
前記処置電極から生体組織に高周波電流を放電させ、前記生体組織を切除及び凝固するように、前記処置電極及び戻り電極間に前記高周波電流を供給する高周波電流供給手段と、  A high-frequency current supply means for discharging the high-frequency current from the treatment electrode to the living tissue and supplying the high-frequency current between the treatment electrode and the return electrode so as to excise and coagulate the living tissue;
前記閾値は、前記処置電極及び前記戻り電極が生体組織に接触しながら導電性溶液中にある状況の前記処置電極及び前記戻り電極の周辺における抵抗値よりも高く、また、前記処置電極及び前記戻り電極が前記生体組織に接触しながら非導電性水溶液中にある状況の前記処置電極及び前記戻り電極の周辺における抵抗値よりも低く設定される閾値と、前記処置電極及び前記戻り電極に流れる電流値から求めた前記処置電極及び前記戻り電極の周辺における抵抗値とを比較するための比較手段と、  The threshold value is higher than a resistance value around the treatment electrode and the return electrode in a state where the treatment electrode and the return electrode are in a conductive solution while being in contact with living tissue, and the treatment electrode and the return electrode A threshold value set lower than a resistance value around the treatment electrode and the return electrode in a state where the electrode is in a non-conductive aqueous solution while being in contact with the living tissue, and a current value flowing through the treatment electrode and the return electrode A comparison means for comparing the resistance value around the treatment electrode and the return electrode obtained from
前記比較手段の比較結果に基づき前記高周波電流供給手段の出力を制御する制御手段と  Control means for controlling the output of the high-frequency current supply means based on the comparison result of the comparison means;
を備えたことを特徴とするレゼクトスコープ装置。  Rejectoscope device characterized by comprising:
JP2000384191A 2000-12-18 2000-12-18 Receptoscope device Expired - Lifetime JP4429522B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000384191A JP4429522B2 (en) 2000-12-18 2000-12-18 Receptoscope device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000384191A JP4429522B2 (en) 2000-12-18 2000-12-18 Receptoscope device

Publications (2)

Publication Number Publication Date
JP2002177298A JP2002177298A (en) 2002-06-25
JP4429522B2 true JP4429522B2 (en) 2010-03-10

Family

ID=18851708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000384191A Expired - Lifetime JP4429522B2 (en) 2000-12-18 2000-12-18 Receptoscope device

Country Status (1)

Country Link
JP (1) JP4429522B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011145391A1 (en) 2010-05-18 2011-11-24 株式会社ジェイエスピー Expanded particles of polylactic acid-based resin, and moldings of the expanded particles

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003105708A1 (en) 2002-06-18 2003-12-24 オリンパス光学工業株式会社 Resectoscope

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011145391A1 (en) 2010-05-18 2011-11-24 株式会社ジェイエスピー Expanded particles of polylactic acid-based resin, and moldings of the expanded particles

Also Published As

Publication number Publication date
JP2002177298A (en) 2002-06-25

Similar Documents

Publication Publication Date Title
US8628524B2 (en) Return electrode detection and monitoring system and method thereof
AU2007221764B2 (en) Transformer for RF voltage sensing
US6004319A (en) Electrosurgical instrument
AU2012201623B2 (en) Isolated current sensor
EP2649956A1 (en) Electrosurgical monopolar apparatus with arc energy vascular coagulation control
US8226640B2 (en) Laparoscopic electrosurgical electrical leakage detection
JP2005230540A (en) Method and system for continuity testing of medical electrode
US20200179034A1 (en) Low temperature sphincterotome surgical device, system and method
US6872207B2 (en) Resectscope apparatus
JP4429522B2 (en) Receptoscope device
JP3911334B2 (en) Shochu hemostasis device
JP2007509646A (en) Oxygen detection during surgical procedures
JP3938707B2 (en) Electrosurgical equipment
JP4111484B2 (en) Surgical device
JP3791911B2 (en) Receptoscope device
EP1407718B1 (en) Resectoscope
JP2002177297A (en) Resectoscope
JP3978058B2 (en) Electrosurgical equipment
JP3837082B2 (en) Receptoscope device
US20190083162A1 (en) Electrode disconnect detection
JP2004188023A (en) Resectoscope apparatus
JP2007260418A (en) Surgical device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090901

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091216

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121225

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4429522

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131225

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term