JP4424568B2 - High strength aluminum alloy clad material for heat exchangers excellent in tube forming property and corrosion resistance, and method for producing the same - Google Patents

High strength aluminum alloy clad material for heat exchangers excellent in tube forming property and corrosion resistance, and method for producing the same Download PDF

Info

Publication number
JP4424568B2
JP4424568B2 JP35551499A JP35551499A JP4424568B2 JP 4424568 B2 JP4424568 B2 JP 4424568B2 JP 35551499 A JP35551499 A JP 35551499A JP 35551499 A JP35551499 A JP 35551499A JP 4424568 B2 JP4424568 B2 JP 4424568B2
Authority
JP
Japan
Prior art keywords
aluminum alloy
sacrificial anode
clad
corrosion resistance
core material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP35551499A
Other languages
Japanese (ja)
Other versions
JP2001170793A (en
Inventor
美房 正路
啓路 佐野
宏和 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Light Metal Industries Ltd
Original Assignee
Sumitomo Light Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Light Metal Industries Ltd filed Critical Sumitomo Light Metal Industries Ltd
Priority to JP35551499A priority Critical patent/JP4424568B2/en
Publication of JP2001170793A publication Critical patent/JP2001170793A/en
Application granted granted Critical
Publication of JP4424568B2 publication Critical patent/JP4424568B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)
  • Laminated Bodies (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、造管性および耐食性に優れた熱交換器用高強度アルミニウム合金クラッド材、詳しくは、自動車のラジエータ、ヒータなど、ろう付けによって接合される熱交換器の流体通路構成材(チューブ材)として好適に使用でき、とくに溶接偏平管として造管された場合における造管性および耐食性に優れた熱交換器用高強度アルミニウム合金クラッド材に関する。
【0002】
【従来の技術】
従来、ラジエータやヒータコアなど、自動車用熱交換器のチューブ材としては、JIS A3003合金、同3005合金、同3205合金などのAl―Mn系合金を芯材とし、該芯材の一方の面にJIS BA4343合金、同4045合金、同4047合金、同4104合金などのAl―Si系合金からなるろう材をクラッドし、他の面にAl―Zn系合金やAl−Zn―Mg系合金からなる犠牲陽極材をクラッドしたアルミニウム合金の3層クラッド材が使用されている。
【0003】
Al−Si系のろう材は、チューブとフインとの接合、チューブとヘッダープレートとのろう付けのためにクラッドされるものであり、ろう付け方法としては、不活性ガス雰囲気中でフッ化物系フラックスを用いて行うろう付け方法が一般的に適用されるが、真空ろう付け方法が採用されることもある。一方、犠牲陽極材はチューブの内面を構成し、熱交換器の使用中に作動流体と接して犠牲陽極作用を発揮して、芯材の孔食発生や隙間腐食を防止する。
【0004】
自動車のラジエータやヒータなどに使用されるチューブ(偏平管)は、ろう材/芯材/犠牲陽極材からなる上記3層クラッド板材を、所定の幅で帯状に切断して溶接偏平管用素材とし、この素材を犠牲陽極材を内側にして管状に成形加工しながら素材の端面を突き合わせて連続的に溶接した後、溶接部のビードを切削除去し、ついで偏平管状に成形加工して所定の寸法とし、さらに所定の長さに切断加工することにより製造される。
【0005】
近年、環境問題、さらには省エネルギー、低コスト化に対する要求から、自動車の軽量化が推進されており、これに伴って自動車用熱交換器に対する軽量化も強く要求され、チューブ材などの熱交換器構成材料をさらに薄肉化することが必要となってきている。しかしながら、ラジエータやヒーターに用いられるチューブ材を薄肉化し、特定の強度を維持するために各種の元素を添加すると耐食性が損なわれたり、材料の薄肉化に起因して溶接扁平管の造管性が悪くなり、熱交換器の生産性が著しく阻害され、熱交換器の耐久性に問題が生じる。
【0006】
通常、自動車のラジエータやヒータなどに使用されるチューブ(偏平管)の製造においては、管形状に曲成する成形加工、端面の突合わせ溶接、溶接部のビード削除、偏平管への成形加工、所定寸法への切断加工は連続ラインを使用して、100m/分程度の高速条件下で行われる。そのため、造管された溶接偏平管の溶接部には各種の欠陥が発生して品質上の問題が生じ易く、従って、とくに高品質、高生産性の観点から、造管性に優れた材料が望まれている。
【0007】
溶接偏平管の造管性の向上を図る方法として、例えばブレージングシートの製法を改善したり(特開平7−286250号公報)、芯材の結晶粒径を制御したり(特開平8−283891号公報)することにより溶接性を改善する方法や、ブレージングシートの強度特性を限定したり(特開平4−66292号公報)、耳率を制御したり(特開平4−276039号公報)することにより、溶接偏平管の切断性を改善する方法が提案されている。上記の各手段により溶接偏平管の造管性はある程度改善することができるが、材料の薄肉化に伴って使用される材料によっては、造管性の良否にバラツキが生じることがあり、製品歩留まりの向上、コスト低減の観点から、造管性についてより一層の向上が望まれている。
【0008】
【発明が解決しようとする課題】
本発明は、当該技術分野における上記従来の問題点を解消し、薄肉化された熱交換器の作動流体通路構成材料を開発するために、造管性、ろう付け性、耐食性、強度特性に対する合金成分とその組み合わせの効果、素材組織の影響などについて多角的な実験、検討を重ねた結果としてなされたものであり、その目的は、造管性に優れ、すなわち、管形状への曲成加工、端面の突合わせ溶接を安定して行うことができ、さらに耐食性、強度特性に優れた熱交換器用アルミニウム合金クラッド材およびその製造方法を提供することにある。
【0009】
【課題を解決するための手段】
上記課題を解決するための本発明の請求項1による造管性および耐食性に優れた熱交換器用高強度アルミニウム合金クラッド材は、芯材の一方の面に犠牲陽極材をクラッドし、他方の面にAl−Si系のろう材をクラッドしたアルミニウム合金クラッド材であって、芯材はMn:0.6〜2.0%、Cu:0.3〜1.0%、Si:0.5〜1.0%、Fe:0.01〜0.4%を含有し、残部がAlと不可避不純物からなるアルミニウム合金で構成され、犠牲陽極材は、Zn:0.5〜4.0%、In:0.005〜0.1%、Sn:0.01〜0.1%のうちの1種または2種以上を含有し、さらにSi:0.01〜0.5%、Fe:0.01〜0.5%を含有し、残部がAlと不可避不純物からなるアルミニウム合金で構成され、芯材のマトリックスが繊維組織であり、クラッド材の引張り強さが170〜260MPaであり、管形状に曲成し、突合わせ溶接して溶接偏平管に成形し、作動流体通路に用いることを特徴とする。
【0010】
本発明の請求項2による造管性および耐食性に優れた熱交換器用高強度アルミニウム合金クラッド材は、請求項1において、芯材が、さらにTi:0.06〜0.35%を含有することを特徴とし、本発明の請求項3による造管性および耐食性に優れた熱交換器用高強度アルミニウム合金クラッド材は、請求項1または2において、芯材が、さらにMg:0.06〜0.4%を含有することを特徴とする。
【0011】
本発明の請求項による造管性および耐食性に優れた熱交換器用高強度アルミニウム合金クラッド材は、請求項1〜3のいずれかにおいて、犠牲陽極材が、さらにMg:0.5〜2.5%を含有することを特徴とする。
【0012】
本発明の請求項による造管性および耐食性に優れた熱交換器用高強度アルミニウム合金クラッド材の製造方法は、請求項1〜4のいずれかに記載のアルミニウム合金クラッド材を製造する方法であって、請求項1〜4のいずれかに記載の組成を有する芯材と犠牲陽極材、および前記Al−Si系のろう材の鋳塊を、必要に応じて均質化処理した後、それぞれ所定の厚さまで熱間圧延し、ついで芯材、犠牲陽極材およびろう材を組み合わせて、熱間圧延によりクラッド材とし、さらに所定の厚さまで冷間圧延した後、焼鈍および冷間圧延を経て製造し、該焼鈍を芯材の再結晶温度より低い温度で行うことを特徴とする。
【0013】
【発明の実施の形態】
本発明の造管性および耐食性に優れた熱交換機用高強度アルミニウム合金クラッド材を構成する各成分の限定理由およびその作用について以下に詳述する。
【0014】
<芯材合金構成成分>
Mnは、芯材の強度を向上させるよう機能する。Mnの好ましい含有量は0.6〜2.0%の範囲であり、その含有量が0.6%未満では十分な効果が得られず、2.0%を越えると鋳造時に粗大な化合物が生成し、素材の圧延加工性が劣化して健全な材料が得難くなる。
【0015】
Cuは、芯材の強度を高めると共にその電位を貴にすることにより、犠牲陽極材およびろう材との電位差を大きくし、犠牲陽極材の防食効果およびろう材の犠牲陽極効果による防食作用を増大させ、クラッド材の耐食性の向上に寄与する。また、芯材中のCuは、ろう付け加熱の際に犠牲陽極材中およびろう材中に拡散して、なだらかな濃度勾配を形成する。その結果、芯材側の電位が貴となり、犠牲陽極材およびろう材の表面側の電位が卑となって、犠牲陽極材中およびろう材中になだらかな電位勾配が形成され、腐食形態を横広がりの全面腐食型にする。Cuの好ましい含有量は0.3〜1.0%であり、含有量が0.3%未満ではその効果が十分ではなく、1.0%を越えると融点が低下して、ろう付け時に局部的な溶融が生じるおそれがある。
【0016】
Siは、芯材の強度を高める作用を有する。好ましい含有量は0.5〜1.0%の範囲であり、その含有量が0.5%未満では十分な効果が得られず、1.0%を越えると融点が低下して、ろう付け時に局部的な溶融が生じるおそれがあり、芯材の耐食性も低下する。
【0017】
Feは、アルミニウム地金に不純物として含有されるものであるが、アルミニウム母材に対してカソードとして作用するため、芯材の耐食性を低下させるよう作用する。従って、その含有量は極力低く押さえることが望ましいが、Feの含有量が極めて少ない高純度のアルミニウム地金は、コスト高であり実用に供し得ないから、実用上その弊害を許容しうる範囲としてFeの含有量は、0.01〜0.4%とする。
【0018】
Tiは、芯材の耐食性をより一層向上させるよう機能する。すなわち、Tiは濃度の高い領域と低い領域とに分かれ、それらが板厚方向に交互に分布して層状となり、Ti濃度の低い領域が高い領域に比較して優先的に腐食することにより、腐食形態が層状となるため板厚方向への腐食の進行が妨げられ、その結果、材料の耐孔食性が向上する。Tiの好ましい含有量は、0.06〜0.35%の範囲であり、その含有量が0.06%未満ではその効果が十分でなく、0.35%を越えると、鋳造時に粗大な化合物が生成し、素材の圧延加工性が阻害され、健全な材料が得難くなる。
【0019】
Mgは、芯材の強度を高めるよう作用する。Mgの好ましい含有量は0.06〜0.4%の範囲であり、その含有量が0.06%未満では十分な効果が得られず、0.4%を越えると、Siと反応してMg2 Siを生成し耐食性を顕著に劣化させる。
【0020】
その他の元素して、Zn、Cr、Zrなどの不可避不純物元素は、本発明の効果の妨げない範囲において芯材中に含有することが容認される。但し、Znは、芯材の電位を卑にし、犠牲陽極材およびろう材との電位差を小さくして耐食性の低下を招くので、その含有量を0.2%以下に制限することが望ましい。また、CrおよびZrは、組織の微細化を図るなどの目的で添加することを妨げないが、加工性を害するおそれがあるため、その含有量を0.3%以下に制限することが好ましい。
【0021】
<ろう材合金構成成分>
本発明におけるろう材合金としては、Al−Si系、AlーSi―Mg系、Al―Si―Mg―Bi系、Al−Si―Mg―Be系、Al−Si-Bi系、Al−Si―Be系、Al−Si―Bi―Be系などのAl−Si系合金からなるろう材、例えばJIS BA4343合金(Al―7.5%Si)、同4045合金(Al―10%Si)、4047合金(Al―12%Si)、4104合金(Al―10%Si―1.5%Mg−0.1%Bi)など、従来公知のアルミニウム合金の中から適宜選択される。
【0022】
上記ろう材には、ろう付け性を改善することを目的として、少量の、例えば0.2%以下のBi、Be、Sr、Li、Naのうちから選ばれた1種または2種以上の元素を含有させることができる。また、ろう材の電位を卑にすることにより、芯材に対するろう材の電位差を大きくして、ろう材に犠牲陽極効果を与えてクラッド材の耐食性を向上させることを目的として、少量のZn、InおよびSnのうちの1種または2種以上含有させてもよい。
【0023】
<犠牲陽極材合金構成成分>
Znは、犠牲陽極材の電位を卑にして、犠牲陽極材に、芯材に対する優れた犠牲陽極効果を付与し、クラッド材の腐食の形態を全面腐食型にして、孔食や隙間腐食を抑制するよう機能する。Znの好ましい含有量は0.5〜4.0%の範囲であり、その含有量が0.5%未満では十分な効果が得られず、4.0%を越えて含有するとその効果が飽和して、それ以上の効果が期待できないと共に、犠牲陽極材そのものの自己耐食性が低下して腐食消耗が増大するため、犠牲陽極効果が長期にわたって持続できない。
【0024】
Inは、犠牲陽極材の電位を卑にして、犠牲陽極材に、芯材に対する優れた犠牲陽極効果を付与し、クラッド材の腐食の形態を全面腐食型にして、孔食や隙間腐食を抑制するよう機能する。好ましいInの含有量は、0.005〜0.1%の範囲であり、その含有量が0.005%未満では所望の効果が期待できず、含有量が0.1%を越えると、自己耐食性が低下して犠牲陽極材の腐食消耗が増大し、また、圧延加工性も低下する。
【0025】
Snも、犠牲陽極材の電位を卑にして、犠牲陽極材に、芯材に対する優れた犠牲陽極効果を付与し、クラッド材の腐食の形態を全面腐食型にして、孔食や隙間腐食を抑制するよう機能する。好ましいSnの含有量は、0.01〜0.1%の範囲であり、その含有量が0.01%未満では所望の効果が期待できず、含有量が0.1%を越えると、自己耐食性が低下して犠牲陽極材の腐食消耗が増大し、また、圧延加工性も低下する。
【0026】
SiおよびFeは、アルミニウム地金に不純物として存在し、いずれも、アルミニウム母材に対してカソードとして作用し自己耐食性を低下させる。従って、それらの含有量は、Si0.5%以下、Fe0.5%以下に制限することが望ましい。しかしながら、SiおよびFeの含有量を極端に低く押さえた高純度のアルミニウム地金は、コスト高で実用に供し得ないため、本発明においては、それらの許容範囲を共に0.01〜0.5%に限定する。
【0027】
Mgは、クラッド材の強度を高めるよう作用する。好ましいMgの含有量は、0.5〜2.5%の範囲であり、その含有量が0.5%未満では十分な効果が得られず、2.5%を越えると素材の圧延加工性が妨げられ、健全な材料が得難くなる。
【0028】
その他の元素として、Mn、Cu、Cr、Zr、Tiなどは、本発明の効果の妨げとならない範囲において含まれてもよい。但し、MnおよびCuは、犠牲陽極材の電位を貴にし、芯材との電位差を小さくして犠牲陽極効果を低下させるので、それぞれの含有量を0.3%以下に制限することが望ましく、また、Cr、ZrおよびTiの各元素は、素材の結晶粒径を制御することを目的に添加することを妨げないが、加工性を害するおそれがあるためそれぞれ0.3%を超えない範囲で添加することが望ましい。
【0029】
<芯材の組織>
本発明において、芯材マトリックスの組織は繊維組織とすることが重要な要件である。芯材マトリックスを繊維組織とすることにより、造管工程におけるクラッド材の管形状への成形加工性や端面の突き合わせ溶接性が良好となり、造管における形状や品質のバラツキを低減することができる。芯材の組織が再結晶組織や繊維組織と再結晶組織との混合組織の場合には、造管工程におけるクラッド材の管形状への成形加工性が不均一となることがあり、それに起因してその後の端面の突き合わせ溶接性が低下するため、溶接欠陥が発生し易くなり、造管後の溶接偏平管の耐圧強度が低下するなど、品質上のバラツキが大きくなって、製造歩留まりや生産性が低下する。なお、芯材マトリックスを繊維組織とするための手法としては、アルミニウム合金クラッド材製造時の焼鈍処理温度を、芯材合金の再結晶温度よりも低い温度に調整する方法を採用するのが好ましい。
【0030】
<クラッド材の強度>
本発明においては、造管前におけるアルミニウム合金クラッド材の引張り強さを170〜260MPaの範囲に調整することが重要である。造管前のクラッド材の引張り強さは、造管工程におけるクラッド材の管形状への成形加工性および端面の突き合わせ溶接性に影響する。引張り強さが170MPa未満では管形状への成型加工時に局部変形が生じ易く、突き合わせ溶接が難しくなり、260MPaを越えると、管形状への成型加工時のスプリングバック大きくなって、突き合わせ溶接が困難になり、健全な溶接扁平管が得難くなる。なお、クラッド材の強度を上記の強度に調整するための手法としては、クラッド材を製造する際の焼鈍処理温度、冷間圧延の加工度を調整する方法を採用することができる。
【0031】
本発明の熱交換器用アルミニウム合金クラッド材は、芯材、犠牲陽極材およびろう材を構成するアルミニウム合金を、例えば半連続鋳造法により造塊し、必要に応じて均質化処理した後、それぞれ所定の厚さまで熱間圧延し、ついで各材料を組み合わせ、常法に従って熱間圧延によりクラッド材とし、さらに所定の厚さまで冷間圧延した後、必要により焼鈍および冷間圧延を繰り返すという工程を経て製造される。
【0032】
本発明の構成によれば、芯材マトリックスを繊維組織にすることによりクラッド材の成形性と溶接性を向上させ、芯材中に含有されるMn、Cu、Siの作用によりろう付け後の強度を高め、不純物としてのFeの含有量を制限すると共にTiを含有させて自己耐食性を向上させ、さらに、犠牲陽極材中のZn、In、Snの添加量を調整することにより、犠牲陽極効果を付与してクラッド材の耐食性を一層向上させ、特に、溶接偏平管の造管性および耐食性に優れた熱交換器用アルミニウム合金クラッド材とすることができる。
【0033】
【実施例】
以下、本発明の実施例を比較例と対比しながらさらに具体的に説明する。なお、本実施例は本発明の一実施態様を示すものであり、本発明はこれに限定されるものではない。
【0034】
実施例1
連続鋳造法により、表1に示す組成を有する芯材用アルミニウム合金を造塊し、得られた鋳塊を均質化処理した後、厚さ25mmに面削して芯材素材とした。また、表2に示す組成を有する犠牲陽極材用アルミニウム合金およびろう材用合金、JIS 4045(Al―10%Si)を、芯材用合金と同様に鋳造、面削した後、熱間圧延を施し、それぞれ厚さ3mmの皮材とし、ついでこのろう材および犠牲陽極材を、上記芯材の両面に重ね合わせて熱間圧延を行い、厚さ3mmのクラッド材を得た。その後、冷間圧延、中間焼鈍、最終冷間圧延を行って、厚さ0.25mmの3層のクラッド材(調質H14材)を作製した。なお、該クラッド材の組織および引張り強さは、中間焼鈍温度および冷間圧延の加工度を調整することにより変化させた。
【0035】
上記の工程により得られたクラッド材(以下、試験材)について、引張り試験を行った。また、試験材を、ろう材表面側から板厚方向に研磨して芯材表面を露出させ、芯材表面のミクロ組織を顕微鏡で観察することにより芯材の組織を調査した。
【0036】
さらに、試験材を、ろう付け条件と同様に、フッ化物系ろう付け加熱処理(以下、NB加熱)として、フッ化物系フラックス(濃度3%)を塗布した後、窒素ガス雰囲気中、600℃で5分間の加熱を行い、加熱後の試験材について引張り試験を行なった。
【0037】
造管性の評価については、試験材を所定の幅寸法で帯状に切断し、溶接偏平管の連続製造装置を用いて、幅16mm、高さ(厚さ)1.8mmの溶接偏平管に造管した後、溶接偏平管内部の耐圧試験を実施して、耐圧強度(破壊強度)が5.0MPa(50Kgf/cm2 )以上のものを造管性良好(○)と評価し、耐圧強度が5.0MPa未満で造管性が不安定、あるいは造管が困難なものを造管性不良(×)と評価した。
【0038】
内面側(犠牲陽極材側)の耐食性の評価については、単板のろう付け加熱試験片について、外面側(ろう材側)をシールした後、Cl- 100ppm、SO4 2-100ppm、HCO3 - 100ppm、Cu2+10ppmを含む水溶液中に浸漬して、80℃で8時間加熱し、その後室温まで放冷しながら16時間放置というサイクルを繰り返し、8週間の試験を実施した後、内面側からの最大腐食深さを測定することによって行った。
【0039】
【表1】

Figure 0004424568
【0040】
【表2】
Figure 0004424568
【0041】
【表3】
Figure 0004424568
【0042】
試験、測定および評価結果を表3に示す。表3にみられるように、本発明に従う試験材(クラッド材)No.1〜16はいずれも、素材の組織がすべて繊維状であり、素材の引張り強さは175MPa以上で、優れた造管性を示した。また、内面側浸漬試験後の最大腐食深さは、0.08〜0.16mmと浅く、内面側の耐食性が優れていることを示している。ろう付け後に相当する引張り強さは、いずれも155MPa以上の優れた強度を示した。なお、本発明に従って作製されたクラッド材はいずれも、素材の圧延加工性などの製造性に問題がないことが確認された。
【0043】
比較例1
表4に示す組成を有する芯材用アルミニウム合金を、実施例1と同様にして造塊、均質化処理、面削して芯材素材とし、表5に示す組成を有する犠牲陽極材用アルミニウム合金およびろう材用合金、JIS 4045を、実施例1と同様にして造塊、面削、熱間圧延して3.0mm厚さの皮材とし、ろう材および犠牲陽極材を芯材の両面に重ね合わせ、実施例1と同じ工程を経て、厚さ0.25mmの3層クラッド材(調質H14材)を得た。得られたクラッド材を試験材として実施例1と同一の方法に従って、各種の試験、測定、評価を行った、結果を表6および表7に示す。
【0044】
【表4】
Figure 0004424568
【0045】
【表5】
Figure 0004424568
【0046】
【表6】
Figure 0004424568
【0047】
【表7】
Figure 0004424568
【0048】
表6および表7に示すように、本発明の条件を外れた試験材No.17〜39はいずれも、熱交換器用クラッド材として十分な性能をそなえていない。すなわち試験材No.17は、犠牲陽極材中のZn、InおよびSnの含有量が少ないため、犠牲陽極効果が不十分で耐食性が劣り、内面側の腐食試験で貫通孔が生じた。また、犠牲陽極材用合金のFe含有量が極めて少ない高純度アルミニウム地金を採用したため、コストが高く実用に供し得ないものであった。
【0049】
試験材No.18、19は、犠牲陽極材中のSiおよびFeの含有量が多いため、自己耐食性が低下して内面側の腐食試験で貫通孔が生じた。試験材No.20〜22は、犠牲陽極材中のZn、In、Snの含有量が多いため、内面側の腐食試験後の犠牲陽極材の腐食消耗が激しく、犠牲陽極効果が長期に持続しない。
【0050】
試験材No.23は、犠牲陽極材中のMg含有量が多いため、素材の圧延が困難となり健全な材料が得られず、試験材No.24は、芯材のMn含有量が少ないため、NB加熱後の引張り強さが低下し、試験材No.25は、芯材のMn含有量が多すぎるため素材の圧延加工が困難となり、健全な材料が得られなかった。
【0051】
試験材No.26は、芯材中のCu含有量が少ないため、NB加熱後の引張り強さが低く、また、耐食性も低下し、内面側の腐食試験で貫通孔が生じた。試験材No.27は、芯材中のCuの含有量が多すぎるため、ろう付け時の加熱により芯材に局部溶融が生じた。
【0052】
試験材No.28は、芯材中のSi含有量が少ないため、NB加熱後の引張り強さが低く、試験材No.29は、芯材中のSi含有量が多すぎるため、ろう付け時の加熱により芯材に局部溶融が生じた。試験材No.30は、芯材合金中のFe含有量の極めて少ない高純度アルミニウム地金を採用したため、コスト高となり実用的でなく、試験材No.31は、Fe含有量が多すぎて耐食性が劣り、内面側の腐食試験で貫通孔が生じた。
【0053】
試験材No.32は、芯材中のTi含有量が少ないため、内面側腐食試験による最大腐食深さが、本発明による3層クラッド材と比較して深く、耐食性に問題が残り、試験材No.33は、芯材中のTiの含有量が多すぎるため、素材の圧延が困難となり健全な材料が得られない。
【0054】
試験材No.34は、芯材中のMgの含有量が少ないため、NB加熱後の引張り強さが低く、試験材No.35は、芯材中のMgの含有量が多すぎるため耐食性が低下して、内面側の腐食試験で貫通孔が生じた。
【0055】
試験材No.36と37は、芯材の組織が再結晶組織のため,突き合わせ溶接が困難で、造管性が不安定となり耐圧強度に不足を生じた。試験材No.38は、素材の引張り強さが低く、突き合わせ溶接が困難となり、造管性が低下して健全な溶接偏平管が得られなかった。また、試験材No.39は、素材の引張り強さが高すぎるために突き合わせ溶接が難しく造管が困難となり、健全な溶接偏平管が得られなかった。
【0056】
【発明の効果】
以上のとおり、本発明によれば、素材の強度を最適化すると共に、芯材マトリックスの組織を繊維状に制御し、且つ芯材および犠牲陽極材成分の最適化を図ることにより、優れた造管性および耐食性を達成した熱交換器用高強度アルミニウム合金クラッド材およびその製造方法が提供される。当該アルミニウム合金クラッド材は、自動車用熱交換器の作動流体通路構成材料として好適に使用することができ、材料のより一層の薄肉化が可能となり、ラジエータ、ヒータなどの熱交換器の生産性の向上、軽量化、長寿命化が達成可能となる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a high-strength aluminum alloy clad material for heat exchangers excellent in tube forming property and corrosion resistance, and more specifically, a fluid passage constituent material (tube material) for heat exchangers joined by brazing, such as automobile radiators and heaters. In particular, the present invention relates to a high-strength aluminum alloy clad material for a heat exchanger that is excellent in pipe-forming property and corrosion resistance when formed as a welded flat tube.
[0002]
[Prior art]
Conventionally, as a tube material for a heat exchanger for automobiles such as a radiator and a heater core, an Al-Mn alloy such as JIS A3003 alloy, 3005 alloy, and 3205 alloy is used as a core material, and JIS is provided on one surface of the core material. A sacrificial anode made of an Al-Zn alloy or an Al-Zn-Mg alloy is clad with a brazing material made of an Al-Si alloy such as BA4343 alloy, 4045 alloy, 4047 alloy, or 4104 alloy. A three-layer clad material made of an aluminum alloy clad with a material is used.
[0003]
The Al-Si brazing material is clad for joining the tube and fin, and brazing the tube and header plate. As the brazing method, a fluoride flux is used in an inert gas atmosphere. Generally, a brazing method performed using is used, but a vacuum brazing method may be employed. On the other hand, the sacrificial anode material constitutes the inner surface of the tube, and in contact with the working fluid during use of the heat exchanger, exerts a sacrificial anode action, thereby preventing pitting corrosion and crevice corrosion of the core material.
[0004]
The tube (flat tube) used for automobile radiators, heaters, etc. is a material for welded flat tubes by cutting the above-mentioned three-layer clad plate material made of brazing material / core material / sacrificial anode material into a strip shape with a predetermined width, This material is formed into a tubular shape with the sacrificial anode material inside, and the end faces of the material are butted and continuously welded. Then, the weld bead is cut and removed, and then formed into a flat tubular shape to a predetermined dimension. Further, it is manufactured by cutting into a predetermined length.
[0005]
In recent years, the weight reduction of automobiles has been promoted due to environmental issues, further demands for energy saving and cost reduction. Along with this, weight reduction for automobile heat exchangers is also strongly demanded, and heat exchangers such as tube materials It has become necessary to further reduce the thickness of the constituent materials. However, if the tube material used for radiators and heaters is thinned and various elements are added to maintain a specific strength, the corrosion resistance is impaired, or the thinning of the material results in the tubeability of the welded flat tube. It becomes worse, the productivity of the heat exchanger is significantly hindered, and the durability of the heat exchanger becomes problematic.
[0006]
Normally, in the manufacture of tubes (flat tubes) used for automobile radiators, heaters, etc., forming to be bent into a tube shape, butt welding of end faces, bead removal of welds, forming to flat tubes, Cutting to a predetermined dimension is performed under a high-speed condition of about 100 m / min using a continuous line. For this reason, various defects are likely to occur in the welded portion of the welded flat tube, and quality problems are likely to occur. Therefore, a material with excellent pipe forming properties is particularly desired from the viewpoint of high quality and high productivity. It is desired.
[0007]
As a method for improving the tube-forming property of a welded flat tube, for example, a method for producing a brazing sheet is improved (Japanese Patent Laid-Open No. 7-286250), or the crystal grain size of a core material is controlled (Japanese Patent Laid-Open No. 8-283891). By limiting the strength characteristics of the brazing sheet (JP-A-4-66292) or controlling the ear rate (JP-A-4-276039) A method for improving the cutting property of a welded flat tube has been proposed. The above-mentioned means can improve the tube forming property of the welded flat tube to some extent, but depending on the material used as the material becomes thinner, the quality of the tube forming property may vary, resulting in product yield. From the viewpoint of improving the cost and reducing the cost, further improvement in pipe forming property is desired.
[0008]
[Problems to be solved by the invention]
The present invention eliminates the above-mentioned conventional problems in the technical field and develops an alloy for pipe forming, brazing, corrosion resistance, and strength properties in order to develop a thinned heat exchanger working fluid passage material. It was made as a result of diversified experiments and examinations about the effects of ingredients and their combinations, the influence of the material structure, etc., and its purpose is excellent in pipe forming properties, that is, bending to pipe shape, An object of the present invention is to provide an aluminum alloy clad material for a heat exchanger that can stably perform butt welding of end faces and is excellent in corrosion resistance and strength characteristics, and a method for producing the same.
[0009]
[Means for Solving the Problems]
The high-strength aluminum alloy clad material for heat exchangers excellent in tube-forming property and corrosion resistance according to claim 1 of the present invention for solving the above-mentioned problems is obtained by clad a sacrificial anode material on one surface of a core material and the other surface An aluminum alloy clad material clad with an Al—Si brazing material, and the core material is Mn: 0.6 to 2.0%, Cu: 0.3 to 1.0%, Si: 0.5 to 1.0%, Fe: 0.01 to 0.4%, the balance is made of an aluminum alloy composed of Al and inevitable impurities, and the sacrificial anode material is Zn: 0.5 to 4.0%, In : 0.005 to 0.1%, Sn: One or more of 0.01 to 0.1% are contained, Si: 0.01 to 0.5%, Fe: 0.01 Containing ~ 0.5%, the balance is made of aluminum alloy consisting of Al and inevitable impurities, the core material Matrix is a fiber tissue, tensile strength of the clad material is 170~260MPa, form tracks in tubular form, butt welded and formed into welded flat tube, is characterized by using the working fluid passage.
[0010]
According to claim 2 of the present invention, the high strength aluminum alloy clad material for heat exchangers excellent in tube-forming property and corrosion resistance in claim 1, the core material further contains Ti: 0.06 to 0.35%. The high-strength aluminum alloy clad material for a heat exchanger excellent in pipe-forming property and corrosion resistance according to claim 3 of the present invention is characterized in that the core material is further Mg: 0.06-0. .4% is contained .
[0011]
According to claim 4 of the present invention, the high strength aluminum alloy clad material for heat exchangers excellent in tube-forming property and corrosion resistance is any one of claims 1 to 3, wherein the sacrificial anode material is further Mg: 0.5-2. It is characterized by containing 5% .
[0012]
According to claim 5 of the present invention, a method for producing a high-strength aluminum alloy clad material for heat exchangers excellent in pipe forming property and corrosion resistance is a method for producing an aluminum alloy clad material according to any one of claims 1 to 4. Then, the core material and the sacrificial anode material having the composition according to any one of claims 1 to 4 and the ingot of the Al-Si-based brazing material are homogenized as necessary, and then each predetermined Hot-rolled to a thickness, then combined with a core material, a sacrificial anode material and a brazing material, made into a clad material by hot rolling, further cold-rolled to a predetermined thickness, and then manufactured through annealing and cold-rolling, The annealing is performed at a temperature lower than the recrystallization temperature of the core material .
[0013]
DETAILED DESCRIPTION OF THE INVENTION
The reasons for limiting the components constituting the high-strength aluminum alloy clad material for heat exchangers excellent in tube-forming property and corrosion resistance of the present invention and the action thereof will be described in detail below.
[0014]
<Core alloy constituents>
Mn functions to improve the strength of the core material. A preferable content of Mn is in the range of 0.6 to 2.0%, and if the content is less than 0.6%, a sufficient effect cannot be obtained. It becomes difficult to obtain a sound material due to degradation of the rolling workability of the material.
[0015]
Cu increases the potential difference between the sacrificial anode material and the brazing material by increasing the strength of the core material and making the potential noble, thereby increasing the anticorrosion effect of the sacrificial anode material and the sacrificial anode effect of the brazing material. This contributes to the improvement of the corrosion resistance of the clad material. Further, Cu in the core material diffuses into the sacrificial anode material and the brazing material during brazing heating, and forms a gentle concentration gradient. As a result, the potential on the core material side becomes noble, the potential on the surface side of the sacrificial anode material and the brazing material becomes base, and a gentle potential gradient is formed in the sacrificial anode material and the brazing material. Make the entire surface corroded. The preferable content of Cu is 0.3 to 1.0%. If the content is less than 0.3%, the effect is not sufficient. Melting may occur.
[0016]
Si has the effect of increasing the strength of the core material. The preferable content is in the range of 0.5 to 1.0%. If the content is less than 0.5%, a sufficient effect cannot be obtained. Sometimes local melting may occur, and the corrosion resistance of the core material also decreases.
[0017]
Fe, which is contained as an impurity in the aluminum base metal, acts as a cathode for the aluminum base material, and thus acts to lower the corrosion resistance of the core material. Therefore, it is desirable to keep the content as low as possible, but high purity aluminum ingots with extremely low Fe content are expensive and cannot be put to practical use. The content of Fe is set to 0.01 to 0.4%.
[0018]
Ti functions to further improve the corrosion resistance of the core material. That is, Ti is divided into a high-concentration region and a low-concentration region, and they are distributed alternately in the plate thickness direction to form a layer, and the low-concentration Ti region corrodes preferentially as compared with the high-concentration region. Since the form is layered, the progress of corrosion in the thickness direction is hindered, and as a result, the pitting corrosion resistance of the material is improved. The preferable content of Ti is in the range of 0.06 to 0.35%. If the content is less than 0.06%, the effect is not sufficient, and if it exceeds 0.35%, the compound is coarse during casting. Is generated, the rolling processability of the material is hindered, and it is difficult to obtain a sound material.
[0019]
Mg acts to increase the strength of the core material. The preferable content of Mg is in the range of 0.06 to 0.4%, and if the content is less than 0.06%, sufficient effects cannot be obtained, and if it exceeds 0.4%, it reacts with Si. Mg 2 Si is generated and the corrosion resistance is remarkably deteriorated.
[0020]
As other elements, it is accepted that inevitable impurity elements such as Zn, Cr, Zr, and the like are contained in the core material as long as the effects of the present invention are not hindered. However, since Zn lowers the potential of the core material and reduces the potential difference between the sacrificial anode material and the brazing material and causes a decrease in corrosion resistance, it is desirable to limit its content to 0.2% or less. Moreover, although Cr and Zr do not prevent the addition for the purpose of making the structure finer or the like, there is a possibility of impairing workability, so it is preferable to limit the content to 0.3% or less.
[0021]
<Brazing alloy constituents>
Examples of the brazing alloy in the present invention include Al—Si, Al—Si—Mg, Al—Si—Mg—Bi, Al—Si—Mg—Be, Al—Si—Bi, and Al—Si—. A brazing material made of an Al-Si alloy such as a Be-based alloy or an Al-Si-Bi-Be-based alloy, such as JIS BA4343 alloy (Al-7.5% Si), 4045 alloy (Al-10% Si), 4047 alloy. It is appropriately selected from conventionally known aluminum alloys such as (Al-12% Si), 4104 alloy (Al-10% Si-1.5% Mg-0.1% Bi).
[0022]
For the purpose of improving the brazing property, the brazing material has a small amount, for example, 0.2% or less of Bi, Be, Sr, Li, Na selected from one or more elements. Can be contained. Further, by reducing the potential of the brazing material by increasing the potential difference of the brazing material with respect to the core material, the sacrificial anode effect is imparted to the brazing material to improve the corrosion resistance of the clad material, and a small amount of Zn, One or more of In and Sn may be contained.
[0023]
<Sacrificial anode material alloy constituents>
Zn makes the potential of the sacrificial anode material base, gives the sacrificial anode material an excellent sacrificial anode effect on the core material, makes the clad material corrosion form a full corrosion type, and suppresses pitting corrosion and crevice corrosion To function. The preferable content of Zn is in the range of 0.5 to 4.0%. If the content is less than 0.5%, a sufficient effect cannot be obtained, and if the content exceeds 4.0%, the effect is saturated. Thus, no further effect can be expected, and the sacrificial anode effect itself cannot be sustained over a long period of time because the self-corrosion resistance of the sacrificial anode material itself decreases and the corrosion consumption increases.
[0024]
In bases the potential of the sacrificial anode material, provides the sacrificial anode material with an excellent sacrificial anode effect on the core material, makes the clad material corrosion form a full-corrosion type, and suppresses pitting corrosion and crevice corrosion To function. The preferable In content is in the range of 0.005 to 0.1%. If the content is less than 0.005%, the desired effect cannot be expected. Corrosion resistance decreases, corrosion consumption of the sacrificial anode material increases, and rolling workability also decreases.
[0025]
Sn also reduces the potential of sacrificial anode material, gives sacrificial anode material an excellent sacrificial anode effect on the core material, makes the corrosion of the clad material completely corrosive, and suppresses pitting corrosion and crevice corrosion To function. The preferred Sn content is in the range of 0.01 to 0.1%. If the content is less than 0.01%, the desired effect cannot be expected. Corrosion resistance decreases, corrosion consumption of the sacrificial anode material increases, and rolling workability also decreases.
[0026]
Si and Fe are present as impurities in the aluminum base metal, and both act as a cathode with respect to the aluminum base material and reduce self-corrosion resistance. Therefore, it is desirable to limit their content to 0.5% or less of Si and 0.5% or less of Fe. However, high-purity aluminum ingots with extremely low Si and Fe contents cannot be put to practical use due to high costs. Therefore, in the present invention, both of these allowable ranges are 0.01 to 0.5. Limited to%.
[0027]
Mg acts to increase the strength of the clad material. The preferable Mg content is in the range of 0.5 to 2.5%, and if the content is less than 0.5%, sufficient effects cannot be obtained. It is difficult to obtain a healthy material.
[0028]
As other elements, Mn, Cu, Cr, Zr, Ti, and the like may be included as long as the effects of the present invention are not hindered. However, since Mn and Cu make the potential of the sacrificial anode material noble and reduce the potential difference with the core material to lower the sacrificial anode effect, it is desirable to limit the respective contents to 0.3% or less, In addition, each element of Cr, Zr and Ti does not prevent the addition of the element for the purpose of controlling the crystal grain size of the material, but there is a possibility that the workability may be deteriorated, so that each does not exceed 0.3%. It is desirable to add.
[0029]
<Core material structure>
In the present invention, it is an important requirement that the structure of the core material matrix is a fiber structure. By making the core material matrix into a fiber structure, the formability of the clad material into the pipe shape and the butt weldability of the end face in the pipe making process are improved, and variations in shape and quality in the pipe making can be reduced. When the core material structure is a recrystallized structure or a mixed structure of a fiber structure and a recrystallized structure, the formability of the clad material into the tube shape in the tube forming process may be non-uniform. However, since the butt weldability of the end face after that decreases, welding defects are likely to occur, and the pressure resistance of the welded flat tube after pipe forming decreases, resulting in large variations in quality, manufacturing yield and productivity. Decreases. In addition, as a method for making the core material matrix into a fiber structure, it is preferable to employ a method of adjusting the annealing temperature at the time of manufacturing the aluminum alloy clad material to a temperature lower than the recrystallization temperature of the core material alloy.
[0030]
<Strength of clad material>
In the present invention, it is important to adjust the tensile strength of the aluminum alloy clad material before pipe making to a range of 170 to 260 MPa. The tensile strength of the clad material before pipe making affects the formability of the clad material into the pipe shape and the end face butt weldability in the pipe making process. If the tensile strength is less than 170 MPa, local deformation is likely to occur during molding into a tube shape, and butt welding becomes difficult. If it exceeds 260 MPa, the springback during molding into a tube shape increases, making butt welding difficult. It becomes difficult to obtain a sound welded flat tube. In addition, as a method for adjusting the strength of the clad material to the above strength, a method of adjusting the annealing temperature at the time of producing the clad material and the cold rolling workability can be employed.
[0031]
The aluminum alloy clad material for a heat exchanger of the present invention is formed by agglomerating an aluminum alloy constituting a core material, a sacrificial anode material, and a brazing material by, for example, a semi-continuous casting method, and homogenizing treatment as necessary. Manufactured through a process of hot rolling to a thickness of, then combining the materials, forming a clad material by hot rolling according to conventional methods, further cold rolling to a predetermined thickness, and repeating annealing and cold rolling as necessary Is done.
[0032]
According to the configuration of the present invention, the formability and weldability of the clad material are improved by making the core material matrix into a fiber structure, and the strength after brazing by the action of Mn, Cu, Si contained in the core material. To improve the self-corrosion resistance by limiting the content of Fe as an impurity and containing Ti, and further adjusting the addition amount of Zn, In, Sn in the sacrificial anode material, thereby improving the sacrificial anode effect This can further improve the corrosion resistance of the clad material, and in particular, it can be an aluminum alloy clad material for a heat exchanger that has excellent pipe-forming properties and corrosion resistance of a welded flat tube.
[0033]
【Example】
Hereinafter, examples of the present invention will be described more specifically while comparing with comparative examples. In addition, a present Example shows one embodiment of this invention, and this invention is not limited to this.
[0034]
Example 1
An aluminum alloy for core material having the composition shown in Table 1 was ingoted by a continuous casting method, and the obtained ingot was homogenized, and then face-cut to a thickness of 25 mm to obtain a core material. Also, after casting and chamfering aluminum alloy for sacrificial anode material and brazing material alloy JIS 4045 (Al-10% Si) having the composition shown in Table 2 in the same manner as the alloy for core material, hot rolling is performed. The brazing material and the sacrificial anode material were superposed on both sides of the core material and hot-rolled to obtain a cladding material having a thickness of 3 mm. Thereafter, cold rolling, intermediate annealing, and final cold rolling were performed to produce a three-layer clad material (tempered H14 material) having a thickness of 0.25 mm. The structure and tensile strength of the clad material were changed by adjusting the intermediate annealing temperature and the cold rolling degree.
[0035]
A tensile test was performed on the clad material (hereinafter referred to as a test material) obtained by the above process. Further, the test material was polished from the brazing material surface side in the plate thickness direction to expose the core material surface, and the microstructure of the core material was examined by observing the microstructure of the core material surface with a microscope.
[0036]
Furthermore, after applying a fluoride-based flux (concentration 3%) as a fluoride-based brazing heat treatment (hereinafter referred to as NB heating) as in the brazing conditions, the test material was applied at 600 ° C. in a nitrogen gas atmosphere. Heating was performed for 5 minutes, and a tensile test was performed on the test material after heating.
[0037]
For the evaluation of tube forming property, the test material is cut into a strip shape with a predetermined width dimension, and a welded flat tube having a width of 16 mm and a height (thickness) of 1.8 mm is prepared using a continuous manufacturing apparatus for welded flat tubes. After the pipe, a pressure test inside the welded flat tube was conducted, and a pipe having a pressure strength (breaking strength) of 5.0 MPa (50 kgf / cm 2 ) or more was evaluated as having good pipe forming properties (○). A tube forming property that was unstable or difficult to be formed at less than 5.0 MPa was evaluated as poor tube forming property (x).
[0038]
Regarding the evaluation of the corrosion resistance on the inner surface side (sacrificial anode material side), after sealing the outer surface side (brazing material side) of a single plate brazed heating test piece, Cl 100 ppm, SO 4 2−100 ppm, HCO 3 It was immersed in an aqueous solution containing 100 ppm and Cu 2+ 10 ppm, heated at 80 ° C. for 8 hours, and then allowed to stand for 16 hours while being allowed to cool to room temperature. This was done by measuring the maximum corrosion depth.
[0039]
[Table 1]
Figure 0004424568
[0040]
[Table 2]
Figure 0004424568
[0041]
[Table 3]
Figure 0004424568
[0042]
The test, measurement and evaluation results are shown in Table 3. As seen in Table 3, the test material (clad material) No. In all of Nos. 1 to 16, the structure of the material was all fibrous, and the tensile strength of the material was 175 MPa or more, indicating excellent tube forming properties. Moreover, the maximum corrosion depth after the inner surface side immersion test is as shallow as 0.08 to 0.16 mm, indicating that the inner surface side has excellent corrosion resistance. The corresponding tensile strength after brazing showed an excellent strength of 155 MPa or more. In addition, it was confirmed that all the clad materials manufactured according to the present invention have no problem in manufacturability such as rolling workability of the material.
[0043]
Comparative Example 1
An aluminum alloy for a sacrificial anode material having the composition shown in Table 5 was prepared by agglomerating, homogenizing, and facing the core aluminum alloy having the composition shown in Table 4 in the same manner as in Example 1. The brazing alloy, JIS 4045, was ingot, chamfered and hot-rolled in the same manner as in Example 1 to obtain a 3.0 mm-thick skin material, and the brazing material and the sacrificial anode material were formed on both sides of the core material. The three-layer clad material (tempered H14 material) having a thickness of 0.25 mm was obtained through the same process as in Example 1 by overlapping. Various tests, measurements, and evaluations were performed according to the same method as in Example 1 using the obtained clad material as a test material. The results are shown in Tables 6 and 7.
[0044]
[Table 4]
Figure 0004424568
[0045]
[Table 5]
Figure 0004424568
[0046]
[Table 6]
Figure 0004424568
[0047]
[Table 7]
Figure 0004424568
[0048]
As shown in Tables 6 and 7, the test material No. None of 17 to 39 has sufficient performance as a clad material for heat exchangers. That is, the test material No. No. 17 had a small content of Zn, In and Sn in the sacrificial anode material, so that the sacrificial anode effect was insufficient and the corrosion resistance was inferior, and a through hole was generated in the corrosion test on the inner surface side. Moreover, since a high-purity aluminum ingot having a very low Fe content in the sacrificial anode material alloy was adopted, the cost was high and it could not be put to practical use.
[0049]
Test material No. In Nos. 18 and 19, since the contents of Si and Fe in the sacrificial anode material were large, the self-corrosion resistance was lowered, and through-holes were formed in the inner surface side corrosion test. Test material No. Nos. 20 to 22 have a large content of Zn, In, and Sn in the sacrificial anode material, so that the sacrificial anode material after the corrosion test on the inner surface side is severely corroded, and the sacrificial anode effect does not last for a long time.
[0050]
Test material No. No. 23 has a high Mg content in the sacrificial anode material, so that rolling of the material becomes difficult and a sound material cannot be obtained. No. 24 has a low Mn content in the core material, so that the tensile strength after NB heating is reduced. In No. 25, since the Mn content of the core material was too large, it was difficult to roll the material, and a sound material could not be obtained.
[0051]
Test material No. In No. 26, since the Cu content in the core material was small, the tensile strength after NB heating was low, the corrosion resistance was also lowered, and a through hole was generated in the inner surface side corrosion test. Test material No. In No. 27, since the Cu content in the core material was too large, local melting occurred in the core material due to heating during brazing.
[0052]
Test material No. No. 28 has a low Si content in the core material, so the tensile strength after NB heating is low. In No. 29, since the Si content in the core material was too large, local melting occurred in the core material by heating during brazing. Test material No. No. 30 uses a high-purity aluminum ingot having a very low Fe content in the core material alloy, so that the cost increases and is not practical. No. 31 had too much Fe content and poor corrosion resistance, and through holes were generated in the corrosion test on the inner surface side.
[0053]
Test material No. 32, since the Ti content in the core material is small, the maximum corrosion depth by the inner surface side corrosion test is deeper than that of the three-layer clad material according to the present invention, and there remains a problem in corrosion resistance. In No. 33, since the content of Ti in the core material is too large, the rolling of the material becomes difficult and a sound material cannot be obtained.
[0054]
Test material No. No. 34 has a low tensile strength after NB heating because the content of Mg in the core material is small. In No. 35, since the Mg content in the core was too much, the corrosion resistance was lowered, and a through hole was generated in the corrosion test on the inner surface side.
[0055]
Test material No. Nos. 36 and 37 were difficult to butt-weld due to the recrystallized structure of the core material, and the tube forming property became unstable, resulting in insufficient pressure resistance. Test material No. In No. 38, the tensile strength of the raw material was low, butt welding became difficult, the pipe forming property was lowered, and a sound welded flat tube could not be obtained. In addition, test material No. For No. 39, the tensile strength of the material was too high, making butt welding difficult and pipe making difficult, and a sound welded flat tube could not be obtained.
[0056]
【The invention's effect】
As described above, by the present invention lever, as well as optimizing the strength of the material, to control the organization of the core matrix fibers, and by optimizing the core material and sacrificial anode material components, excellent Provided are a high-strength aluminum alloy clad material for a heat exchanger that achieves pipe forming properties and corrosion resistance, and a method for producing the same . The aluminum alloy clad material can be suitably used as a working fluid passage constituent material of a heat exchanger for automobiles, and can further reduce the thickness of the material, and improve the productivity of heat exchangers such as radiators and heaters. Improvement, weight reduction, and long life can be achieved.

Claims (5)

芯材の一方の面に犠牲陽極材をクラッドし、他方の面にAl−Si系のろう材をクラッドしたアルミニウム合金クラッド材であって、芯材はMn:0.6〜2.0%(重量%、以下同じ)、Cu:0.3〜1.0%、Si:0.5〜1.0%、Fe:0.01〜0.4%を含有し、残部がAlと不可避不純物からなるアルミニウム合金で構成され、犠牲陽極材は、Zn:0.5〜4.0%、In:0.005〜0.1%、Sn:0.01〜0.1%のうちの1種または2種以上を含有し、さらにSi:0.01〜0.5%、Fe:0.01〜0.5%を含有し、残部がAlと不可避不純物からなるアルミニウム合金で構成され、芯材のマトリックスが繊維組織であり、クラッド材の引張り強さが170〜260MPaであり、管形状に曲成し、突合わせ溶接して溶接偏平管に成形し、作動流体通路に用いることを特徴とする造管性および耐食性に優れた熱交換器用高強度アルミニウム合金クラッド材。An aluminum alloy clad material in which a sacrificial anode material is clad on one surface of a core material and an Al—Si based brazing material is clad on the other surface, and the core material is Mn: 0.6 to 2.0% ( % By weight, the same shall apply hereinafter), Cu: 0.3 to 1.0%, Si: 0.5 to 1.0%, Fe: 0.01 to 0.4%, the balance being Al and inevitable impurities The sacrificial anode material is composed of one of Zn: 0.5-4.0%, In: 0.005-0.1%, Sn: 0.01-0.1% or Containing two or more types, Si: 0.01 to 0.5%, Fe: 0.01 to 0.5%, the balance is made of an aluminum alloy composed of Al and inevitable impurities, matrix is a fiber tissue, tensile strength of the clad material is 170~260MPa, form tracks in a tubular shape Butt welded by forming the welding flat tube, the heat exchanger excellent in pipe formation and corrosion resistance, which comprises using the hydraulic fluid passage dexterity high strength aluminum alloy clad material. 芯材が、さらにTi:0.06〜0.35%を含有することを特徴とする請求項1に記載の造管性および耐食性に優れた熱交換器用高強度アルミニウム合金クラッド材。The high strength aluminum alloy clad material for heat exchangers according to claim 1, wherein the core material further contains Ti: 0.06 to 0.35%. 芯材が、さらにMg:0.06〜0.4%を含有することを特徴とする請求項1または2に記載の造管性および耐食性に優れた熱交換器用高強度アルミニウム合金クラッド材。The core material further contains Mg: 0.06 to 0.4%, The high strength aluminum alloy clad material for heat exchangers excellent in pipe forming property and corrosion resistance according to claim 1 or 2. 犠牲陽極材が、さらにMg:0.5〜2.5%を含有することを特徴とする請求項1〜3のいずれかに記載の造管性および耐食性に優れた熱交換器用高強度アルミニウム合金クラッド材。The high-strength aluminum alloy for a heat exchanger excellent in pipe forming property and corrosion resistance according to any one of claims 1 to 3, wherein the sacrificial anode material further contains Mg: 0.5 to 2.5%. Clad material. 請求項1〜4のいずれかに記載のアルミニウム合金クラッド材を製造する方法であって、請求項1〜4のいずれかに記載の組成を有する芯材と犠牲陽極材、および前記Al−Si系のろう材の鋳塊を、必要に応じて均質化処理した後、それぞれ所定の厚さまで熱間圧延し、ついで芯材、犠牲陽極材およびろう材を組み合わせて、熱間圧延によりクラッド材とし、さらに所定の厚さまで冷間圧延した後、焼鈍および冷間圧延を経て製造し、該焼鈍を芯材の再結晶温度より低い温度で行うことを特徴とする造管性および耐食性に優れた熱交換器用高強度アルミニウム合金クラッド材の製造方法。A method for producing the aluminum alloy clad material according to any one of claims 1 to 4, wherein the core material and the sacrificial anode material having the composition according to any one of claims 1 to 4, and the Al-Si system The ingot of the brazing material is homogenized as necessary, and then hot-rolled to a predetermined thickness, and then the core material, the sacrificial anode material and the brazing material are combined to form a clad material by hot rolling. Furthermore, after cold rolling to a predetermined thickness, it is manufactured through annealing and cold rolling, and the annealing is performed at a temperature lower than the recrystallization temperature of the core material. A method of manufacturing high strength aluminum alloy clad material
JP35551499A 1999-12-15 1999-12-15 High strength aluminum alloy clad material for heat exchangers excellent in tube forming property and corrosion resistance, and method for producing the same Expired - Fee Related JP4424568B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35551499A JP4424568B2 (en) 1999-12-15 1999-12-15 High strength aluminum alloy clad material for heat exchangers excellent in tube forming property and corrosion resistance, and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35551499A JP4424568B2 (en) 1999-12-15 1999-12-15 High strength aluminum alloy clad material for heat exchangers excellent in tube forming property and corrosion resistance, and method for producing the same

Publications (2)

Publication Number Publication Date
JP2001170793A JP2001170793A (en) 2001-06-26
JP4424568B2 true JP4424568B2 (en) 2010-03-03

Family

ID=18444389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35551499A Expired - Fee Related JP4424568B2 (en) 1999-12-15 1999-12-15 High strength aluminum alloy clad material for heat exchangers excellent in tube forming property and corrosion resistance, and method for producing the same

Country Status (1)

Country Link
JP (1) JP4424568B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2004207223A1 (en) * 2003-01-27 2004-08-12 Showa Denko K.K. Heat exchanger and process for fabricating same
JP5230231B2 (en) * 2008-03-19 2013-07-10 株式会社神戸製鋼所 Aluminum alloy brazing sheet, heat exchanger and method for producing the same
JP5336812B2 (en) * 2008-10-16 2013-11-06 三菱アルミニウム株式会社 Brazing sheet for automotive heat exchanger for brazed pipe
JP5753651B2 (en) * 2009-03-31 2015-07-22 株式会社神戸製鋼所 Aluminum alloy brazing sheet
JP5840941B2 (en) * 2011-12-20 2016-01-06 三菱アルミニウム株式会社 Brazing sheet
JP6147470B2 (en) 2012-03-30 2017-06-14 株式会社神戸製鋼所 Aluminum alloy brazing sheet for heat exchanger
JP5985973B2 (en) * 2012-12-07 2016-09-06 株式会社Uacj Aluminum alloy brazing sheet and method for producing the same, and heat exchanger using the aluminum alloy brazing sheet
CN105339514B (en) 2013-07-05 2018-08-31 株式会社Uacj Aluminium alloy brazing piece and its manufacturing method
JP6498911B2 (en) * 2014-11-10 2019-04-10 三菱アルミニウム株式会社 Aluminum alloy brazing sheet with high strength, high corrosion resistance and high material elongation
WO2023087957A1 (en) * 2021-11-18 2023-05-25 格朗吉斯铝业(上海)有限公司 Aluminum pipe, manufacturing method therefor, and full aluminum heat exchanger

Also Published As

Publication number Publication date
JP2001170793A (en) 2001-06-26

Similar Documents

Publication Publication Date Title
JP3276790B2 (en) Method for producing aluminum alloy brazing sheet, heat exchanger using the brazing sheet, and method for producing the heat exchanger
JP4166613B2 (en) Aluminum alloy fin material for heat exchanger and heat exchanger formed by assembling the fin material
JP4111456B1 (en) Aluminum alloy brazing sheet for heat exchanger
JP4702797B2 (en) Manufacturing method of aluminum alloy clad material excellent in surface bondability by brazing of sacrificial anode material surface
JP5893450B2 (en) Aluminum alloy brazing sheet for header of heat exchanger, method for producing the same, and method for producing heat exchanger
JP4623729B2 (en) Aluminum alloy clad material and heat exchanger excellent in surface bonding by brazing of sacrificial anode material surface
JP4993440B2 (en) High strength aluminum alloy clad material for heat exchangers with excellent brazeability
JP4023760B2 (en) Aluminum alloy clad material for heat exchangers with excellent brazing and corrosion resistance
JP3910506B2 (en) Aluminum alloy clad material and manufacturing method thereof
JP4807826B2 (en) Aluminum alloy clad material with excellent surface bonding by brazing sacrificial anode material
JP4030006B2 (en) Aluminum alloy clad material and manufacturing method thereof
JP4424568B2 (en) High strength aluminum alloy clad material for heat exchangers excellent in tube forming property and corrosion resistance, and method for producing the same
JP2000204427A (en) Aluminum alloy clad material for heat exchanger excellent in brazing property and corrosion resistance
JP5180565B2 (en) Aluminum alloy brazing sheet for heat exchanger
JP5629113B2 (en) Aluminum alloy brazing sheet excellent in brazing and corrosion resistance, and heat exchanger using the same
JP2006015376A (en) Aluminum alloy brazing sheet for heat exchanger
JP4424569B2 (en) High strength aluminum alloy clad material for heat exchangers excellent in tube forming property and corrosion resistance, and method for producing the same
JPH11315335A (en) Aluminum alloy brazing sheet for formation of brazed tube, and brazed tube
JP3360026B2 (en) Brazing method of aluminum alloy brazing sheet for heat exchanger
JP2004017116A (en) Aluminum alloy brazing sheet for brazed pipe making tubes, and its producing method
JPH1053827A (en) Brazing sheet made of aluminum alloy for heat exchanger
JPH0741919A (en) Manufacture of heat exchanger tube material for noncorrosive flux brazing
JPH11315337A (en) Aluminum alloy brazing sheet for formation of brazed tube, and brazed tube
JP2011012327A (en) Brazing sheet having excellent brazability, and method for producing the brazing sheet
JP2001026850A (en) Production of tube material for heat exchanger excellent in tube formability

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061024

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090604

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091203

R150 Certificate of patent or registration of utility model

Ref document number: 4424568

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131218

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees