JP4420127B2 - Carbon dioxide reforming catalyst and method for producing the same - Google Patents

Carbon dioxide reforming catalyst and method for producing the same Download PDF

Info

Publication number
JP4420127B2
JP4420127B2 JP2008553093A JP2008553093A JP4420127B2 JP 4420127 B2 JP4420127 B2 JP 4420127B2 JP 2008553093 A JP2008553093 A JP 2008553093A JP 2008553093 A JP2008553093 A JP 2008553093A JP 4420127 B2 JP4420127 B2 JP 4420127B2
Authority
JP
Japan
Prior art keywords
carbon dioxide
catalyst
dioxide reforming
reforming catalyst
reforming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008553093A
Other languages
Japanese (ja)
Other versions
JPWO2008084785A1 (en
Inventor
芳則 斉藤
秀人 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Application granted granted Critical
Publication of JP4420127B2 publication Critical patent/JP4420127B2/en
Publication of JPWO2008084785A1 publication Critical patent/JPWO2008084785A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/40Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts characterised by the catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/78Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/384Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts the catalyst being continuously externally heated
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/003Titanates
    • C01G23/006Alkaline earth titanates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0238Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a carbon dioxide reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1052Nickel or cobalt catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1052Nickel or cobalt catalysts
    • C01B2203/1058Nickel catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1064Platinum group metal catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1064Platinum group metal catalysts
    • C01B2203/107Platinum catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1082Composition of support materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

本発明は、炭化水素系の原料ガスを二酸化炭素改質して、水素および一酸化炭素を含む合成ガスを製造する際に用いられる二酸化炭素改質用触媒、該二酸化炭素改質用触媒を用いた合成ガスの製造方法、該二酸化炭素改質用触媒の製造方法および二酸化炭素改質用触媒の担体に関する。   The present invention relates to a carbon dioxide reforming catalyst used for producing a synthesis gas containing hydrogen and carbon monoxide by reforming a hydrocarbon-based source gas with carbon dioxide, and uses the carbon dioxide reforming catalyst. The present invention relates to a method for producing synthesis gas, a method for producing the carbon dioxide reforming catalyst, and a carrier for the carbon dioxide reforming catalyst.

近年、二酸化炭素は地球温暖化の主要原因物質であることから排出の削減、有効利用が緊急の課題とされている。   In recent years, since carbon dioxide is a major causative substance of global warming, reduction of emission and effective use are regarded as urgent issues.

また、石油精製や石油化学などの技術分野からは種々の炭化水素系ガスが発生するが、必ずしも効率よく種々の物質の原料ガスなどとして利用できておらず、より有効な物質に変換する方法が求められているのが実情である。   In addition, various hydrocarbon gases are generated from technical fields such as petroleum refining and petrochemistry, but they are not necessarily efficiently used as raw material gases for various substances, and there is a method for converting them into more effective substances. What is required is the actual situation.

このような状況の下で、炭化水素を二酸化炭素と反応させて水素および一酸化炭素を含む合成ガスを製造する方法として、還元剤として機能する、メタンなどの飽和炭化水素と二酸化炭素とを触媒の存在下に反応させて、工業的に有用な合成ガスである水素と一酸化炭素に変換する方法(炭化水素の二酸化炭素改質)が知られている。   Under such circumstances, as a method of producing a synthesis gas containing hydrogen and carbon monoxide by reacting a hydrocarbon with carbon dioxide, a saturated hydrocarbon such as methane that functions as a reducing agent and carbon dioxide are catalyzed. There is known a method of reacting in the presence of hydrogen and converting it into hydrogen and carbon monoxide, which are industrially useful syngas (carbon dioxide reforming of hydrocarbons).

そして、炭化水素の二酸化炭素改質用触媒としてはアルミナなどの基体にニッケルを担持させたニッケル系触媒、ルテニウムを担持したルテニウム系触媒(特許文献1参照)、さらには、アルミナなどの基体にロジウムを担持させたロジウム系触媒(特許文献2参照)などが知られている。   As a carbon dioxide reforming catalyst for hydrocarbons, a nickel-based catalyst in which nickel is supported on a substrate such as alumina, a ruthenium-based catalyst in which ruthenium is supported (see Patent Document 1), and further a rhodium on a substrate such as alumina. There is known a rhodium-based catalyst (see Patent Document 2).

しかしながら、ニッケル系触媒を用いた場合には、触媒上に炭素析出を起こしやすく、この炭素析出による活性低下により、安定かつ効率的な装置の運転が困難であるという問題点がある。   However, when a nickel-based catalyst is used, carbon deposition is likely to occur on the catalyst, and there is a problem that stable and efficient operation of the apparatus is difficult due to a decrease in activity due to this carbon deposition.

また、特許文献1に示されているようなルテニウム系触媒は、炭素析出を抑制する作用を持つため、ニッケル系触媒と比較すると炭素の析出が少なく、活性の維持も容易であるが、エチレンなどの不飽和炭化水素が原料中に共存すると、熱的炭素析出および活性の低下が起こりやすく、ルテニウム系触媒が炭素析出抑制効果を持っていても、原料ガス中に含まれる不飽和炭化水素などによって被毒し、活性が低下するという問題点がある。   In addition, since the ruthenium-based catalyst as shown in Patent Document 1 has an action of suppressing carbon deposition, carbon deposition is less than that of a nickel-based catalyst and the activity can be easily maintained. When unsaturated hydrocarbons coexist in the raw material, thermal carbon deposition and activity decrease are likely to occur, and even if the ruthenium-based catalyst has an effect of suppressing carbon deposition, it may be caused by unsaturated hydrocarbons contained in the raw material gas. There is a problem that poisoning and activity decrease.

また、特許文献2に示されているような、アルミナなどの基体にロジウムを担持させたロジウム系触媒にも同様の問題点があるとされている。
特開平8−231204号公報 特開平9−168740号公報
In addition, the rhodium-based catalyst in which rhodium is supported on a substrate such as alumina as shown in Patent Document 2 is said to have the same problem.
JP-A-8-231204 JP-A-9-168740

本発明は、上記課題を解決するものであり、炭素の析出を抑制しつつ、炭化水素系の原料ガスと二酸化炭素を反応させ、効率的に水素および一酸化炭素を生成させる(二酸化炭素改質を行う)ことが可能な二酸化炭素改質用触媒、およびそれを用いて効率よく水素および一酸化炭素を含む合成ガスを製造する方法、該二酸化炭素改質用触媒の製造方法、および二酸化炭素改質用触媒の担体を提供することを目的とする。   The present invention solves the above-described problems, and reacts a hydrocarbon-based source gas with carbon dioxide while suppressing carbon deposition, and efficiently generates hydrogen and carbon monoxide (carbon dioxide reforming). A carbon dioxide reforming catalyst capable of performing the same), a method for efficiently producing a synthesis gas containing hydrogen and carbon monoxide using the catalyst, a method for producing the carbon dioxide reforming catalyst, and carbon dioxide reforming It is an object to provide a support for a quality catalyst.

上記課題を解決するために、本願請求項1の二酸化炭素改質用触媒は、
炭化水素系の原料ガスを二酸化炭素で改質し、一酸化炭素と水素を含む合成ガスを生成するために用いられる二酸化炭素改質用触媒であって、
Ca、SrおよびBaからなる群より選ばれる少なくとも1種のアルカリ土類金属の炭酸塩と、炭化水素系原料ガスの分解反応を促進する触媒金属とを含む混合物を主成分とし、
さらに、ATiO 3 (AはCa、SrおよびBaからなる群より選ばれる少なくとも1種のアルカリ土類金属)を含むすること
を特徴としている。
In order to solve the above problems, a carbon dioxide reforming catalyst according to claim 1 of the present application is:
A carbon dioxide reforming catalyst used for reforming a hydrocarbon-based source gas with carbon dioxide to produce a synthesis gas containing carbon monoxide and hydrogen,
The main component is a mixture containing at least one alkaline earth metal carbonate selected from the group consisting of Ca, Sr and Ba, and a catalyst metal that promotes the decomposition reaction of the hydrocarbon-based raw material gas ,
Further, it is characterized by containing ATiO 3 (A is at least one alkaline earth metal selected from the group consisting of Ca, Sr and Ba) .

また、請求項2の二酸化炭素改質用触媒は、請求項1の発明の構成において、前記触媒金属が、Ni,Rh,Ru,Ir,Pd,Pt,Re,Co,Fe,Moからなる群より選ばれる少なくとも1種であることを特徴としている。   Further, the carbon dioxide reforming catalyst according to claim 2 is the structure of the invention according to claim 1, wherein the catalyst metal is made of Ni, Rh, Ru, Ir, Pd, Pt, Re, Co, Fe, and Mo. It is characterized by being at least one selected from more.

また、請求項の二酸化炭素改質用触媒の製造方法は、請求項1または2記載の二酸化炭素改質用触媒を製造するための方法であって、二酸化炭素吸収能のあるアルカリ土類・Ti複合酸化物に二酸化炭素を吸収させる工程を含むことを特徴としている。 A method of manufacturing a carbon dioxide reforming catalyst according to claim 3 is a method for manufacturing a carbon dioxide reforming catalyst according to claim 1 or 2, wherein the alkaline earth-with carbon dioxide absorption capacity It is characterized by including a step of absorbing carbon dioxide in the Ti composite oxide.

また、請求項の合成ガスの製造方法は、
炭化水素系の原料ガスを二酸化炭素改質して、一酸化炭素と水素を含む合成ガスを製造する方法であって、
請求項1または2記載の二酸化炭素改質用触媒を用い、メタンを主成分とする原料ガスの二酸化炭素改質を行うこと
を特徴としている。
The method for producing synthesis gas according to claim 4
A method of producing a synthesis gas containing carbon monoxide and hydrogen by reforming a hydrocarbon-based source gas with carbon dioxide,
The carbon dioxide reforming catalyst according to claim 1 or 2 is used to perform carbon dioxide reforming of a raw material gas mainly composed of methane.

また、請求項5の二酸化炭素改質用触媒の担体は、
炭化水素系の原料ガスを二酸化炭素で改質し、一酸化炭素と水素を含む合成ガスを生成するために用いられる二酸化炭素改質用触媒の担体であって、
Ca、SrおよびBaからなる群より選ばれる少なくとも1種のアルカリ土類金属の炭酸塩を主たる成分とし、さらに、
ATiO 3 (AはCa、SrおよびBaからなる群より選ばれる少なくとも1種のアルカリ土類金属)を含むこと
を特徴としている。
The carrier for the carbon dioxide reforming catalyst according to claim 5 is:
A carrier for a carbon dioxide reforming catalyst used for reforming a hydrocarbon-based source gas with carbon dioxide to produce a synthesis gas containing carbon monoxide and hydrogen,
The main component is at least one alkaline earth metal carbonate selected from the group consisting of Ca, Sr and Ba ,
ATiO 3 (A is at least one alkaline earth metal selected from the group consisting of Ca, Sr and Ba) is included .

請求項1の二酸化炭素改質用触媒は、Ca、SrおよびBaからなる群より選ばれる少なくとも1種のアルカリ土類金属の炭酸塩と、炭化水素系原料ガスの分解反応を促進する触媒金属とを含む混合物を主成分とし、さらに、ATiO 3 (AはCa、SrおよびBaからなる群より選ばれる少なくとも1種のアルカリ土類金属)を含むものであり、この二酸化炭素改質用触媒を用いることにより、炭素の析出を抑制しつつ、炭化水素系の原料ガスを二酸化炭素で改質し、一酸化炭素と水素を含む合成ガスを効率よく生成させることができる。 The carbon dioxide reforming catalyst according to claim 1 includes at least one alkaline earth metal carbonate selected from the group consisting of Ca, Sr, and Ba, and a catalyst metal that promotes a decomposition reaction of a hydrocarbon-based source gas. And a mixture containing ATiO 3 (A is at least one alkaline earth metal selected from the group consisting of Ca, Sr, and Ba). By using it, it is possible to efficiently generate a synthesis gas containing carbon monoxide and hydrogen by reforming the hydrocarbon-based source gas with carbon dioxide while suppressing carbon deposition.

すなわち、本発明の二酸化炭素改質用触媒は、例えば、800℃〜1100℃の高温において、炭化水素であるメタンと二酸化炭素を流通させることにより、以下の反応を生じさせる場合の触媒として働く。
CH4 ⇒ C + 2H2 (1)
C + CO2 ⇒ 2CO (2)
CH4 + CO2 ⇒ 2H2 + 2CO (3)
That is, the carbon dioxide reforming catalyst of the present invention functions as a catalyst for causing the following reaction by circulating hydrocarbons such as methane and carbon dioxide at a high temperature of 800 ° C. to 1100 ° C., for example.
CH 4 ⇒ C + 2H 2 (1)
C + CO 2 ⇒ 2CO (2)
CH 4 + CO 2 ⇒ 2H 2 + 2CO (3)

なお、メタン(CH4)の二酸化炭素改質反応においては、式(1)のCH4の分解反応および式(2)のCOを生成する反応が進行し、結果として式(3)により二酸化炭素改質反応が表される。
従来のアルミナやシリカなどの酸化物を担体とした触媒では、式(1)の反応に比べて式(2)の反応速度が遅いために炭素析出が発生する。
Incidentally, methane in the carbon dioxide reforming reaction of (CH 4), the decomposition reaction and reaction generating CO of the formula (2) CH 4 proceeds the formula (1), the carbon dioxide by the formula (3) as a result A reforming reaction is represented.
In a conventional catalyst using an oxide such as alumina or silica as a carrier, carbon deposition occurs because the reaction rate of the formula (2) is slower than the reaction of the formula (1).

これに対し、本発明の二酸化炭素改質用触媒は、特に、式(2)の反応を促進する効果があり、主として触媒金属の機能により生起し、促進される、式(1)の反応によって発生した炭素を、式(2)の反応により除去することが可能になり、結果的に炭素析出を抑制することができる。   In contrast, the carbon dioxide reforming catalyst of the present invention has an effect of particularly promoting the reaction of the formula (2), and is mainly caused by the reaction of the formula (1) that is caused and promoted mainly by the function of the catalyst metal. The generated carbon can be removed by the reaction of formula (2), and as a result, carbon deposition can be suppressed.

また、ATiOATiO 3Three (AはCa、SrおよびBaからなる群より選ばれる少なくとも1種のアルカリ土類金属)を含ませるようにしているので、炭酸塩が焼結することを抑制し、炭化水素系の原料ガスと二酸化炭素から、一酸化炭素と水素への反応を促進させることが可能になる。(A is at least one alkaline earth metal selected from the group consisting of Ca, Sr and Ba), so that the carbonate is prevented from sintering, and hydrocarbon-based source gas and It becomes possible to promote the reaction from carbon dioxide to carbon monoxide and hydrogen.

なお、Ca、SrおよびBaからなる群より選ばれる少なくとも1種のアルカリ土類金属の炭酸塩とATiO  Incidentally, at least one alkaline earth metal carbonate selected from the group consisting of Ca, Sr and Ba and ATiO 3Three の混合材料と、触媒金属を含む二酸化炭素改質用触媒は、上述の式(2)の反応を促進する効果があり、上記触媒金属成分により効率よく進行する、上記式(1)の炭化水素分解反応(メタン分解反応)によって生成した炭素を、式(2)の反応により効率よく除去することができる。The carbon dioxide reforming catalyst containing the mixed material and the catalyst metal has the effect of promoting the reaction of the above formula (2), and proceeds more efficiently by the above catalyst metal component, the hydrocarbon of the above formula (1) Carbon generated by the decomposition reaction (methane decomposition reaction) can be efficiently removed by the reaction of the formula (2).

また、式(2)の反応促進には、BaCO  In order to promote the reaction of the formula (2), BaCO 3Three などのアルカリ土類金属の炭酸塩が有効であると考えられ、アルカリ土類金属の炭酸塩と触媒金属を主成分とし、ATiOAlkaline earth metal carbonates such as alkaline earth metal carbonate and catalytic metal are the main components, and ATiO 3Three を含まない二酸化炭素改質用触媒も、炭素析出を抑制することが可能な二酸化炭素改質用触媒としては有意義である。ただし、BaCOA carbon dioxide reforming catalyst not containing carbon is also significant as a carbon dioxide reforming catalyst capable of suppressing carbon deposition. However, BaCO 3Three のみでは焼結により触媒の表面積が減少し、活性が低下する傾向があることから、触媒金属の選択や反応条件などに関し、選択的な条件を探すことが必要になる。However, since sintering tends to reduce the surface area of the catalyst and reduce the activity, it is necessary to search for selective conditions regarding the selection of the catalyst metal and the reaction conditions.

これに対して、Ca、SrおよびBaからなる群より選ばれる少なくとも1種のアルカリ土類金属の炭酸塩とATiO  On the other hand, at least one alkaline earth metal carbonate selected from the group consisting of Ca, Sr and Ba and ATiO 3Three の混合材料に、触媒金属を配合した二酸化炭素改質用触媒の場合は、表面積の減少を抑制して触媒活性を維持することが可能になり、より確実に二酸化炭素改質を行うことができる。In the case of a carbon dioxide reforming catalyst in which a catalytic metal is blended with the mixed material, it is possible to suppress the reduction of the surface area and maintain the catalytic activity, and the carbon dioxide reforming can be performed more reliably. .

なお、本発明においては、触媒金属の種類に特別の制約はなく、種々の金属を用いることが可能であるが、請求項2の二酸化炭素改質用触媒のように、触媒金属として、Ni,Rh,Ru,Ir,Pd,Pt,Re,Co,Fe,Moからなる群より選ばれる少なくとも1種を用いることにより、効率よく二酸化炭素改質反応を行わせることが可能な二酸化炭素改質触媒を得ることが可能になる。   In the present invention, there are no particular restrictions on the type of catalyst metal, and various metals can be used. However, as the catalyst for carbon dioxide reforming according to claim 2, Ni, A carbon dioxide reforming catalyst capable of efficiently performing a carbon dioxide reforming reaction by using at least one selected from the group consisting of Rh, Ru, Ir, Pd, Pt, Re, Co, Fe, and Mo. Can be obtained.

また、請求項の二酸化炭素改質用触媒の製造方法のように、二酸化炭素吸収能のある、例えば、Ba2TiO4などのアルカリ土類・Ti複合酸化物に二酸化炭素を吸収させる工程を経て、本発明の二酸化炭素改質用触媒を製造することにより、反応の場である触媒表面にBaCO3相を効率よく形成することが可能になり、特性の良好な混合物を得ることができる。 Further, as in the method for producing a carbon dioxide reforming catalyst according to claim 3 , a step of absorbing carbon dioxide by an alkaline earth / Ti composite oxide having carbon dioxide absorption ability, for example, Ba 2 TiO 4, etc. Then, by producing the carbon dioxide reforming catalyst of the present invention, it becomes possible to efficiently form a BaCO 3 phase on the surface of the catalyst, which is a reaction site, and a mixture with good characteristics can be obtained.

また、本発明(請求項4)の合成ガスの製造方法のように、本発明の二酸化炭素改質用触媒を用い、メタンを主成分とする原料ガスの二酸化炭素改質を行うことにより、メタンを主成分とする原料ガスから効率よく一酸化炭素と水素を含む合成ガスを製造することができる。 Further, as in the method for producing synthesis gas of the present invention (Claim 4) , by using the carbon dioxide reforming catalyst of the present invention and performing carbon dioxide reforming of a raw material gas mainly composed of methane, methane Thus, a synthesis gas containing carbon monoxide and hydrogen can be efficiently produced from a raw material gas containing as a main component.

また、本発明(請求項)の二酸化炭素改質用触媒の担体は、Ca、SrおよびBaからなる群より選ばれる少なくとも1種のアルカリ土類金属の炭酸塩を含む物質を主たる成分とし、さらにATiO 3 (AはCa、SrおよびBaからなる群より選ばれる少なくとも1種のアルカリ土類金属)を含むものであることから、これに触媒金属を配合することにより、本願請求項1の二酸化炭素改質用触媒を容易かつ確実に得ることができる。 The carrier of the carbon dioxide reforming catalyst of the present invention (Claim 5 ) mainly comprises a substance containing a carbonate of at least one alkaline earth metal selected from the group consisting of Ca, Sr and Ba , Further, since it contains ATiO 3 (A is at least one alkaline earth metal selected from the group consisting of Ca, Sr and Ba), by adding a catalyst metal thereto, the carbon dioxide modification of claim 1 of the present application is performed. A quality catalyst can be obtained easily and reliably.

本発明の実施例にかかる合成ガスの製造方法を実施するのに用いた試験装置の概略構成を示す図である。It is a figure which shows schematic structure of the test apparatus used in order to implement the manufacturing method of the synthesis gas concerning the Example of this invention. 本発明の実施例にかかる二酸化炭素改質用触媒Cを用いた改質試験における、改質ガス(出口ガス)の組成の時間変化を示す図である。It is a figure which shows the time change of the composition of reformed gas (outlet gas) in the reforming test using the carbon dioxide reforming catalyst C according to the example of the present invention.

1 反応管
2 ヒーター
3 二酸化炭素改質用触媒
4 反応管の入口
5 反応管の出口
1 Reaction tube 2 Heater 3 Carbon dioxide reforming catalyst 4 Reaction tube inlet 5 Reaction tube outlet

以下に本発明の実施例を示して、本発明の特徴とするところをさらに詳しく説明する。   Examples of the present invention will be described below to describe the features of the present invention in more detail.

[二酸化炭素改質用触媒の製造]
(1)二酸化炭素改質用触媒Aの製造
炭酸バリウム(BaCO3)と酸化チタン(TiO2)をモル比1.0:1.0となるように秤量し、さらに酸化ニッケル(NiO)を2重量%の割合となるように加えて混合した。次に、この混合物にバインダーを加えて造粒し、直径2〜5mmの球状の造粒体を得た。
[Manufacture of carbon dioxide reforming catalyst]
(1) Production of carbon dioxide reforming catalyst A Barium carbonate (BaCO 3 ) and titanium oxide (TiO 2 ) are weighed to a molar ratio of 1.0: 1.0, and nickel oxide (NiO) is further added to 2 It added and mixed so that it might become a ratio of the weight%. Next, a binder was added to this mixture and granulated to obtain a spherical granulated body having a diameter of 2 to 5 mm.

そして、得られた粒状体を空気中において、1000℃、1hの条件で焼成し、BaTiO3とNiOの混合体である二酸化炭素改質用触媒Aを得た。
なお、粒状体の焼成前後の重量変化及びXRD測定結果から、得られた二酸化炭素改質用触媒が、BaTiO3とNiOの混合体であることを確認した。
また、上述のNiOは、少なくともその一部が炭化水素系の原料ガスの二酸化炭素改質反応の工程で還元され、炭化水素系原料ガスの二酸化炭素改質を促進する触媒金属として機能するものである。
And the obtained granular material was baked in air at 1000 ° C. for 1 hour to obtain a carbon dioxide reforming catalyst A which is a mixture of BaTiO 3 and NiO.
Incidentally, the weight change and the result of XRD measurement before and after sintering of the granules, the resulting carbon dioxide reforming catalyst was confirmed to be a mixture of BaTiO 3 and NiO.
Further, the above-mentioned NiO functions as a catalytic metal that promotes carbon dioxide reforming of the hydrocarbon-based source gas, at least a part of which is reduced in the carbon dioxide reforming process of the hydrocarbon-based source gas. is there.

(2)二酸化炭素改質用触媒Bの製造
BaCO3にNiOを2重量%となるような割合で加えて混合した。次に、この混合物にバインダーを加えて造粒し、直径2〜5mmの球状の造粒体を得た。この粒状体を空気中において、900℃、1hの条件で焼成し、BaCO3とNiOの混合体である二酸化炭素改質用触媒Bを得た。
なお、粒状体の焼成前後の重量変化およびXRD測定結果から、得られた二酸化炭素改質用触媒Bが、BaCO3とNiOの混合体であることを確認した。
また、この二酸化炭素改質用触媒Bでも、上述のNiOは、少なくともその一部が炭化水素系の原料ガスの二酸化炭素改質反応の工程で還元され、炭化水素系原料ガスの二酸化炭素改質を促進する触媒金属として機能するものである。
(2) Production of carbon dioxide reforming catalyst B NiO was added to BaCO 3 at a ratio of 2% by weight and mixed. Next, a binder was added to this mixture and granulated to obtain a spherical granulated body having a diameter of 2 to 5 mm. This granular material was calcined in air at 900 ° C. for 1 hour to obtain a carbon dioxide reforming catalyst B which is a mixture of BaCO 3 and NiO.
In addition, from the weight change before and behind baking of the granular material and the XRD measurement result, it was confirmed that the obtained carbon dioxide reforming catalyst B was a mixture of BaCO 3 and NiO.
Also in this carbon dioxide reforming catalyst B, at least a part of the above-mentioned NiO is reduced in the carbon dioxide reforming reaction step of the hydrocarbon-based source gas, and the carbon dioxide reforming of the hydrocarbon-based source gas. It functions as a catalyst metal that promotes.

(3)二酸化炭素改質用触媒Cの製造
BaCO3とTiO2をモル比2.0:1.0となるように秤量し、さらにNiOを2重量%の割合となるように加えて混合した。
次に、この混合物にバインダーを加えて造粒し、直径2〜5mmの球状の造粒体を得た。
そして、得られた粒状体を空気中において、1000℃、1hの条件で焼成し、Ba2TiO4と、NiOの混合体を得た。それからこの混合体を20%CO2、80%N2の気流中にて、700℃、1hの条件で焼成を行うことにより、BaCO3,BaTiO3,NiOの混合体である二酸化炭素改質用触媒Cを得た。
(3) Production of carbon dioxide reforming catalyst C
BaCO 3 and TiO 2 were weighed so as to have a molar ratio of 2.0: 1.0, and NiO was added at a ratio of 2% by weight and mixed.
Next, a binder was added to this mixture and granulated to obtain a spherical granulated body having a diameter of 2 to 5 mm.
Then, in the air and the resulting granulate, 1000 ° C., and calcined under the conditions of 1h, and Ba 2 TiO 4, to obtain a mixture of NiO. Then, this mixture is fired in an air stream of 20% CO 2 and 80% N 2 under conditions of 700 ° C. and 1 h, so that it is a mixture of BaCO 3 , BaTiO 3 and NiO for carbon dioxide reforming. Catalyst C was obtained.

なお、Ba2TiO4とNiOの混合体の焼成前後の重量変化およびXRD測定結果から、得られた二酸化炭素改質用触媒Cが、BaCO3,BaTiO3,NiOの混合体であることを確認した。 From the weight change before and after firing the mixture of Ba 2 TiO 4 and NiO and the XRD measurement results, it was confirmed that the obtained carbon dioxide reforming catalyst C was a mixture of BaCO 3 , BaTiO 3 and NiO. did.

また、この二酸化炭素改質用触媒Cを構成するBaCO3とBaTiO3は、上述の焼成前後の重量変化およびXRD測定結果から、Ba2TiO4の全てがBaCO3とBaTiO3へと分解したものであり、BaCO3とBaTiO3のモル比は1.0:1.0であることが確認されている。 In addition, BaCO 3 and BaTiO 3 constituting this carbon dioxide reforming catalyst C are obtained by decomposing all of Ba 2 TiO 4 into BaCO 3 and BaTiO 3 based on the weight change before and after the firing and the XRD measurement results. It has been confirmed that the molar ratio of BaCO 3 and BaTiO 3 is 1.0: 1.0.

また、上述のように、二酸化炭素改質用触媒の製造工程において、Ba2TiO4相を合成した後にCO2との反応によりBaCO3相を形成することにより、反応の場である触媒表面にBaCO3相を効率よく形成することができる。これは、下記の二酸化炭素改質用触媒D,E,Fの場合も同様である。 Further, as described above, in the manufacturing process of the carbon dioxide reforming catalyst, by synthesizing the Ba 2 TiO 4 phase and then forming the BaCO 3 phase by reaction with CO 2 , the surface of the catalyst that is the reaction site is formed. A BaCO 3 phase can be formed efficiently. The same applies to the following carbon dioxide reforming catalysts D, E, and F.

また、この二酸化炭素改質用触媒Cでも、上述のNiOは、少なくともその一部が炭化水素系の原料ガスの二酸化炭素改質反応の工程で還元され、炭化水素系原料ガスの二酸化炭素改質を促進する触媒金属として機能するものである。   Also in this carbon dioxide reforming catalyst C, at least a part of the above-mentioned NiO is reduced in the carbon dioxide reforming reaction step of the hydrocarbon-based raw material gas, and the carbon dioxide reforming of the hydrocarbon-based raw material gas is performed. It functions as a catalyst metal that promotes.

(4)二酸化炭素改質用触媒Dの製造
BaCO3とTiO2をモル比1.5:1.0となるように秤量し、さらにNiOを2重量%の割合となるように加えて混合した。次に、この混合物にバインダーを加えて造粒し、直径2〜5mmの球状の造粒体を得た。
そして、得られた粒状体を空気中において、1000℃、1hの条件で焼成し、Ba2TiO4と、BaTiO3と、NiOの混合体を得た。
さらに、この混合体を20%CO2、80%N2の気流中にて、700℃、1hの条件で焼成を行うことにより、BaCO3,BaTiO3,NiOの混合体である二酸化炭素改質用触媒Dを得た。
(4) Production of carbon dioxide reforming catalyst D
BaCO 3 and TiO 2 were weighed so as to have a molar ratio of 1.5: 1.0, and NiO was added at a ratio of 2 wt% and mixed. Next, a binder was added to this mixture and granulated to obtain a spherical granulated body having a diameter of 2 to 5 mm.
Then, in the air and the resulting granulate, 1000 ° C., and calcined under the conditions of 1h, to give a Ba 2 TiO 4, and BaTiO 3, a mixture of NiO.
Further, this mixture is baked in an air stream of 20% CO 2 and 80% N 2 under conditions of 700 ° C. and 1 h, thereby reforming carbon dioxide, which is a mixture of BaCO 3 , BaTiO 3 and NiO. Catalyst D for use was obtained.

なお、混合体の焼成前後の重量変化およびXRD測定結果から、得られた二酸化炭素改質用触媒Dが、BaCO3,BaTiO3,NiOの混合体であることを確認した。 From the weight change before and after the firing of the mixture and the XRD measurement results, it was confirmed that the obtained carbon dioxide reforming catalyst D was a mixture of BaCO 3 , BaTiO 3 and NiO.

また、この二酸化炭素改質用触媒Dを構成するBaCO3とBaTiO3は、上述の焼成前後の重量変化およびXRD測定結果から、Ba2TiO4の全てがBaCO3とBaTiO3へと分解したものであり、BaCO3とBaTiO3のモル比は0.5:1.0であることが確認されている。 Further, BaCO 3 and BaTiO 3 constituting the carbon dioxide reforming catalyst D are obtained by decomposing all of Ba 2 TiO 4 into BaCO 3 and BaTiO 3 from the weight change before and after the firing and the XRD measurement results. It has been confirmed that the molar ratio of BaCO 3 and BaTiO 3 is 0.5: 1.0.

また、この二酸化炭素改質用触媒Dでも、上述のNiOは、少なくともその一部が炭化水素系の原料ガスの二酸化炭素改質反応の工程で還元され、炭化水素系原料ガスの二酸化炭素改質を促進する触媒金属として機能するものである。   Also in this carbon dioxide reforming catalyst D, at least a part of the above-mentioned NiO is reduced in the carbon dioxide reforming reaction step of the hydrocarbon-based source gas, and the carbon dioxide reforming of the hydrocarbon-based source gas. It functions as a catalyst metal that promotes.

(5)二酸化炭素改質用触媒Eの製造
BaCO3とTiO2をモル比1.2:1.0となるように秤量し、さらにNiOを2重量%の割合となるように加えて混合した。次に、この混合物にバインダーを加えて造粒し、直径2〜5mmの球状の造粒体を得た。
そして、得られた粒状体を空気中において、1000℃、1hの条件で焼成し、Ba2TiO4と、BaTiO3と、NiOの混合体を得た。
さらに、この混合体を20%CO2、80%N2の気流中にて、700℃、1hの条件で焼成を行うことにより、BaCO3,BaTiO3,NiOの混合体である二酸化炭素改質用触媒Eを得た。
(5) Manufacture of carbon dioxide reforming catalyst E
BaCO 3 and TiO 2 were weighed so as to have a molar ratio of 1.2: 1.0, and NiO was added at a ratio of 2% by weight and mixed. Next, a binder was added to this mixture and granulated to obtain a spherical granulated body having a diameter of 2 to 5 mm.
Then, in the air and the resulting granulate, 1000 ° C., and calcined under the conditions of 1h, to give a Ba 2 TiO 4, and BaTiO 3, a mixture of NiO.
Further, this mixture is baked in an air stream of 20% CO 2 and 80% N 2 under conditions of 700 ° C. and 1 h, thereby reforming carbon dioxide, which is a mixture of BaCO 3 , BaTiO 3 and NiO. Catalyst E for use was obtained.

なお、混合体の焼成前後の重量変化およびXRD測定結果から、得られた二酸化炭素改質用触媒Eが、BaCO3,BaTiO3,NiOの混合体であることを確認した。 From the weight change before and after the firing of the mixture and the XRD measurement results, it was confirmed that the obtained carbon dioxide reforming catalyst E was a mixture of BaCO 3 , BaTiO 3 and NiO.

この二酸化炭素改質用触媒Eを構成するBaCO3とBaTiO3は、上述の焼成前後の重量変化およびXRD測定結果から、Ba2TiO4の全てがBaCO3とBaTiO3へと分解したものであり、BaCO3とBaTiO3のモル比は0.2:1.0であることが確認されている。 BaCO 3 and BaTiO 3 constituting this carbon dioxide reforming catalyst E are obtained by decomposing all of Ba 2 TiO 4 into BaCO 3 and BaTiO 3 from the weight change before and after the calcination and the XRD measurement results. It has been confirmed that the molar ratio of BaCO 3 to BaTiO 3 is 0.2: 1.0.

また、この二酸化炭素改質用触媒Eでも、上述のNiOは、少なくともその一部が炭化水素系の原料ガスの二酸化炭素改質反応の工程で還元され、炭化水素系原料ガスの二酸化炭素改質を促進する触媒金属として機能するものである。   Also in this carbon dioxide reforming catalyst E, at least a part of the above-mentioned NiO is reduced in the carbon dioxide reforming reaction step of the hydrocarbon-based source gas, and the carbon dioxide reforming of the hydrocarbon-based source gas. It functions as a catalyst metal that promotes.

(6)二酸化炭素改質用触媒Fの製造
BaCO3とTiO2をモル比1.1:1.0となるように秤量し、さらにNiOを2重量%の割合となるように加えて混合した。次に、この混合物にバインダーを加えて造粒し、直径2〜5mmの球状の造粒体を得た。
そして、得られた粒状体を空気中において、1000℃、1hの条件で焼成し、Ba2TiO4と、BaTiO3と、NiOの混合体を得た。
さらに、この混合体を20%CO2、80%N2の気流中にて、700℃、1hの条件で焼成を行うことにより、BaCO3,BaTiO3,NiOの混合体である二酸化炭素改質用触媒Fを得た。
(6) Production of carbon dioxide reforming catalyst F
BaCO 3 and TiO 2 were weighed so as to have a molar ratio of 1.1: 1.0, and NiO was added at a ratio of 2% by weight and mixed. Next, a binder was added to this mixture and granulated to obtain a spherical granulated body having a diameter of 2 to 5 mm.
Then, in the air and the resulting granulate, 1000 ° C., and calcined under the conditions of 1h, to give a Ba 2 TiO 4, and BaTiO 3, a mixture of NiO.
Further, this mixture is baked in an air stream of 20% CO 2 and 80% N 2 under conditions of 700 ° C. and 1 h, thereby reforming carbon dioxide, which is a mixture of BaCO 3 , BaTiO 3 and NiO. Catalyst F for use was obtained.

なお、混合体の焼成前後の重量変化およびXRD測定結果から、得られた二酸化炭素改質用触媒Fが、BaCO3,BaTiO3,NiOの混合体であることを確認した。 From the weight change before and after the firing of the mixture and the XRD measurement results, it was confirmed that the obtained carbon dioxide reforming catalyst F was a mixture of BaCO 3 , BaTiO 3 and NiO.

この二酸化炭素改質用触媒Fを構成するBaCO3とBaTiO3は、上述の焼成前後の重量変化およびXRD測定結果から、Ba2TiO4の全てがBaCO3とBaTiO3へと分解したものであり、BaCO3とBaTiO3のモル比は0.1:1.0であることが確認されている。 BaCO 3 and BaTiO 3 constituting this carbon dioxide reforming catalyst F are obtained by decomposing all of Ba 2 TiO 4 into BaCO 3 and BaTiO 3 based on the weight change before and after the firing and the XRD measurement results. It has been confirmed that the molar ratio of BaCO 3 to BaTiO 3 is 0.1: 1.0.

また、この二酸化炭素改質用触媒Fでも、上述のNiOは、少なくともその一部が炭化水素系の原料ガスの二酸化炭素改質反応の工程で還元され、炭化水素系原料ガスの二酸化炭素改質を促進する触媒金属として機能するものである。   Also in this carbon dioxide reforming catalyst F, at least a part of the above-mentioned NiO is reduced in the carbon dioxide reforming step of the hydrocarbon-based source gas, and the carbon dioxide reforming of the hydrocarbon-based source gas. It functions as a catalyst metal that promotes.

(7)二酸化炭素改質用触媒Gの製造
積層セラミックコンデンサを製造する場合に用いられる、BaとTiを、モル比(B/Ti):0.99〜1.01の割合で含み、主たる結晶構造がペロブスカイト構造である物質(BaTiO3)を主成分とするグリーンシートから必要領域を打ち抜くなどして利用した後の不要部分(不要グリーンシート)を、500℃で脱脂し、BaTiO3の含有量が87%のセラミック粉末とした。
なお、このセラミック粉末は残部に、Ca、Zr、Si、Na、Niの酸化物を主として含有するものである。
(7) Manufacture of carbon dioxide reforming catalyst G
A substance (BaTiO 3 ), which is used when manufacturing a multilayer ceramic capacitor, contains Ba and Ti in a molar ratio (B / Ti): 0.99 to 1.01, and the main crystal structure is a perovskite structure. An unnecessary portion (unnecessary green sheet) after being used by punching a necessary area from a green sheet as a main component was degreased at 500 ° C. to obtain a ceramic powder having a BaTiO 3 content of 87%.
This ceramic powder mainly contains oxides of Ca, Zr, Si, Na and Ni in the balance.

それから、このセラミックス粉末に、BaとTiのモル比が2:1となる量のBaCO3を添加し、さらに水を加えて、ボールミルで2時間混合を行い、混合物を120℃で10時間乾燥した後、バインダーを加え、2〜5mmの球状に造粒した。 Then, BaCO 3 was added to the ceramic powder in an amount of a molar ratio of Ba and Ti of 2: 1, water was further added, and the mixture was mixed for 2 hours with a ball mill, and the mixture was dried at 120 ° C. for 10 hours. Thereafter, a binder was added and granulated into a spherical shape of 2 to 5 mm.

次に、上記工程で得た造粒体を、500℃、2hの条件で脱脂した後、1000℃、1hの条件で焼成し、Ba2TiO4を主成分とし、NiO(上記セラミック粉末の残部に由来するNiの酸化物)を含有する混合体を得た。
それから、この混合体を20%CO2、80%N2の気流中にて、700℃、1hの条件で焼成することにより、BaCO3,BaTiO3,NiOの混合体である二酸化炭素改質用触媒Gを得た。
Then, the granular material obtained in the above step, 500 ° C., was degreased at the conditions of 2h, 1000 ° C., and calcined under the conditions of 1h, the main component Ba 2 TiO 4, NiO (the remainder of the ceramic powder A Ni-containing oxide) was obtained.
Then, this mixture is baked in an air stream of 20% CO 2 and 80% N 2 under the conditions of 700 ° C. and 1 h, so that it is a mixture of BaCO 3 , BaTiO 3 and NiO for carbon dioxide reforming. Catalyst G was obtained.

なお、上記混合体の焼成前後の重量変化およびXRD測定結果から、得られた二酸化炭素改質用触媒Gが、BaCO3,BaTiO3,NiOの混合体であることを確認した。
この二酸化炭素改質用触媒Gは、二酸化炭素改質運転中は、実質的にBaCO3,BaTiO3,金属Niの混合体を主たる成分とする二酸化炭素改質用触媒として機能するものである。
The carbon dioxide reforming catalyst G obtained was confirmed to be a mixture of BaCO 3 , BaTiO 3 , and NiO from the weight change before and after the firing of the mixture and the XRD measurement results.
The carbon dioxide reforming catalyst G functions as a carbon dioxide reforming catalyst having a mixture of BaCO 3 , BaTiO 3 and metallic Ni as a main component during the carbon dioxide reforming operation.

[二酸化炭素改質試験および特性の評価]
図1に示すように、外部にヒーター2を備えた内径22mm、長さ300mmのステンレス製の反応管1に、上記のようにして製造した二酸化炭素改質用触媒3を50cc充填し、反応管1の入口4から25NL/hの割合で、窒素と二酸化炭素の混合ガス(二酸化炭素の割合:20vol%)を流通させ、ヒーターにより混合ガス入口温度を900℃に制御した。流通させた混合ガスの温度が安定した後、上記混合ガスの代わりに、25NL/hの割合でメタンと二酸化炭素の混合ガス(CH4:CO2=1:1(容積比))を原料ガスとして流通させることにより900℃で改質試験を行った。
[CO2 reforming test and evaluation of properties]
As shown in FIG. 1, a stainless steel reaction tube 1 having an inner diameter of 22 mm and a length of 300 mm equipped with an external heater 2 is filled with 50 cc of the carbon dioxide reforming catalyst 3 produced as described above. A mixed gas of nitrogen and carbon dioxide (ratio of carbon dioxide: 20 vol%) was circulated at a rate of 25 NL / h from one inlet 4, and the mixed gas inlet temperature was controlled to 900 ° C. by a heater. After the temperature of the circulated mixed gas is stabilized, instead of the mixed gas, a mixed gas of methane and carbon dioxide (CH 4 : CO 2 = 1: 1 (volume ratio)) at a rate of 25 NL / h is a raw material gas. The reforming test was conducted at 900 ° C.

そして、試験中は、反応管1の出口5から排出される、二酸化炭素改質が行われた後の改質ガスを分析装置(島津製作所製ガスクロマトグラフ)に導入してその組成を調べた。
また、試験終了後は、二酸化炭素改質用触媒を取り出し、ふるい分けを行うことにより析出した炭素を回収した。
さらに、試験終了後の二酸化炭素改質用触媒について、XRD測定を行い、結晶相の同定を行った。
During the test, the reformed gas discharged from the outlet 5 of the reaction tube 1 and subjected to carbon dioxide reforming was introduced into an analyzer (a gas chromatograph manufactured by Shimadzu Corporation) and the composition was examined.
Further, after the test was completed, the carbon dioxide reforming catalyst was taken out and sieved to collect the precipitated carbon.
Further, XRD measurement was performed on the carbon dioxide reforming catalyst after completion of the test, and the crystal phase was identified.

また、比較のため、NiOとアルミナを主成分とする市販のメタン改質用触媒Hを準備し、上記と同様の条件でメタンの二酸化炭素改質試験を行った。   For comparison, a commercially available methane reforming catalyst H mainly composed of NiO and alumina was prepared, and a methane carbon dioxide reforming test was conducted under the same conditions as described above.

表1に、得られた改質ガスの組成、試験終了後に回収された炭素粉末の重量、試験後の二酸化炭素改質用触媒の結晶相を示す。
なお、市販の二酸化炭素改質用触媒Hを用いた試験番号8の改質試験においては、試験開始から1h程度で、析出した炭素により反応管が閉塞したため、表1には閉塞に至るまでの1hにおける試験結果を示している。
Table 1 shows the composition of the resulting reformed gas, the weight of the carbon powder collected after the test, and the crystal phase of the carbon dioxide reforming catalyst after the test.
In the reforming test of test number 8 using a commercially available carbon dioxide reforming catalyst H, the reaction tube was blocked by precipitated carbon in about 1 h from the start of the test. The test result in 1 h is shown.

また、図2に二酸化炭素改質用触媒Cを用いた改質試験における、改質ガス(出口ガス)の組成の時間変化を示す。   Further, FIG. 2 shows the change over time of the composition of the reformed gas (outlet gas) in the reforming test using the carbon dioxide reforming catalyst C.

Figure 0004420127
Figure 0004420127

表1に示すように、市販の二酸化炭素改質用触媒Hを用いた試験番号8の改質試験では、試験開始から1h程度で、析出した炭素により反応管が閉塞することが確認された。
これに対し、本発明の要件を備える二酸化炭素改質用触媒を用いた試験番号3,4,5の改質試験、すなわち、BaCO3とBaTiO3の混合材料にNiOを添加した二酸化炭素改質用触媒C,D,Eを用いた改質試験では、炭素の析出を生じさせることなく、CH4(メタン)とCO2(二酸化炭素)の高い転化率を確保して、CH4とCO2から効率よく一酸化炭素(CO)と水素(H2)を製造できることが確認された。
また、触媒Fを用いた試験番号6の試験でも、CH4とCO2の高い転化率が得られることが確認された。ただし、試験番号6では、少量の炭素の析出が認められた。
As shown in Table 1, in the reforming test of test number 8 using a commercially available carbon dioxide reforming catalyst H, it was confirmed that the reaction tube was blocked by the deposited carbon in about 1 h from the start of the test.
On the other hand, test numbers 3, 4 and 5 using a carbon dioxide reforming catalyst having the requirements of the present invention, that is, carbon dioxide reforming in which NiO is added to a mixed material of BaCO 3 and BaTiO 3. In the reforming test using the catalysts C, D, and E, the CH 4 (methane) and CO 2 (carbon dioxide) conversion rate is secured without causing carbon precipitation, and the CH 4 and CO 2 From this, it was confirmed that carbon monoxide (CO) and hydrogen (H 2 ) can be produced efficiently.
Also, in the test No. 6 using the catalyst F, it was confirmed that a high conversion ratio of CH 4 and CO 2 was obtained. However, in Test No. 6, a small amount of carbon was observed.

さらに、不要グリーンシートを利用して製造した、Ba2TiO4を主成分とし、NiOを含有する二酸化炭素改質用触媒G(すなわち、CO2の存在下に900℃で二酸化炭素改質に供される際には、実質的にBaCO3,BaTiO3,NiOの混合体を主たる成分とする二酸化炭素改質用触媒として機能するもの)を用いた試験番号7の改質試験においても、CH4とCO2の高い転化率が得られることが確認された。また、改質試験の終了まで炭素の析出は認められなかった。 Furthermore, a carbon dioxide reforming catalyst G, which is produced using an unnecessary green sheet and contains Ba 2 TiO 4 as a main component and contains NiO (that is, used for carbon dioxide reforming at 900 ° C. in the presence of CO 2. In the reforming test of test number 7 using a carbon dioxide reforming catalyst having a mixture of BaCO 3 , BaTiO 3 , and NiO as a main component), the CH 4 It was confirmed that a high conversion rate of CO 2 was obtained. Carbon deposition was not observed until the end of the modification test.

また、BaTiO 3 などのATiO 3 ((AはCa、Sr、Baの少なくとも1種)を含まない試験番号2の改質試験では、炭素の析出は認められなかったが、CH 4 とCO 2 の転化率は高くなかった Further, the ATiO 3 ((A, such as BaTiO 3 Ca, Sr, in reforming test Test No. 2 that does not include at least one) of Ba did not observed carbon deposition, the CH 4 and CO 2 The conversion rate was not high .

また、本発明の要件を備えていない二酸化炭素改質用触媒を用いた試験番号1の改質試験、すなわちBaTiO3とNiOを含む二酸化炭素改質用触媒Aを用いた改質試験では、CH4とCO2の転化率は高いものの、炭素の析出量が3.5gと多く好ましくないことが確認された。 Further, in the reform test of Test No. 1 using a carbon dioxide reforming catalyst not satisfying the requirements of the present invention, that is, the reforming test using the carbon dioxide reforming catalyst A containing BaTiO 3 and NiO, CH Although the conversion rates of 4 and CO 2 were high, it was confirmed that the amount of carbon deposited was as large as 3.5 g, which was not preferable.

なお、本発明の要件を満たす、BaCO3とBaTiO3の混合材料にNiOを添加した二酸化炭素改質用触媒の場合、BaCO3の配合割合が少ない(BaCO3とBaTiO3のモル比は0.1:1.0)二酸化炭素改質用触媒Fを用いた改質試験6においても、析出炭素量は0.8gであり、上述の試験番号1のBaCO3を含まない二酸化炭素改質用触媒(BaTiO3とNiOの混合体)Aを用いた場合の析出炭素量3.5gに比べて析出炭素量が大幅に減少する。したがって、本願発明によれば、析出炭素量を減らして二酸化炭素改質用触媒の寿命を延ばすことができる。 Note that meets the requirements of the present invention, if the carbon dioxide reforming catalyst was added to NiO to a mixed material of BaCO 3 and BaTiO 3, a small proportion of BaCO 3 (molar ratio of BaCO 3 and BaTiO 3 is 0. 1: 1.0) Also in the reforming test 6 using the carbon dioxide reforming catalyst F, the amount of precipitated carbon was 0.8 g, and the carbon dioxide reforming catalyst not containing BaCO 3 of the above test number 1 (Mixture of BaTiO 3 and NiO) The amount of precipitated carbon is significantly reduced compared to the amount of precipitated carbon of 3.5 g when A is used. Therefore, according to the present invention, it is possible to reduce the amount of deposited carbon and extend the life of the carbon dioxide reforming catalyst.

また、試験番号1〜7のいずれの改質試験においても、試験後の触媒ではNi成分が金属としてその表面に存在していることが確認されており、本発明の二酸化炭素改質用触媒において、CH4(メタン)などの炭化水素の分解が促進されるのは、表面に存在する金属Ni(触媒金属)によるものであることがわかる。 Further, in any of the reform tests of Test Nos. 1 to 7, it was confirmed that the Ni component was present on the surface as a metal in the catalyst after the test, and in the carbon dioxide reforming catalyst of the present invention, It can be seen that the decomposition of hydrocarbons such as CH 4 (methane) is promoted by metal Ni (catalyst metal) present on the surface.

したがって、本発明の二酸化炭素改質用触媒においては、上記実施例で触媒金属として用いられているNi以外にも、CH4などの炭化水素の二酸化炭素改質を促進するのに有効であることが知られているRh,Ru,Ir,Pd,Pt,Re,Co,Fe,Moなどの金属を触媒金属として用いることが可能であり、その場合も上記実施例の場合と同様の効果を得ることができる。 Therefore, the carbon dioxide reforming catalyst of the present invention is effective in promoting carbon dioxide reforming of hydrocarbons such as CH 4 in addition to Ni used as the catalyst metal in the above-described embodiments. It is possible to use a metal such as Rh, Ru, Ir, Pd, Pt, Re, Co, Fe, and Mo, which is known as a catalyst metal, and in this case, the same effect as in the above embodiment can be obtained. be able to.

また、表1より、高転化率(高活性)を確保しつつ、炭素析出を抑えるためには、BaCO3とBaTiO3の割合(モル比)をBaCO3:BaTiO3=1.0:1.0〜BaCO3:BaTiO3=0.2:1.0の範囲とすることが望ましいことがわかる。 Moreover, from Table 1, in order to suppress carbon precipitation while ensuring a high conversion rate (high activity), the ratio (molar ratio) of BaCO 3 and BaTiO 3 is set to BaCO 3 : BaTiO 3 = 1.0: 1. 0~BaCO 3: BaTiO 3 = 0.2: it can be seen that it is desirable that the 1.0 range.

なお、本発明は上記の実施例に限定されるものではなく、二酸化炭素改質用触媒の製造方法や、二酸化炭素改質用触媒を構成するアルカリ土類金属の種類、ATiO3を構成するAの種類、触媒金属の含有割合、本発明の二酸化炭素改質用触媒用いる場合の改質反応の具体的な条件などに関し、発明の範囲内において、種々の応用、変形を加えることが可能である。 The present invention is not limited to the above embodiments, A of configuration and manufacturing method of a carbon dioxide reforming catalyst, the alkaline earth type of the material of the carbon dioxide reforming catalyst, the ATiO 3 Various applications and modifications can be made within the scope of the invention with respect to the type of catalyst, the content of the catalyst metal, the specific conditions of the reforming reaction when the carbon dioxide reforming catalyst of the present invention is used. .

上述のように、本発明によれば、炭素の析出を抑制しつつ、炭化水素系の原料ガスと二酸化炭素を反応させ、効率的に水素および一酸化炭素を生成させる(二酸化炭素改質を行う)ことが可能な二酸化炭素改質用触媒を提供することが可能になり、それを用いることにより効率よく水素および一酸化炭素を含む合成ガスを製造することが可能になる。
したがって、本発明は、二酸化炭素改質用触媒の分野および水素および一酸化炭素を含む合成ガスを製造したり、それを用いたりする種々の技術分野に広く適用することが可能である。
As described above, according to the present invention, while suppressing the precipitation of carbon, the hydrocarbon-based source gas and carbon dioxide are reacted to efficiently generate hydrogen and carbon monoxide (carbon dioxide reforming is performed). ) Capable of producing a synthesis gas containing hydrogen and carbon monoxide efficiently.
Therefore, the present invention can be widely applied to the field of carbon dioxide reforming catalysts and various technical fields in which a synthesis gas containing hydrogen and carbon monoxide is produced or used.

Claims (5)

炭化水素系の原料ガスを二酸化炭素で改質し、一酸化炭素と水素を含む合成ガスを生成するために用いられる二酸化炭素改質用触媒であって、
Ca、SrおよびBaからなる群より選ばれる少なくとも1種のアルカリ土類金属の炭酸塩と、
炭化水素系原料ガスの分解反応を促進する触媒金属とを含む混合物を主成分とし、
さらに、ATiO 3 (AはCa、SrおよびBaからなる群より選ばれる少なくとも1種のアルカリ土類金属)を含むことを特徴とする二酸化炭素改質用触媒。
A carbon dioxide reforming catalyst used for reforming a hydrocarbon-based source gas with carbon dioxide to produce a synthesis gas containing carbon monoxide and hydrogen,
At least one alkaline earth metal carbonate selected from the group consisting of Ca, Sr and Ba;
The main component is a mixture containing a catalytic metal that promotes the decomposition reaction of hydrocarbon-based source gas ,
Furthermore, a carbon dioxide reforming catalyst comprising ATiO 3 (A is at least one alkaline earth metal selected from the group consisting of Ca, Sr and Ba) .
前記触媒金属が、Ni,Rh,Ru,Ir,Pd,Pt,Re,Co,Fe,Moからなる群より選ばれる少なくとも1種であることを特徴とする請求項1記載の二酸化炭素改質用触媒。  2. The carbon dioxide reforming agent according to claim 1, wherein the catalyst metal is at least one selected from the group consisting of Ni, Rh, Ru, Ir, Pd, Pt, Re, Co, Fe, and Mo. catalyst. 請求項1または2記載の二酸化炭素改質用触媒を製造するための方法であって、
二酸化炭素吸収能のあるアルカリ土類・Ti複合酸化物に二酸化炭素を吸収させる工程を含むこと
を特徴とする二酸化炭素改質用触媒の製造方法。
A method for producing the carbon dioxide reforming catalyst according to claim 1 , comprising:
A method for producing a catalyst for reforming carbon dioxide, comprising a step of absorbing carbon dioxide by an alkaline earth / Ti composite oxide having carbon dioxide absorption ability.
炭化水素系の原料ガスを二酸化炭素改質して、一酸化炭素と水素を含む合成ガスを製造する方法であって、
請求項1または2記載の二酸化炭素改質用触媒を用い、メタンを主成分とする原料ガスの二酸化炭素改質を行うこと
を特徴とする合成ガスの製造方法。
A method of producing a synthesis gas containing carbon monoxide and hydrogen by reforming a hydrocarbon-based source gas with carbon dioxide,
A method for producing synthesis gas, characterized in that carbon dioxide reforming of a raw material gas containing methane as a main component is performed using the carbon dioxide reforming catalyst according to claim 1 or 2 .
炭化水素系の原料ガスを二酸化炭素で改質し、一酸化炭素と水素を含む合成ガスを生成するために用いられる二酸化炭素改質用触媒の担体であって、
Ca、SrおよびBaからなる群より選ばれる少なくとも1種のアルカリ土類金属の炭酸塩を主たる成分とし、さらに、
ATiO 3 (AはCa、SrおよびBaからなる群より選ばれる少なくとも1種のアルカリ土類金属)を含むこと
を特徴とする二酸化炭素改質用触媒の担体。
A carrier for a carbon dioxide reforming catalyst used for reforming a hydrocarbon-based source gas with carbon dioxide to produce a synthesis gas containing carbon monoxide and hydrogen,
The main component is at least one alkaline earth metal carbonate selected from the group consisting of Ca, Sr and Ba ,
A support for a catalyst for reforming carbon dioxide , comprising ATiO 3 (A is at least one alkaline earth metal selected from the group consisting of Ca, Sr and Ba) .
JP2008553093A 2007-01-09 2008-01-08 Carbon dioxide reforming catalyst and method for producing the same Active JP4420127B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007001277 2007-01-09
JP2007001277 2007-01-09
PCT/JP2008/050081 WO2008084785A1 (en) 2007-01-09 2008-01-08 Carbon dioxide reforming catalyst and method for production thereof

Publications (2)

Publication Number Publication Date
JP4420127B2 true JP4420127B2 (en) 2010-02-24
JPWO2008084785A1 JPWO2008084785A1 (en) 2010-05-06

Family

ID=39608675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008553093A Active JP4420127B2 (en) 2007-01-09 2008-01-08 Carbon dioxide reforming catalyst and method for producing the same

Country Status (6)

Country Link
US (1) US20090269264A1 (en)
EP (1) EP2100662B1 (en)
JP (1) JP4420127B2 (en)
CN (1) CN101583421A (en)
RU (1) RU2418632C1 (en)
WO (1) WO2008084785A1 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010001690A1 (en) 2008-07-04 2010-01-07 株式会社村田製作所 Carbon dioxide reforming process
JP2010015860A (en) * 2008-07-04 2010-01-21 Murata Mfg Co Ltd Reformer for fuel cell
JP5402683B2 (en) * 2009-02-02 2014-01-29 株式会社村田製作所 Reverse shift reaction catalyst, method for producing the same, and method for producing synthesis gas
WO2010143676A1 (en) * 2009-06-12 2010-12-16 株式会社村田製作所 Hydrocarbon gas reforming catalyst, method for producing same, and method for producing synthetic gas
WO2011027727A1 (en) * 2009-09-02 2011-03-10 株式会社村田製作所 Hydrocarbon gas reforming catalyst, method for producing same, and method for producing synthetic gas
WO2011065194A1 (en) 2009-11-27 2011-06-03 株式会社村田製作所 Anti-shift reaction catalyst, and process for production of synthetic gas using same
JP5351846B2 (en) * 2010-07-16 2013-11-27 東京瓦斯株式会社 Decomposition and removal system for tar in gasification gas
WO2012115193A1 (en) * 2011-02-25 2012-08-30 株式会社村田製作所 Carbon dioxide reforming catalyst for hydrocarbons and carbon dioxide reforming method for hydrocarbons
CN103357411A (en) * 2012-04-09 2013-10-23 中国矿业大学(北京) Calcium-based catalyst for regulating and controlling gas components generated in thermal decomposition and preparation method of calcium-based catalyst
JP2014073436A (en) * 2012-10-03 2014-04-24 Murata Mfg Co Ltd Hydrocarbon reforming catalyst, as well as hydrocarbon reforming method and tar reforming method using the same
PL3027310T3 (en) * 2013-07-31 2023-07-24 Research Triangle Institute Mixed metal iron oxides and uses thereof
RU2572530C1 (en) * 2014-11-25 2016-01-20 федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Российский государственный университет нефти и газа имени И.М. Губкина" Method of producing synthesis gas
CA2979782A1 (en) * 2015-03-20 2016-09-29 Sekisui Chemical Co., Ltd. Method and apparatus for producing organic substances
CN107321351B (en) * 2017-07-18 2020-07-03 沈阳化工大学 Preparation method of efficient catalyst for methane/carbon dioxide reforming reaction
WO2020012687A1 (en) 2018-07-09 2020-01-16 株式会社村田製作所 Hydrocarbon reforming catalyst and hydrocarbon reforming apparatus
EP4043101A4 (en) * 2019-12-06 2023-09-27 Murata Manufacturing Co., Ltd. Hydrocarbon reforming catalyst and hydrocarbon reforming device
CN112827502B (en) * 2020-12-30 2022-10-25 西安交通大学 Composite catalyst body, method and system for in-situ elimination of carbon deposition of methane and carbon dioxide reforming catalyst
CN114570372B (en) * 2022-03-29 2023-06-09 中国石油大学(华东) Methane carbon dioxide dry reforming nickel-based catalyst and preparation method and application thereof

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1155843A (en) * 1965-08-04 1969-06-25 Gas Council Improvements in or relating to The Catalytic Treatment Of Hydrocarbons
JPH08231204A (en) 1994-12-27 1996-09-10 Sekiyu Sangyo Kasseika Center Production of hydrogen and carbon monoxide by carbon dioxide performing reaction
JP3638358B2 (en) 1995-12-20 2005-04-13 財団法人石油産業活性化センター Carbon dioxide reforming catalyst and reforming method using the same
JP3086867B2 (en) * 1997-01-09 2000-09-11 工業技術院長 Catalyst for syngas production and method for syngas production
JP2001270703A (en) * 2000-03-27 2001-10-02 Toshiba Corp Reforming/decomposing reactor
US20050027134A1 (en) * 2003-07-29 2005-02-03 Saudi Basic Industries Corporation Support for a catalyst for direct oxidation of propylene to propylene oxide, method of making and method of using catalyst
JP2006346598A (en) * 2005-06-16 2006-12-28 Nissan Motor Co Ltd Steam reforming catalyst
WO2006137211A1 (en) * 2005-06-24 2006-12-28 Murata Manufacturing Co., Ltd. Reforming apparatus for fuel cell
JP4835070B2 (en) * 2005-08-24 2011-12-14 株式会社村田製作所 Carbon dioxide absorbent having steam reforming catalyst function, method for producing the same, and method for reforming fuel gas in hydrogen production system
US20070167323A1 (en) * 2006-01-16 2007-07-19 Toda Kogya Corporation Porous carrier for steam-reforming catalysts, steam-reforming catalyst and process for producing reactive mixed gas

Also Published As

Publication number Publication date
RU2009130371A (en) 2011-02-20
RU2418632C1 (en) 2011-05-20
US20090269264A1 (en) 2009-10-29
WO2008084785A1 (en) 2008-07-17
CN101583421A (en) 2009-11-18
EP2100662B1 (en) 2014-07-09
JPWO2008084785A1 (en) 2010-05-06
EP2100662A1 (en) 2009-09-16
EP2100662A4 (en) 2011-11-02

Similar Documents

Publication Publication Date Title
JP4420127B2 (en) Carbon dioxide reforming catalyst and method for producing the same
JP5141765B2 (en) Carbon dioxide reforming method
CN101678329B (en) Catalytic hydrogenation of carbon dioxide into syngas mixture
JP5105007B2 (en) Reverse shift reaction catalyst and synthesis gas production method using the same
JP2008507389A (en) Promoted calcium-aluminate supported catalysts for synthesis gas generation
JP5402683B2 (en) Reverse shift reaction catalyst, method for producing the same, and method for producing synthesis gas
JP5327323B2 (en) Hydrocarbon gas reforming catalyst, method for producing the same, and method for producing synthesis gas
WO2007029862A1 (en) Catalyst for catalytic partial oxidation of hydrocarbon and process for producing synthesis gas
CN102574103B (en) Porous catalytic object for decomposing hydrocarbon and process for producing same, process for producing hydrogen-containing mixed reformed gas from hydrocarbon, and fuel cell system
WO2005092497A1 (en) Nickel supported on titanium stabilized promoted calcium aluminate carrier
JP2000000469A (en) Nickel based catalyst for reforming and production of synthetic gas using the same
JP5531462B2 (en) Carbon dioxide reforming catalyst, method for producing the same, carrier for carbon dioxide reforming catalyst, reformer, and method for producing synthesis gas
JP6933144B2 (en) Heterogeneous catalyst structure and its manufacturing method
JP4525909B2 (en) Water gas shift reaction catalyst, method for producing the same, and method for producing water gas
KR101594901B1 (en) Cokes oven gas reforming catalyst for manufacturing synthesis gas, method for preparing the same and method for manufacturing synthesis gas from cokes oven gas using the same
JP6089894B2 (en) Catalyst for producing synthesis gas and method for producing synthesis gas
KR20140085828A (en) Ni-based Reforming Catalysts to Produce the Reduction Gas for Iron Ore
KR102186052B1 (en) Catalyst Comprising MgO-Al2O3 Hybrid Support and The Method of Preparing Synthesis Gas from Carbon Dioxide Reforming of Acetone Using the Same
JP2024500507A (en) Methane reforming catalyst and its manufacturing method
JP5242086B2 (en) Hydrogen production ethanol reforming catalyst and hydrogen production method
KR20240064519A (en) Catalyst for reforming of methane and method for manufacturing thereof
JP2011183346A (en) Catalyst for producing hydrogen, method for producing the catalyst and method for producing hydrogen
JP2015229125A (en) Method for pretreating hydrocarbon reforming catalyst, hydrocarbon reforming catalyst, and method for reforming hydrocarbon

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091123

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4420127

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131211

Year of fee payment: 4