JP4419526B2 - Evaluation method of vaporizer performance - Google Patents

Evaluation method of vaporizer performance Download PDF

Info

Publication number
JP4419526B2
JP4419526B2 JP2003378822A JP2003378822A JP4419526B2 JP 4419526 B2 JP4419526 B2 JP 4419526B2 JP 2003378822 A JP2003378822 A JP 2003378822A JP 2003378822 A JP2003378822 A JP 2003378822A JP 4419526 B2 JP4419526 B2 JP 4419526B2
Authority
JP
Japan
Prior art keywords
vaporization
liquid
vaporizer
temperature
liquid material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003378822A
Other languages
Japanese (ja)
Other versions
JP2004096127A (en
Inventor
尚規 吉岡
達司 川本
満志 川尾
繁 松野
朗 山田
章二 宮下
英興 内川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2003378822A priority Critical patent/JP4419526B2/en
Publication of JP2004096127A publication Critical patent/JP2004096127A/en
Application granted granted Critical
Publication of JP4419526B2 publication Critical patent/JP4419526B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

本発明は、液体有機金属や有機金属溶液等の液体材料を気化する気化器の気化性能評価方法に関するThe present invention relates to a method for evaluating the vaporization performance of a vaporizer that vaporizes a liquid material such as a liquid organic metal or an organic metal solution .

半導体デバイス製造工程における薄膜形成方法の一つとしてMOCVD(Metal Organic Chemical Vapor Deposition)法があるが、スパッタ等に比べて膜質,成膜速度,ステップカバレッジなどが優れていることから近年盛んに利用されている。MOCVD装置に用いられているCVDガス供給法としてはバブリング法や昇華法などがあるが、液体有機金属若しくは有機金属を有機溶剤に溶かした液体材料をCVDリアクタ直前で気化して供給する方法が、制御性および安定性の面でより優れた方法として注目されている。この気化方法では、高温に保たれた気化チャンバ内にノズルから液体材料を噴霧して、液体材料を気化させている(例えば、特許文献1参照)。   MOCVD (Metal Organic Chemical Vapor Deposition) method is one of the thin film forming methods in the semiconductor device manufacturing process, but it has been actively used in recent years because of its superior film quality, deposition rate, step coverage, etc. compared to sputtering. ing. The CVD gas supply method used in the MOCVD apparatus includes a bubbling method and a sublimation method, but a method of vaporizing and supplying a liquid material in which a liquid organic metal or an organic metal is dissolved in an organic solvent is supplied immediately before the CVD reactor. It attracts attention as a better method in terms of controllability and stability. In this vaporization method, a liquid material is sprayed from a nozzle into a vaporization chamber maintained at a high temperature to vaporize the liquid material (see, for example, Patent Document 1).

特開平10−251853号公報Japanese Patent Laid-Open No. 10-251853

しかしながら、気化の際に液体材料に充分な熱エネルギーを与えることができないと、未気化残渣が発生して配管に詰まりが発生したり、残渣がパーティクルとなってCVDリアクタまで達して成膜不良の原因となるおそれがあった。さらに、複数の成分を混合してから気化する場合、成分によって気化温度や熱分解温度特性が異なり、一部の成分が未気化または熱分解することによる残渣が発生しやすかった。そして、未気化残渣の発生を抑えた効率的な気化を実現するためには、種々の気化条件に対して気化性能を評価する必要があるが、材料特性などから評価が非常に難しく、確立された評価方法が無いというのが現状であった。 However, if sufficient thermal energy cannot be given to the liquid material during vaporization, unvaporized residue is generated and the piping is clogged, or the residue becomes particles and reaches the CVD reactor, resulting in poor film formation. There was a risk of this. Furthermore, when vaporizing after mixing a plurality of components, the vaporization temperature and thermal decomposition temperature characteristics differ depending on the components, and a residue is likely to be generated due to unvaporization or thermal decomposition of some components. In order to achieve efficient vaporization with reduced generation of unvaporized residues, it is necessary to evaluate the vaporization performance under various vaporization conditions. The current situation is that there is no evaluation method.

本発明は、高温に保持された気化チャンバ内に液体有機金属若しくは有機金属溶液から成る液体材料を噴霧して気化する気化器の気化性能評価方法であって、所定量の液体材料を気化チャンバ内に噴霧して気化させた後に、気化チャンバ内の未気化付着物を有機溶剤で除去し、その除去に用いた有機溶剤中の液体材料の含有量を計測し、計測された含有量に基づいて気化性能を評価することを特徴とする。 The present invention relates to a method for evaluating the vaporization performance of a vaporizer in which a liquid material composed of a liquid organic metal or an organic metal solution is sprayed into a vaporization chamber held at a high temperature. After being vaporized by spraying, the unvaporized deposits in the vaporization chamber are removed with an organic solvent, and the content of the liquid material in the organic solvent used for the removal is measured. Based on the measured content It is characterized by evaluating the vaporization performance .

本発明によれば、気化チャンバに実際に付着した未気化付着物を有機溶剤で除去して、その有機溶剤中に含まれる液体材料を計測して定量分析しているので、気化器の気化性能を確実に評価することができる。 According to the present invention, the non-vaporized deposit actually attached to the vaporization chamber is removed with an organic solvent, and the liquid material contained in the organic solvent is measured and quantitatively analyzed. Can be reliably evaluated.

以下、図を参照して本発明を実施するための最良の形態を説明する。
図1は気化装置全体の概略構成を示す図である。1は気化器2に液体有機金属や有機金属溶液等(以下では、これらを液体材料と呼ぶ)を供給する液体材料供給装置であり、供給された液体材料は気化器2で気化されてCVD装置に設けられたCVDリアクタに供給される。例えば、液体有機金属としてはCuやTaなどの有機金属があり、有機金属溶液としてはBa,Sr,Ti,Pb,Zrなどの有機金属を有機溶剤に溶かしたもがある。
Hereinafter, the best mode for carrying out the present invention will be described with reference to the drawings .
FIG. 1 is a diagram showing a schematic configuration of the entire vaporizer. Reference numeral 1 denotes a liquid material supply device for supplying a liquid organic metal, an organic metal solution or the like (hereinafter referred to as a liquid material) to the vaporizer 2, and the supplied liquid material is vaporized by the vaporizer 2 to be a CVD apparatus. Is supplied to a CVD reactor provided in For example, liquid organic metals include organic metals such as Cu and Ta, and organic metal solutions include organic metals such as Ba, Sr, Ti, Pb, and Zr dissolved in an organic solvent.

液体材料供給装置1に設けられた材料容器3A,3B,3Cには、MOCVDに用いられる液体材料4A,4B,4Cが充填されている。例えば、BST膜(BaSrTi酸化膜)を成膜する場合には、原料であるBa、Sr、Tiを有機溶剤THF(tetrahydrofuran)で溶解したものが液体材料4A,4B,4Cとして用いられる。また、溶剤容器3DにはTHFが溶剤4Dとして充填されている。なお、容器3A〜3Dは原料の数に応じて設けられ、必ずしも4個とは限らない。   The material containers 3A, 3B, 3C provided in the liquid material supply apparatus 1 are filled with liquid materials 4A, 4B, 4C used for MOCVD. For example, in the case of forming a BST film (BaSrTi oxide film), the raw materials Ba, Sr, and Ti dissolved in an organic solvent THF (tetrahydrofuran) are used as the liquid materials 4A, 4B, and 4C. The solvent container 3D is filled with THF as the solvent 4D. The containers 3A to 3D are provided according to the number of raw materials, and are not necessarily four.

各容器3A〜3Dには、チャージガスライン5と移送ライン6A〜6Dとが接続されている。各容器3A〜3D内にチャージガスライン5を介してチャージガスが供給されると、各容器3A〜3Dに充填されている液体材料4A〜4Cおよび溶剤4Dの液面にガス圧が加わり、液体材料4A〜4Cおよび溶剤4Dが各移送ライン6A〜6Dへとそれぞれ押し出される。移送ライン6A〜6Dに押し出された各液体材料4A〜4Cおよび溶剤4Dは、ガス圧によってさらに移送ライン6Eへと移送され、この移送ライン6E内で混合状態となる。   A charge gas line 5 and transfer lines 6A to 6D are connected to the containers 3A to 3D. When charge gas is supplied into the containers 3A to 3D via the charge gas line 5, gas pressure is applied to the liquid surfaces of the liquid materials 4A to 4C and the solvent 4D filled in the containers 3A to 3D, and the liquids Materials 4A-4C and solvent 4D are extruded into transfer lines 6A-6D, respectively. The liquid materials 4A to 4C and the solvent 4D pushed out to the transfer lines 6A to 6D are further transferred to the transfer line 6E by the gas pressure, and are mixed in the transfer line 6E.

移送ライン6Eにはキャリアガスライン7からキャリアガスが供給されるようになっており、キャリアガス、液体材料4A〜4Cおよび溶剤4Dは気液2相流状態となって気化器2へと供給される。気化器2にはキャリアガスライン7を介してキャリアガスが供給されており、気化された材料はキャリアガスによってCVDリアクタへと送られる。   Carrier gas is supplied to the transfer line 6E from the carrier gas line 7, and the carrier gas, the liquid materials 4A to 4C and the solvent 4D are supplied to the vaporizer 2 in a gas-liquid two-phase flow state. The The vaporizer 2 is supplied with a carrier gas via a carrier gas line 7, and the vaporized material is sent to the CVD reactor by the carrier gas.

なお、チャージガスおよびキャリアガスには窒素ガスやアルゴンガス等の不活性ガスが用いられる。また、移送ライン6A〜6Eにおける液体材料4A〜4Cや溶剤4Dの滞留量はできるだけ低減するのが好ましく、本実施の形態では、移送ライン6A〜6Cには1/8インチの配管を用いている。   Note that an inert gas such as nitrogen gas or argon gas is used for the charge gas and the carrier gas. Moreover, it is preferable to reduce the retention amount of the liquid materials 4A to 4C and the solvent 4D in the transfer lines 6A to 6E as much as possible. In this embodiment, 1/8 inch piping is used for the transfer lines 6A to 6C. .

各移送ライン6A〜6Dには、マスフローメータ8A〜8Dおよび遮断機能付き流量制御バルブ9A〜9Dが設けられている。マスフローメータ8A〜8Dで液体材料4A〜4Cおよび溶剤4Dの流量を各々監視しつつ流量制御バルブ9A〜9Dを制御して、液体材料4A〜4Cおよび溶剤4Dの流量が適切となるようにしている。なお、移送ライン6Eの気化器直前にミキサを設けて、液体材料4A〜4Cの混合状態をより向上させるようにしても良い。さらに、各液体材料4A〜4Cの流量を制御する流量制御バルブ9A〜9Dに代えて、プランジャポンプ等のポンプを用いて流量制御するようにしても良い。   Each transfer line 6A to 6D is provided with mass flow meters 8A to 8D and flow control valves 9A to 9D with a shut-off function. The flow rate control valves 9A to 9D are controlled while monitoring the flow rates of the liquid materials 4A to 4C and the solvent 4D with the mass flow meters 8A to 8D, respectively, so that the flow rates of the liquid materials 4A to 4C and the solvent 4D are appropriate. . Note that a mixer may be provided immediately before the vaporizer in the transfer line 6E to further improve the mixing state of the liquid materials 4A to 4C. Furthermore, instead of the flow rate control valves 9A to 9D for controlling the flow rates of the liquid materials 4A to 4C, the flow rate may be controlled using a pump such as a plunger pump.

図2〜図4は気化器2の詳細を示す図であり、図2は気化器2を正面から見た断面図、図3は図2のA−A’断面図、図4は図2のB部の拡大図である。図2に示すように、気化器2は液体材料4A〜4Cを霧化する霧化部20と、霧化部20で霧化された液体材料4A〜4Cをさらに気化する気化チャンバ21とを備えている。気化チャンバ21のチャンバ本体21aには、水平方向(図示左右方向)に延在する円筒空洞22が形成されている。霧化部20は、円筒空洞22に対して鉛直下方向に霧化ガスを吹き出すように取り付けられている。フランジ21bはチャンバ本体21aに対して着脱可能であって、例えば、チャンバ内をクリーニングするような場合には、フランジ21bを外して円筒空洞22を大気開放して洗浄を行う。   2 to 4 are views showing details of the vaporizer 2, FIG. 2 is a cross-sectional view of the vaporizer 2 seen from the front, FIG. 3 is a cross-sectional view taken along line AA 'of FIG. 2, and FIG. It is an enlarged view of the B section. As shown in FIG. 2, the vaporizer 2 includes an atomization unit 20 that atomizes the liquid materials 4A to 4C and a vaporization chamber 21 that further vaporizes the liquid materials 4A to 4C atomized by the atomization unit 20. ing. A cylindrical cavity 22 extending in the horizontal direction (left-right direction in the figure) is formed in the chamber body 21a of the vaporization chamber 21. The atomization unit 20 is attached so as to blow out the atomized gas vertically downward with respect to the cylindrical cavity 22. The flange 21b can be attached to and detached from the chamber main body 21a. For example, when cleaning the inside of the chamber, the flange 21b is removed and the cylindrical cavity 22 is opened to the atmosphere for cleaning.

霧化部20には、移送ライン6Eから液体材料4A〜4Cの混合液が供給されるとともに、キャリアガスライン7を介してキャリアガスが供給される。図4のB部拡大図に示すように、混合液およびキャリアガスが流れる配管は内側配管23と外側配管24とから成る2重管構造を有しており、内側配管23の内部を混合液が気液2相流状態で流れ、内側配管23と外側配管24との間の環状空間をキャリアガスが流れる。気化部20の先端部分にはオリフィス部材25が設けられており、キャリアガスは内側配管23とオリフィス部材25との隙間をチャンバ内空間に噴出する。その結果、液体材料4A〜4Cの混合液は内側配管23の先端から霧状となって噴出する。   The atomizing unit 20 is supplied with the liquid mixture of the liquid materials 4A to 4C from the transfer line 6E and is also supplied with the carrier gas via the carrier gas line 7. As shown in the enlarged view of part B in FIG. 4, the pipe through which the mixed liquid and the carrier gas flow has a double pipe structure including an inner pipe 23 and an outer pipe 24, and the mixed liquid passes through the inner pipe 23. It flows in a gas-liquid two-phase flow state, and the carrier gas flows through the annular space between the inner pipe 23 and the outer pipe 24. An orifice member 25 is provided at the distal end portion of the vaporizing section 20, and the carrier gas is jetted through the gap between the inner pipe 23 and the orifice member 25 into the chamber space. As a result, the liquid mixture of the liquid materials 4 </ b> A to 4 </ b> C is ejected in the form of a mist from the tip of the inner pipe 23.

図2に示すように、霧化部20のケーシング27の下部はチャンバ本体21aに固定されており、チャンバ本体21aからの熱流入により高温となっている。一方、ケーシング27の上部端部には水冷ジャケット28が設けられており、この冷却ジャケット28から下方に延びる冷却ロッド内に上記2重管が配設されている。上述したオリフィス部材25は熱伝導率の低い樹脂等で形成され、図4のように外側配管24の先端部分とケーシング先端部との間に挟持されて、両者の間の断熱部材としても機能している。   As shown in FIG. 2, the lower part of the casing 27 of the atomization part 20 is being fixed to the chamber main body 21a, and becomes high temperature by heat inflow from the chamber main body 21a. On the other hand, a water cooling jacket 28 is provided at the upper end of the casing 27, and the double pipe is disposed in a cooling rod extending downward from the cooling jacket 28. The orifice member 25 described above is formed of a resin having a low thermal conductivity, and is sandwiched between the distal end portion of the outer pipe 24 and the casing distal end portion as shown in FIG. 4 and functions as a heat insulating member between the two. ing.

図2の霧化部20により霧化された液体材料4A〜4Cは、円筒空洞22の霧化部先端部と対向する面に向けて噴出され、図3に示すように円筒空洞22の内周面に沿って矢印R1のように流れる。気化チャンバ21にはヒータh1〜h9が設けられていて、気化温度以上となるように温度制御されている。そのため、霧状の液体材料4A〜4Cは、内周面に沿って流れる間に気化され、キャリアガスと共に排出口29から排出されてCVDリアクタへと送られる。   The liquid materials 4A to 4C atomized by the atomizing unit 20 in FIG. 2 are ejected toward the surface of the cylindrical cavity 22 facing the tip of the atomizing unit, and the inner periphery of the cylindrical cavity 22 as shown in FIG. It flows along the surface as indicated by an arrow R1. The vaporization chamber 21 is provided with heaters h1 to h9, and the temperature is controlled to be equal to or higher than the vaporization temperature. Therefore, the mist-like liquid materials 4A to 4C are vaporized while flowing along the inner peripheral surface, are discharged from the discharge port 29 together with the carrier gas, and are sent to the CVD reactor.

気化チャンバ本体21aおよびフランジ21bに設けられたヒータh1〜h9が設けられており、その内のヒータh1〜h3は温度センサ30で検出された温度に基づいて温度調節装置32により制御される。一方、ヒータh4〜h9は温度センサ31で検出された温度に基づいて温度調節装置33により制御される。円筒空洞22の内周面は全面が気化面として機能するが、図2,3に示すように、液体材料4A〜4Cは霧化部20からほぼ鉛直下方向に噴出されるため、図3の面S1が主な気化面となる。そのため、気化チャンバを均一に加熱した場合でも、気化量(液体材料4A〜4Cの流量)が多いと、気化面S1の温度が気化熱により低下して気化面S1に未気化成分が残渣として生じやすくなる。   Heaters h1 to h9 provided on the vaporizing chamber main body 21a and the flange 21b are provided, and the heaters h1 to h3 are controlled by the temperature adjusting device 32 based on the temperature detected by the temperature sensor 30. On the other hand, the heaters h4 to h9 are controlled by the temperature adjustment device 33 based on the temperature detected by the temperature sensor 31. The entire inner peripheral surface of the cylindrical cavity 22 functions as a vaporization surface. However, as shown in FIGS. 2 and 3, since the liquid materials 4A to 4C are ejected from the atomizing section 20 substantially vertically downward, The surface S1 is the main vaporization surface. Therefore, even when the vaporization chamber is heated uniformly, if the vaporization amount (flow rate of the liquid materials 4A to 4C) is large, the temperature of the vaporization surface S1 is lowered by the heat of vaporization, and unvaporized components are generated as residues on the vaporization surface S1. It becomes easy.

そこで、本実施の形態では、図2,3に示すように面S1の近傍に設けられたヒータh1〜h3とその他のヒータh4〜h9とをそれぞれ別個の温度調節装置32,33で制御し、気化の最中にも気化面S1の温度が最適温度となるように制御するようにした。すなわち、液体材料4A〜4Cおよびその流量に応じてヒータh1〜h3で発生する熱エネルギーを調節し、気化面S1の温度を最適温度にする。例えば、熱エネルギーを増やして、気化面S1の温度を気化チャンバ21の温度より高めに設定すると、液体材料4A〜4Cの熱分解温度が気化温度に近い場合に有効である。その結果、気化面S1における未気化成分の発生を低減することができる。   Therefore, in the present embodiment, as shown in FIGS. 2 and 3, the heaters h1 to h3 and the other heaters h4 to h9 provided in the vicinity of the surface S1 are controlled by separate temperature control devices 32 and 33, respectively. During the vaporization, the temperature of the vaporization surface S1 is controlled to be the optimum temperature. That is, the thermal energy generated by the heaters h1 to h3 is adjusted according to the liquid materials 4A to 4C and the flow rate thereof, and the temperature of the vaporization surface S1 is set to the optimum temperature. For example, increasing the thermal energy and setting the temperature of the vaporization surface S1 higher than the temperature of the vaporization chamber 21 is effective when the thermal decomposition temperatures of the liquid materials 4A to 4C are close to the vaporization temperature. As a result, it is possible to reduce the generation of unvaporized components on the vaporized surface S1.

ところで、気化チャンバ21はSUS材で形成されるのが一般的であるが、気化面として機能する円筒空洞22の壁面が液体材料4A〜4Cと化学反応するという問題があった。本実施の形態では、このような壁面と液体材料4A〜4Cとの反応を防止するために、CVDにより成膜される膜を壁面にコーティングするようにした。例えば、BST膜(BaSrTi酸化膜)を成膜するCVD装置に使用する気化器であれば、BST膜を壁面にコーティングする。その結果、円筒空洞のSUS壁面はコーティングされた膜により保護され、気化された金属材料との反応を防止することができる。このような膜としては、BST膜の他に、PZT膜(PbZrTi膜)、STO膜(SrTiO)、TiO膜、SBT膜(SrBiTa酸化膜)等の誘電体膜や、超伝導膜等の酸化物などがある。 Incidentally, the vaporization chamber 21 is generally formed of a SUS material. However, there is a problem that the wall surface of the cylindrical cavity 22 that functions as a vaporization surface chemically reacts with the liquid materials 4A to 4C. In the present embodiment, in order to prevent such a reaction between the wall surface and the liquid materials 4A to 4C, the film formed by CVD is coated on the wall surface. For example, in the case of a vaporizer used in a CVD apparatus for forming a BST film (BaSrTi oxide film), the wall surface is coated with the BST film. As a result, the SUS wall surface of the cylindrical cavity is protected by the coated film, and reaction with the vaporized metal material can be prevented. As such a film, in addition to the BST film, a dielectric film such as a PZT film (PbZrTi film), an STO film (SrTiO 2 ), a TiO 2 film, an SBT film (SrBiTa oxide film), a superconducting film, etc. There are oxides.

次に、気化器の気化性能評価方法について説明する。気化器の気化性能は、気化器に供給された液体材料の内の何パーセントが気化されたかによって評価されるが、これは供給量と気化器内の未気化成分の量との差によって求めることができる。図5は、性能評価の計量の手順を示したものであり、以下では材料としてBa,SrおよびTiを用いる場合について説明する。   Next, the vaporization performance evaluation method of the vaporizer will be described. The vaporization performance of the vaporizer is evaluated by the percentage of the liquid material supplied to the vaporizer, which is determined by the difference between the feed rate and the amount of unvaporized components in the vaporizer. Can do. FIG. 5 shows a measurement procedure for performance evaluation, and the case where Ba, Sr and Ti are used as materials will be described below.

のステップS1では、所定量の液体材料を気化器で気化させる。次いで、ステップS2のサンプリング工程では、気化面を含めた気化チャンバの全内壁面に付着している未気化成分をエチルアルコール等で除去する。例えば、重さ0.1〜0.3g程度の布にエチルアルコールを含ませ、その布で壁面に付着した未気化成分を拭き取る。ステップS3の有機物分解A工程では、拭き取り後の布を塩酸2ml,過酸化水素0.5mlおよび純水1mlの混合液に浸して、温度150℃で1.5時間加熱し、布に付着している有機物を分解する。ステップS4の有機物分解B工程では、ステップS3の溶液にさらに塩酸1ml,過酸化水素0.5mlおよび純水1mlを加えて、温度150℃で1.5時間加熱する。 In step S1 of FIG. 5 , a predetermined amount of liquid material is vaporized by a vaporizer. Next, in the sampling process of step S2, unvaporized components adhering to all inner wall surfaces of the vaporization chamber including the vaporized surface are removed with ethyl alcohol or the like. For example, ethyl alcohol is included in a cloth having a weight of about 0.1 to 0.3 g, and the unvaporized components adhering to the wall surface are wiped off with the cloth. In the organic matter decomposition step A of step S3, the cloth after wiping is immersed in a mixed solution of 2 ml of hydrochloric acid, 0.5 ml of hydrogen peroxide and 1 ml of pure water, heated at a temperature of 150 ° C. for 1.5 hours, and adhered to the cloth. Decomposes organic matter. In the organic matter decomposition step B of step S4, 1 ml of hydrochloric acid, 0.5 ml of hydrogen peroxide and 1 ml of pure water are further added to the solution of step S3 and heated at a temperature of 150 ° C. for 1.5 hours.

ステップS5の煮沸・濃縮工程では、さらに純水1mlを加えて150℃で0.5時間加熱する。ステップS6のろ過・定容工程では、ステップS5の溶液をろ過した後、塩酸1mlを添加し、さらに20〜100mlに容積をそろえる。ステップS7では、ICP(誘導結合プラズマ)を用いた分析装置により各元素Ba,Sr,Tiの定量分析を行い、未気化成分量を算出する。定量分析をする際には、図に示すような試料をICP分析したものを検量線として使用し、検量線との比較から未気化成分量を算出する。ステップS8では、気化に使用した液体材料の量と、ステップS7で算出された未気化成分量とから気化率を算出する。このように、本実施の形態の評価方法では、気化器内壁面に付着している未気化成分を実際に定量分析しているため、気化器の気化性能を正確に評価することが可能となる。 In the boiling / concentration step of step S5, 1 ml of pure water is further added and heated at 150 ° C. for 0.5 hour. In the filtration / constant volume step of step S6, after filtering the solution of step S5, 1 ml of hydrochloric acid is added, and the volume is further adjusted to 20 to 100 ml. In step S7, each element Ba, Sr, Ti is quantitatively analyzed by an analyzer using ICP (inductively coupled plasma) to calculate the amount of unvaporized components. When quantitative analysis is performed, an ICP analysis of a sample as shown in FIG. 6 is used as a calibration curve, and the amount of unvaporized components is calculated from comparison with the calibration curve. In step S8, the vaporization rate is calculated from the amount of the liquid material used for vaporization and the amount of the unvaporized component calculated in step S7. Thus, in the evaluation method of the present embodiment, since the unvaporized components adhering to the inner wall surface of the vaporizer are actually quantitatively analyzed, it is possible to accurately evaluate the vaporization performance of the vaporizer. .

気化装置全体の概略構成を示す図である。It is a figure which shows schematic structure of the whole vaporization apparatus. 気化器2を詳細に示す図であり、正面から見た断面図である。It is a figure which shows the vaporizer | carburetor 2 in detail, and is sectional drawing seen from the front. 図2のA−A’断面図である。It is A-A 'sectional drawing of FIG. 図2のB部拡大図である。It is the B section enlarged view of FIG. 本発明による気化性能評価方法の手順を示す図である。It is a figure which shows the procedure of the vaporization performance evaluation method by this invention. 検量線として用いる試料の内容を示す図である。It is a figure which shows the content of the sample used as a calibration curve.

符号の説明Explanation of symbols

1 液体材料供給装置
気化器
20 霧化部
21 気化チャンバ
21a チャンバ本体
22,45,77 円筒空洞
S1 気化面
1 Liquid material supply device
2 vaporizers
20 atomization part
21 vaporization chamber
21a chamber body 22, 45, 77 cylindrical cavity
S1 vaporization surface

Claims (1)

高温に保持された気化チャンバ内に液体有機金属若しくは有機金属溶液から成る液体材料を噴霧して気化する気化器の気化性能評価方法であって、
所定量の前記液体材料を前記気化チャンバ内に噴霧して気化させた後に、前記気化チャンバ内の未気化付着物を有機溶剤で除去し、その除去に用いた前記有機溶剤中の前記液体材料の含有量を計測し、計測された含有量に基づいて気化性能を評価することを特徴とする気化性能評価方法。
A method for evaluating the vaporization performance of a vaporizer for vaporizing a liquid material composed of a liquid organic metal or an organic metal solution in a vaporization chamber maintained at a high temperature,
After a predetermined amount of the liquid material is sprayed into the vaporization chamber and vaporized, unvaporized deposits in the vaporization chamber are removed with an organic solvent, and the liquid material in the organic solvent used for the removal is removed. A vaporization performance evaluation method characterized by measuring the content and evaluating the vaporization performance based on the measured content.
JP2003378822A 2003-11-07 2003-11-07 Evaluation method of vaporizer performance Expired - Lifetime JP4419526B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003378822A JP4419526B2 (en) 2003-11-07 2003-11-07 Evaluation method of vaporizer performance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003378822A JP4419526B2 (en) 2003-11-07 2003-11-07 Evaluation method of vaporizer performance

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2000292759A Division JP3507425B2 (en) 2000-09-26 2000-09-26 Vaporizer

Publications (2)

Publication Number Publication Date
JP2004096127A JP2004096127A (en) 2004-03-25
JP4419526B2 true JP4419526B2 (en) 2010-02-24

Family

ID=32064708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003378822A Expired - Lifetime JP4419526B2 (en) 2003-11-07 2003-11-07 Evaluation method of vaporizer performance

Country Status (1)

Country Link
JP (1) JP4419526B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7163197B2 (en) 2000-09-26 2007-01-16 Shimadzu Corporation Liquid substance supply device for vaporizing system, vaporizer, and vaporization performance appraisal method
KR101556315B1 (en) 2013-11-14 2015-10-01 삼성중공업 주식회사 Apparatus and method for measuring boil-off rate

Also Published As

Publication number Publication date
JP2004096127A (en) 2004-03-25

Similar Documents

Publication Publication Date Title
JP3822135B2 (en) Vaporization supply device
JP3510636B2 (en) Flash vaporizer
US6805907B2 (en) Method and apparatus for vapor generation and film deposition
TWI391994B (en) Vaporizer and semiconductor processing system
JP2004273766A (en) Vaporizing device and film forming device using it, and method for vaporising and film forming
EP1643003A1 (en) Vaporizer for CVD apparatus
US20060133955A1 (en) Apparatus and method for delivering vapor phase reagent to a deposition chamber
US8393599B2 (en) Apparatus for liquid precursor atomization
WO2007062242A2 (en) High stability and high capacity precursor vapor generation for thin film deposition
JPWO2002058141A1 (en) Vaporizer, various devices using the same, and vaporization method
JP4841338B2 (en) Film forming method and apparatus
JPH10140356A (en) Vaporizing device and cvd device
Astié et al. Direct liquid injection chemical vapor deposition
JP2004211183A (en) Vaporizer
JP3507425B2 (en) Vaporizer
TWI261872B (en) Method of depositing CVD thin film
JPH0794426A (en) Cvd device
JP4419526B2 (en) Evaluation method of vaporizer performance
JP2000282242A (en) Vaporizer, treating device, treatment and production of semiconductor chip
KR20040094638A (en) Vaporizer
JP4110576B2 (en) Vaporizer for CVD, solution vaporization type CVD apparatus, and vaporization method for CVD
JP4288049B2 (en) Vaporization supply method
JP2005051006A (en) Vaporizer
JP2002173778A (en) Vaporizer
JP2010040868A (en) Vaporizer and deposition device employing the same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20031216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20031216

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061211

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091123

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4419526

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131211

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250