JP4416858B2 - Multi-tube heat exchanger and polymerization suppression method in the multi-tube heat exchanger - Google Patents

Multi-tube heat exchanger and polymerization suppression method in the multi-tube heat exchanger Download PDF

Info

Publication number
JP4416858B2
JP4416858B2 JP06540399A JP6540399A JP4416858B2 JP 4416858 B2 JP4416858 B2 JP 4416858B2 JP 06540399 A JP06540399 A JP 06540399A JP 6540399 A JP6540399 A JP 6540399A JP 4416858 B2 JP4416858 B2 JP 4416858B2
Authority
JP
Japan
Prior art keywords
tube
heat exchanger
heat transfer
tube plate
process fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP06540399A
Other languages
Japanese (ja)
Other versions
JP2000254484A (en
Inventor
武 西村
行弘 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP06540399A priority Critical patent/JP4416858B2/en
Priority to MYPI20000773A priority patent/MY121525A/en
Priority to EP00104889A priority patent/EP1034824B1/en
Priority to US09/520,744 priority patent/US6620969B1/en
Priority to CNB001068911A priority patent/CN1262810C/en
Publication of JP2000254484A publication Critical patent/JP2000254484A/en
Application granted granted Critical
Publication of JP4416858B2 publication Critical patent/JP4416858B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、多管式熱交換器および多管式熱交換器における重合抑制方法に関する。
【0002】
【従来の技術】
広く高温、低温の2流体間で熱の伝授を行わせる多管式熱交換器は、化学工業で広く使用される化学機械の一つである。多管式熱交換器は、過酷な使用条件、長期連続運転などに信頼性が高く、最も多く使用されているものである。多管式熱交換器の中でも管板式熱交換器は、管状胴体の両端部にそれぞれ1枚以上の管板を内蔵し、該管板間に両端部外周を固定された多数本の伝熱管が連結されることを特徴とする。
【0003】
例えば、図1に示すような従来の縦型の管板式熱交換器では、管内流体入口近傍の上部管板を経てプロセス流体が伝熱管内に導入され、次いでこの伝熱管末端から下部管板を経て熱交換器外に排出される。ここに、各管板と伝熱管との連結部は、強固な接続を確保しかつ多数の伝熱管を簡易に取り付けるために、図3aに示すように管板面から伝熱管を突出して固定される。熱交換器では、管内流体および管外流体双方の流体が常時流入流出するために振動が生じ、ポンプ・圧縮機からの振動や、回転機械からの直接の脈動流により伝熱管がこれらの振動を受ける。従って、この振動による伝熱管取付部の緩みによる漏れを防止するため、管板面に伝熱管を突出させ強度を確保するのである。また、伝熱効率を向上させるためには冷却液との接触面を広く取る必要があり伝熱管の管径は細くなるが、この多数の細い伝熱管を安定に固定するには、管板面に伝熱管を突出させて接合させることが簡便だからである。
【0004】
【発明が解決しようとする課題】
その一方、多管式熱交換器の伝熱面は使用時間の経過と共に異物が付着して汚れ、伝熱効率が悪化する。この汚れにより熱交換率が低下し、汚れによる補修が必要となり長期運転が困難となる。この汚れは流体に固形物、半固形物が含まれるときに生じるのであるが、プロセス流体自体が固形物等でない場合であっても、流体成分が易重合性物質等である場合には熱交換中に重合が生じ、この重合体により汚染が発生する。
【0005】
例えば、蒸留塔の塔頂から導かれた多管式熱交換器(コンデンサ)は、蒸留塔の塔頂に昇る低沸点成分に富む蒸気を伝熱管内にて冷却・凝縮させるが、蒸留対象物が、アクリル酸等の易重合性化合物である場合では、コンデンサ内での重合が生じやすい。アクリル酸は、プロピレンおよび/またはアクロレインを分子状酸素含有ガス含有ガスにより接触気相酸化して製造され、アクリル酸含有液を蒸留塔で蒸留するのであるが、このアクリル酸含有液組成には、水、酢酸、アクロレイン等の不純物が含まれ、アクリル酸の重合が極めて起こり易くなっているからである。このため、フェノチアジンなどの種々の重合防止剤がプロセス中に添加され、アクリル酸等の重合が抑制されるのであるが、重合を抑制するに十分でない。従って、管板式熱交換器であって多管式の場合には、コンデンサの上部管板面上に前記した伝熱管の突出部が存在するため重合物がこの突出部に付着する。このため、重合物の付着により分離効率を低下させると共に、伝熱管内の重合物による目詰が原因となりプロセスの長期連続運転を妨げる原因ともなる。
【0006】
従って、従来は定期点検などにおいて多管式熱交換器に付着した重合物を除去することが一般的となっていた。
【0007】
【課題を解決するための手段】
本発明者は、多管式熱交換器において、管板面上で生ずるプロセス流体の滞留を防止することで重合を効果的に抑制できることを見いだし、本発明を完成させた。
【0008】
すなわち本発明は、以下の(1)〜(1)を提供するものである。
【0009】
(1) 管外流体入り口および管外流体出口とを供えかつ2枚の管板を両端付近に内蔵した管状胴体と、該管状胴体の両端に設けた蓋体と、該管板間に両端部外周を固定された多数本の伝熱管とからなる管板式熱交換器において、前記固定が、該管板の管板式熱交換器の胴側とは反対側の管板面側の孔部と、該伝熱管の端部外周との溶接によりなり、該管板と伝熱管との連結部にプロセス流体の滞留部がないことを特徴とする易重合性物質取り扱い用多管式熱交換器。
【0010】
(2) 管外流体入り口および管外流体出口とを供えかつ2枚の管板を両端付近に内蔵した管状胴体と、該管状胴体の両端に設けた蓋体と、該管板間に両端部外周を固定された多数本の伝熱管とからなる管板式熱交換器において、前記固定が、該管板の管板式熱交換器の胴側とは反対側の管板面側の孔部と、該伝熱管の端部外周との溶接によりなり、プロセス流体が接触する管板面に伝熱管の突出部が存在しないことを特徴とする易重合性物質取り扱い用多管式熱交換器。
【0011】
(3) 管外流体入り口および管外流体出口とを供えかつ2枚の管板を両端付近に内蔵した管状胴体と、該管状胴体の両端に設けた蓋体と、該管板間に両端部外周を固定された多数本の伝熱管とからなる管板式熱交換器において、前記固定が、該管板の管板式熱交換器の胴側とは反対側の管板面側の孔部と、該伝熱管の端部外周との溶接によりなり、少なくとも上部管板面に伝熱管の突出部が存在しないことを特徴とする易重合性物質取り扱い用縦型多管式熱交換器。
【0013】
) プロセス流体が接触する管板面が、JIS B 0601に記載のRmaxが12.5S以下である上記(1)〜()のいずれかに記載の多管式熱交換器。
【0014】
) 熱交換器が蒸留塔塔頂部に連結するコンデンサであることを特徴とする上記(1)〜()のいずれかに記載の多管式熱交換器。
【0015】
) 熱交換器が蒸留塔塔底部に連結するリボイラであることを特徴とする上記(1)〜()のいずれかに記載の多管式熱交換器。
【0016】
) 易重合性物質が(メタ)アクリル酸またはそのエステルであることを特徴とする上記(1)〜()のいずれかに記載の多管式熱交換器。
【0017】
) 上記(1)〜()のいずれかに記載の多管式熱交換器にプロセス流体として易重合性物質を通過させ熱交換させる際に、プロセス流体に重合防止剤を含有させることを特徴とする多管式熱交換器における重合抑制方法。
【0018】
) 重合防止剤が、分子状酸素含有ガスであることを特徴とする上記()記載の方法。
【0019】
(1) 分子状酸素含有ガス含有量が(メタ)アクリル酸蒸気に対して0.01〜5容量%であることを特徴とする上記()記載の方法。
【0020】
【発明の実施の形態】
本発明は、プロセス流体の滞留部のない多管式熱交換器であり、特には、プロセス流体の接触する管板面上に伝熱管の突出部を無くしたことを特徴とする。
【0021】
従来の縦型管板式熱交換器をコンデンサとして易重合性物質を冷却すると、上部管板面上に伝熱管端部の突出部が存在するため重合物が付着した。しかしこの重合物の付着は、単に突出部が付着面として作用するだけではない。易重合性物質が気体状態の場合には、たとえ重合防止剤が混入されても重合防止剤が高沸点である場合には気体の凝縮液中には重合防止剤が混入されず、熱交換器内の高温条件下で重合が生じやすい。管板面上の伝熱管による凸部の存在は、凸部以外の凹部の存在を意味するのであり、この凹部で滞留したプロセス流体の凝縮液が重合するのである。
【0022】
本発明は、この突出部を除去することで管板面状の凹凸を無くし、重合物の付着を抑制するのみならず、重合自体を効果的に抑制することができる。多管式熱交換器におけるわずかな改良によりこの様な優れた効果が得られることは、従前に全く予測できなかったことである。これにより分離精製効率が向上し伝熱管流路の閉塞を効果的に抑制し、長期連続運転を可能とすることができる。以下、本発明を詳細に説明する。
【0023】
本発明は、管外流体入り口および管外流体出口とを供えかつ2枚の管板を両端付近に内蔵した管状胴体と、該管状胴体の両端に設けた蓋体と、該管板間に両端部外周を固定された多数本の伝熱管とからなる管板式熱交換器において、該管板と伝熱管との連結部にプロセス流体の滞留部がないことを特徴とする。2枚の管板を有する多管式熱交換器を対象としたのは、これを縦型にして伝熱管内にプロセス流体を流すと、上部に存在する管板面にプロセス流体が滞留する場合があり、これを有効に防止することを目的とするからである。また、横型であっても、前記管板面の突出により管板上に接触するプロセス流体が滞留し重合が生じる。従って、本発明の多管式熱交換器は、縦型式、横型式を問わず、いわゆる固定管板式熱交換器や遊動頭式熱交換器に応用することができる。図2は、本発明の一態様である多管式交換器を示す図であり、以下これを用いて説明する。
【0024】
本発明の多管式熱交換器においては、伝熱管に導入されたプロセス流体が管板に連結された伝熱管に導入されるものであれば胴部形状は特に制限はない。管外流体の貯溜形式等としては、1パス形に限られず、2パス形、3パス形であってもよい。また、管状胴体の仕切等は、長手邪魔板2パス形、分流形、二重分流形、分割流形等のいずれも採用することができる。
【0025】
多管式熱交換器の管状胴体は、その両端部に管板を有しかつ管外流体入り口および管外流体出口とを供えると共にその両端に蓋体を有する。本発明の多管式熱交換器は、後述するごとくその名称に係らずリボイラやコンデンサ等としても使用できるため、頭部蓋体の形式としては、ふた板分離形、ふた板一体形、管板一体形等のいずれでもよく、更に図4のcに示すように縦型で使用する場合に上部に蛇腹状のプロセス流体の流路を有していてもよい。更に、後部蓋体の形式も、固定管板形、遊動頭グランド形、遊動頭割フランジ形、遊動頭引き抜き形等のいずれでもよくい。尚、胴部のサイズは、使用目的に応じて適宜選択することができる。
【0026】
管状胴体内に配される伝熱管の外径、長さ等は使用する熱交換器のサイズや形状、使用目的等により適宜選択できる。また、鋼管の素材には特に制限は無く、溶接鋼管の作成のし易さから、オーステナイト系鋼管、オーステナイト・フェライト系鋼管、フェライト系鋼管であることが好ましい。これらによれば易重合体物質と反応せず、易重合性物質に変性等を与えず、伝熱管自体の腐食を生ずることがないからである。
【0027】
本発明の多管式熱交換器においては、伝熱管の両端部に配される管板が管板に設けた孔で伝熱管端部外周を連結される。従来の固定状態を図3のaで示すが、管板面に伝熱管の突出部が存在するため凹部ができ、この凹部にプロセス流体の滞留が生じた。しかし本発明では、管板のプロセス流体接触面を図3のbで示すごとく伝熱管の端部を突出部を除去しこの滞留部を無くした。本発明では、管板面に伝熱管端部が突出しなければ、伝熱管が管板面に埋め込まれていてもよい。この場合には、該管板と伝熱管との連結部にプロセス流体の滞留部がないように、例えば図3のcに示すように、管板と伝熱管との連結部に凹部ができないような溶接部とする。
【0028】
本発明では、伝熱管は管板に設けられた孔に嵌合して固定されるが、孔には、伝熱管外周と孔部との液密を保証するためにシール材を用いることができる。シール材としては、テープ状のものを伝熱管に巻き付けたり、パッキンを孔に装着してもよい。この様なパッキンの材質としては、耐熱、耐圧性に優れかつプロセス流体と反応しない材質で有ればよく、例えば、フッ素含有エラストマーやシリコンなどを使用することができる。この様なシール材を使用せずに管板へ伝熱管を取付けるには、管板に数条の溝を設けて拡管してもよく(図3のa参照)、溶接等によって固定してもよい。本発明では溶接によることが好ましい。比較的簡易に多数の伝熱管を取り付けることが可能であるとともに、液漏れがないからである。
【0029】
本発明において、プロセス流体の接触側の管板面において、伝熱管の突出部がない管板面を得るには種々の方法を採用することができる。例えば、伝熱管の端部を管板面と水平に配置し溶接により固定する方法、伝熱管端部を管板面よりへこませて配置したのち伝熱管の端部と管板孔とを溶接により固定し、かつ溶接材により前記へこみ部を管板と水平に成るように補填・研磨する方法が例示できる。また、あらかじめ先端を突出して取り付けた伝熱管の突出部を、伝熱管の取付後に切断等により削除する方法であってもよい。
【0030】
本発明では、管板面における伝熱管の突出は、2枚の管板のプロセス流体接触面の全てにおいて突出をなくすことが好ましい。突出部の存在により、何れにおいてもプロセス流体の滞留が生ずるからである。しかしながら、滞留防止の効率を考慮すれば、特に縦型の多管式熱交換器では設置した状態で上部管板面上の伝熱管の突出部をなくすことが好ましい。本発明の多管式熱交換器をコンデンサとして使用する場合には、気体であるプロセス流体の凝縮は上部管板側で生じやすく、かつ下部管板部では自重により自然落下するからである。更に、本発明の多管式熱交換器を縦型でリボイラとして使用する場合に、プロセス流体は下部管板部を経て伝熱管内に導入されるが、上部管板面上で生ずる凝縮は滞留するおそれがあり、これを有効に防止することができるからである。しかしながら、図5で示すような2パス形で横型の多管式熱交換器等の場合には、2枚の管板のプロセス流体の接触面のいずれも上記突出部を除去することが好ましい。横型では、運転停止時に突出部に液が残留し、運転再開時までに重合をおこす不都合を防止できるからである。
【0031】
更に、本発明では、管板面がJIS B 0601に記載のRmaxが12.5S以下であることが好ましく、より好ましくは3.2S以下である。プロセス流体の滞留は伝熱管の突出部でも生ずるのであるが、管板面のわずかの凹凸によっても生ずるからである。このような表面粗度の管板面は、管板面に伝熱管を溶接して連結させることで調整できるが、これを更に表面処理してもよい。
【0032】
この様な表面処理としては、バフ研磨などの機械研磨や電解研磨がある。バフ研磨は、主として平滑面または光沢面を得る場合に用いられる研磨法であるが、固定研磨剤による粗研磨、半固体ないし遊離研磨剤による中研磨および仕上げ研磨を採用できる。バフ研磨剤は、革や布などの柔軟性材料で研磨する他、トリポリケイ石、酸化クロム、炭化ケイ素、溶融アルミナ、焼成アルミナ、酸化クロムを研磨剤として含有する油脂性、非油脂性またはスプレー用剤等を使用することができる。
【0033】
電解研磨は、金属表面を溶解させながら平滑化する方法であり、伝熱管の材質が鉄鋼である場合の電解研磨溶液としては、過塩素酸系、硫酸系、リン酸系、硫酸−リン酸系等を使用することができる。鉄鋼はその組成の相違のみならず、熱処理、加工の程度によりその組織の相違が大きいため、使用する伝熱管に応じて適宜選択することができる。従って、過塩素酸系の電解質に一般に添加される無水酢酸の量や電解温度、電流密度、電圧、電解時間等は、伝熱管により適宜選択すればよい。なお、上記継目無鋼管、冷間仕上自動アーク溶接鋼管、溶接部加工仕上自動アーク溶接鋼管に機械研磨を行い、更に電解研磨処理を行ってもよい。
【0034】
本発明は、重合を防止すべく管板面における伝熱管の突出部を削除することを特徴とするのであるが、易重合性物質の重合は、凹凸部のみならず単に管板面に付着した凝縮液においても生じやすい。従って、凝縮したプロセス流体を迅速に多管式熱交換器内に排出することが重合防止には好ましく、管板面の表面粗度を上記のごとく低下させることが好ましいのである。
【0035】
本発明の熱交換器は、上記構成を有すれば特に他の制限はなく、一般的な熱交換器が有する邪魔板、長手邪魔板、緩衝板、仕切室胴フランジ、胴ふた側フランジ、胴側ノズル、遊動頭ふた、固定棒およびスペーサー、ガス抜き座、ドレン抜き座、計器座、支持脚、つり金具、液面計座、伸縮継手熱膨張対策等を有していてもよい。
【0036】
本発明においては、プロセス流体が易重合性物質であれば、気体、液体の別を問わない。また、本発明の熱交換器は、その名称を問わず冷却器、凝縮器、加熱器、蒸発器の何れとして使用することもできる。例えば、易重合体性物質の精製蒸留塔等に連結する多管式熱交換器に使用できる。より具体的には、易重合性物質を蒸留する蒸留塔塔頂部に連結する図2や図4のa、b、c、d何れの蓋体形式の場合でも本発明の優れた効果を得ることができる。
【0037】
なお、本発明の熱交換器は、蒸留塔の塔頂部および塔底部に使用することができ、設置方法としては、縦型、横型の何れにも使用できるが、縦型であることが好ましい。縦型に設置することで凝縮液の自然落下によって、滞留部内のプロセス流体の滞留を効果的に防止することができるからである。
【0038】
本発明の多管式熱交換器で取り扱う易重合性物質としては、気体、液体の別を問わず、例えば、アクリル酸、メタクリル酸、マレイン酸又はこれらのエステル体、スチレン、アクリロニトリルが例示でき、これらに更に高沸点物質や溶媒、易重合性物質の生成時の副生物との混合物を含んでもよい。易重合性物質としては、特に好ましくはアクリル酸、メタクリル酸またはこれらのエステル体であり、これに溶媒その他の不純物を含有したものが例示できる。例えば、アクリル酸およびアクリル酸エステルの場合には、アクリル酸を接触気相酸化反応で得る際に副生する酢酸、プロピオン酸、アクロレイン、マレイン酸、水、ホルマリン混合物を挙げることができる。また、例えば、メタクリル酸およびメタクリル酸エステルの場合には、メタクリル酸を接触気相酸化反応で得る際に副生するメタクロレイン、アクリル酸、酢酸混合物などを挙げることができる。
【0039】
本発明の多管式熱交換器の使用方法には、特に制限はないが易重合性物質の取り扱いに際し、プロセス流体に重合防止剤を添加することが好ましい。これにより多管式熱交換器における重合を更に抑制することができるからである。
【0040】
重合防止剤としては、分子状酸素含有ガス、ハイドロキノン、メトキノン、クレゾール、フェノール、t−ブチルカテコール、ジフェニルアミン、フェノチアジン、メチレンブルーから選ばれる1種以上、ジメチルジチオカルバミン酸銅、ジエチルジチオカルバミン酸銅、ジブチルジチオカルバミン酸銅およびサリチル酸銅などの銅塩化合物、酢酸マンガンなどのマンガン塩化合物から選ばれる1種以上、p−フェニレンジアミンなどのp−フェニレンジアミン類,4−ヒドロキシ−2,2,6,6−テトラメチルピペリジノオキシルなどのN−オキシル化合物、尿素などの尿素類、チオ尿素などのチオ尿素類などを好適に用いることができる。上記の化合物は単独でも、あるいは2種類以上組み合わせて使用することもできる。これらの中でも分子状酸素含有ガスであることが好ましい。プロセス流体が気体である場合に、特に重合抑制効果に優れるからである。
【0041】
分子状酸素含有ガスの添加量は、易重合性物質の蒸発蒸気量に対して0.01〜5容量%であることが好ましく、より好ましくは0.1〜1容量%である。なお蒸発蒸気量とは、熱交換器に供給される易重合性物質のモノマー蒸気の総量を意味する。また、分子状酸素含有ガスの供給方法としては、バブリング等により易重合性物質に直接混入させても、あるいは溶剤に溶解させて間接的に混入させてもよい。分子状酸素含有ガスを蒸留塔の塔底および/またはリボイラーからガス状で供給すれば、簡単にバブリングさせることができる。
【0042】
なお、他の重合防止剤をプロセス流体に添加する方法についても特に制限はなく、蒸留塔に直接導入してもよいし、供給液や還流液、または他の溶媒に溶解して送液ラインより導入してもよい。
【0043】
本発明の熱交換器は、プロセス流体が接触する管板面にプロセス流体の滞留がないことを特徴とするが、この熱交換器の使用は従来の多管式熱交換器と同様に使用することができる。易重合性物質が下記するアクリル酸含有溶液である場合を例に、図面を用いて説明する。
【0044】
アクリル酸含有溶液として、プロピレンおよび/またはアクロレインを気相接触酸化して得られるアクリル酸含有ガスを水と接触させて、アクリル酸をアクリル酸水溶液として捕集し、このアクリル酸水溶液を共沸溶媒の存在下に蒸留して得られる粗アクリル酸を必要に応じて他の蒸留塔で精製した後、高沸点不純物分離塔に導入して精製して得られる缶液が使用できる。
【0045】
図6は、縦型多管式熱交換器(コンデンサ)を蒸留塔に連結して、縦型多管式熱交換器(リボイラ)7を蒸留塔1の下部に設けられ支持させた構成を示す説明図である。
【0046】
蒸留塔は、易重合性物質含有物を蒸留できれば特に限定されないが、充填塔、棚段塔(トレイ塔)、濡壁塔、スプレー塔などを挙げることができる。なかでも、重合防止、塔効率の観点から、棚段塔(トレイ塔)が好ましい。
【0047】
アクリル酸含有溶液について、本発明の多管式熱交換器を使用する際に重合防止剤を添加する場合には、一般にアクリル酸等の易重合性物質の重合防止剤として知られている化合物であればいずれも使用することができる。これらのなかでも、ハイドロキノン、メトキノン、クレゾール、フェノール、t−ブチルカテコール、ジフェニルアミン、フェノチアジン、メチレンブルーから選ばれる1種以上、p−フェニレンジアミンなどのp−フェニレンジアミン類,4−ヒドロキシ−2,2,6,6−テトラメチルピペリジノオキシルなどのN−オキシル化合物、分子状酸素含有ガスなどを好適に用いることができる。上記の化合物は単独でも、あるいは2種類以上組み合わせて使用することもできる。特に好ましいのは、重合防止効果、蒸留装置の腐食性及び蒸留装置からでる廃液の処理のし易さの観点から、フェノチアジンおよび/またはN−オキシル化合物、分子状酸素含有ガスである。
【0048】
使用される重合防止剤の量は特に限定はされないが、重合防止剤の総量が、アクリル酸の蒸発蒸気量に対して1〜1000ppm(重量基準)とすることが好ましい。また、分子状酸素含有ガスの供給方法としては、バブリング等によりアクリル酸含有液中に直接混入させても、あるいは溶剤に溶解させて間接的に混入させてもよい。分子状酸素含有ガスを蒸留塔の塔底および/またはリボイラーからガス状で供給すれば、簡単にバブリングさせることができる。分子状酸素含有ガスは、通常、アクリル酸の蒸発蒸気量に対して0.1〜1容量%の割合で供給するのがよい。
【0049】
なお、メタクリル酸の場合には、上記のアクリル酸の場合と重複する点が多いが、下記の点において相違する。すなわち、メタクリル酸含有液を蒸留塔に導く前に、抽出工程に導きメタクリル酸含有液よりメタクリル酸を溶剤により抽出する点などが挙げられる。これらの場合でも、本願の示す条件を満たすことにより、後に続く多管式熱交換器の重合を防止することができる。
【0050】
【実施例】
以下、本発明の実施例により具体的に説明する。
【0051】
(実施例1)
内径1000mm、段数45段のステンレス鋼製(SUS316)のシーブトレーを内装した蒸留塔を用い、アクリル酸の精製を行った。蒸留したアクリル酸含有液の組成は、アクリル酸95重量%、酢酸3重量%でフィードし、重合防止剤フェノチアジンを200ppm添加した。塔頂圧力40Torr、温度60℃、塔底95mmHg、温度85℃、還流比8、分子状酸素含有ガスをリボイラ発生蒸気量に対し0.3vol%投入しながら精留した。
【0052】
この蒸留塔に塔頂にコンデンサを接続した。コンデンサは、各伝熱管は溶接により管板に取り付けたものである。また蒸留塔に塔底には、リボイラを接続した。各伝熱管は溶接により管板に取り付けたものである。管板面には伝熱管の突出部は、存在せず、コンデンサおよびリボイラの管板面の表面粗度はRmax=12.5Sであった。
【0053】
4カ月間連続稼働後、コンデンサおよびリボイラのプロセス流体の接触管板面およびノズルの点検を実施したところ重合物の付着を有さなかった。
【0054】
(比較例1)
管板面に平均1mmの伝熱管の突出を有するコンデンサとリボイラを使用した以外は実施例1と同一条件で運転した。
【0055】
4カ月間連続稼働後、コンデンサおよびリボイラのプロセス流体の接触管板面およびノズルの点検を実施したところ、コンデンサの滞留部内管板面に約200リットル、リボイラの管板面に約300リットルの重合物が確認され、更にリボイラ伝熱管の約5%が重合付着物で閉塞されていた。
【0056】
【発明の効果】
本発明によれば、多管式熱交換器内のプロセス流体接触面における管板面の伝熱管の突出をなくすことで、プロセス流体の当該管板面での滞留を防止することができる。これによりプロセス流体が易重合性物質である場合には、この滞留の防止により効果的に重合を抑制することができる。
【0057】
本発明の多管式熱交換器においては、極めて有効に易重合性物質の重合を防止でき、4カ月の連続運転において重合物の付着を完全に抑制した。これにより、従来から重合の発生により長期連続運転が可能となった。易重合性物質に分子状酸素含有ガスを供給して熱交換を行うと、易重合性物質の重合を効果的に抑制することができる。
【図面の簡単な説明】
【図1】 従来の多管式熱交換器を示す図である。
【図2】 本発明の多管式交換器の一態様を示す図である。
【図3】 aは、従来の管板面と伝熱管との関係を示す図であり、bおよびcは、本発明の管板面と伝熱管との関係を示す図である。
【図4】 本発明の縦型多管式熱交換器の一例を示す図である。
【図5】 本発明の横型多管式熱交換器の一例を示す図である。
【図6】 蒸留塔に連結した熱交換器(コンデンサおよびリボイラ)を示す図である。
【符号の説明】
A 管板上の伝熱管突出部
B 溶接部
1…蒸留塔
3…塔頂部
5…多管式熱交換器(コンデンサ)
7…多管式熱交換器(リボイラ)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a multitubular heat exchanger and a polymerization suppression method in a multitubular heat exchanger.
[0002]
[Prior art]
A multi-tube heat exchanger that transfers heat widely between two fluids of high temperature and low temperature is one of chemical machines widely used in the chemical industry. The multi-tubular heat exchanger has high reliability and is most frequently used under severe use conditions, long-term continuous operation, and the like. Among the multi-tube heat exchangers, the tube sheet heat exchanger includes one or more tube plates at both ends of the tubular body, and a plurality of heat transfer tubes each having an outer periphery fixed between the tube plates. It is characterized by being connected.
[0003]
For example, in a conventional vertical tube sheet heat exchanger as shown in FIG. 1, a process fluid is introduced into a heat transfer tube via an upper tube plate in the vicinity of the tube fluid inlet, and then the lower tube plate is passed from the end of the heat transfer tube. After that, it is discharged out of the heat exchanger. Here, the connecting portion between each tube plate and the heat transfer tube is fixed by protruding the heat transfer tube from the tube plate surface as shown in FIG. 3a in order to secure a strong connection and easily attach a large number of heat transfer tubes. The In heat exchangers, vibrations occur because both in-pipe fluid and out-pipe fluid constantly flow in and out, and vibration occurs from the pump / compressor and direct pulsating flow from the rotating machine. receive. Therefore, in order to prevent leakage due to loosening of the heat transfer tube mounting portion due to this vibration, the heat transfer tube protrudes from the tube plate surface to ensure strength. In order to improve the heat transfer efficiency, it is necessary to make a large contact surface with the coolant, and the tube diameter of the heat transfer tube is reduced. This is because it is simple to protrude and join the heat transfer tubes.
[0004]
[Problems to be solved by the invention]
On the other hand, foreign matter adheres to the heat transfer surface of the multi-tube heat exchanger as the usage time elapses, and heat transfer efficiency deteriorates. This dirt lowers the heat exchange rate, necessitates repair by dirt, and makes long-term operation difficult. This contamination occurs when the fluid contains solids or semi-solids. However, even if the process fluid itself is not solids, heat exchange occurs when the fluid components are easily polymerizable substances. Polymerization occurs therein, and this polymer causes contamination.
[0005]
For example, a multi-tube heat exchanger (condenser) led from the top of a distillation column cools and condenses the vapor rich in low-boiling components rising to the top of the distillation column in the heat transfer tube. However, in the case of an easily polymerizable compound such as acrylic acid, polymerization in the capacitor is likely to occur. Acrylic acid is produced by catalytic gas phase oxidation of propylene and / or acrolein with a molecular oxygen-containing gas-containing gas, and the acrylic acid-containing liquid is distilled in a distillation column. This is because impurities such as water, acetic acid, and acrolein are contained, and the polymerization of acrylic acid is very easy to occur. For this reason, various polymerization inhibitors such as phenothiazine are added during the process to suppress the polymerization of acrylic acid or the like, but it is not sufficient to suppress the polymerization. Therefore, in the case of a tube sheet type heat exchanger and a multi-tube type, since the protrusion of the heat transfer tube exists on the upper tube sheet surface of the condenser, the polymer adheres to the protrusion. For this reason, the separation efficiency is lowered due to the adhesion of the polymer, and the clogging by the polymer in the heat transfer tube is a cause and hinders long-term continuous operation of the process.
[0006]
Therefore, conventionally, it has become common to remove the polymer adhering to the multi-tube heat exchanger in periodic inspections and the like.
[0007]
[Means for Solving the Problems]
The present inventor has found that in a multi-tube heat exchanger, polymerization can be effectively suppressed by preventing stagnation of process fluid generated on the tube plate surface, and the present invention has been completed.
[0008]
That is, the present invention provides the following (1) to (1 0 ).
[0009]
(1) A tubular body having an extra-fluid inlet and an extra-fluid outlet and having two tube plates built in the vicinity of both ends, a lid provided at both ends of the tubular body, and both end portions between the tube plates In a tube sheet heat exchanger composed of a large number of heat transfer tubes having a fixed outer periphery, the fixing is performed on the tube sheet. Tube sheet on the opposite side of the body side of the tube sheet heat exchanger It is formed by welding between the hole on the surface side and the outer periphery of the end of the heat transfer tube, and there is no process fluid retention portion at the connection between the tube plate and the heat transfer tube. Tube heat exchanger.
[0010]
(2) A tubular body having an extra-fluid inlet and an extra-fluid outlet and having two tube plates built in the vicinity of both ends, a lid provided at both ends of the tubular body, and both end portions between the tube plates In a tube sheet heat exchanger composed of a large number of heat transfer tubes having a fixed outer periphery, the fixing is performed on the tube sheet. Tube sheet on the opposite side of the body side of the tube sheet heat exchanger A multi-tube for handling a polymerizable material, characterized in that there is no protrusion of the heat transfer tube on the tube plate surface in contact with the process fluid, which is formed by welding of the hole on the surface side and the outer periphery of the end of the heat transfer tube Type heat exchanger.
[0011]
(3) A tubular body having an extra-fluid inlet and an extra-fluid outlet and having two tube plates built in the vicinity of both ends, a lid provided at both ends of the tubular body, and both end portions between the tube plates In a tube sheet heat exchanger composed of a large number of heat transfer tubes having a fixed outer periphery, the fixing is performed on the tube sheet. Tube sheet on the opposite side of the body side of the tube sheet heat exchanger A vertical multi-tube type for handling easily polymerizable substances, characterized in that it is formed by welding the hole on the surface side and the outer periphery of the end of the heat transfer tube, and at least the protrusion of the heat transfer tube does not exist on the upper tube plate surface. Heat exchanger.
[0013]
( 4 ) The tube sheet surface in contact with the process fluid has the Rmax described in JIS B 0601 of 12.5 S or less (1) to ( 3 The multitubular heat exchanger according to any one of the above.
[0014]
( 5 (1) to (1) above, wherein the heat exchanger is a condenser connected to the top of the distillation column. 4 The multitubular heat exchanger according to any one of the above.
[0015]
( 6 (1) to (1) above, wherein the heat exchanger is a reboiler connected to the bottom of the distillation column. 4 The multitubular heat exchanger according to any one of the above.
[0016]
( 7 (1) to (1) above, wherein the easily polymerizable substance is (meth) acrylic acid or an ester thereof. 6 The multitubular heat exchanger according to any one of the above.
[0017]
( 8 ) Above (1)-( 7 The multitubular heat exchanger according to any one of 1) and 3), wherein when the easily polymerizable substance is passed as a process fluid to exchange heat, the process fluid contains a polymerization inhibitor. Polymerization inhibiting method in
[0018]
( 9 The polymerization inhibitor is a molecular oxygen-containing gas. 8 ) The method described.
[0019]
(1 0 ) The molecular oxygen-containing gas content is 0.01 to 5% by volume with respect to (meth) acrylic acid vapor. 9 ) The method described.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
The present invention is a multi-tube heat exchanger having no process fluid staying portion, and is characterized in that, in particular, the projecting portion of the heat transfer tube is eliminated on the surface of the tube plate in contact with the process fluid.
[0021]
When the easily polymerizable material was cooled using a conventional vertical tube sheet heat exchanger as a condenser, the polymer adhered to the upper tube sheet surface because of the protruding portion of the heat transfer tube end. However, the adhesion of this polymer is not just that the protrusions act as an attachment surface. When the easily polymerizable substance is in the gaseous state, even if the polymerization inhibitor is mixed, if the polymerization inhibitor has a high boiling point, the polymerization inhibitor is not mixed in the gaseous condensate, and the heat exchanger Polymerization tends to occur under high temperature conditions. The presence of the convex portion by the heat transfer tube on the tube plate surface means the presence of a concave portion other than the convex portion, and the condensate of the process fluid staying in the concave portion is polymerized.
[0022]
The present invention eliminates the projections and depressions on the tube sheet surface by removing the protrusions, and not only suppresses the adhesion of the polymer, but also effectively suppresses the polymerization itself. The fact that such an excellent effect can be obtained by a slight improvement in a multi-tube heat exchanger has never been predicted before. As a result, the separation and purification efficiency is improved, the blockage of the heat transfer tube channel is effectively suppressed, and a long-term continuous operation can be realized. Hereinafter, the present invention will be described in detail.
[0023]
The present invention provides a tubular body having an extra-tube fluid inlet and an extra-fluid fluid outlet and having two tube plates built in the vicinity of both ends, a lid provided at both ends of the tubular body, and both ends between the tube plates. In a tube plate heat exchanger composed of a large number of heat transfer tubes with fixed outer peripheries, there is no process fluid retention portion at the connection between the tube plate and the heat transfer tube. The purpose of the multi-tube heat exchanger with two tube sheets is when the process fluid stays on the tube plate surface that exists in the upper part when the process fluid is made to flow vertically in the heat transfer tube. This is because the purpose is to prevent this effectively. Even in the horizontal type, the process fluid coming into contact with the tube sheet is retained by the protrusion of the tube sheet surface and polymerization occurs. Therefore, the multi-tube heat exchanger of the present invention can be applied to so-called fixed tube plate heat exchangers and floating head heat exchangers regardless of whether they are vertical or horizontal. FIG. 2 is a diagram showing a multitubular exchanger which is an embodiment of the present invention, and will be described below using this.
[0024]
In the multi-tube heat exchanger of the present invention, the body shape is not particularly limited as long as the process fluid introduced into the heat transfer tube is introduced into the heat transfer tube connected to the tube plate. The storage type of the extra-fluid fluid is not limited to the one-pass type, but may be a two-pass type or a three-pass type. In addition, as the partition of the tubular body, any of a long baffle plate 2-pass shape, a flow dividing shape, a double flow dividing shape, a divided flow shape and the like can be adopted.
[0025]
The tubular body of the multi-tube heat exchanger has tube plates at both ends thereof, an extra-fluid inlet and an extra-fluid outlet, and lids at both ends. Since the multi-tube heat exchanger of the present invention can be used as a reboiler, a condenser or the like regardless of its name as will be described later, a lid plate separation type, a lid plate integrated type, a tube plate is used as the form of the head cover body As shown in FIG. 4 c, any one of an integrated type and the like may be used, and when used in a vertical type, an accordion-like process fluid flow path may be provided at the top. Furthermore, the form of the rear lid may be any of a fixed tube plate shape, a floating head ground shape, a floating head split flange shape, a floating head pull-out shape, and the like. In addition, the size of the trunk portion can be appropriately selected according to the purpose of use.
[0026]
The outer diameter, length, and the like of the heat transfer tube arranged in the tubular body can be appropriately selected depending on the size and shape of the heat exchanger to be used, the purpose of use, and the like. Moreover, there is no restriction | limiting in particular in the raw material of a steel pipe, From the ease of preparation of a welded steel pipe, it is preferable that they are an austenitic steel pipe, an austenitic-ferritic steel pipe, and a ferritic steel pipe. This is because they do not react with the easily polymerized substance, do not modify the easily polymerizable substance, and do not cause corrosion of the heat transfer tube itself.
[0027]
In the multi-tube heat exchanger of the present invention, the tube plates arranged at both ends of the heat transfer tube are connected to the outer periphery of the heat transfer tube end by holes provided in the tube plate. A conventional fixed state is shown by a in FIG. 3, and a recessed portion is formed because the projecting portion of the heat transfer tube exists on the tube plate surface, and the process fluid stays in the recessed portion. However, in the present invention, the process fluid contact surface of the tube plate is removed as shown in FIG. In the present invention, the heat transfer tube may be embedded in the tube plate surface as long as the heat transfer tube end portion does not protrude from the tube plate surface. In this case, as shown in FIG. 3c, for example, as shown in FIG. 3c, there is no recess in the connecting portion between the tube plate and the heat transfer tube so that the connecting portion between the tube plate and the heat transfer tube does not have a process fluid retention portion. Use a welded part.
[0028]
In the present invention, the heat transfer tube is fitted and fixed in a hole provided in the tube plate, but a sealing material can be used for the hole in order to guarantee liquid-tightness between the outer periphery of the heat transfer tube and the hole. . As a sealing material, a tape-shaped thing may be wound around a heat exchanger tube, or packing may be attached to a hole. Such a packing material may be any material that is excellent in heat resistance and pressure resistance and does not react with the process fluid. For example, fluorine-containing elastomer or silicon can be used. In order to attach the heat transfer tube to the tube plate without using such a sealing material, the tube plate may be provided with several grooves (see a in FIG. 3), or fixed by welding or the like. Good. In the present invention, it is preferable to use welding. This is because it is possible to attach a large number of heat transfer tubes relatively easily and there is no liquid leakage.
[0029]
In the present invention, various methods can be employed to obtain a tube sheet surface without a projecting portion of the heat transfer tube on the tube sheet surface on the process fluid contact side. For example, a method in which the end of the heat transfer tube is placed horizontally with the tube plate surface and fixed by welding, and the end of the heat transfer tube and the tube plate hole are welded after the heat transfer tube end is recessed from the tube plate surface. And a method of filling and polishing the dents so as to be horizontal with the tube sheet with a welding material. Moreover, the method of deleting the protrusion part of the heat exchanger tube which protruded the front-end | tip in advance by cutting etc. after attachment of a heat exchanger tube may be sufficient.
[0030]
In the present invention, it is preferable that the projection of the heat transfer tube on the tube plate surface is eliminated from all of the process fluid contact surfaces of the two tube plates. This is because the retention of the process fluid occurs in any case due to the presence of the protruding portion. However, in consideration of the retention prevention efficiency, it is preferable to eliminate the projecting portion of the heat transfer tube on the upper tube plate surface in the installed state particularly in the vertical multi-tube heat exchanger. This is because when the multi-tube heat exchanger of the present invention is used as a condenser, the process fluid, which is a gas, is likely to condense on the upper tube plate side, and naturally falls by its own weight in the lower tube plate portion. Furthermore, when the multi-tube heat exchanger of the present invention is used as a reboiler in a vertical type, the process fluid is introduced into the heat transfer tube through the lower tube plate portion, but the condensation that occurs on the upper tube plate surface is retained. This is because this can be effectively prevented. However, in the case of a two-pass and horizontal multi-tube heat exchanger or the like as shown in FIG. 5, it is preferable to remove the protrusions on any of the process fluid contact surfaces of the two tube sheets. This is because in the horizontal type, the liquid remains in the protruding portion when the operation is stopped, and the inconvenience of performing the polymerization before the operation is resumed can be prevented.
[0031]
Furthermore, in this invention, it is preferable that Rmax as described in JISB0601 is 12.5S or less, More preferably, it is 3.2S or less. This is because the retention of the process fluid occurs even at the protrusion of the heat transfer tube, but also due to slight irregularities on the tube plate surface. The tube plate surface having such a surface roughness can be adjusted by welding and connecting the heat transfer tube to the tube plate surface, but this may be further subjected to surface treatment.
[0032]
Such surface treatment includes mechanical polishing such as buffing and electrolytic polishing. The buff polishing is a polishing method mainly used for obtaining a smooth surface or a glossy surface, but rough polishing with a fixed abrasive, medium polishing with semi-solid or free abrasive, and final polishing can be employed. Buffing abrasives are oily, non-greasy or spraying containing abrasive materials such as tripolysilicate, chromium oxide, silicon carbide, fused alumina, calcined alumina, and chromium oxide, as well as polishing with flexible materials such as leather and cloth. An agent or the like can be used.
[0033]
Electropolishing is a method of smoothing while dissolving the metal surface. As the electropolishing solution when the material of the heat transfer tube is steel, perchloric acid, sulfuric acid, phosphoric acid, sulfuric acid-phosphoric acid Etc. can be used. Steel has not only a difference in composition but also a large difference in structure depending on the degree of heat treatment and processing, so that it can be appropriately selected according to the heat transfer tube to be used. Therefore, the amount of acetic anhydride generally added to the perchloric acid electrolyte, the electrolysis temperature, the current density, the voltage, the electrolysis time, etc. may be appropriately selected depending on the heat transfer tube. The seamless steel pipe, the cold finish automatic arc welded steel pipe, and the welded portion processed finish automatic arc welded steel pipe may be subjected to mechanical polishing and further subjected to electrolytic polishing.
[0034]
The present invention is characterized in that the protruding portion of the heat transfer tube on the tube plate surface is deleted in order to prevent polymerization, but the polymerization of the easily polymerizable substance is not only attached to the uneven portion but also to the tube plate surface. It tends to occur even in condensate. Therefore, it is preferable to prevent the polymerization process from quickly discharging the condensed process fluid into the multi-tube heat exchanger, and it is preferable to reduce the surface roughness of the tube sheet surface as described above.
[0035]
The heat exchanger of the present invention is not particularly limited as long as it has the above-described configuration, and a baffle plate, a long baffle plate, a buffer plate, a partition cylinder flange, a trunk lid side flange, a trunk, which a general heat exchanger has It may have a side nozzle, a floating head lid, a fixing rod and a spacer, a gas vent seat, a drain seat, an instrument seat, a support leg, a bracket, a liquid level gauge, an expansion joint thermal expansion countermeasure, and the like.
[0036]
In the present invention, any gas or liquid may be used as long as the process fluid is an easily polymerizable substance. Moreover, the heat exchanger of this invention can also be used as any of a cooler, a condenser, a heater, and an evaporator regardless of the name. For example, it can be used in a multitubular heat exchanger connected to a purification distillation column of an easily polymerized substance. More specifically, the excellent effect of the present invention can be obtained even in the case of any of the lid types of FIGS. 2 and 4 connected to the top of a distillation column for distilling an easily polymerizable substance. Can do.
[0037]
In addition, the heat exchanger of this invention can be used for the tower top part and tower bottom part of a distillation column, and although it can use for any of a vertical type and a horizontal type as an installation method, a vertical type is preferable. This is because the installation of the vertical type can effectively prevent the retention of the process fluid in the retention portion due to the natural fall of the condensate.
[0038]
As the easily polymerizable substance handled in the multitubular heat exchanger of the present invention, regardless of gas or liquid, for example, acrylic acid, methacrylic acid, maleic acid or ester thereof, styrene, acrylonitrile can be exemplified, These may further contain a mixture with a high-boiling substance, a solvent, and a by-product during production of the easily polymerizable substance. As the easily polymerizable substance, acrylic acid, methacrylic acid or esters thereof are particularly preferable, and those containing a solvent or other impurities can be exemplified. For example, in the case of acrylic acid and acrylic acid ester, acetic acid, propionic acid, acrolein, maleic acid, water, and formalin mixture which are by-produced when acrylic acid is obtained by catalytic gas phase oxidation reaction can be mentioned. Further, for example, in the case of methacrylic acid and methacrylic acid ester, there can be mentioned methacrolein, acrylic acid, acetic acid mixture and the like by-produced when methacrylic acid is obtained by catalytic gas phase oxidation reaction.
[0039]
Although there is no restriction | limiting in particular in the usage method of the multitubular heat exchanger of this invention, When handling an easily polymerizable substance, it is preferable to add a polymerization inhibitor to a process fluid. This is because the polymerization in the multitubular heat exchanger can be further suppressed.
[0040]
Polymerization inhibitors include molecular oxygen-containing gas, hydroquinone, methoquinone, cresol, phenol, t-butylcatechol, diphenylamine, phenothiazine, and methylene blue, copper dimethyldithiocarbamate, copper diethyldithiocarbamate, dibutyldithiocarbamic acid One or more selected from copper salt compounds such as copper and copper salicylate, manganese salt compounds such as manganese acetate, p-phenylenediamines such as p-phenylenediamine, 4-hydroxy-2,2,6,6-tetramethyl N-oxyl compounds such as piperidinooxyl, ureas such as urea, thioureas such as thiourea, and the like can be suitably used. The above compounds can be used alone or in combination of two or more. Among these, a molecular oxygen-containing gas is preferable. This is because when the process fluid is a gas, the polymerization suppression effect is particularly excellent.
[0041]
The addition amount of the molecular oxygen-containing gas is preferably 0.01 to 5% by volume, more preferably 0.1 to 1% by volume with respect to the amount of vaporized vapor of the easily polymerizable substance. The amount of vaporized vapor means the total amount of monomer vapor of the easily polymerizable substance supplied to the heat exchanger. As a method for supplying the molecular oxygen-containing gas, the molecular oxygen-containing gas may be directly mixed into the easily polymerizable substance by bubbling or the like, or may be indirectly mixed by being dissolved in a solvent. If the molecular oxygen-containing gas is supplied in the form of gas from the bottom of the distillation column and / or the reboiler, it can be easily bubbled.
[0042]
The method for adding other polymerization inhibitor to the process fluid is not particularly limited, and may be introduced directly into the distillation column, or may be dissolved in a supply liquid, a reflux liquid, or other solvent from a liquid feed line. It may be introduced.
[0043]
The heat exchanger of the present invention is characterized in that the process fluid does not stay on the tube plate surface in contact with the process fluid, but this heat exchanger is used in the same manner as a conventional multi-tube heat exchanger. be able to. The case where the easily polymerizable substance is an acrylic acid-containing solution described below will be described as an example with reference to the drawings.
[0044]
As an acrylic acid-containing solution, an acrylic acid-containing gas obtained by vapor-phase catalytic oxidation of propylene and / or acrolein is brought into contact with water, and acrylic acid is collected as an aqueous acrylic acid solution. The aqueous acrylic acid solution is used as an azeotropic solvent. The crude acrylic acid obtained by distillation in the presence of can be purified in another distillation column, if necessary, and then introduced into a high-boiling impurity separation column to be purified.
[0045]
FIG. 6 shows a configuration in which a vertical multitubular heat exchanger (condenser) is connected to a distillation column, and a vertical multitubular heat exchanger (reboiler) 7 is provided and supported at the lower portion of the distillation column 1. It is explanatory drawing.
[0046]
The distillation column is not particularly limited as long as the easily polymerizable substance-containing material can be distilled, and examples thereof include a packed column, a plate column (tray column), a wet wall column, and a spray column. Of these, a tray column (tray column) is preferable from the viewpoint of polymerization prevention and column efficiency.
[0047]
For acrylic acid-containing solutions, when adding a polymerization inhibitor when using the multi-tubular heat exchanger of the present invention, it is a compound generally known as a polymerization inhibitor for easily polymerizable substances such as acrylic acid. Any can be used. Among these, one or more selected from hydroquinone, methoquinone, cresol, phenol, t-butylcatechol, diphenylamine, phenothiazine, and methylene blue, p-phenylenediamines such as p-phenylenediamine, 4-hydroxy-2,2, N-oxyl compounds such as 6,6-tetramethylpiperidinooxyl, molecular oxygen-containing gas and the like can be suitably used. The above compounds can be used alone or in combination of two or more. Particularly preferred are phenothiazine and / or an N-oxyl compound and a molecular oxygen-containing gas from the viewpoints of polymerization preventing effect, corrosivity of the distillation apparatus, and ease of treatment of the waste liquid from the distillation apparatus.
[0048]
The amount of the polymerization inhibitor to be used is not particularly limited, but the total amount of the polymerization inhibitor is preferably 1 to 1000 ppm (weight basis) with respect to the evaporation vapor amount of acrylic acid. As a method for supplying the molecular oxygen-containing gas, the molecular oxygen-containing gas may be directly mixed into the acrylic acid-containing liquid by bubbling or the like, or may be indirectly mixed by being dissolved in a solvent. If the molecular oxygen-containing gas is supplied in the form of gas from the bottom of the distillation column and / or the reboiler, it can be easily bubbled. The molecular oxygen-containing gas is usually preferably supplied at a ratio of 0.1 to 1% by volume with respect to the amount of vaporized acrylic acid.
[0049]
In the case of methacrylic acid, there are many points that overlap with the case of acrylic acid described above, but there are differences in the following points. That is, before leading a methacrylic acid containing liquid to a distillation tower, the point which extracts to a extraction process and extracts methacrylic acid from a methacrylic acid containing liquid with a solvent is mentioned. Even in these cases, the polymerization of the subsequent multi-tubular heat exchanger can be prevented by satisfying the conditions shown in the present application.
[0050]
【Example】
Hereinafter, examples of the present invention will be described in detail.
[0051]
Example 1
Acrylic acid was purified using a distillation column equipped with a stainless steel (SUS316) sieve tray having an inner diameter of 1000 mm and 45 stages. The composition of the distilled acrylic acid-containing liquid was fed with 95% by weight of acrylic acid and 3% by weight of acetic acid, and 200 ppm of the polymerization inhibitor phenothiazine was added. Rectification was carried out while introducing a tower top pressure of 40 Torr, a temperature of 60 ° C., a tower bottom of 95 mmHg, a temperature of 85 ° C., a reflux ratio of 8, and a molecular oxygen-containing gas in an amount of 0.3 vol% with respect to the amount of reboiler generated steam.
[0052]
A condenser was connected to the top of this distillation column. In the condenser, each heat transfer tube is attached to the tube plate by welding. A reboiler was connected to the bottom of the distillation column. Each heat transfer tube is attached to the tube plate by welding. There was no projection of the heat transfer tube on the tube plate surface, and the surface roughness of the tube plate surface of the condenser and reboiler was Rmax = 12.5S.
[0053]
After continuous operation for 4 months, the contact tube plate surface and nozzle of the process fluid of the condenser and reboiler were inspected, and there was no adhesion of polymer.
[0054]
(Comparative Example 1)
The operation was performed under the same conditions as in Example 1 except that a condenser and a reboiler having an average 1 mm heat transfer tube protrusion on the tube plate surface were used.
[0055]
After continuous operation for 4 months, the contact tube plate surface and nozzle of the condenser and reboiler process fluid were inspected. As a result, about 200 liters of polymerization was obtained on the tube plate surface of the condenser and the reboiler tube plate surface. In addition, about 5% of the reboiler heat transfer tube was clogged with polymerized deposits.
[0056]
【The invention's effect】
According to the present invention, it is possible to prevent the process fluid from staying on the tube plate surface by eliminating the protrusion of the heat transfer tube on the tube plate surface at the process fluid contact surface in the multi-tube heat exchanger. Thereby, when the process fluid is an easily polymerizable substance, the polymerization can be effectively suppressed by preventing the stay.
[0057]
In the multitubular heat exchanger of the present invention, the polymerization of the easily polymerizable substance can be prevented very effectively, and the adhesion of the polymerized product is completely suppressed in the continuous operation for 4 months. As a result, long-term continuous operation has become possible due to the occurrence of polymerization. When the molecular oxygen-containing gas is supplied to the easily polymerizable substance and heat exchange is performed, the polymerization of the easily polymerizable substance can be effectively suppressed.
[Brief description of the drawings]
FIG. 1 is a view showing a conventional multi-tube heat exchanger.
FIG. 2 is a view showing an embodiment of a multi-tube exchanger according to the present invention.
FIG. 3a is a diagram showing a relationship between a conventional tube plate surface and a heat transfer tube, and b and c are diagrams showing a relationship between the tube plate surface of the present invention and a heat transfer tube.
FIG. 4 is a view showing an example of a vertical multi-tube heat exchanger according to the present invention.
FIG. 5 is a diagram showing an example of a horizontal multi-tube heat exchanger according to the present invention.
FIG. 6 is a diagram showing a heat exchanger (condenser and reboiler) connected to a distillation column.
[Explanation of symbols]
A Heat transfer tube protrusion on the tube plate
B Welded part
1 ... Distillation tower
3 ... Tower top
5. Multi-tube heat exchanger (condenser)
7. Multi-tube heat exchanger (reboiler)

Claims (10)

管外流体入り口および管外流体出口とを供えかつ2枚の管板を両端付近に内蔵した管状胴体と、該管状胴体の両端に設けた蓋体と、該管板間に両端部外周を固定された多数本の伝熱管とからなる管板式熱交換器において、前記固定が、該管板の管板式熱交換器の胴側とは反対側の管板面側の孔部と、該伝熱管の端部外周との溶接によりなり、該管板と伝熱管との連結部にプロセス流体の滞留部がないことを特徴とする易重合性物質取り扱い用多管式熱交換器。A tubular body that has an extra-fluid inlet and an extra-fluid outlet and that has two tube plates built near both ends, a lid provided at both ends of the tubular body, and the outer periphery of both ends fixed between the tube plates In the tube sheet heat exchanger comprising a plurality of heat transfer tubes, the fixing is performed on the tube plate surface side of the tube plate opposite to the body side of the tube plate heat exchanger, and the heat transfer tube A multi-tube heat exchanger for handling easily polymerizable substances, characterized in that there is no process fluid staying portion at the connecting portion between the tube plate and the heat transfer tube. 管外流体入り口および管外流体出口とを供えかつ2枚の管板を両端付近に内蔵した管状胴体と、該管状胴体の両端に設けた蓋体と、該管板間に両端部外周を固定された多数本の伝熱管とからなる管板式熱交換器において、前記固定が、該管板の管板式熱交換器の胴側とは反対側の管板面側の孔部と、該伝熱管の端部外周との溶接によりなり、プロセス流体が接触する管板面に伝熱管の突出部が存在しないことを特徴とする易重合性物質取り扱い用多管式熱交換器。A tubular body that has an extra-fluid inlet and an extra-fluid outlet and that has two tube plates built near both ends, a lid provided at both ends of the tubular body, and the outer periphery of both ends fixed between the tube plates In the tube sheet heat exchanger comprising a plurality of heat transfer tubes, the fixing is performed on the tube plate surface side of the tube plate opposite to the body side of the tube plate heat exchanger, and the heat transfer tube A multi-tubular heat exchanger for handling easily polymerizable substances, characterized in that there is no projection of the heat transfer tube on the tube plate surface in contact with the process fluid. 管外流体入り口および管外流体出口とを供えかつ2枚の管板を両端付近に内蔵した管状胴体と、該管状胴体の両端に設けた蓋体と、該管板間に両端部外周を固定された多数本の伝熱管とからなる管板式熱交換器において、前記固定が、該管板の管板式熱交換器の胴側とは反対側の管板面側の孔部と、該伝熱管の端部外周との溶接によりなり、少なくとも上部管板面に伝熱管の突出部が存在しないことを特徴とする易重合性物質取り扱い用縦型多管式熱交換器。A tubular body that has an extra-fluid inlet and an extra-fluid outlet and that has two tube plates built near both ends, a lid provided at both ends of the tubular body, and the outer periphery of both ends fixed between the tube plates In the tube sheet heat exchanger comprising a plurality of heat transfer tubes, the fixing is performed on the tube plate surface side of the tube plate opposite to the body side of the tube plate heat exchanger, and the heat transfer tube A vertical multitubular heat exchanger for handling easily polymerizable substances, characterized in that the heat transfer tube protrusion is not present at least on the upper tube plate surface. プロセス流体が接触する管板面が、JIS B 0601に記載のRmaxが12.5S以下である請求項1〜3のいずれかに記載の多管式熱交換器。  The multi-tubular heat exchanger according to any one of claims 1 to 3, wherein the tube plate surface in contact with the process fluid has an Rmax of 12.5 S or less according to JIS B 0601. 熱交換器が蒸留塔塔頂部に連結するコンデンサであることを特徴とする請求項1〜4のいずれかに記載の多管式熱交換器。  The multitubular heat exchanger according to any one of claims 1 to 4, wherein the heat exchanger is a condenser connected to the top of the distillation column. 熱交換器が蒸留塔塔底部に連結するリボイラであることを特徴とする請求項1〜4のいずれかに記載の多管式熱交換器。  The multitubular heat exchanger according to any one of claims 1 to 4, wherein the heat exchanger is a reboiler connected to the bottom of the distillation column. 易重合性物質が(メタ)アクリル酸またはそのエステルであることを特徴とする請求項1〜6のいずれかに記載の多管式熱交換器。  The multitubular heat exchanger according to any one of claims 1 to 6, wherein the easily polymerizable substance is (meth) acrylic acid or an ester thereof. 請求項1〜7のいずれかに記載の多管式熱交換器にプロセス流体として易重合性物質を通過させ熱交換させる際に、プロセス流体に重合防止剤を含有させることを特徴とする多管式熱交換器における重合抑制方法。  A multi-tubular heat exchanger according to any one of claims 1 to 7, wherein a polymerization inhibitor is contained in the process fluid when an easily polymerizable substance is passed as the process fluid to exchange heat. Of polymerization in a heat exchanger. 重合防止剤が、分子状酸素含有ガスであることを特徴とする請求項8記載の方法。  9. The method according to claim 8, wherein the polymerization inhibitor is a molecular oxygen-containing gas. 分子状酸素含有ガス含有量が(メタ)アクリル酸蒸気に対して0.01〜5容量%であることを特徴とする請求項9記載の方法。  10. The method according to claim 9, wherein the molecular oxygen-containing gas content is 0.01 to 5% by volume with respect to (meth) acrylic acid vapor.
JP06540399A 1999-03-11 1999-03-11 Multi-tube heat exchanger and polymerization suppression method in the multi-tube heat exchanger Expired - Fee Related JP4416858B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP06540399A JP4416858B2 (en) 1999-03-11 1999-03-11 Multi-tube heat exchanger and polymerization suppression method in the multi-tube heat exchanger
MYPI20000773A MY121525A (en) 1999-03-11 2000-02-29 Shell-and tube heat exchanger and method for inhibiting polymerization in the shell-and-tube heat exchanger
EP00104889A EP1034824B1 (en) 1999-03-11 2000-03-08 Shell-and-tube heat exchanger and method for inhibiting polymerization in the shell-and-tube heat exchanger
US09/520,744 US6620969B1 (en) 1999-03-11 2000-03-08 Shell-and-tube heat exchanger and method for inhibiting polymerization in the shell-and-tube heat exchanger
CNB001068911A CN1262810C (en) 1999-03-11 2000-03-11 Shell-and-tube heat exchanger and method for controlling polymerization in shell-and-tube heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06540399A JP4416858B2 (en) 1999-03-11 1999-03-11 Multi-tube heat exchanger and polymerization suppression method in the multi-tube heat exchanger

Publications (2)

Publication Number Publication Date
JP2000254484A JP2000254484A (en) 2000-09-19
JP4416858B2 true JP4416858B2 (en) 2010-02-17

Family

ID=13286031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06540399A Expired - Fee Related JP4416858B2 (en) 1999-03-11 1999-03-11 Multi-tube heat exchanger and polymerization suppression method in the multi-tube heat exchanger

Country Status (1)

Country Link
JP (1) JP4416858B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002166159A (en) * 2000-11-29 2002-06-11 Nippon Shokubai Co Ltd Method of manufacturing dehydration reaction product
JP4575636B2 (en) * 2002-02-14 2010-11-04 三菱レイヨン株式会社 Multitubular heat exchanger, distillation apparatus equipped with the same, and heat exchange method
JP2004337649A (en) * 2003-05-13 2004-12-02 Hitachi Ltd Organochlorine compound treatment apparatus
JP2005030673A (en) * 2003-07-11 2005-02-03 Mayekawa Mfg Co Ltd Heat exchanger and manufacturing method therefor
US8037928B2 (en) * 2005-12-21 2011-10-18 Exxonmobil Research & Engineering Company Chromium-enriched oxide containing material and preoxidation method of making the same to mitigate corrosion and fouling associated with heat transfer components
JP4732275B2 (en) * 2006-08-22 2011-07-27 伯東株式会社 Corrosion control method for stainless steel
EP1995543A1 (en) * 2007-05-10 2008-11-26 AGC Flat Glass Europe SA Heat exchanger for oxygen
JP6793443B2 (en) * 2014-12-22 2020-12-02 三菱ケミカル株式会社 Heat exchanger and distillation method of easily polymerizable compound
JP6961954B2 (en) * 2016-06-29 2021-11-05 三菱ケミカル株式会社 Method for producing (meth) acrylic acid or its ester
CN107941039B (en) * 2016-10-12 2020-03-03 英尼奥斯欧洲股份公司 Quench tower aftercooler
EP3846928A4 (en) * 2018-09-06 2022-04-27 Public Joint Stock Company "Sibur Holding" Bubble shell-and-tube apparatus
WO2023210075A1 (en) * 2022-04-27 2023-11-02 株式会社日本触媒 Device for handling easily polymerizable substance

Also Published As

Publication number Publication date
JP2000254484A (en) 2000-09-19

Similar Documents

Publication Publication Date Title
JP4540920B2 (en) Vertical multitubular heat exchanger and distillation column system including the same
US6620969B1 (en) Shell-and-tube heat exchanger and method for inhibiting polymerization in the shell-and-tube heat exchanger
JP4416858B2 (en) Multi-tube heat exchanger and polymerization suppression method in the multi-tube heat exchanger
US5897749A (en) Continuous distillative separation of liquid mixtures which contain (meth) acrylic acid as the main component
US7265241B2 (en) Method for purifying (meth)acrylic acid
US6495045B2 (en) Solid substance removing device
JP6961954B2 (en) Method for producing (meth) acrylic acid or its ester
JP4575636B2 (en) Multitubular heat exchanger, distillation apparatus equipped with the same, and heat exchange method
KR101091738B1 (en) Method for production of purified (meth)acrylic acid
JP5066309B2 (en) Purification method for substances containing easily polymerizable substances
US7014736B2 (en) Apparatus and process for purification of acrylic acid family
JP2000266477A (en) Method for restraining polymerization in multitubular heat exchanger
JP4186459B2 (en) Tower equipment for easily polymerizable compounds
WO2005085167A1 (en) Process for producing (meth)acrylic acid
JP2005336099A (en) Method for cooling reactive gas containing (meth)acrylic acid or/and (meth)acrolein
JP5066496B2 (en) Purification method for substances containing easily polymerizable substances

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040701

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050419

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090915

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091125

R150 Certificate of patent or registration of utility model

Ref document number: 4416858

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121204

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131204

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees