JP4414555B2 - Hot water filter - Google Patents

Hot water filter Download PDF

Info

Publication number
JP4414555B2
JP4414555B2 JP2000116349A JP2000116349A JP4414555B2 JP 4414555 B2 JP4414555 B2 JP 4414555B2 JP 2000116349 A JP2000116349 A JP 2000116349A JP 2000116349 A JP2000116349 A JP 2000116349A JP 4414555 B2 JP4414555 B2 JP 4414555B2
Authority
JP
Japan
Prior art keywords
filter
temperature water
water
polymer
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000116349A
Other languages
Japanese (ja)
Other versions
JP2001293339A (en
Inventor
伸一 大橋
悟 津田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp filed Critical Organo Corp
Priority to JP2000116349A priority Critical patent/JP4414555B2/en
Publication of JP2001293339A publication Critical patent/JP2001293339A/en
Application granted granted Critical
Publication of JP4414555B2 publication Critical patent/JP4414555B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Nonwoven Fabrics (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Filtration Of Liquid (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、火力発電所、加圧水型原子力発電所(以下、「PWR」と略す)および沸騰水型原子力発電所(以下、「BWR」と略す)におけるヒータドレイン水などの高温水系に適用される高温水用フィルタに関する。
【0002】
【従来の技術】
火力発電所および原子力発電所では、発生させた高温、高圧の蒸気をタービンに供給し、この蒸気によりタービンを駆動して発電を行う。そして、タービンを駆動した後の蒸気は復水器によって冷却され、水の状態に戻された後、復水は再度加熱されてボイラ、原子炉、蒸気発生器などの高温水系に供給されて再使用される。
【0003】
上述の高温水系に供給される過程において、復水中に酸化鉄を主成分とする金属酸化物から成る不純物が給水配管、給水加熱器から発生し、またはヒータードレン系から持ち込まれたりして混入することとなる。そして、この系の運転に伴い、例えば、PWRにおいては、この不純物が蒸気発生器の伝熱管の外表面に徐々に付着することとなり、この付着物の堆積は蒸気発生器の伝熱効率を低下させるだけでなく、伝熱管の腐蝕損傷を招くこととなる。また、火力発電所においては、ボイラへ供給される水に含まれる上記不純物がボイラの伝熱管内に付着し、この付着物の堆積がボイラの差圧を上昇させることとなる。
【0004】
このため、従来、上述のヒータードレン水等の高温水系の不純物を除去する方法として、酸化鉄微粒子をコアフィルタの濾過面にプリコートすることによって、酸化鉄微粒子の被覆膜を形成させたプリコートフィルタを作成し、このプリコートフィルタに不純物を含む水を通水させることによって、高温水系での不純物を吸着除去する方法が特開平9−206567号に開示されている。本発明でいう「コアフィルタ」とは、プリコート材を支持するためのフィルタであり、それ自身にも濾過作用を持っているもので、例えば、セラミックフィルタ、金属フィルタ、燒結金属フィルタ、ディスクフィルタ、プリーツ型フィルタ、中空糸膜フィルタ等がある。
【0005】
【発明が解決しようとする課題】
通常プリコートフィルタを使用する場合、差圧が上昇した場合には、逆洗によってコアフィルタからプリコート材を脱離させ、再度、コアフィルタをプリコート材でプリコートすることにより再生することが可能である。しかし、高温水系にて用いた場合、通常の場合と異なり、逆洗しても差圧が回復しなくなるという問題が生じた。本発明者が調査したところ、吸着した不純物(例えば鉄)が高温によって吸着材と共にコアフィルタ表面に固着し、容易には剥離しない吸着層を形成していることが解った。
【0006】
ここで、上記吸着層は有機酸または無機酸等を用いた薬品洗浄を行うことにより脱離させることが可能であるが、これらの酸は蒸気発生器、配管など高温水系の構成設備と反応してこれらを腐食するという問題を招く。このため、一旦、薬品洗浄を行えば、その後に充分な洗浄を行わなければならず、設備が長期間使用できなくなったり、薬品洗浄コストがかさむこととなる。また、吸着層が固着したコアフィルタごと交換することも考えられるが、高温水系で使用可能な燒結金属や耐熱性高分子膜からなるコアフィルタは非常に高価であり、頻繁に交換することになればランニングコストが著しく増大するという問題が生じる。
【0007】
本発明は、このような事情に鑑みてなされたものであって、請求項1乃至5に係る発明は、経済的かつ効率よく高温水系で使用できる、高温水用フィルタを提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明は請求項1として、高温水系に適用される高温水用フィルタであって、コアフィルタの濾過面に交換可能な方法で固定された高分子膜を具備し、前記高分子膜の濾過面に吸着材をプリコート材として具備してなる高温水用フィルタを提供する。
また、本発明は請求項2として、請求項1に記載の高温水用フィルタであって、前記コアフィルタの濾過面への前記高分子膜の交換可能な方法での固定が、前記コアフィルタに巻き付けた前記高分子膜を固定バンドで固定し、任意に膜の軸芯に沿った端部を熱溶着するものであることを特徴とする高温水用フィルタを提供する。
また、本発明は請求項3として、請求項1または2に記載の高温水用フィルタであって、前記高分子膜がポリエーテルエーテルケトン系高分子材料またはフッ素樹脂系高分子材料からなる膜または不織布であることを特徴とする高温水用フィルタを提供する。
また、本発明は請求項4として、請求項1乃至3の何れか1項に記載の高温水用フィルタであって、前記高分子膜が孔径1×10−3〜10μmの微細孔を有することを特徴とする高温水用フィルタを提供する。
また、本発明は請求項5として、請求項1乃至4の何れか1項に記載の高温水用フィルタであって、吸着材が酸化鉄微粒子であることを特徴とする高温水用フィルタを提供する。
【0009】
【発明の実施の形態】
本発明に係る、高温水用フィルタの一態様を図1に示し、以下これを説明する。図1の態様においては、コアフィルタ1は筒状の構造をしており、その一方の端部は閉じられており、他方の端部は開口部2を具備している。被処理水はコアフィルタ1の外側である濾過面から該フィルタ内側方面に流れ、外側に形成されている吸着材の層により不純物が除去され、得られた処理水は該フィルタ内側内を軸芯側に流れ、開口部2より排出されることとなる。また、コアフィルタ1は開口部2側の端部に固定ネジ部3を有しており、該固定ネジ部3によって濾過器に固定される。コアフィルタ1の濾過面には高分子膜4が固定バンド5によって固定されている。図1の態様では、高分子膜4はコアフィルタ1の端部2カ所で固定バンド5によって固定される。さらに、コアフィルタ1に巻き付けられる高分子膜4の軸芯方向の端部は熱溶着される。図1において符号6は、この熱溶着部を示す。また、高分子膜4の濾過面には吸着材7が配置される。また、熱溶着のかわりに一定間隔をもって数カ所固定バンドで固定するのでも良く、その場合、膜を2〜3重に巻き付けるのが好ましい。
【0010】
本発明に係るフィルタは、例えば、火力発電所におけるボイラ、PWRにおける蒸気発生器またはBWRにおける原子炉などに導入される水、すなわち給水や給水加熱器および湿分分離器のドレン水等の高温水の濾過処理に適しているが、これらに限定されるものではなく、高温で、金属酸化物等の不純物を含む水であれば良い。本発明に係るフィルタが処理できる処理水の温度は、上述の発電所において用いられるドレン水等がとり得る温度であるが、好ましくは約80℃〜約250℃、最も好ましくは約180℃〜約250℃の範囲の温度である。本発明に係るフィルタはこのような高温の被処理水を効率よく濾過処理できる点に特徴を有している。
【0011】
本発明で用いるコアフィルタ1は、上述のような被処理水の温度に耐え得る材料であれば如何なる材料から製造されていても良く、使用可能な材料としては、例えば、ステンレス鋼のような金属、ポリエーテルエーテルケトン系高分子またはポリテトラフロロエチレン等のフッ素樹脂系高分子のような耐熱性高分子が挙げられるが、これらに限定されるものではない。材料の耐熱性および処理水中に不純物を溶出させないという観点からは、ステンレス鋼のような金属、ポリエーテルエーテルケトン系高分子またはポリテトラフロロエチレン等のフッ素樹脂系高分子が好ましい。コアフィルタ1は被処理水が外側の濾過面から該フィルタ内側方向に流れ、外側に形成されている吸着材の層により不純物が除去され、得られた処理水は該フィルタ内側内を軸心側に流れる構造を有し、コアフィルタ1の外側に高分子膜4を固定できるものであれば如何なる構成を有していても良く、例えば燒結金属フィルタ、金属メッシュフィルタ等の金属フィルタや、耐熱性高分子フィルタなどが挙げられるが、これらに限定されるものではない。
【0012】
高分子膜4は、上述のような被処理水の温度に耐え得る材料から製造されていれば良く、処理水中に不純物を溶出しない材料から製造されていることが好ましい。使用可能な材料としては、例えば、ポリエーテルエーテルケトン系高分子またはポリテトラフロロエチレン等のフッ素樹脂系高分子を使用することができるが、これらに限定されるものではない。耐熱性および不純物を溶出させないという観点からは、ポリエーテルエーテルケトン系高分子またはポリテトラフロロエチレン等のフッ素樹脂系高分子が好ましい。
【0013】
高分子膜4は処理水を通過させるために処理水通過用の微細孔を有するが、濾過面に吸着材7を配置し、コアフィルタ1と吸着材7の接触を防止する必要がある。このため、高分子膜の微細孔の孔径は吸着材7の粒径よりも小さくなければならず、孔径は1×10−3〜10μm、好ましくは1×10−2〜1μmである。
【0014】
高分子膜4はコアフィルタ1の外側に、コアフィルタ1を包む様に配置される。高分子膜4は、吸着材7が直接にコアフィルタ1に付着しないように、コアフィルタ1の周囲に配置されれば良く、フィルタの組み立ての容易さという観点から、高分子膜4はコアフィルタ1に巻きつけられているのが好ましい。高分子膜4は、被処理水の濾過処理において通水を防がない限りは、コアフィルタ1の周囲に1重だけでなく、2〜3重に巻き付けても良く、また複数枚が重ねられて配置されていても良い。
【0015】
コアフィルタ1の外側に配置された高分子膜4は、プリコート処理および濾過処理の間にコアフィルタ1からはずれないように、固定手段によって固定される。濾過処理後はコアフィルタ1から高分子膜4をはずさなければならないので、固定手段は高分子膜4を着脱可能な様に配置可能なものでなければならない。また、吸着材7がコアフィルタ1に接触しない、すなわち、コアフィルタ1と高分子膜4の間に吸着材7が入らない程度の密着性を有するよう、高分子膜4をコアフィルタ1の周囲に配置することが必要である。さらに、固定手段は高温に耐えうる材料から製造される必要があり、高温での濾過処理中に不純物を処理水に溶出させない材料が好ましい。上記のような性質を有する固定手段であれば、如何なる態様の手段であっても良く、例えば、図1に示すような固定バンド5が挙げられる。固定バンド5の配置はコアフィルタ1と高分子膜4を固定できるのであれば、フィルタのどの部分に配置されても良く、使用される固定手段の個数も問わない。また、着脱可能で濾過を妨げないのであれば、例えば、キャップやクイックカップラー等の治具により両端部を固定しても良く、また、固定バンド5のような固定手段を組み合わせて使用することも可能である。
【0016】
コアフィルタ1の周囲に配置された高分子膜4の周囲には、吸着材7が配置される。吸着材7としては、被処理水の温度に耐えることができ、被処理水に含まれる金属酸化物等の不純物を吸着できるものであれば如何なる物質を使用することも可能であるが、吸着材7からその成分が処理水中に溶出しないものが好ましい。吸着材7としては、酸化鉄微粉末、ポリエーテルエーテルケトン微粉末、シリカ系微粉末、スルホン酸ポリマー微粉末およびシリカ−スルホン酸ポリマー複合系微粉末が好ましい。吸着材7としては複数の種類の吸着剤を混合して使用することもできる。被処理水が発電所のドレン水等の場合には、不純物として酸化鉄を主成分とすることから、酸化鉄の吸着に優れる、α−FeOOH、Fe、γ−Fe、α−Feなどの結晶性の含水酸化鉄を主成分とする酸化鉄微粉末が好ましい。吸着材7の粒径は0.1〜40μm、好ましくは1〜3μmである。
【0017】
吸着材7は、高分子膜4を備えたコアフィルタ1にプリコートすることによって、高分子膜4表面に配置され得る。プリコートは、あらかじめ高分子膜4を備えたコアフィルタ1を配置した濾過器13に、プリコートタンク11で調製された吸着材7のスラリーがプリコートポンプ12を介して供給され、濾過器13内に配置されたコアフィルタ1の上の高分子膜4の上に吸着材7を被覆させることにより、吸着材7でプリコートされたフィルタ14が形成されることとなる。上述のプリコートだけでなく、高分子膜4上にあらかじめ吸着材7を配置して完成したフィルタを形成させた後に濾過器13に設置することも可能である。
【0018】
本発明に係るフィルタで被処理水の処理を継続することにより差圧が上昇すれば、濾過器13からフィルタ14を取り出し、フィルタ14の固定バンド5をはずすことによって、コアフィルタ1から高分子膜4をはずす。この時、高温のため、吸着材7(例えば酸化鉄)が吸着した不純物と共に接着し、固化するので、通常のプリコートフィルタで行われる逆洗では吸着材7をフィルタからはずすことができない。しかし、本発明に係るフィルタは、吸着材7を高分子膜4ごとコアフィルタ1からはずすことができ、コアフィルタ1を再使用することができるので、この場合に特に有用である。
【0019】
【発明の効果】
以上、説明したように、請求項1乃至5にかかる本発明の高温水用フィルタによれば、高分子膜を有しない構成のフィルタと比べて、酸化鉄を吸着材として用いた場合のように逆洗が困難な場合であっても、薬品洗浄が不要であり、運用が容易で、かつ簡便な作業でフィルタ差圧を回復できることとなる。また、コアフィルタの交換が不要となるので大幅なコスト低減が可能となる。
【図面の簡単な説明】
【図1】図1は本発明に係る高温水用フィルタの一態様である。
【図2】図2は本発明に係る高温水用フィルタを備えたプリコート設備である。
【符号の説明】
1 コアフィルタ
2 開口部
3 固定ネジ部
4 高分子膜
5 固定バンド
6 熱溶着部
11 プリコートタンク
12 プリコートポンプ
13 濾過器
14 フィルタ
[0001]
BACKGROUND OF THE INVENTION
The present invention is applied to high-temperature water systems such as heater drain water in thermal power plants, pressurized water nuclear power plants (hereinafter abbreviated as “PWR”), and boiling water nuclear power plants (hereinafter abbreviated as “BWR”). The present invention relates to a filter for high-temperature water.
[0002]
[Prior art]
In a thermal power plant and a nuclear power plant, generated high-temperature and high-pressure steam is supplied to a turbine, and the turbine is driven by this steam to generate electric power. The steam after driving the turbine is cooled by a condenser and returned to the water state, and then the condensed water is heated again and supplied to a high-temperature water system such as a boiler, a nuclear reactor, and a steam generator. used.
[0003]
In the process of supplying the high-temperature water system described above, impurities composed of metal oxides mainly composed of iron oxide are generated in the condensate from the feed water piping, feed water heater, or brought in from the heater drain system. It will be. With the operation of this system, for example, in PWR, this impurity gradually adheres to the outer surface of the heat transfer tube of the steam generator, and the deposition of this deposit reduces the heat transfer efficiency of the steam generator. Not only will this cause corrosion damage to the heat transfer tubes. Further, in a thermal power plant, the impurities contained in the water supplied to the boiler adhere to the heat transfer tube of the boiler, and the accumulation of the deposits increases the differential pressure of the boiler.
[0004]
Therefore, conventionally, as a method for removing high-temperature water-based impurities such as the above-described heater drain water, a pre-coated filter in which a coating film of iron oxide fine particles is formed by pre-coating iron oxide fine particles on the filtration surface of the core filter Japanese Patent Application Laid-Open No. 9-206567 discloses a method for adsorbing and removing impurities in a high-temperature water system by making water containing impurities into the precoat filter. The “core filter” as used in the present invention is a filter for supporting the precoat material, and has a filtering function in itself. For example, a ceramic filter, a metal filter, a sintered metal filter, a disk filter, There are pleated filters, hollow fiber membrane filters, and the like.
[0005]
[Problems to be solved by the invention]
In the case of using a normal precoat filter, if the differential pressure increases, it can be regenerated by removing the precoat material from the core filter by backwashing and precoating the core filter with the precoat material again. However, when used in a high-temperature water system, unlike the normal case, there arises a problem that the differential pressure does not recover even after backwashing. As a result of investigation by the present inventor, it was found that the adsorbed impurities (for example, iron) adhere to the surface of the core filter together with the adsorbent due to a high temperature and form an adsorbing layer that does not easily peel off.
[0006]
Here, the adsorption layer can be desorbed by chemical cleaning using an organic acid or an inorganic acid, but these acids react with high-temperature water-based components such as a steam generator and piping. This causes the problem of corroding them. For this reason, once chemical cleaning is performed, sufficient cleaning must be performed thereafter, and the equipment cannot be used for a long period of time, or the chemical cleaning cost increases. It is also possible to replace the core filter with the adsorbed layer firmly attached. However, core filters made of sintered metal or heat-resistant polymer film that can be used in high-temperature water systems are very expensive and can be replaced frequently. As a result, there is a problem that the running cost is remarkably increased.
[0007]
This invention is made | formed in view of such a situation, Comprising: The invention which concerns on Claims 1 thru | or 5 aims at providing the filter for high temperature water which can be used economically and efficiently by a high temperature water system. To do.
[0008]
[Means for Solving the Problems]
The present invention as claimed in claim 1 is a high-temperature water filter applied to a high-temperature water system, comprising a polymer membrane fixed to the filtration surface of the core filter by a replaceable method, and the filtration surface of the polymer membrane A high-temperature water filter comprising an adsorbent as a precoat material is provided.
Moreover, this invention is the filter for high temperature water of Claim 1 as Claim 2, Comprising: The fixing in the exchangeable method of the said polymer membrane to the filtration surface of the said core filter is carried out to the said core filter. A high-temperature water filter is provided, wherein the wound polymer film is fixed with a fixing band, and optionally, an end portion along the axis of the film is thermally welded.
Further, the present invention provides the high-temperature water filter according to claim 1 or 2, wherein the polymer film is a film made of a polyether ether ketone polymer material or a fluororesin polymer material. Provided is a high-temperature water filter characterized by being a non-woven fabric.
Moreover, this invention is the filter for high temperature water of any one of Claims 1 thru | or 3 as Claim 4, Comprising: The said polymer film has a micropore with a hole diameter of 1 * 10 < -3 > -10 micrometers. A filter for high-temperature water is provided.
Further, the present invention provides, as claim 5, a high-temperature water filter according to any one of claims 1 to 4, wherein the adsorbent is iron oxide fine particles. To do.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the high-temperature water filter according to the present invention is shown in FIG. 1 and will be described below. In the embodiment of FIG. 1, the core filter 1 has a cylindrical structure, one end of which is closed and the other end is provided with an opening 2. The water to be treated flows from the filtration surface, which is the outside of the core filter 1, to the inside of the filter, and impurities are removed by the adsorbent layer formed on the outside. It flows to the side and is discharged from the opening 2. The core filter 1 has a fixing screw portion 3 at the end on the opening 2 side, and is fixed to the filter by the fixing screw portion 3. A polymer membrane 4 is fixed to the filtration surface of the core filter 1 by a fixing band 5. In the embodiment of FIG. 1, the polymer film 4 is fixed by fixing bands 5 at two end portions of the core filter 1. Further, the end of the polymer film 4 wound around the core filter 1 in the axial direction is heat-welded. In FIG. 1, reference numeral 6 indicates this heat welding portion. An adsorbent 7 is disposed on the filtration surface of the polymer membrane 4. Further, instead of heat welding, it may be fixed with fixed bands at a certain interval with a fixed interval, and in that case, it is preferable to wrap the film in two to three layers.
[0010]
The filter according to the present invention is, for example, water introduced into a boiler in a thermal power plant, a steam generator in a PWR, or a nuclear reactor in a BWR, that is, high-temperature water such as feed water, feed water heater and drain water of a moisture separator. However, the present invention is not limited to these, and water containing impurities such as metal oxides may be used at a high temperature. The temperature of the treated water that can be treated by the filter according to the present invention is a temperature that can be taken by the drain water or the like used in the above-mentioned power plant, preferably about 80 ° C. to about 250 ° C., most preferably about 180 ° C. to about The temperature is in the range of 250 ° C. The filter according to the present invention is characterized in that such high-temperature water to be treated can be efficiently filtered.
[0011]
The core filter 1 used in the present invention may be manufactured from any material as long as it can withstand the temperature of the water to be treated as described above. Examples of usable materials include metals such as stainless steel. Examples thereof include, but are not limited to, heat-resistant polymers such as polyetheretherketone polymers and fluororesin polymers such as polytetrafluoroethylene. From the viewpoint of the heat resistance of the material and preventing impurities from eluting into the treated water, a metal such as stainless steel, a polyether ether ketone polymer, or a fluororesin polymer such as polytetrafluoroethylene is preferred. In the core filter 1, the water to be treated flows from the outer filtration surface toward the inside of the filter, and impurities are removed by the adsorbent layer formed on the outside. Any structure may be used as long as the polymer film 4 can be fixed to the outside of the core filter 1. For example, a metal filter such as a sintered metal filter or a metal mesh filter, Examples include, but are not limited to, polymer filters.
[0012]
The polymer film 4 may be manufactured from a material that can withstand the temperature of the water to be treated as described above, and is preferably manufactured from a material that does not elute impurities in the treated water. Examples of materials that can be used include, but are not limited to, polyether ether ketone polymers and fluororesin polymers such as polytetrafluoroethylene. From the standpoint of heat resistance and preventing impurities from eluting, a polyether ether ketone polymer or a fluororesin polymer such as polytetrafluoroethylene is preferred.
[0013]
The polymer film 4 has fine holes for passing the treated water in order to allow the treated water to pass through, but it is necessary to dispose the adsorbent 7 on the filtration surface to prevent the core filter 1 and the adsorbent 7 from contacting each other. For this reason, the pore diameter of the micropores of the polymer membrane must be smaller than the particle diameter of the adsorbent 7, and the pore diameter is 1 × 10 −3 to 10 μm, preferably 1 × 10 −2 to 1 μm.
[0014]
The polymer film 4 is disposed outside the core filter 1 so as to wrap the core filter 1. The polymer film 4 may be disposed around the core filter 1 so that the adsorbent 7 does not directly adhere to the core filter 1. From the viewpoint of ease of assembly of the filter, the polymer film 4 is a core filter. 1 is preferably wound around. The polymer membrane 4 may be wound not only in a single layer but also in two or three layers around the core filter 1 as long as it does not prevent water from being filtered in the water to be treated. May be arranged.
[0015]
The polymer film 4 disposed outside the core filter 1 is fixed by a fixing means so as not to be detached from the core filter 1 during the precoat process and the filtration process. Since the polymer membrane 4 must be removed from the core filter 1 after the filtration treatment, the fixing means must be capable of being arranged so that the polymer membrane 4 can be attached and detached. Further, the adsorbent 7 is not in contact with the core filter 1, that is, the polymer film 4 is placed around the core filter 1 so that the adsorbent 7 does not enter between the core filter 1 and the polymer film 4. It is necessary to arrange in Furthermore, the fixing means must be manufactured from a material that can withstand high temperatures, and a material that does not elute impurities into the treated water during filtration at high temperatures is preferred. Any fixing means may be used as long as the fixing means has the above-described properties, and examples thereof include a fixing band 5 as shown in FIG. The fixing band 5 may be arranged in any part of the filter as long as the core filter 1 and the polymer film 4 can be fixed, and the number of fixing means used is not limited. Moreover, if it is detachable and does not interfere with filtration, for example, both ends may be fixed with a jig such as a cap or a quick coupler, or a fixing means such as a fixing band 5 may be used in combination. Is possible.
[0016]
An adsorbent 7 is disposed around the polymer film 4 disposed around the core filter 1. Any material can be used as the adsorbent 7 as long as it can withstand the temperature of the water to be treated and can adsorb impurities such as metal oxides contained in the water to be treated. From 7 it is preferable that the component does not elute into the treated water. The adsorbent 7 is preferably iron oxide fine powder, polyether ether ketone fine powder, silica fine powder, sulfonic acid polymer fine powder, and silica-sulfonic acid polymer composite fine powder. As the adsorbent 7, a plurality of types of adsorbents can be mixed and used. When the water to be treated is drain water of a power plant or the like, since it has iron oxide as a main component as an impurity, it is excellent in iron oxide adsorption, α-FeOOH, Fe 3 O 4 , γ-Fe 2 O 3 , An iron oxide fine powder mainly composed of crystalline hydrous iron oxide such as α-Fe 2 O 3 is preferred. The particle size of the adsorbent 7 is 0.1 to 40 μm, preferably 1 to 3 μm.
[0017]
The adsorbent 7 can be disposed on the surface of the polymer film 4 by pre-coating the core filter 1 including the polymer film 4. In the precoat, the slurry of the adsorbent 7 prepared in the precoat tank 11 is supplied via the precoat pump 12 to the filter 13 in which the core filter 1 provided with the polymer film 4 is disposed in advance, and is disposed in the filter 13. By covering the polymer film 4 on the core filter 1 with the adsorbent 7, the filter 14 precoated with the adsorbent 7 is formed. In addition to the above-mentioned precoat, it is also possible to place the adsorbent 7 on the polymer film 4 in advance to form a completed filter, and then install it on the filter 13.
[0018]
If the differential pressure rises by continuing the treatment of water to be treated with the filter according to the present invention, the filter 14 is taken out from the filter 13 and the fixing band 5 of the filter 14 is removed to remove the polymer membrane from the core filter 1. Remove 4 At this time, because of the high temperature, the adsorbent 7 (for example, iron oxide) adheres and solidifies together with the adsorbed impurities. Therefore, the adsorbent 7 cannot be removed from the filter by backwashing performed with a normal precoat filter. However, the filter according to the present invention is particularly useful in this case because the adsorbent 7 can be removed from the core filter 1 together with the polymer film 4 and the core filter 1 can be reused.
[0019]
【The invention's effect】
As described above, according to the high-temperature water filter of the present invention according to claims 1 to 5, as compared with a filter having no polymer film, iron oxide is used as an adsorbent. Even if backwashing is difficult, chemical cleaning is not required, operation is easy, and the filter differential pressure can be recovered by simple work. Further, since it is not necessary to replace the core filter, the cost can be greatly reduced.
[Brief description of the drawings]
FIG. 1 is an embodiment of a high-temperature water filter according to the present invention.
FIG. 2 is a precoat facility equipped with a high-temperature water filter according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Core filter 2 Opening part 3 Fixing screw part 4 Polymer film 5 Fixing band 6 Heat welding part 11 Precoat tank 12 Precoat pump 13 Filter 14 Filter

Claims (5)

高温水系に適用される高温水用フィルタであって、コアフィルタの濾過面に交換可能な方法で固定された高分子膜を具備し、前記高分子膜の濾過面に吸着材をプリコート材として具備してなる高温水用フィルタ。A high-temperature water filter applied to a high-temperature water system, comprising a polymer membrane fixed to the filtration surface of the core filter by a replaceable method, and an adsorption material as a precoat material on the filtration surface of the polymer membrane High temperature water filter. 請求項1に記載の高温水用フィルタであって、前記コアフィルタの濾過面への前記高分子膜の交換可能な方法での固定が、前記コアフィルタに巻き付けた前記高分子膜を固定バンドで固定し、任意に膜の軸芯に沿った端部を熱溶着するものであることを特徴とする高温水用フィルタ。The high-temperature water filter according to claim 1, wherein the polymer membrane is fixed to the filtration surface of the core filter by a replaceable method, and the polymer membrane wound around the core filter is fixed with a fixing band. A filter for high-temperature water, which is fixed and optionally heat-welded at the end along the axis of the membrane. 請求項1または2に記載の高温水用フィルタであって、前記高分子膜がポリエーテルエーテルケトン系高分子材料またはフッ素樹脂系高分子材料からなる膜または不織布であることを特徴とする高温水用フィルタ。3. The high-temperature water filter according to claim 1, wherein the polymer film is a film or a nonwoven fabric made of a polyether ether ketone-based polymer material or a fluororesin-based polymer material. Filter. 請求項1乃至3の何れか1項に記載の高温水用フィルタであって、前記高分子膜が孔径1×10−3〜10μmの微細孔を有することを特徴とする高温水用フィルタ。4. The high-temperature water filter according to claim 1, wherein the polymer film has micropores having a pore diameter of 1 × 10 −3 to 10 μm. 5. 請求項1乃至4の何れか1項に記載の高温水用フィルタであって、吸着材が酸化鉄微粒子であることを特徴とする高温水用フィルタ。The high-temperature water filter according to any one of claims 1 to 4, wherein the adsorbent is iron oxide fine particles.
JP2000116349A 2000-04-18 2000-04-18 Hot water filter Expired - Fee Related JP4414555B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000116349A JP4414555B2 (en) 2000-04-18 2000-04-18 Hot water filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000116349A JP4414555B2 (en) 2000-04-18 2000-04-18 Hot water filter

Publications (2)

Publication Number Publication Date
JP2001293339A JP2001293339A (en) 2001-10-23
JP4414555B2 true JP4414555B2 (en) 2010-02-10

Family

ID=18627821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000116349A Expired - Fee Related JP4414555B2 (en) 2000-04-18 2000-04-18 Hot water filter

Country Status (1)

Country Link
JP (1) JP4414555B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110612148A (en) * 2017-06-27 2019-12-24 大金工业株式会社 Method and system for treating aqueous fluids produced by fluoropolymer manufacturing processes

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110612148A (en) * 2017-06-27 2019-12-24 大金工业株式会社 Method and system for treating aqueous fluids produced by fluoropolymer manufacturing processes

Also Published As

Publication number Publication date
JP2001293339A (en) 2001-10-23

Similar Documents

Publication Publication Date Title
US5376278A (en) Filter and a method for separating charged particles from a liquid stream
US6387271B1 (en) Method for separating solid particulates from a liquid
KR100461227B1 (en) Filter, reverse-washing method of filter, filtering unit and power plant
JP4382299B2 (en) Nuclear plant system
JP4414555B2 (en) Hot water filter
KR20120117696A (en) Improved utilization of powdered sorbent for mercury control from coal-fired power plants
US4780213A (en) Filter media and method of filtration
JP4402969B2 (en) Filter
JPH11123311A (en) Solvent recovery device
US6200367B1 (en) Water washable stainless steel HEPA filter
JP5881310B2 (en) Filtration equipment and power plant
WO1992016280A1 (en) Precoat septum with integral particulate filter medium retaining structure
JP2002346346A (en) Filter, method for cleaning filter, filtration apparatus and power generation plant
US20160023136A1 (en) End Plug for Precoat Filter Element
US5407582A (en) Method of treating power generating plant condensate
JPH10192605A (en) Filter for filter bed and power generation plant provided with the same
GB2214447A (en) Filter element
JPH11165006A (en) Treatment of electric power plant heater drain water
JP2708043B2 (en) Plant operation method
JP4592932B2 (en) Filter member suspension jig and suspension support method
JP3065903B2 (en) Voltage application type water purifier
JP4202277B2 (en) Filter and power plant using the same
JPH0763888A (en) Method and device for filtering reactor water
JP3004430B2 (en) Filter backwashing device
JPS63221886A (en) Purifying method and apparatus using hollow yarn membrane filter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070314

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091030

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091120

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4414555

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131127

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees