JP4411924B2 - Pneumatic tire - Google Patents

Pneumatic tire Download PDF

Info

Publication number
JP4411924B2
JP4411924B2 JP2003347392A JP2003347392A JP4411924B2 JP 4411924 B2 JP4411924 B2 JP 4411924B2 JP 2003347392 A JP2003347392 A JP 2003347392A JP 2003347392 A JP2003347392 A JP 2003347392A JP 4411924 B2 JP4411924 B2 JP 4411924B2
Authority
JP
Japan
Prior art keywords
pneumatic tire
tread surface
groove
convex portion
tire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003347392A
Other languages
Japanese (ja)
Other versions
JP2005112085A (en
Inventor
俊郎 大山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama Rubber Co Ltd
Original Assignee
Yokohama Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama Rubber Co Ltd filed Critical Yokohama Rubber Co Ltd
Priority to JP2003347392A priority Critical patent/JP4411924B2/en
Publication of JP2005112085A publication Critical patent/JP2005112085A/en
Application granted granted Critical
Publication of JP4411924B2 publication Critical patent/JP4411924B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Tires In General (AREA)

Description

この発明は、空気入りタイヤに関し、リブ/ブロックの耐リバーウェア性および耐ティア性を高め得る空気入りタイヤに関する。   The present invention relates to a pneumatic tire, and more particularly to a pneumatic tire capable of improving the ribware / block river wear resistance and tear resistance.

図11は、従来の空気入りタイヤのリブ/ブロックを示す平面図である。従来の空気入りタイヤ100には、特許文献1〜3に記載される技術が知られている。主として長距離高速走行に用いられる重荷重用ステアリングタイヤでは、リブ/ブロック102にリバーウェアと呼ばれる偏磨耗が発生し易い。従来の空気入りタイヤ100では、リブ/ブロック102のエッジに多数のサイプ110を設けてタイヤの偏磨耗を抑制していた。   FIG. 11 is a plan view showing ribs / blocks of a conventional pneumatic tire. For the conventional pneumatic tire 100, techniques described in Patent Documents 1 to 3 are known. In heavy-duty steering tires mainly used for long-distance high-speed traveling, uneven wear called river wear tends to occur on the rib / block 102. In the conventional pneumatic tire 100, a large number of sipes 110 are provided at the edge of the rib / block 102 to suppress uneven wear of the tire.

しかしながら、かかる従来の空気入りタイヤ100では、外傷や据え切りによってリブ/ブロックにティアが発生し易いという問題点があった。
特開2002−326506号公報 特開1996−192607号公報 特開2002−512575号公報
However, the conventional pneumatic tire 100 has a problem that tears are easily generated in the ribs / blocks due to trauma and stationary.
JP 2002-326506 A JP-A-1996-192607 JP 2002-512575 A

そこで、この発明は、上記に鑑みてされたものであって、リブの耐リバーウェア性および耐ティア性を高め得る空気入りタイヤを提供することを目的とする。 Accordingly, the present invention has been made in view of the above, and an object of the present invention is to provide a pneumatic tire that can improve the ribwear resistance and tear resistance of the ribs .

上記目的を達成するため、この発明にかかる空気入りタイヤは、縦溝によってタイヤ周方向に区切られて成るリブがタイヤ周方向に連続して形成された空気入りタイヤであって、前記リブの前記縦溝側の壁面が前記リブの踏面側と溝底側とに複数の凸部を有し、前記踏面側の凸部は、踏面に底面を有する多角錐形状、又は、踏面に底面を有し側面が曲面をなす錐形状に形成されるとともに、前記溝底側の凸部は、溝底に底面を有し且つ踏面に頂点を有する多角錐形状、又は、溝底に底面を有し且つ踏面に頂点を有し、側面が曲面をなす錐形状に形成され、前記踏面側の凸部及び前記溝底側の凸部とがタイヤ周方向に交互に配列して形成され、且つ、前記踏面側の凸部と前記溝底側の凸部とをタイヤ径方向の透視断面により見たときに、前記踏面側の凸部の外形線と前記溝底側の凸部の外形線との面積比が略等しいことを特徴とする。 To achieve the above object, the pneumatic tire according to the present invention, a pneumatic tire ribs made separated in the tire circumferential direction are formed continuously in the tire circumferential direction by the longitudinal groove, the said ribs The wall surface on the longitudinal groove side has a plurality of convex portions on the tread surface side and the groove bottom side of the rib , and the convex portion on the tread surface side has a polygonal pyramid shape having a bottom surface on the tread surface or a bottom surface on the tread surface. The convex portion on the groove bottom side is formed into a polygonal pyramid shape having a bottom surface at the groove bottom and a vertex at the tread surface, or a tread surface having a bottom surface at the groove bottom. And the tread surface side convex portions and the groove bottom side convex portions are alternately arranged in the tire circumferential direction, and the tread surface side. When the convex portion of the groove and the convex portion on the groove bottom side are viewed in a perspective cross section in the tire radial direction, Wherein the area ratio of the outline of the convex portion and the outline of the convex portion of the groove bottom side of the side is substantially equal.

この発明では、リブの溝壁に凸部が形成され、且つ、踏面側の凸部の凸量と溝底側の凸部の凸量とがタイヤ径方向の透視断面にて略等しい。これにより、タイヤ使用時にてリブに掛かる接地圧が分散され、リブの体積変動がタイヤ周方向にて均一化されるので、リバーウェアおよびティアの発生が効果的に抑制される利点がある。 In the present invention, a convex portion is formed on the groove wall of the rib , and the convex amount of the convex portion on the tread surface side and the convex amount of the convex portion on the groove bottom side are substantially equal in the perspective cross section in the tire radial direction. As a result, the contact pressure applied to the ribs when the tire is used is dispersed, and the volume variation of the ribs is made uniform in the tire circumferential direction, so that there is an advantage that the occurrence of riverware and tear is effectively suppressed.

また、この発明にかかる空気入りタイヤは、前記踏面側の凸部と前記溝底側の凸部とをタイヤ径方向(タイヤ子午線方向)の透視断面により見たときに、これらの凸部の外形線から交差部分を引いた面積比A/Bが略等しい。 Further, the pneumatic tire according to the present invention, when viewed from the perspective cross section in the tire radial direction (tire meridian direction), the tread-side convex portion and the groove bottom- side convex portion, the outer shape of these convex portions The area ratio A / B obtained by subtracting the intersection from the line is substantially equal.

また、この発明にかかる空気入りタイヤは、前記面積比A/Bが、0.8〜1.2である。   In the pneumatic tire according to the present invention, the area ratio A / B is 0.8 to 1.2.

また、この発明にかかる空気入りタイヤは、前記踏面側の凸部と前記底面側の凸部とをタイヤ径方向の透視断面により見たときに、前記踏面側の凸部の端点P1と前記底面側の凸部の端点Q2とを結ぶ直線が、溝底線に対して前記リブ側に傾斜している。 In addition, the pneumatic tire according to the present invention is configured such that when the tread surface side convex portion and the bottom surface side convex portion are viewed from a perspective cross section in the tire radial direction, the tread surface side convex portion end point P1 and the bottom surface A straight line connecting the end point Q2 of the convex portion on the side is inclined to the rib side with respect to the groove bottom line.

また、この発明にかかる空気入りタイヤは、前記踏面側の凸部と前記底面側の凸部とをタイヤ径方向の透視断面により見たときに、前記踏面側の凸部の端点P1を通る溝壁面の外形線が、溝底線に対して略垂直に傾斜する。   Further, the pneumatic tire according to the present invention has a groove that passes through the end point P1 of the tread surface side convex portion when the tread surface side convex portion and the bottom surface side convex portion are viewed in a perspective cross section in the tire radial direction. The outline of the wall surface is inclined substantially perpendicular to the groove bottom line.

また、この発明にかかる空気入りタイヤは、前記溝壁面の外形線が溝底線に対して傾斜する角θ2は、85度〜105度である。   In the pneumatic tire according to the present invention, an angle θ2 at which the outline of the groove wall surface is inclined with respect to the groove bottom line is 85 degrees to 105 degrees.

この発明によれば、リブの溝壁に凸部が形成され、且つ、踏面側の凸部の凸量と溝底側の凸部の凸量とがタイヤ径方向の透視断面にて略等しいので、タイヤ使用時にてリブに掛かる接地圧が分散され、リブの体積変動がタイヤ周方向にて均一化されて、リバーウェアおよびティアの発生が効果的に抑制される利点がある。 According to this invention, the convex portion is formed on the groove wall of the rib , and the convex amount of the convex portion on the tread surface side and the convex amount of the convex portion on the groove bottom side are substantially equal in the perspective cross section in the tire radial direction. The ground pressure applied to the ribs when the tire is used is dispersed, the volume fluctuation of the ribs is made uniform in the tire circumferential direction, and there is an advantage that the occurrence of river wear and tear is effectively suppressed.

以下、この発明につき図面を参照しつつ詳細に説明する。なお、この実施例によりこの発明が限定されるものではない。また、以下に示す実施例の構成要素には、当業者が置換可能かつ容易なもの、或いは実質的同一のものが含まれる。   Hereinafter, the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments. In addition, constituent elements of the embodiments described below include those that can be easily replaced by those skilled in the art or those that are substantially the same.

図1は、この発明の実施例1にかかる空気入りタイヤのリブ/ブロックを示す平面図である。図2および図3は、図1に記載したリブ/ブロックを示すタイヤ径方向断面透視図(図2)および斜視図(図3)である。なお、図3は、タイヤ周方向の断面にて、縦溝3の中心線側からリブ/ブロック2を見た図を示している。この空気入りタイヤ1は、略ジグザグ形状の縦溝3とタイヤ周方向に対する幅が略均一化されたリブ/ブロック2とを有し、接地圧によるリブ/ブロック2の体積変動をタイヤ周方向に対して略均一化させることで、リブ/ブロック2の耐リバーウェア性および耐ティア性を高める点に特徴を有する。   1 is a plan view showing ribs / blocks of a pneumatic tire according to Embodiment 1 of the present invention. 2 and 3 are a tire radial cross-sectional perspective view (FIG. 2) and a perspective view (FIG. 3) showing the rib / block shown in FIG. FIG. 3 shows a view of the rib / block 2 as seen from the center line side of the longitudinal groove 3 in the cross section in the tire circumferential direction. This pneumatic tire 1 has a substantially zigzag longitudinal groove 3 and a rib / block 2 having a substantially uniform width with respect to the tire circumferential direction, and volume fluctuation of the rib / block 2 due to contact pressure in the tire circumferential direction. On the other hand, by making it substantially uniform, the rib / block 2 is characterized in that the river wear resistance and the tear resistance are improved.

[用語の定義]
この空気入りタイヤ1では、トレッド部に複数の溝が形成され、これらの溝によりトレッド部がリブ状もしくはブロック状に区切られる。この空気入りタイヤ1では、かかるリブ状もしくはブロック状に区切られた部分をリブ/ブロック2と呼ぶ。また、これらの複数の溝のうちタイヤ周方向に形成される溝を縦溝3と呼ぶ。また、リブ/ブロック2のうちタイヤ踏面を構成する面部分を踏面21と呼び、溝側の壁を溝壁22と呼ぶ(図2参照)。なお、図1に記載したリブ/ブロック2は、縦溝3によって区切られたリブであり、タイヤ周方向に連続して形成される。
[Definition of terms]
In the pneumatic tire 1, a plurality of grooves are formed in the tread portion, and the tread portion is partitioned into a rib shape or a block shape by these grooves. In this pneumatic tire 1, such a rib or block section is called a rib / block 2. Of these plural grooves, a groove formed in the tire circumferential direction is referred to as a vertical groove 3. Moreover, the surface part which comprises a tire tread surface among the ribs / blocks 2 is called the tread surface 21, and the groove side wall is called the groove wall 22 (refer FIG. 2). Note that the ribs / blocks 2 shown in FIG. 1 are ribs delimited by the longitudinal grooves 3 and are formed continuously in the tire circumferential direction.

また、踏面21のタイヤ幅方向の縁部(すなわちリブ/ブロック2のタイヤ周方向にかかる縁部)を、エッジ部Pと呼ぶ(図1および図2参照)。ここで、タイヤ径方向の断面透視図にて、エッジ部Pのうち、縦溝3の中心線に対して凸状(もしくは山状)となる部分の端点を点P1とし、凹状(もしくは谷状)となる部分の端点を点P2とする(図2参照)。また、タイヤ径方向の断面視にて、P1を通る溝壁22面の外形線が溝底線lと交わる点を点Q1とし、P2を通る溝壁22面の外形線が溝底線lと交わる点を点Q2とする。また、これらの外形線P1Q1および外形線P2Q2の交点を点Rとする。また、点P2および点Q1を通る直線を基底線mと呼ぶ。この基底線mは、溝壁22に形成された凹凸部(図2では、三角形P1Q1P2および三角形Q2P2Q1に相当する部分)の基底線となる。   Further, an edge portion in the tire width direction of the tread surface 21 (that is, an edge portion in the tire circumferential direction of the rib / block 2) is referred to as an edge portion P (see FIGS. 1 and 2). Here, in the cross-sectional perspective view in the tire radial direction, the end point of the edge portion P that is convex (or mountain-shaped) with respect to the center line of the longitudinal groove 3 is a point P1, and is concave (or valley-shaped). ) Is a point P2 (see FIG. 2). Further, in a cross-sectional view in the tire radial direction, a point where the outline of the groove wall 22 surface passing through P1 intersects with the groove bottom line l is a point Q1, and a point where the outline of the groove wall 22 surface passing through P2 intersects with the groove bottom line l. Is point Q2. Further, an intersection of these outline P1Q1 and outline P2Q2 is a point R. A straight line passing through the point P2 and the point Q1 is referred to as a base line m. The base line m is a base line of the uneven portion formed in the groove wall 22 (the portion corresponding to the triangle P1Q1P2 and the triangle Q2P2Q1 in FIG. 2).

[リブ/ブロックの形状]
この空気入りタイヤ1では、リブ/ブロック2の縦溝3側の溝壁22(すなわちタイヤ幅方向の溝壁)に凹凸部23、24が形成され、トレッド部の平面視にて、この溝壁22がタイヤ周方向に沿ってジグザグ状に形成される(図1および図3参照)。また、この溝壁22では、トレッド部の平面視にて、踏面21側のジグザグ形状と溝底32側のジグザグ形状とが、相互に位相をずらして形成される。言い換えると、溝壁22は、ジグザグ形状によるタイヤ幅方向の凹凸パターンが、踏面21側と溝底32側とで相互に略対称となるようにように形成される。例えば、踏面21側が縦溝3の中心線に対して凸状となる位置では、溝底32側が凹状となる。逆に、踏面21側が縦溝3の中心線に対して凹状となる位置では、溝底32側が凸状となる。
[Rib / Block shape]
In this pneumatic tire 1, uneven portions 23 and 24 are formed on the groove wall 22 on the longitudinal groove 3 side of the rib / block 2 (that is, the groove wall in the tire width direction), and the groove wall in a plan view of the tread portion. 22 is formed in a zigzag shape along the tire circumferential direction (see FIGS. 1 and 3). In the groove wall 22, the zigzag shape on the tread surface 21 side and the zigzag shape on the groove bottom 32 side are formed with their phases shifted from each other in plan view of the tread portion. In other words, the groove wall 22 is formed such that the uneven pattern in the tire width direction due to the zigzag shape is substantially symmetrical between the tread surface 21 side and the groove bottom 32 side. For example, at the position where the tread surface 21 side is convex with respect to the center line of the vertical groove 3, the groove bottom 32 side is concave. Conversely, at the position where the tread surface 21 side is concave with respect to the center line of the vertical groove 3, the groove bottom 32 side is convex.

また、溝壁22面の形状を縦溝3の形状として言い換えると、縦溝3は、トレッド部の平面視にて、タイヤ周方向に沿ってジグザグ状に形成される(図1参照)。そして、縦溝3は、トレッド部の平面視にて、開口部31側(すなわちリブ/ブロック2の踏面21側)と溝底32側とでジグザグ形状の屈折方向が相互に略対称となる(もしくは振幅が相互に反転する)ように、そのジグザグ形状の位相をタイヤ周方向にずらして形成される。例えば、縦溝3の開口部31側がタイヤ周方向に対して右側に屈折する位置では、溝底32側が左側に屈折する。なお、縦溝3のジグザグ形状は、その波形のピッチが等しく、且つ、開口部31側と溝底32側とで位相が半周期ずれていることが好ましい。これにより、溝壁22凸部23、24の凸量がタイヤ周方向にて容易に均一化される利点がある。   In other words, the shape of the surface of the groove wall 22 is referred to as the shape of the longitudinal groove 3, and the longitudinal groove 3 is formed in a zigzag shape along the tire circumferential direction in a plan view of the tread portion (see FIG. 1). The longitudinal grooves 3 are substantially symmetrical with respect to the zigzag refraction direction on the opening 31 side (that is, on the tread surface 21 side of the rib / block 2) and the groove bottom 32 side in plan view of the tread portion ( Alternatively, the zigzag phase is shifted in the tire circumferential direction so that the amplitudes are mutually inverted. For example, at the position where the opening 31 side of the longitudinal groove 3 is refracted to the right side with respect to the tire circumferential direction, the groove bottom 32 side is refracted to the left side. Note that it is preferable that the zigzag shape of the vertical groove 3 has the same waveform pitch, and the phase is shifted by a half cycle between the opening 31 side and the groove bottom 32 side. Thereby, there exists an advantage by which the convex amount of the groove wall 22 convex parts 23 and 24 is equalized easily in a tire peripheral direction.

[溝壁の凸量]
つぎに、リブ/ブロック2のタイヤ径方向の断面透視図において、溝壁22の基底線mから縦溝3の中心線側に突出して形成された部分23,24(以下、凸部23,24という。)の突出量(以下、凸量という。)に着目する。この空気入りタイヤ1では、溝壁22の踏面21側の凸部23の凸量と、溝底32側の凸部24の凸量とが、タイヤ径方向の断面透視図にて略同一面積となるように形成される(図2参照)。例えば、踏面21側の凸部23の外形線(図2中の三角形P1Q1P2)と、溝底32側の凸部24の外形線(図2中の三角形Q2P2Q1)との面積比が略等しくなるように形成される。これにより、溝壁22は、凸部23,24の凸量がタイヤ径方向(縦溝3の深さ方向)にて略均一分布となるように形成される。
[Convex amount of groove wall]
Next, in the cross-sectional perspective view of the rib / block 2 in the tire radial direction, portions 23 and 24 (hereinafter referred to as convex portions 23 and 24) formed to protrude from the base line m of the groove wall 22 to the center line side of the longitudinal groove 3. Pay attention to the protruding amount (hereinafter referred to as the convex amount). In this pneumatic tire 1, the convex amount of the convex portion 23 on the tread surface 21 side of the groove wall 22 and the convex amount of the convex portion 24 on the groove bottom 32 side have substantially the same area in a sectional perspective view in the tire radial direction. (See FIG. 2). For example, the area ratio of the outline of the protrusion 23 on the tread surface 21 side (triangle P1Q1P2 in FIG. 2) and the outline of the protrusion 24 on the groove bottom 32 side (triangle Q2P2Q1 in FIG. 2) is substantially equal. Formed. Thereby, the groove wall 22 is formed so that the convex amount of the convex parts 23 and 24 becomes substantially uniform distribution in the tire radial direction (depth direction of the vertical groove 3).

具体的には、タイヤ径方向の断面透視図にて、踏面21側の凸部23の外形線(図2中では三角形P1Q1P2)と、溝底32側の凸部24の外形線(図2中では三角形Q2P2Q1)とに注目したときに、これらの外形線から交差部分(三角形RQ1Q2)を差し引いた部分A,Bの面積比A/B(すなわち三角形P1RP2/三角形Q1RQ2)が、略等しくなるように形成される。   Specifically, in the sectional perspective view in the tire radial direction, the outline of the convex portion 23 on the tread surface 21 side (triangle P1Q1P2 in FIG. 2) and the outline of the convex portion 24 on the groove bottom 32 side (in FIG. 2). Then, when attention is paid to the triangle Q2P2Q1), the area ratio A / B (that is, the triangle P1RP2 / triangle Q1RQ2) of the portions A and B obtained by subtracting the intersecting portion (triangle RQ1Q2) from these outlines is substantially equal. It is formed.

また、かかる溝壁22の凸量を立体的に把握して特定すれば、溝壁22の踏面21側の凸部23と溝底32側の凸部24とがタイヤ周方向全体に渡って交互かつ均等に配列され、これらの凸部23,24の凸量がタイヤ周方向にて略均等に分散するように形成される(図1および図3参照)。また、これらの凸部23,24の凸量が、溝壁22の踏面21側(凸部23側)と溝底32側(凸部24側)とで、タイヤ径方向の透視断面にて略同一体積となるように形成される。例えば、この空気入りタイヤ1では、略同一体積を有する三角錐形状の凸部23,24が、その頂点をタイヤ径方向に対して交互に反転させつつタイヤ周方向全周に渡って溝壁22に設けられる(図3参照)。これにより、溝壁22は、上記したように平面視にてジグザグ形状を有し、凸部23,24の凸量がタイヤ径方向にて略均一分布となるように形成される。   Further, if the convex amount of the groove wall 22 is grasped and specified three-dimensionally, the convex portion 23 on the tread surface 21 side and the convex portion 24 on the groove bottom 32 side of the groove wall 22 are alternately arranged over the entire tire circumferential direction. And it arranges equally and is formed so that the amount of projections of these convex parts 23 and 24 may be distributed almost uniformly in the tire peripheral direction (refer to Drawing 1 and Drawing 3). Further, the convex amounts of the convex portions 23 and 24 are substantially the same in the perspective cross section in the tire radial direction on the tread surface 21 side (the convex portion 23 side) and the groove bottom 32 side (the convex portion 24 side) of the groove wall 22. They are formed to have the same volume. For example, in this pneumatic tire 1, the triangular pyramid-shaped convex portions 23 and 24 having substantially the same volume have groove walls 22 extending over the entire circumference in the tire circumferential direction while inverting the apexes alternately with respect to the tire radial direction. (See FIG. 3). As a result, the groove wall 22 has a zigzag shape in plan view as described above, and is formed so that the convex amounts of the convex portions 23 and 24 have a substantially uniform distribution in the tire radial direction.

ここで、溝壁22は、踏面21側の凸部23の凸量と溝底32側の凸部24の凸量との比(面積比もしくは体積比)が略均一であることが好ましい。より詳細には、これらの凸量の比が、0.8〜1.2であることが好ましく、0.85〜1.15であることがより好ましく、0.9〜1.1であることがより好ましい。これにより、リブ/ブロック2におけるティアの発生を効果的に抑制できる利点がある。   Here, the groove wall 22 preferably has a substantially uniform ratio (area ratio or volume ratio) between the convex amount of the convex portion 23 on the tread surface 21 side and the convex amount of the convex portion 24 on the groove bottom 32 side. More specifically, the ratio of these convex amounts is preferably 0.8 to 1.2, more preferably 0.85 to 1.15, and 0.9 to 1.1. Is more preferable. Thereby, there exists an advantage which can suppress generation | occurrence | production of the tear in the rib / block 2 effectively.

[作用]
この空気入りタイヤ1において、リブ/ブロック2がタイヤ使用時にて荷重を受けると、タイヤ接地面内のリブ/ブロック2には接地圧および摩擦力によってタイヤ周方向に圧縮力が作用する。すると、リブ/ブロック2が、この圧縮力によってタイヤ幅方向に変形して撓み、その内部にてタイヤ周方向への体積変動が生じる。発明者らの研究によれば、リブ/ブロック2に生ずるリバーウェアは、かかるタイヤ周方向への体積変動により発生することが判明している。
[Action]
In the pneumatic tire 1, when the rib / block 2 receives a load when the tire is used, a compression force acts on the rib / block 2 in the tire contact surface in the tire circumferential direction due to the contact pressure and the frictional force. Then, the rib / block 2 is deformed and bent in the tire width direction by this compressive force, and the volume variation in the tire circumferential direction occurs inside thereof. According to the research by the inventors, it has been found that the riverware generated in the rib / block 2 is generated by the volume change in the tire circumferential direction.

この点において、この空気入りタイヤ1では、上記のようにリブ/ブロック2の溝壁22が、トレッド部の平面視にて、踏面21側と溝底32側とで凹凸パターン(すなわち凸部23,24の配列)を相互にずらして形成される。かかる構成により、溝壁22は、凸部23,24の体積分布がタイヤ周方向全周として見たときに略均一となるように形成される。また、溝壁22は、タイヤ径方向の断面透視図にて、踏面21側の凸部23の凸量と溝底32側の凸部24の凸量とがタイヤ径方向に対して略均一となるように形成される。これにより、空気入りタイヤ1は、タイヤ使用時にてリブ/ブロック2に掛かる接地圧が分散され、リブ/ブロック2の体積変動がタイヤ周方向にて均一化されるので、ティアの発生が効果的に抑制される利点がある。特に、この空気入りタイヤ1では、上記のように、溝壁22の凸部23,24の凸量がタイヤ周方向およびタイヤ径方向にて略均一となるように形成されるので、これらの相乗作用によってより効果的にリバーウェアの発生が抑制される利点がある。また、この空気入りタイヤでは、縦溝3が平面視にて略ジグザグ形状を有するので、ティアの発生が効果的に抑制される。これにより、耐ティア性および耐リバーウェア性の双方を両立させて向上できる利点がある。また、これに伴って、従来の空気入りタイヤのようなサイプの形成が不要となる利点がある。   In this respect, in this pneumatic tire 1, as described above, the groove wall 22 of the rib / block 2 has a concavo-convex pattern (that is, the convex portion 23) on the tread surface 21 side and the groove bottom 32 side in a plan view of the tread portion. , 24) are shifted from each other. With this configuration, the groove wall 22 is formed so that the volume distribution of the convex portions 23 and 24 is substantially uniform when viewed as the entire circumference in the tire circumferential direction. Further, the groove wall 22 is a sectional perspective view in the tire radial direction, and the convex amount of the convex portion 23 on the tread surface 21 side and the convex amount of the convex portion 24 on the groove bottom 32 side are substantially uniform with respect to the tire radial direction. Formed to be. As a result, in the pneumatic tire 1, the contact pressure applied to the rib / block 2 is dispersed when the tire is used, and the volume variation of the rib / block 2 is made uniform in the tire circumferential direction. Has the advantage of being suppressed. In particular, in the pneumatic tire 1, as described above, the convex amounts of the convex portions 23 and 24 of the groove wall 22 are formed so as to be substantially uniform in the tire circumferential direction and the tire radial direction. There is an advantage that the occurrence of riverware is more effectively suppressed by the action. Moreover, in this pneumatic tire, since the vertical groove 3 has a substantially zigzag shape in plan view, the occurrence of tiers is effectively suppressed. Thereby, there is an advantage that both the tear resistance and the riverware resistance can be improved at the same time. In addition, there is an advantage that it is not necessary to form a sipe as in a conventional pneumatic tire.

[傾斜角θ1、θ2]
上記した実施例1の空気入りタイヤ1では、タイヤ径方向の断面透視図にて、点P1および点Q2を通る直線と溝底線lとの傾斜角θ1については、特に限定がない。しかし、この傾斜角θ1は、鋭角であることが好ましい(図2参照)。すなわち、リブ/ブロック2は、タイヤ径方向の断面透視図にて点P1および点Q2を通る直線に注目したときに、この直線が溝底32から開口側31に向かって溝幅を広げるように形成されることが好ましい。これにより、溝底側の凸部が踏面側の凸部を溝内の異物から保護するように作用して、リブ/ブロック2のティアを効果的に抑制できる利点がある。また、これにより、上記したリブ/ブロック2の作用と相俟って相乗的に空気入りタイヤ1の耐ティア性を高められる利点がある。
[Inclination angles θ1, θ2]
In the pneumatic tire 1 of Example 1 described above, the inclination angle θ1 between the straight line passing through the points P1 and Q2 and the groove bottom line 1 is not particularly limited in the cross-sectional perspective view in the tire radial direction. However, this inclination angle θ1 is preferably an acute angle (see FIG. 2). That is, when the rib / block 2 is focused on a straight line passing through the point P1 and the point Q2 in the cross-sectional perspective view in the tire radial direction, the straight line widens from the groove bottom 32 toward the opening side 31. Preferably it is formed. Thereby, the convex part on the groove bottom side acts so as to protect the convex part on the tread surface side from foreign matter in the groove, and there is an advantage that the tear of the rib / block 2 can be effectively suppressed. This also has the advantage that the tear resistance of the pneumatic tire 1 can be increased synergistically in combination with the action of the rib / block 2 described above.

また、上記した実施例1の空気入りタイヤ1では、タイヤ径方向の断面透視図にて、点P1および点Q1を通る直線と溝底線lとの傾斜角θ2についても、特に限定がない。しかし、この傾斜角θ2は、略垂直であるこことが好ましい。これにより、接地時にて相対的に最も幅方向に変形が大きい踏面凸部の接地圧を低減するように作用するので、リブ/ブロック2のリバーウェアを効果的に抑制できる利点がある。より具体的には、傾斜角θ2は、80度〜110であることが好ましく、85度〜105度(垂直からプラスマイナス5度の範囲)であることがより好ましく、90度〜100であることがより好ましい。これにより、よりリブ/ブロック2のリバーウェアを効果的に抑制できる利点がある。また、上記したリブ/ブロック2の作用と相俟って空気入りタイヤ1の耐リバーウェア性を相乗的に高められる利点がある。   In the pneumatic tire 1 of Example 1 described above, the inclination angle θ2 between the straight line passing through the points P1 and Q1 and the groove bottom line 1 is not particularly limited in the cross-sectional perspective view in the tire radial direction. However, it is preferable that the inclination angle θ2 is substantially vertical. Thereby, since it acts so as to reduce the contact pressure of the tread convex portion that is relatively deformed in the width direction at the time of contact with the ground, there is an advantage that the river wear of the rib / block 2 can be effectively suppressed. More specifically, the inclination angle θ2 is preferably 80 degrees to 110 degrees, more preferably 85 degrees to 105 degrees (range from vertical to plus or minus 5 degrees), and 90 degrees to 100 degrees. Is more preferable. Thereby, there exists an advantage which can suppress the riverware of the rib / block 2 more effectively. Further, coupled with the action of the rib / block 2 described above, there is an advantage that the river wear resistance of the pneumatic tire 1 can be enhanced synergistically.

図4〜図7は、この発明の実施例3にかかる空気入りタイヤの変形例を示す説明図である。これらの図において上記実施例1の空気入りタイヤ1と同一の構成要素には同一の符号を付し、その説明を省略する。図4および図5は、タイヤ周方向の断面にて、リブ/ブロック2を縦溝3の中心線側から見た斜視図を示している。また、図6および図7は、リブ/ブロック2をトレッド面側から見た平面図(図6)および縦溝3の中心線側から見た斜視図(図7)を示している。   4-7 is explanatory drawing which shows the modification of the pneumatic tire concerning Example 3 of this invention. In these drawings, the same components as those in the pneumatic tire 1 of the first embodiment are denoted by the same reference numerals, and the description thereof is omitted. 4 and 5 show perspective views of the rib / block 2 as viewed from the center line side of the longitudinal groove 3 in a cross section in the tire circumferential direction. 6 and 7 show a plan view (FIG. 6) of the rib / block 2 viewed from the tread surface side and a perspective view (FIG. 7) of the longitudinal groove 3 viewed from the center line side.

図4に記載した空気入りタイヤ1は、実施例1の空気入りタイヤ1と比較して、リブ/ブロック2溝壁22の凸部23,24のうち、踏面21側の凸部23が略台形の底面を有する四角錐形状を有する点に特徴を有する。この踏面21側の凸部23では、その底面がリブ/ブロック2の踏面21に対して同一面上に位置し、その高さ方向をタイヤ径方向に向けつつ、その頂点が溝底32に達するように設けられる。   Compared with the pneumatic tire 1 of Example 1, the pneumatic tire 1 shown in FIG. 4 has a substantially trapezoidal convex portion 23 on the tread surface 21 side among the convex portions 23 and 24 of the rib / block 2 groove wall 22. It is characterized in that it has a quadrangular pyramid shape with a bottom surface. In the convex portion 23 on the tread surface 21 side, the bottom surface is located on the same plane with respect to the tread surface 21 of the rib / block 2, and the apex reaches the groove bottom 32 while the height direction is directed in the tire radial direction. It is provided as follows.

また、図5に記載した空気入りタイヤ1は、図4に記載した空気入りタイヤ1と比較して、踏面21側の凸部23の高さ(溝深さ方向の高さ)が低く、凸部23の頂点が溝壁22の中腹に位置しており溝底32まで達していない。   Further, the pneumatic tire 1 shown in FIG. 5 has a lower height (height in the groove depth direction) of the convex portion 23 on the tread surface 21 side than the pneumatic tire 1 shown in FIG. The apex of the portion 23 is located in the middle of the groove wall 22 and does not reach the groove bottom 32.

また、図6および図7に記載した空気入りタイヤ1は、図4に記載した空気入りタイヤ1と比較して、踏面21側の凸部23が略半円ないしは波状の底面を有する錘形状を有する点に特徴を有する。この踏面21側の凸部23は、その底面がリブ/ブロック2の踏面21に位置し、その高さ方向をタイヤ径方向に向けつつ、その頂点が溝底32に達するように設けられる。なお、この空気入りタイヤ1において、さらに凸部23、24間の接続部(稜線ないしは母線の接続部)を滑らかにして、溝壁22の壁面を滑らかな曲面により形成しても良い(図示省略)。   Further, the pneumatic tire 1 shown in FIGS. 6 and 7 has a weight shape in which the projecting portion 23 on the tread surface 21 side has a substantially semicircular or wavy bottom as compared with the pneumatic tire 1 shown in FIG. It has the feature in having. The convex portion 23 on the tread surface 21 side is provided such that its bottom surface is positioned on the tread surface 21 of the rib / block 2 and its apex reaches the groove bottom 32 while its height direction is directed in the tire radial direction. In this pneumatic tire 1, the connecting portion (ridge line or bus connecting portion) between the convex portions 23 and 24 may be further smoothed to form the wall surface of the groove wall 22 with a smooth curved surface (not shown). ).

図4〜図7に記載したように、踏面21側の凸部23は、三角錐形状に限らず他の多角形状を有してもよいし(図4参照)、側面が曲面となるような形状を有してもよい(図6および図7参照)。また、図5に記載したように、凸部23の頂点が溝壁22の中腹に位置しており溝底32まで達していなくともよい。だたし、凸部23の頂点が溝底32に達していれば、踏面側凸部の剛性が上がり、耐ティア性が向上する利点があるので好ましい。 As described in FIGS. 4 to 7, the convex portion 23 of the tread 21 side, may have other polygonal cone shape is not limited to a triangular pyramid shape (see FIG. 4), so that the side surface is curved It may have a conical shape (see FIGS. 6 and 7). Further, as described in FIG. 5, the apex of the convex portion 23 may be located in the middle of the groove wall 22 and may not reach the groove bottom 32. However, it is preferable that the apex of the convex portion 23 reaches the groove bottom 32 because there is an advantage that the rigidity of the tread surface side convex portion is increased and the tear resistance is improved.

また、図4〜図7に記載した空気入りタイヤ1では、実施例1の空気入りタイヤ1と比較して、踏面21側の凸部23に変形を加えたが、これに限らず、溝底32側の凸部24についても同様の変形を加えてもよい。例えば、溝底32側の凸部24を三角錐以外の多角形状、円錐形状その他の形状としてもよいし、凸部24の頂点が溝壁22の中腹に位置してもよい。また、さらに踏面21側および溝底32側の双方の凸部23,24に同様の変形を加えてもよい。 Moreover, in the pneumatic tire 1 described in FIGS. 4-7, compared with the pneumatic tire 1 of Example 1, although the deformation | transformation was added to the convex part 23 by the side of the tread surface 21, not only this but a groove bottom The same deformation may be applied to the convex portion 24 on the 32 side. For example, a polygonal cone shape other than the convex portion 24 of the groove bottom 32 side triangular pyramid may be a conical shape other conical shape, the apex of the convex portion 24 may be located halfway up the groove wall 22. Further, the same deformation may be applied to the convex portions 23 and 24 on both the tread surface 21 side and the groove bottom 32 side.

ここで、図4〜図7に記載した空気入りタイヤ1では、実施例1の空気入りタイヤ1と同様に、溝壁22の凸部23,24の形状および体積量が調整される(図2参照)。具体的には、リブ/ブロック2の溝壁22が、トレッド部の平面視にて踏面21側と溝底32側とで凹凸パターンをタイヤ周方向に相互にずらして形成される。かかる構成により、溝壁22は、凸部23,24の体積分布がタイヤ周方向にて略均一化される。また、溝壁22は、タイヤ径方向の断面透視図にて、踏面21側の凸部23の凸量と溝底32側の凸部24の凸量とがタイヤ径方向に対して略均一となるように形成される。これにより、空気入りタイヤ1は、タイヤ使用時にてリブ/ブロック2に掛かる接地圧が分散され、リブ/ブロック2の体積変動がタイヤ周方向にて均一化されるので、ティアの発生が効果的に抑制される利点がある。   Here, in the pneumatic tire 1 described in FIGS. 4 to 7, the shape and volume amount of the convex portions 23 and 24 of the groove wall 22 are adjusted as in the pneumatic tire 1 of Example 1 (FIG. 2). reference). Specifically, the groove wall 22 of the rib / block 2 is formed by shifting the uneven pattern in the tire circumferential direction on the tread surface 21 side and the groove bottom 32 side in plan view of the tread portion. With this configuration, the groove wall 22 has a substantially uniform volume distribution of the convex portions 23 and 24 in the tire circumferential direction. Further, the groove wall 22 is a sectional perspective view in the tire radial direction, and the convex amount of the convex portion 23 on the tread surface 21 side and the convex amount of the convex portion 24 on the groove bottom 32 side are substantially uniform with respect to the tire radial direction. Formed to be. As a result, in the pneumatic tire 1, the contact pressure applied to the rib / block 2 is dispersed when the tire is used, and the volume fluctuation of the rib / block 2 is made uniform in the tire circumferential direction. Has the advantage of being suppressed.

また、図4〜図7に記載した空気入りタイヤ1においても、実施例2に記載した空気入りタイヤ1と同様に、傾斜角θ1、θ2について変形を加えてもよい(図示省略。図2参照)。これにより、よりリブ/ブロック2のリバーウェアを効果的に抑制できると共に、上記したリブ/ブロック2の作用と相俟って空気入りタイヤ1の耐リバーウェア性を相乗的に高められる利点がある。   Also, in the pneumatic tire 1 described in FIGS. 4 to 7, the inclination angles θ <b> 1 and θ <b> 2 may be modified in the same manner as the pneumatic tire 1 described in the second embodiment (not shown, see FIG. 2). ). As a result, the river wear of the rib / block 2 can be more effectively suppressed, and the river wear resistance of the pneumatic tire 1 can be enhanced synergistically in combination with the action of the rib / block 2 described above. .

[耐性試験1]
図8および図9は、この発明にかかる空気入りタイヤの耐性試験の結果を示す説明図である。図8は、この耐性試験1に用いた空気入りタイヤの概略構造および試験結果に基づく評価を示している。図9は、各空気入りタイヤについて、耐性試験1によるリバーウェアおよびティアの発生本数を示している。
[Resistance test 1]
8 and 9 are explanatory views showing the results of the durability test of the pneumatic tire according to the present invention. FIG. 8 shows the evaluation based on the schematic structure of the pneumatic tire used in the tolerance test 1 and the test results. FIG. 9 shows the number of riverware and tiers generated by the durability test 1 for each pneumatic tire.

この耐性試験1では、リブ/ブロックの形状(ないしは縦溝の形状)が異なる複数種類の空気入りタイヤについて試験を行い、耐リバーウェア性および耐ティア性について評価を行った。耐性試験1では、タイヤサイズ11R22.5の空気入りタイヤを実車のフロント軸に装着し、同一コースにて8万kmの走行を行った後のリーバーウェアの発生本数と、突起を設けた路面走行によるティアの発生本数とを観察した。また、かかる耐性試験1を各20本の空気入りタイヤについて行った。また、試験に用いた空気入りタイヤは、トラックやバスなどに用いられる重荷重用タイヤである。   In the durability test 1, a plurality of types of pneumatic tires having different rib / block shapes (or longitudinal groove shapes) were tested, and evaluations were made on river wear resistance and tear resistance. In resistance test 1, a pneumatic tire with a tire size of 11R22.5 is mounted on the front axle of a real vehicle, and the number of Lever wear generated after running 80,000 km on the same course and road running with protrusions The number of tiers generated by Moreover, this tolerance test 1 was performed on each of 20 pneumatic tires. The pneumatic tire used for the test is a heavy duty tire used for trucks, buses, and the like.

図8および図9において、発明例にかかる空気入りタイヤ1は、実施例1に記載した空気入りタイヤ1である(図1〜図3参照)。同図に示すように、この空気入りタイヤ1では、リバーウェアおよびティアのいずれの発生も確認されず(いずれも0本。図9参照。)、耐リーバーウェア性および耐ティア性の双方について、他の比較例A〜Eよりも極めて良好な結果が得られた。   8 and 9, the pneumatic tire 1 according to the invention example is the pneumatic tire 1 described in Example 1 (see FIGS. 1 to 3). As shown in the figure, in this pneumatic tire 1, neither occurrence of river wear nor tier was confirmed (both 0, see FIG. 9). Very good results were obtained compared to the other Comparative Examples A to E.

また、比較例Aにかかる空気入りタイヤは、タイヤ周方向に沿って直線的に形成された縦溝を有し、そのリブ/ブロック踏面の溝側縁部に少数のサイプを有する。かかる空気入りタイヤではリバーウェアの発生が確認され(13本)、また、ティアの発生も若干確認された(4本)。   Further, the pneumatic tire according to Comparative Example A has longitudinal grooves formed linearly along the tire circumferential direction, and has a small number of sipes at the groove side edge of the rib / block tread surface. In such a pneumatic tire, the occurrence of river wear was confirmed (13), and the occurrence of tear was also slightly confirmed (4).

また、比較例Bにかかる空気入りタイヤは、比較例Aの空気入りタイヤと比較して、リブ/ブロック踏面の溝側縁部に多数のサイプを有する点に特徴を有する。この空気入りタイヤでは、サイプの作用により比較例1よりも耐リバーウェア性が向上したが(4本)、耐ティア性が悪化した(5本)。   Further, the pneumatic tire according to Comparative Example B is characterized by having a large number of sipes at the groove side edge of the rib / block tread compared to the pneumatic tire of Comparative Example A. In this pneumatic tire, the river wear resistance was improved as compared with Comparative Example 1 due to the action of sipe (4), but the tear resistance was deteriorated (5).

また、比較例Cにかかる空気入りタイヤは、タイヤ周方向に沿ってジグザグ状に形成された縦溝を有する。ただし、この縦溝は、リブ/ブロックの溝深さ方向に一様に形成されており、リブ/ブロックの踏面側と溝底側とが同じ位相で屈折している。この空気入りタイヤでは、縦溝形状の作用により比較例Bよりも耐ティア性において優れる(3本)が、耐リバーウェア性は同等である(4本)。   Moreover, the pneumatic tire according to Comparative Example C has longitudinal grooves formed in a zigzag shape along the tire circumferential direction. However, the longitudinal grooves are uniformly formed in the groove depth direction of the rib / block, and the tread surface side and the groove bottom side of the rib / block are refracted in the same phase. In this pneumatic tire, the tear resistance is superior to Comparative Example B due to the action of the longitudinal groove shape (three), but the river wear resistance is equivalent (four).

また、比較例Dにかかる空気入りタイヤは、縦溝が、リブ/ブロックの踏面側ではタイヤ周方向に沿って直線的に形成され、溝底側ではタイヤ周方向に沿ってジグザグ状に形成される。具体的には、この空気入りタイヤは、比較例Aにかかる空気入りタイヤのリブ/ブロック壁面に三角錘形状の凸部を設け、この凸部が底面を溝底に位置させると共に頂点を踏面側に位置させた構造を有する。この空気入りタイヤでは、縦溝形状の作用により耐ティア性において比較例Cと同様の性能を有する(3本)が、耐リバーウェア性では著しく劣る(8本)。   Further, in the pneumatic tire according to Comparative Example D, the longitudinal grooves are formed linearly along the tire circumferential direction on the tread surface side of the rib / block, and formed in a zigzag shape along the tire circumferential direction on the groove bottom side. The Specifically, in this pneumatic tire, a triangular pyramid-shaped convex portion is provided on the rib / block wall surface of the pneumatic tire according to Comparative Example A, and the convex portion is positioned at the bottom of the groove and the apex is on the tread side. It has the structure located in. This pneumatic tire has the same performance as Comparative Example C in terms of tear resistance due to the action of the longitudinal groove shape (three), but is extremely inferior in riverware resistance (eight).

また、比較例Eにかかる空気入りタイヤは、比較例Dの空気入りタイヤと比較して、リブ/ブロック踏面の溝側縁部に多数のサイプを有する点に特徴を有する。この空気入りタイヤでは、サイプの作用により比較例Dよりも耐リバーウェア性が向上した(4本)が、耐ティア性は同等である(3本)。   Further, the pneumatic tire according to Comparative Example E is characterized in that it has a large number of sipes at the groove side edge of the rib / block tread compared to the pneumatic tire of Comparative Example D. In this pneumatic tire, the river wear resistance was improved as compared with Comparative Example D due to the action of sipe (four), but the tear resistance was equivalent (three).

[耐性試験2]
図10は、この発明にかかる空気入りタイヤの耐性試験の結果を示す説明図である。この耐性試験2では、実施例1に記載した空気入りタイヤ1を用い(図1〜図3参照)、そのリブ/ブロック溝壁の傾斜角θ1、θ2および凸部23,24の凸量の条件を変えて試験を行い、耐リバーウェア性および耐ティア性について評価を行った。なお、耐性試験2の試験方法は耐性試験1と同様なので、その説明を省略する。
[Resistance test 2]
FIG. 10 is an explanatory view showing the results of a durability test of the pneumatic tire according to the present invention. In the durability test 2, the pneumatic tire 1 described in Example 1 was used (see FIGS. 1 to 3), and the rib / block groove wall inclination angles θ1 and θ2 and the convex amount conditions of the convex portions 23 and 24 were used. Tests were conducted with different values, and evaluations were made on the resistance to riverware and tear resistance. In addition, since the test method of the tolerance test 2 is the same as that of the tolerance test 1, the description thereof is omitted.

図10において、発明例1〜4の空気入りタイヤ1では、いずれもリブ/ブロック2溝壁22の傾斜角θ1が鋭角(ここでは80度)であり、傾斜角θ2が80度〜105度の範囲内にある。また、リブ/ブロック2の溝壁22は、踏面21側の凸部23の凸量と溝底32側の凸部24の凸量との比A/B(ここでは、タイヤ径方向の断面透視図における凸部23,24の面積比)が、0.8〜1.2の範囲内にある。同図に示すように、これらの空気入りタイヤ1では、耐リバーウェア性および耐ティア性の双方にていずれも優れた試験結果を得ている。   In FIG. 10, in the pneumatic tires 1 of Invention Examples 1 to 4, the rib / block 2 groove wall 22 has an acute inclination angle θ1 (here, 80 degrees) and an inclination angle θ2 of 80 degrees to 105 degrees. Is in range. Further, the groove wall 22 of the rib / block 2 has a ratio A / B between the convex amount of the convex portion 23 on the tread surface 21 side and the convex amount of the convex portion 24 on the groove bottom 32 side (here, a cross-sectional perspective view in the tire radial direction). The area ratio of the convex portions 23 and 24 in the figure is in the range of 0.8 to 1.2. As shown in the figure, these pneumatic tires 1 have obtained excellent test results in both river wear resistance and tear resistance.

また、比較例1の空気入りタイヤでは、発明例1〜4の空気入りタイヤと比較して、リブ/ブロック2溝壁22の傾斜角θ1が鈍角(ここでは95度)であり、凸量の比A/Bが0.6である点で異なる。この空気入りタイヤでは、発明例1〜4の空気入りタイヤよりも耐リバーウェア性が悪化し(4本)、また、耐リブティア性も若干悪化した(1本)。   Moreover, in the pneumatic tire of Comparative Example 1, the inclination angle θ1 of the rib / block 2 groove wall 22 is an obtuse angle (95 degrees here) as compared with the pneumatic tires of Invention Examples 1 to 4, and the convex amount The difference is that the ratio A / B is 0.6. In this pneumatic tire, the river wear resistance was deteriorated (4 pieces) and the rib tear resistance was slightly deteriorated (1 piece) as compared with the pneumatic tires of Invention Examples 1 to 4.

また、比較例2の空気入りタイヤでは、発明例1〜4の空気入りタイヤと比較して、リブ/ブロック2溝壁22の傾斜角θ1が鋭角(ここでは80度)であるが、凸量の比A/Bが0.7である点で異なる。この空気入りタイヤでは、発明例1〜4の空気入りタイヤよりも耐リバーウェア性が悪化した(3本)が、耐リブティア性では、優れた特性を示した(0本)。   Further, in the pneumatic tire of Comparative Example 2, the inclination angle θ1 of the rib / block 2 groove wall 22 is an acute angle (80 degrees here) as compared with the pneumatic tires of Invention Examples 1 to 4, but the convex amount The difference is that the ratio A / B is 0.7. In this pneumatic tire, the river wear resistance was worse than the pneumatic tires of Invention Examples 1 to 4 (three), but the rib tear resistance showed excellent characteristics (0).

また、比較例3の空気入りタイヤでは、発明例1〜4の空気入りタイヤと比較して、リブ/ブロック2溝壁22の傾斜角θ1が鋭角(ここでは80度)であり傾斜角θ2が105度である点で同じであるが、凸量の比A/Bが1.3である点で異なる。この空気入りタイヤでは、発明例1〜4の空気入りタイヤよりも耐リバーウェア性が悪化した(3本)が、耐リブティア性では、優れた特性を示した(0本)。   Moreover, in the pneumatic tire of Comparative Example 3, the inclination angle θ1 of the rib / block 2 groove wall 22 is an acute angle (80 degrees in this case) and the inclination angle θ2 is smaller than that of the pneumatic tires of Invention Examples 1 to 4. It is the same in that it is 105 degrees, but is different in that the ratio A / B of the convex amount is 1.3. In this pneumatic tire, the river wear resistance was worse than the pneumatic tires of Invention Examples 1 to 4 (three), but the rib tear resistance showed excellent characteristics (0).

なお、比較例1〜3の空気入りタイヤは、比較試験1に記載した比較例A〜Eの空気入りタイヤと比較して、耐リバーウェア性および耐ティア性の双方にて、特に、これらの特性の両立面において優れた機能を有する(図8〜図10参照)。   In addition, compared with the pneumatic tire of Comparative Examples A to E described in Comparative Test 1, the pneumatic tires of Comparative Examples 1 to 3 are particularly excellent in both river wear resistance and tear resistance. It has an excellent function in terms of compatibility of characteristics (see FIGS. 8 to 10).

以上のように、本発明にかかる空気入りタイヤは、特に、長距離を連続走行する重荷重用タイヤに適している。   As described above, the pneumatic tire according to the present invention is particularly suitable for a heavy load tire that continuously travels a long distance.

この発明の実施例1にかかる空気入りタイヤのリブ/ブロックを示す平面図である。It is a top view which shows the rib / block of the pneumatic tire concerning Example 1 of this invention. 図1に記載したリブ/ブロックを示すタイヤ径方向の断面透視図ある。FIG. 2 is a perspective cross-sectional view in the tire radial direction showing the rib / block shown in FIG. 1. 図1に記載したリブ/ブロックを示す斜視図である。It is a perspective view which shows the rib / block described in FIG. 実施例3にかかる空気入りタイヤの変形例を示す説明図である。FIG. 6 is an explanatory view showing a modified example of the pneumatic tire according to Example 3. 実施例3にかかる空気入りタイヤの変形例を示す説明図である。FIG. 6 is an explanatory view showing a modified example of the pneumatic tire according to Example 3. 実施例3にかかる空気入りタイヤの変形例を示す説明図である。FIG. 6 is an explanatory view showing a modified example of the pneumatic tire according to Example 3. 実施例3にかかる空気入りタイヤの変形例を示す説明図である。FIG. 6 is an explanatory view showing a modified example of the pneumatic tire according to Example 3. この発明にかかる空気入りタイヤの耐性試験の結果を示す説明図である。It is explanatory drawing which shows the result of the tolerance test of the pneumatic tire concerning this invention. この発明にかかる空気入りタイヤの耐性試験の結果を示す説明図である。It is explanatory drawing which shows the result of the tolerance test of the pneumatic tire concerning this invention. この発明の空気入りタイヤの耐性試験の結果を示す説明図である。It is explanatory drawing which shows the result of the tolerance test of the pneumatic tire of this invention. 従来の空気入りタイヤのリブ/ブロックを示す平面図である。It is a top view which shows the rib / block of the conventional pneumatic tire.

符号の説明Explanation of symbols

1 タイヤ
2 リブ/ブロック
3 縦溝
21 踏面
22 溝壁
23,24 凸部
31 開口部
32 溝底
l 溝底線
m 基底線
P エッジ部
θ1、θ2 傾斜角
DESCRIPTION OF SYMBOLS 1 Tire 2 Rib / block 3 Vertical groove 21 Tread surface 22 Groove wall 23,24 Convex part 31 Opening part 32 Groove bottom l Groove bottom line m Base line P Edge part (theta) 1, (theta) 2 Inclination angle

Claims (6)

縦溝によってタイヤ周方向に区切られて成るリブがタイヤ周方向に連続して形成された空気入りタイヤであって、
前記リブの前記縦溝側の壁面が前記リブの踏面側と溝底側とに複数の凸部を有し、
前記踏面側の凸部は、踏面に底面を有する多角錐形状、又は、踏面に底面を有し側面が曲面をなす錐形状に形成されるとともに、
前記溝底側の凸部は、溝底に底面を有し且つ踏面に頂点を有する多角錐形状、又は、溝底に底面を有し且つ踏面に頂点を有し、側面が曲面をなす錐形状に形成され、
前記踏面側の凸部及び前記溝底側の凸部とがタイヤ周方向に交互に配列して形成され、且つ、
前記踏面側の凸部と前記溝底側の凸部とをタイヤ径方向の透視断面により見たときに、前記踏面側の凸部の外形線と前記溝底側の凸部の外形線との面積比が略等しいことを特徴とする空気入りタイヤ。
A pneumatic tire in which ribs that are partitioned in the tire circumferential direction by vertical grooves are formed continuously in the tire circumferential direction ,
A plurality of protrusions walls of the longitudinal groove side of the ribs on the tread surface side and the groove bottom side of the rib,
The convex portion on the tread surface side is formed into a polygonal pyramid shape having a bottom surface on the tread surface, or a cone shape having a bottom surface on the tread surface and a side surface forming a curved surface,
The convex portion on the groove bottom side is a polygonal pyramid shape having a bottom surface on the groove bottom and a vertex on the tread surface, or a cone shape having a bottom surface on the groove bottom and a vertex on the tread surface, and the side surface is curved. Formed into
The tread surface side convex portions and the groove bottom side convex portions are formed alternately arranged in the tire circumferential direction, and
When the projecting portion on the tread surface side and the projecting portion on the groove bottom side are viewed from a perspective cross section in the tire radial direction, the contour line of the projecting portion on the tread surface side and the contour line of the projecting portion on the groove bottom side A pneumatic tire characterized in that the area ratio is substantially equal.
前記踏面側の凸部と前記溝底側の凸部とをタイヤ径方向の透視断面により見たときに、これらの凸部の外形線から交差部分を引いた面積比A/Bが略等しい請求項1に記載の空気入りタイヤ   When the projection on the tread surface side and the projection on the groove bottom side are viewed in a perspective cross section in the tire radial direction, the area ratio A / B obtained by subtracting the intersection from the outline of these projections is substantially equal. Item 1. The pneumatic tire according to item 1. 前記面積比A/Bが、0.8〜1.2である請求項2に記載の空気入りタイヤ。   The pneumatic tire according to claim 2, wherein the area ratio A / B is 0.8 to 1.2. 前記踏面側の凸部と前記底面側の凸部とをタイヤ径方向の透視断面により見たときに、前記踏面側の凸部の端点P1と前記底面側の凸部の端点Q2とを結ぶ直線が、溝底線に対して前記リブ側に傾斜している請求項1〜3のいずれか一つに記載の空気入りタイヤ。 A straight line connecting an end point P1 of the tread surface side convex portion and an end point Q2 of the bottom surface side convex portion when the tread surface side convex portion and the bottom surface side convex portion are viewed in a perspective cross section in the tire radial direction. The pneumatic tire according to claim 1, which is inclined toward the rib with respect to the groove bottom line. 前記踏面側の凸部と前記底面側の凸部とをタイヤ径方向の透視断面により見たときに、前記踏面側の凸部の端点P1を通る溝壁面の外形線が、溝底線に対して略垂直に傾斜する請求項1〜4のいずれか一つに記載の空気入りタイヤ。   When the tread surface side convex portion and the bottom surface side convex portion are viewed from a perspective cross section in the tire radial direction, the outline of the groove wall surface passing through the end point P1 of the tread surface side convex portion is The pneumatic tire according to any one of claims 1 to 4, which is inclined substantially vertically. 前記溝壁面の外形線が溝底線に対して傾斜する角θ2は、85度〜105度である請求項5に記載の空気入りタイヤ。   The pneumatic tire according to claim 5, wherein an angle θ <b> 2 at which the outline of the groove wall surface is inclined with respect to the groove bottom line is 85 degrees to 105 degrees.
JP2003347392A 2003-10-06 2003-10-06 Pneumatic tire Expired - Fee Related JP4411924B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003347392A JP4411924B2 (en) 2003-10-06 2003-10-06 Pneumatic tire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003347392A JP4411924B2 (en) 2003-10-06 2003-10-06 Pneumatic tire

Publications (2)

Publication Number Publication Date
JP2005112085A JP2005112085A (en) 2005-04-28
JP4411924B2 true JP4411924B2 (en) 2010-02-10

Family

ID=34539984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003347392A Expired - Fee Related JP4411924B2 (en) 2003-10-06 2003-10-06 Pneumatic tire

Country Status (1)

Country Link
JP (1) JP4411924B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8820373B2 (en) * 2005-12-30 2014-09-02 Continental Reifen Deutschland Gmbh Tire having ribs, circumferential grooves and sipe pairs
US7597127B2 (en) * 2005-12-30 2009-10-06 Continental Ag Tire with tread including circumferential grooves having generally sinusoidal contour
US9079459B2 (en) * 2007-02-07 2015-07-14 Bridgestone Firestone North American Tire, Llc Tire with tread including rib having chamfered surface
JP4803318B1 (en) * 2010-12-02 2011-10-26 横浜ゴム株式会社 Pneumatic tire

Also Published As

Publication number Publication date
JP2005112085A (en) 2005-04-28

Similar Documents

Publication Publication Date Title
KR101659836B1 (en) Pneumatic tire
JP4894968B1 (en) Pneumatic tire
JP5440590B2 (en) Pneumatic tire
JP3682918B2 (en) Pneumatic tire
AU615838B2 (en) Heavy duty pneumatic tire
JP6790495B2 (en) tire
JP4873988B2 (en) Pneumatic tire
US10207545B2 (en) Pneumatic tire
US20070151644A1 (en) Tire with tread pattern
CN105711342A (en) Pneumatic tire
JP7092467B2 (en) tire
JP4710556B2 (en) Pneumatic tire
JP5270407B2 (en) Pneumatic tire
JP4743956B2 (en) Pneumatic tire
JP3473904B2 (en) Pneumatic tire
JP4411924B2 (en) Pneumatic tire
JP4831723B2 (en) Pneumatic tire
JP6888366B2 (en) tire
JP5879676B2 (en) Pneumatic tire
JP3626300B2 (en) Pneumatic tire
JP4647432B2 (en) Pneumatic tire
JP6891454B2 (en) tire
US20070137749A1 (en) Tire with tread pattern
JP2004210043A (en) Pneumatic tire
JP7087890B2 (en) tire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090421

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090728

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090917

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091027

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091109

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131127

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees