JP4408830B2 - Manufacturing method of semiconductor device - Google Patents

Manufacturing method of semiconductor device Download PDF

Info

Publication number
JP4408830B2
JP4408830B2 JP2005113205A JP2005113205A JP4408830B2 JP 4408830 B2 JP4408830 B2 JP 4408830B2 JP 2005113205 A JP2005113205 A JP 2005113205A JP 2005113205 A JP2005113205 A JP 2005113205A JP 4408830 B2 JP4408830 B2 JP 4408830B2
Authority
JP
Japan
Prior art keywords
film
manufacturing
semiconductor device
metal wiring
oxidation step
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005113205A
Other languages
Japanese (ja)
Other versions
JP2006294842A (en
Inventor
勝一 福井
浩史 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Technology Corp
Original Assignee
Renesas Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Technology Corp filed Critical Renesas Technology Corp
Priority to JP2005113205A priority Critical patent/JP4408830B2/en
Publication of JP2006294842A publication Critical patent/JP2006294842A/en
Application granted granted Critical
Publication of JP4408830B2 publication Critical patent/JP4408830B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、メタル配線のバリアメタルとしてTi膜をCVD法で形成し、メタル配線形成後にフッ化アンモン系の薬液で洗浄する半導体装置の製造方法に関し、特に、薬液洗浄によるメタル配線の膜剥がれを抑制することができる半導体装置の製造方法に関するものである。   The present invention relates to a method of manufacturing a semiconductor device in which a Ti film is formed as a barrier metal of a metal wiring by a CVD method and is cleaned with an ammonium fluoride-based chemical after the metal wiring is formed, and in particular, the metal wiring is peeled off by chemical cleaning. The present invention relates to a method for manufacturing a semiconductor device that can be suppressed.

図4は、従来の半導体装置の製造方法を示す工程断面図である。まず、図4(a)に示すように、シリコン基板11上に下地酸化膜12を形成し、下地酸化膜12にホール13を形成し、全面にTi膜14、TiN膜15及びタングステン膜16を形成し、フォトリソグラフィ技術を用いてTi膜14、TiN膜15及びタングステン膜16をパターニングしてメタル配線を形成する。   FIG. 4 is a process sectional view showing a conventional method of manufacturing a semiconductor device. First, as shown in FIG. 4A, a base oxide film 12 is formed on a silicon substrate 11, holes 13 are formed in the base oxide film 12, and a Ti film 14, a TiN film 15 and a tungsten film 16 are formed on the entire surface. Then, the Ti film 14, the TiN film 15, and the tungsten film 16 are patterned using a photolithography technique to form a metal wiring.

この時点でレジストマスクパターンの残りレジスト、配線側壁デポ、酸化膜上デポなどのデポポリマー(反応副生成物、以下ポリマーと呼ぶ)が残っている。これを除去するために低温アッシング処理を行う。この低温アッシング処理により、カーボンを多く含むポリマーは除去されるが、例えばTiを含むポリマーなどは低温アッシングでは除去されにくくポリマー残渣19a,19bとなる。   At this point, the remaining resist of the resist mask pattern, wiring sidewall deposits, and deposits on oxide films (reaction byproducts, hereinafter referred to as polymers) remain. In order to remove this, a low temperature ashing process is performed. This low-temperature ashing treatment removes a polymer containing a large amount of carbon, but for example, a polymer containing Ti is difficult to remove by low-temperature ashing to form polymer residues 19a and 19b.

そこで、図4(b)に示すように、薬液洗浄によりポリマー残渣19a,19bを除去する。この薬液洗浄には用途に応じ様々な薬液が用いられるが、昨今のウェハの大口径化・枚葉化に伴い、薬液として常温でのポリマー除去性が良いフッ化アンモン系(NHF)を主成分としたものが用いられている。 Therefore, as shown in FIG. 4B, the polymer residues 19a and 19b are removed by chemical cleaning. Various chemical solutions are used for this chemical cleaning depending on the application. With the recent increase in wafer diameter and single wafer processing, ammonium fluoride (NH 4 F), which has good polymer removability at room temperature, is used as the chemical solution. The main component is used.

しかし、従来の製造方法では、フッ化アンモン系薬液によりTi膜14と下地酸化膜12の界面がサイドエッチされ、メタル配線の膜剥がれが起こるという問題があった。このメタル配線の膜剥がれは、Ti膜14の成膜においてTiCl系CVD法のような600℃以上の高温成膜法を用いると発生するが、スパッタ法などの400℃以下の低温成膜法を用いれば回避することができる。また、スパッタ法では、物理的にTi原子(又はクラスター分子)を下地酸化膜12表面に打ち込むため、Ti膜14と下地酸化膜12の接触面積が大きくなり、かつ界面も緻密になって密着性が向上する。このことからも、スパッタ法を用いるとメタル配線の膜剥がれを防ぐことができる。 However, the conventional manufacturing method has a problem that the interface between the Ti film 14 and the base oxide film 12 is side-etched by the ammonium fluoride chemical solution, and the metal wiring is peeled off. The film peeling of the metal wiring occurs when a Ti film 14 is formed by using a high temperature film forming method of 600 ° C. or higher such as a TiCl 4 CVD method, but a low temperature film forming method of 400 ° C. or lower such as a sputtering method. Can be avoided. Further, in the sputtering method, since Ti atoms (or cluster molecules) are physically implanted into the surface of the base oxide film 12, the contact area between the Ti film 14 and the base oxide film 12 becomes large, and the interface becomes dense and adheres. Will improve. Also from this, it is possible to prevent the metal wiring from peeling off by using the sputtering method.

しかし、高集積化・微細化によりホールが高アスペクトとなっているのに対し、スパッタ法では十分なホールカバレッジ(被覆性)を得ることができない。従って、Ti膜の成膜においてCVD法を用いる必要がある。   However, while holes have a high aspect due to high integration and miniaturization, sufficient hole coverage (coverability) cannot be obtained by sputtering. Therefore, it is necessary to use the CVD method in forming the Ti film.

本発明は、上述のような課題を解決するためになされたもので、その目的は、メタル配線のバリアメタルとしてTi膜をCVD法で形成し、メタル配線形成後にフッ化アンモン系の薬液で洗浄する場合に、薬液洗浄によるメタル配線の膜剥がれを抑制することができる半導体装置の製造方法を得るものである。   The present invention has been made to solve the above-described problems, and its purpose is to form a Ti film as a barrier metal of a metal wiring by a CVD method, and to clean the metal wiring with an ammonium fluoride-based chemical solution after forming the metal wiring. In this case, a semiconductor device manufacturing method capable of suppressing the peeling of the metal wiring film due to the chemical cleaning is obtained.

本発明に係る半導体装置の製造方法は、下地酸化膜上にTi膜をCVD法で形成する工程と、Ti膜上にメタル膜を形成する工程と、メタル膜及びTi膜をパターニングしてメタル配線を形成する工程と、Ti膜の側面を酸化する酸化工程と、この酸化工程の後に全面をフッ化アンモン系の薬液で洗浄する工程とを有する。本発明のその他の特徴は以下に明らかにする。   A method of manufacturing a semiconductor device according to the present invention includes a step of forming a Ti film on a base oxide film by a CVD method, a step of forming a metal film on the Ti film, and patterning the metal film and the Ti film to form a metal wiring. , An oxidation step for oxidizing the side surfaces of the Ti film, and a step for washing the entire surface with an ammonium fluoride-based chemical after the oxidation step. Other features of the present invention will become apparent below.

本発明により、メタル配線のバリアメタルとしてTi膜をCVD法で形成し、メタル配線形成後にフッ化アンモン系の薬液で洗浄する場合に、薬液洗浄によるメタル配線の膜剥がれを抑制することができる。   According to the present invention, when a Ti film is formed as a barrier metal of a metal wiring by a CVD method and is cleaned with an ammonium fluoride-based chemical after forming the metal wiring, it is possible to suppress peeling of the metal wiring due to the chemical cleaning.

実施の形態1.
本発明の実施の形態1に係る半導体装置の製造方法について図1及び2を参照しながら説明する。
Embodiment 1 FIG.
A method for manufacturing a semiconductor device according to the first embodiment of the present invention will be described with reference to FIGS.

まず、図1(a)に示すように、シリコン基板11上にSiOからなる下地酸化膜12を成膜する。この際、原料ガスとしてTEOSを用い、成膜温度680℃程度の低圧CVD法を用いる。そして、例えばフォトリソグラフィ技術を用いてレジストマスクパターン(図示せず)を形成した後、CF,C,CHFなどのエッチングガス又はそれらにArガスを混ぜた混合ガスを用いたドライエッチング法により、下地酸化膜12に微細なホール13を形成する。 First, as shown in FIG. 1A, a base oxide film 12 made of SiO 2 is formed on a silicon substrate 11. At this time, TEOS is used as a source gas, and a low pressure CVD method with a film forming temperature of about 680 ° C. is used. Then, for example, after a resist mask pattern (not shown) is formed using a photolithography technique, a dry process using an etching gas such as CF 4 , C 4 F 8 , CHF 3 or a mixed gas obtained by mixing Ar gas with them is used. Fine holes 13 are formed in the base oxide film 12 by etching.

次に、図1(b)に示すように、下地酸化膜12上に、バリアメタルとしてTi膜14及びTiN膜15をCVD法により成膜する。この際、TiClを原料ガスとし、成膜温度を700℃程度とする。バリアメタルの膜厚はデバイスの電気特性や信頼性などで規定され、ここでは10nmのTiN膜及び10nmのTi膜の二層バリアメタルを形成した。 Next, as shown in FIG. 1B, a Ti film 14 and a TiN film 15 are formed as a barrier metal on the base oxide film 12 by a CVD method. At this time, TiCl 4 is used as a source gas, and the film forming temperature is set to about 700 ° C. The thickness of the barrier metal is defined by the electrical characteristics and reliability of the device. Here, a double-layer barrier metal of a 10 nm TiN film and a 10 nm Ti film was formed.

次に、図1(c)に示すように、TiN膜15上にメタル膜であるタングステン膜16をCVD法により成膜する。この際、WFとHを含んだガス雰囲気とし、成膜温度を450℃程度とする。そして、図1(d)に示すように、フォト・リソグラフィー技術を用いてレジストマスクパターン17を形成する。 Next, as shown in FIG. 1C, a tungsten film 16 which is a metal film is formed on the TiN film 15 by a CVD method. At this time, a gas atmosphere containing WF 6 and H 2 is used, and the film forming temperature is set to about 450 ° C. Then, as shown in FIG. 1D, a resist mask pattern 17 is formed by using a photolithographic technique.

次に、図2(a)に示すように、レジストマスクパターン17をマスクとし、SFやClなどのエッチングガスを含んだ混合ガスを用いたドライエッチング法により、タングステン膜16、TiN膜15及びTi膜14をパターニングしてメタル配線を形成する。この際、レジストマスクパターン17や配線側壁デポ18a,酸化膜上デポ18bなどのポリマーが残る。 Next, as shown in FIG. 2A, the tungsten film 16 and the TiN film 15 are formed by a dry etching method using a mixed gas containing an etching gas such as SF 6 or Cl 2 using the resist mask pattern 17 as a mask. The Ti film 14 is patterned to form a metal wiring. At this time, polymers such as the resist mask pattern 17, the wiring sidewall deposit 18a, and the oxide deposit 18b remain.

これらを除去するために、O,CF,CHFなどを含んだ混合ガスプラズマで低温アッシング処理を行う。ここで、温度は特に規定されるものでは無く、0〜100℃程度の温度で処理を行うのが一般的で、ここでは室温でアッシングを行う。なお、高温でアッシングを行わないのは、CF系のポリマーが高温アッシングの最中に硬化し、却って除去が困難になることを防ぐためである。 In order to remove these, low temperature ashing treatment is performed with a mixed gas plasma containing O 2 , CF 4 , CHF 3, and the like. Here, the temperature is not particularly specified, and the treatment is generally performed at a temperature of about 0 to 100 ° C. Here, ashing is performed at room temperature. The reason why ashing is not performed at a high temperature is to prevent the CF-based polymer from being hardened during high-temperature ashing and becoming difficult to remove.

この低温アッシングにおいて、カーボンを多く含むポリマーは除去されるが、Tiを含むポリマーなど除去されにくいため、図2(b)に示すようにポリマー残渣19a,19bが残る。そこで、薬液洗浄にてポリマー残渣19a,19bを除去する必要があるが、実施の形態1では薬液洗浄の前に250℃の高温下で酸素プラズマに曝して酸化処理を行う。   In this low temperature ashing, a polymer containing a large amount of carbon is removed, but a polymer containing Ti or the like is difficult to remove, so that polymer residues 19a and 19b remain as shown in FIG. Therefore, it is necessary to remove the polymer residues 19a and 19b by chemical cleaning, but in the first embodiment, the oxidation treatment is performed by exposure to oxygen plasma at a high temperature of 250 ° C. before the chemical cleaning.

図3は、Ti膜の側面付近についてのTEM−EELS(Electron Energy Loss Spectroscopy)解析結果を示す図である。酸化処理前は図3(a)に示すようにTiのピークのみが検出されるが、酸化処理後は図3(b)に示すようにTiOx(0<x≦2)のピークも検出される。これにより、Ti膜の側面が酸化されてTiOx(0<x≦2)が形成されていることが確認された。   FIG. 3 is a diagram showing a TEM-EELS (Electron Energy Loss Spectroscopy) analysis result in the vicinity of the side surface of the Ti film. Before the oxidation treatment, only the Ti peak is detected as shown in FIG. 3A, but after the oxidation treatment, the TiOx (0 <x ≦ 2) peak is also detected as shown in FIG. 3B. . Thereby, it was confirmed that the side surface of the Ti film was oxidized to form TiOx (0 <x ≦ 2).

この酸化処理により、図2(c)に示すように、Ti膜14の側面を酸化して側壁酸化膜20を形成する。この酸化工程の後に、図2(d)に示すように、全面をフッ化アンモン系の薬液で洗浄して、ポリマー残渣19a,19bを除去する。   By this oxidation treatment, as shown in FIG. 2C, the side surface of the Ti film 14 is oxidized to form a sidewall oxide film 20. After this oxidation step, as shown in FIG. 2D, the entire surface is washed with an ammonium fluoride chemical solution to remove the polymer residues 19a and 19b.

ここで、フッ化アンモン系の薬液ではTiOx膜がエッチングされず、SiOのエッチングレートも0.52nm/minと非常に小さいことが実験で確認されている。そして、TiOx膜とSiO膜の界面にTi−O−Siの強いボンディングが形成されている。従って、Ti膜14と下地酸化膜12の界面の対薬品性が向上するため、フッ化アンモン系の薬液処理によるメタル配線の膜剥がれを抑制することができる。なお、一般にTi−Oのボンディングは強固であり安定した結合状態を保っているため、フッ化アンモン系以外の薬液に対しても同様の効果が期待できる。 Here, it has been confirmed by experiments that the TiOx film is not etched with an ammonium fluoride-based chemical, and the etching rate of SiO 2 is as very low as 0.52 nm / min. A strong bond of Ti—O—Si is formed at the interface between the TiOx film and the SiO 2 film. Accordingly, since the chemical resistance at the interface between the Ti film 14 and the base oxide film 12 is improved, it is possible to suppress peeling of the metal wiring due to the ammonium fluoride chemical treatment. Since Ti—O bonding is generally strong and maintains a stable bonding state, the same effect can be expected for chemicals other than ammonium fluoride.

また、酸素プラズマ処理温度が高過ぎるとタングステンが酸化されるが、300℃以下であればタングステンの過剰酸化が生じないことが実験で確認されている。また、200℃以上であればメタル配線の膜剥がれが生じないことが実験で確認されている。   In addition, tungsten is oxidized when the oxygen plasma treatment temperature is too high, but it has been confirmed by experiments that tungsten is not excessively oxidized at 300 ° C. or lower. Further, it has been experimentally confirmed that the metal wiring does not peel off at 200 ° C. or higher.

また、薬液洗浄における下地酸化膜のエッチレートを0.52nm/minとし、薬液洗浄の時間を90秒程度とすると、TiOx膜の膜厚は、倍のマージンを含め0.52×90÷60×2=1.56nm以上であることが望ましい。実際、処理時間が180秒の場合でも、TiOx膜の膜厚が4.9nmでメタル配線の膜剥がれが発生しないことがEELS分析で確認された。このことから、TiOx膜の膜厚は2.5nm以上であることが更に望ましい。   If the etch rate of the base oxide film in the chemical cleaning is 0.52 nm / min and the cleaning time is about 90 seconds, the thickness of the TiOx film is 0.52 × 90 ÷ 60 × including a double margin. It is desirable that 2 = 1.56 nm or more. Actually, it was confirmed by EELS analysis that even when the processing time was 180 seconds, the film thickness of the TiOx film was 4.9 nm and the metal wiring did not peel off. Therefore, it is more desirable that the thickness of the TiOx film is 2.5 nm or more.

一方、酸化工程においてタングステンも酸化されるが、TiOx膜の膜厚が7.9nm以下となる酸化条件であればタングステンが酸化されてもデバイス特性的に問題無いことが確認されている。従って、バラツキを20%とすると、TiOx膜の膜厚は10nm以下であることが望ましい。   On the other hand, tungsten is also oxidized in the oxidation step. However, it has been confirmed that there is no problem in device characteristics even if tungsten is oxidized under an oxidation condition in which the film thickness of the TiOx film is 7.9 nm or less. Therefore, when the variation is 20%, the thickness of the TiOx film is desirably 10 nm or less.

実施の形態2.
実施の形態2では、酸素プラズマ処理をO/N雰囲気中で行う。その他の工程は実施の形態1と同様である。このようにO/N条件化で酸化を行うと、Ti膜の側面にTiONx(酸化窒化チタン)膜が形成されることがEELS分析で確かめられている。この場合も、実施の形態1同様にメタル配線の膜剥がれが抑制することができる。
Embodiment 2. FIG.
In Embodiment 2, oxygen plasma treatment is performed in an O 2 / N 2 atmosphere. Other steps are the same as those in the first embodiment. It is confirmed by EELS analysis that a TiONx (titanium oxynitride) film is formed on the side surface of the Ti film when oxidation is performed under the O 2 / N 2 condition. Also in this case, film peeling of the metal wiring can be suppressed as in the first embodiment.

また、Nの流量比(=N/[O+N])は5〜25%の間が望ましく、この場合は酸化レートがO単独より1.7〜2.1倍になる。従って、実施の形態1に比べて処理時間を短くでき、スループットの向上を図ることができる。 The flow rate ratio of N 2 (= N 2 / [ O 2 + N 2]) has between 5-25% preferably, in this case the oxidation rate is 1.7 to 2.1 times than the O 2 alone. Therefore, the processing time can be shortened compared with Embodiment 1, and the throughput can be improved.

実施の形態3.
実施の形態3では、酸化工程において、O+HOプラズマ処理(水アッシング)を行う。その他の工程は実施の形態1と同様である。これにより、実施の形態1同様にTi膜の側面が酸化されてメタル配線の膜剥がれを抑制することができ、さらに酸化レートを上げることもできる。
Embodiment 3 FIG.
In Embodiment 3, in the oxidation step, O 2 + H 2 O plasma treatment (water ashing) is performed. Other steps are the same as those in the first embodiment. As a result, as in the first embodiment, the side surfaces of the Ti film are oxidized to prevent the metal wiring from peeling off, and the oxidation rate can be increased.

実施の形態4.
実施の形態4では、酸化工程において、オゾンアッシングを行う。その他の工程は実施の形態1と同様である。これにより、実施の形態1同様にTi膜の側面が酸化されてメタル配線の膜剥がれを抑制することができ、かつプラズマチャージアップダメージを回避することもできる。
Embodiment 4 FIG.
In Embodiment 4, ozone ashing is performed in the oxidation step. Other steps are the same as those in the first embodiment. As a result, as in the first embodiment, the side surfaces of the Ti film are oxidized to prevent the metal wiring from being peeled off, and plasma charge-up damage can be avoided.

本発明の実施の形態1に係る半導体装置の製造方法を示す工程断面図(その1)である。It is process sectional drawing (the 1) which shows the manufacturing method of the semiconductor device which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る半導体装置の製造方法を示す工程断面図(その2)である。FIG. 10 is a process cross-sectional view (No. 2) illustrating the method for manufacturing the semiconductor device according to the first embodiment of the invention; Ti膜の側面付近についてのTEM−EELS解析結果を示す図である。It is a figure which shows the TEM-EELS analysis result about the side surface vicinity of Ti film | membrane. 従来の半導体装置の製造方法を示す工程断面図である。It is process sectional drawing which shows the manufacturing method of the conventional semiconductor device.

符号の説明Explanation of symbols

11 シリコン基板
12 下地酸化膜
13 ホール
14 TiN膜
15 Ti膜
16 タングステン膜
19a,19b ポリマー残渣
20 側壁酸化膜
11 Silicon substrate 12 Base oxide film 13 Hole 14 TiN film 15 Ti film 16 Tungsten film 19a, 19b Polymer residue 20 Side wall oxide film

Claims (7)

下地酸化膜上にTi膜をCVD法で形成する工程と、
前記Ti膜上にメタル膜を形成する工程と、
前記メタル膜及び前記Ti膜をパターニングしてメタル配線を形成する工程と、
前記Ti膜の側面を酸化する酸化工程と、
前記酸化工程の後に全面をフッ化アンモン系の薬液で洗浄する工程とを有することを特徴とする半導体装置の製造方法。
Forming a Ti film on the underlying oxide film by a CVD method;
Forming a metal film on the Ti film;
Patterning the metal film and the Ti film to form a metal wiring;
An oxidation step of oxidizing the side surface of the Ti film;
And a step of cleaning the entire surface with an ammonium fluoride-based chemical solution after the oxidation step.
前記酸化工程において、酸素プラズマに晒して酸化処理を行うことを特徴とする請求項1記載の半導体装置の製造方法。   2. The method of manufacturing a semiconductor device according to claim 1, wherein in the oxidation step, an oxidation process is performed by exposure to oxygen plasma. 前記酸化工程において、酸素プラズマ処理温度が200℃以上300℃以下であることを特徴とする請求項2記載の半導体装置の製造方法。   The method of manufacturing a semiconductor device according to claim 2, wherein, in the oxidation step, an oxygen plasma treatment temperature is 200 ° C. or higher and 300 ° C. or lower. 前記Ti膜の側面に形成するTiOx膜の膜厚を2.5nm以上10nm以下とすることを特徴とする請求項1に記載の半導体装置の製造方法。   2. The method of manufacturing a semiconductor device according to claim 1, wherein a film thickness of the TiOx film formed on the side surface of the Ti film is 2.5 nm or more and 10 nm or less. 酸素プラズマ処理をO/N雰囲気中で行うことを特徴する請求項2記載の半導体装置の製造方法。 The method of manufacturing a semiconductor device according to claim 2, wherein the oxygen plasma treatment is performed in an O 2 / N 2 atmosphere. 前記酸化工程において、O+HOプラズマ処理を行うことを特徴とする請求項2記載の半導体装置の製造方法。 3. The method of manufacturing a semiconductor device according to claim 2 , wherein an O 2 + H 2 O plasma treatment is performed in the oxidation step. 前記酸化工程において、オゾンアッシングを行うことを特徴とする請求項2記載の半導体装置の製造方法。   3. The method of manufacturing a semiconductor device according to claim 2, wherein ozone ashing is performed in the oxidation step.
JP2005113205A 2005-04-11 2005-04-11 Manufacturing method of semiconductor device Expired - Fee Related JP4408830B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005113205A JP4408830B2 (en) 2005-04-11 2005-04-11 Manufacturing method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005113205A JP4408830B2 (en) 2005-04-11 2005-04-11 Manufacturing method of semiconductor device

Publications (2)

Publication Number Publication Date
JP2006294842A JP2006294842A (en) 2006-10-26
JP4408830B2 true JP4408830B2 (en) 2010-02-03

Family

ID=37415092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005113205A Expired - Fee Related JP4408830B2 (en) 2005-04-11 2005-04-11 Manufacturing method of semiconductor device

Country Status (1)

Country Link
JP (1) JP4408830B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4952375B2 (en) 2007-05-23 2012-06-13 株式会社明電舎 Resist removing method and apparatus
JP5217951B2 (en) 2007-12-04 2013-06-19 株式会社明電舎 Resist removing method and apparatus
JP6243815B2 (en) * 2014-09-01 2017-12-06 信越化学工業株式会社 Manufacturing method of semiconductor device substrate

Also Published As

Publication number Publication date
JP2006294842A (en) 2006-10-26

Similar Documents

Publication Publication Date Title
JP4563340B2 (en) Manufacturing method of semiconductor device
KR101082993B1 (en) Separation-material composition for photo-resist and manufacturing methods of semiconductor device
JP3326644B2 (en) Processing method of silicon-based material layer
TWI363255B (en) Method for removing masking materials with reduced low-k dielectric material damage
JPH11260785A (en) Eliminating method of photoresist material and etching residue
US6692580B2 (en) Method of cleaning a dual damascene structure
JP4408830B2 (en) Manufacturing method of semiconductor device
JP2010205782A (en) Method of manufacturing semiconductor device
JP2006148122A (en) Method for removing residue from metal structure on semiconductor substrate
JPH10178014A (en) Method for manufacturing semiconductor device
JP2639369B2 (en) Method for manufacturing semiconductor device
JP2011151283A (en) Method of manufacturing semiconductor device
JP4646346B2 (en) Manufacturing method of electronic device
JP3688650B2 (en) Manufacturing method of electronic device
US7055532B2 (en) Method to remove fluorine residue from bond pads
US20040048203A1 (en) Method of manufacturing a semiconductor device for high speed operation and low power consumption
JP2010050117A (en) Method of manufacturing semiconductor device
TWI326465B (en) Method of cleaning wafer after etching process
TW464968B (en) Via etch post cleaning process
JP2005136097A (en) Method of manufacturing semiconductor device
JP2002169302A (en) Method of manufacturing semiconductor device
JP4482217B2 (en) Semiconductor device cleaning agent and semiconductor device cleaning method
US6602789B2 (en) Method of forming a metal line in a semiconductor memory device
TWI253688B (en) Method for removing post-etch residue from wafer surface
JP3748068B2 (en) Plasma etching processing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080311

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091110

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131120

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees