JP4407929B2 - Molding method of resin molded gear - Google Patents

Molding method of resin molded gear Download PDF

Info

Publication number
JP4407929B2
JP4407929B2 JP2004270338A JP2004270338A JP4407929B2 JP 4407929 B2 JP4407929 B2 JP 4407929B2 JP 2004270338 A JP2004270338 A JP 2004270338A JP 2004270338 A JP2004270338 A JP 2004270338A JP 4407929 B2 JP4407929 B2 JP 4407929B2
Authority
JP
Japan
Prior art keywords
resin
molding
molded gear
molded
web
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004270338A
Other languages
Japanese (ja)
Other versions
JP2006082434A (en
Inventor
穣 別所
章弘 望月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Polyplastics Co Ltd
Original Assignee
Polyplastics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Polyplastics Co Ltd filed Critical Polyplastics Co Ltd
Priority to JP2004270338A priority Critical patent/JP4407929B2/en
Priority to PCT/JP2005/016908 priority patent/WO2006030810A1/en
Publication of JP2006082434A publication Critical patent/JP2006082434A/en
Application granted granted Critical
Publication of JP4407929B2 publication Critical patent/JP4407929B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H55/00Elements with teeth or friction surfaces for conveying motion; Worms, pulleys or sheaves for gearing mechanisms
    • F16H55/02Toothed members; Worms
    • F16H55/06Use of materials; Use of treatments of toothed members or worms to affect their intrinsic material properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/46Means for plasticising or homogenising the moulding material or forcing it into the mould
    • B29C45/56Means for plasticising or homogenising the moulding material or forcing it into the mould using mould parts movable during or after injection, e.g. injection-compression moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/76Measuring, controlling or regulating
    • B29C45/7613Measuring, controlling or regulating the termination of flow of material into the mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/76Measuring, controlling or regulating
    • B29C45/77Measuring, controlling or regulating of velocity or pressure of moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2015/00Gear wheels or similar articles with grooves or projections, e.g. control knobs
    • B29L2015/003Gears
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H55/00Elements with teeth or friction surfaces for conveying motion; Worms, pulleys or sheaves for gearing mechanisms
    • F16H55/02Toothed members; Worms
    • F16H55/06Use of materials; Use of treatments of toothed members or worms to affect their intrinsic material properties
    • F16H2055/065Moulded gears, e.g. inserts therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H55/00Elements with teeth or friction surfaces for conveying motion; Worms, pulleys or sheaves for gearing mechanisms
    • F16H55/02Toothed members; Worms
    • F16H55/17Toothed wheels

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Thermal Sciences (AREA)
  • Gears, Cams (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Description

本発明は、樹脂射出成形歯車を、エジェクトピン等の局部加圧機構を利用し、低加圧圧力で長時間加圧することによる、局部加圧開始時期などの成形条件の許容幅が広く、得られた樹脂成形歯車が寸法的に高精度で、且つ多数個取り成形を可能とする成形方法、及び該方法により得られた歯車に関する。   The present invention uses a local pressurizing mechanism such as an eject pin for a resin injection molded gear and pressurizes it for a long time at a low pressurizing pressure, thereby allowing a wide range of molding conditions such as local pressurization start time. The present invention relates to a molding method in which the resin-molded gear thus obtained is dimensionally highly accurate and enables a multi-piece molding and a gear obtained by the method.

従来、複写機、プリンター等のOA機器の動力伝達部品として、また、VTRテープ駆動機構、レーザーディスクプレーヤのローディング機構等に樹脂製の平歯車が多数使用されている。また、低騒音性能および高速性能の要求が強い場合には、噛み合い率が高く、かつ低騒音で大きな力を伝える樹脂はすば歯車が使用されている。
このような樹脂歯車を設計する場合、従来は騒音や伝達効率、摩擦摩耗特性、強度、歯の各部要素の形状及び高度な初期精度等を考慮して、歯車の各構成部材の形状や寸法等を定めている。一般的には騒音や強度、剛性を考慮し、リム厚はピッチ円歯厚の1.5倍程度、または、モジュールの2.5倍程度とし、かつ、ウエブ厚はリム厚とほぼ同じにするように設計される。
例えば、平歯車あるいははすば歯車の断面寸法の標準的寸法割合が示されており、これによると、ピッチ円歯厚とリム厚とウエブ厚の比は1:1.4:1.6である。一方、高度な初期精度を考慮すると、ピッチ円歯厚とリム厚の比は1:0.6〜1.2程度で設計することが一般的であった。(非特許文献1参照)
Conventionally, many resin spur gears have been used as power transmission parts for office automation equipment such as copying machines and printers, and for VTR tape drive mechanisms and laser disk player loading mechanisms. Further, when demands for low noise performance and high speed performance are strong, a helical gear is used as a resin that has a high meshing rate and transmits a large force with low noise.
When designing such a resin gear, the shape and size of each component of the gear, etc., taking into account the noise, transmission efficiency, friction and wear characteristics, strength, shape of each element of the tooth and high initial accuracy, etc. Is stipulated. In general, considering the noise, strength, and rigidity, the rim thickness is about 1.5 times the pitch circle tooth thickness, or about 2.5 times the module thickness, and the web thickness is almost the same as the rim thickness. Designed as such.
For example, the standard dimensional ratio of the cross-sectional dimension of a spur gear or a helical gear is shown. According to this, the ratio of pitch circle tooth thickness, rim thickness, and web thickness is 1: 1.4: 1.6. is there. On the other hand, in consideration of high initial accuracy, it is common to design the pitch circle tooth thickness to rim thickness ratio at about 1: 0.6 to 1.2. (See Non-Patent Document 1)

最近、プリンター、複写機等のOA機器の高精度化にともない、これらのOA機器の動力伝達、作動伝達等を行う歯車には、歯車を使用する最も重要な目的である1軸の回転角をその歯数に逆比例して他軸に正しく伝達するか否かを評価する角度伝達誤差の精度が要求されてきている。
しかし、従来技術により、通常の歯車用樹脂を用い、歯車の強度、剛性、低騒音性能、歯の各部要素の形状及び寸法における高度な精度を主体とした歯車の各構成部材の形状、寸法を定める設計においては、例えば、一般的に用いられているポリアセタール樹脂を使用したはすば歯車においては、詳しくは、強度、剛性を考慮した設計の場合、円筒変形が発生し、リムとウエブの交点付近が大きく軸中央に向かってひけるためにJIS B1702(1976)に定められる精度が悪く、結果的に適正な動力伝達を行うことが出来ない。一方、高度な精度を考慮した場合、剛性不足により実際に使用される回転数や回転トルク下で角度伝達誤差が非常に大きくなる。
Recently, with the increase in accuracy of OA equipment such as printers and copiers, the most important purpose of using gears is the rotation angle of one axis, which is the most important purpose of gears for power transmission and operation transmission of these OA equipment. There has been a demand for accuracy of angle transmission error that evaluates whether or not to correctly transmit to other axes in inverse proportion to the number of teeth.
However, according to the prior art, using the usual gear resin, the shape and dimensions of each component of the gear mainly composed of gear strength, rigidity, low noise performance, and high accuracy in the shape and dimensions of each element of the tooth. For example, in the case of a helical gear using polyacetal resin that is generally used, the design that takes into account the strength and rigidity causes a cylindrical deformation and the intersection of the rim and the web. Since the vicinity is large and it moves toward the center of the shaft, the accuracy specified in JIS B1702 (1976) is poor, and as a result, proper power transmission cannot be performed. On the other hand, when high accuracy is taken into account, the angle transmission error becomes very large under the rotational speed and rotational torque actually used due to insufficient rigidity.

そこで、歯13のピッチ円歯厚Sに対するリム厚Srの比率が1.2倍以上であり、且つ樹脂充填開始から型開き開始までの時間T3の期間内で、ウエブ15を加圧成形することを特徴とする樹脂成形歯車の成形方法が知られている。(特許文献1参照)
しかし、従来のエジェクトピン圧縮機構を利用した射出成形での樹脂製歯車の高精度化に対しては、保圧圧力で抑えきれない成形収縮を保圧圧力より大きい機械的な圧力で抑制し、金型への転写性を向上させて樹脂製歯車の高精度化を可能としてきた。従って、従来の加圧成形による樹脂性歯車の高精度化には、大きな圧力を備える特殊仕様の成形機が必要であったり、加圧面積が増える多数個取りの射出成形に対しては不利であった。
Therefore, the web 15 is pressure-molded within a period of time T3 from the start of resin filling to the start of mold opening, where the ratio of the rim thickness Sr to the pitch circle tooth thickness S of the teeth 13 is 1.2 times or more. There is known a method for molding a resin-molded gear characterized by the following. (See Patent Document 1)
However, for higher precision of resin gears in injection molding using the conventional eject pin compression mechanism, molding shrinkage that cannot be suppressed by holding pressure is suppressed by mechanical pressure greater than holding pressure, It has been possible to improve the precision of resin gears by improving the transferability to the mold. Therefore, increasing the precision of conventional resin gears by pressure molding requires a special molding machine with large pressure, or is disadvantageous for multi-cavity injection molding with an increased pressure area. there were.

特開2002−235838号公報(請求項1〜12、段落[0010]、実施例)JP 2002-235838 A (Claims 1 to 12, paragraph [0010], Example) 「プラスチック成形技術」第13巻、第8号、17頁(左側10行目から18行目、右側図2)"Plastic molding technology" Vol.13, No.8, p.17 (10th to 18th lines on the left side, Figure 2 on the right side)

本発明は、樹脂成形歯車を、エジェクトピン圧縮機構を備える標準型の成形機を使用して低加圧圧力で高精度に成形し、更には、樹脂成形歯車の多数個取りを可能にすることを目的とする。   According to the present invention, a resin-molded gear is molded with high precision at a low pressure using a standard molding machine equipped with an eject pin compression mechanism, and moreover, a large number of resin-molded gears can be obtained. With the goal.

本発明者は、樹脂成形歯車のウエブを、エジェクトピンを使用して、広い加圧圧力範囲内で局部加圧して成形し、低加圧圧力であっても従来では想定できないほど長時間の加圧圧力を加えることで、高精度歯車の成形が可能であることを見出した。
更に種々の溶融粘度及び半結晶化時間を有する材料樹脂を検討すると同時に、射出開始から冷却工程中に加圧する時期と加圧圧力及びその保持時間を定め、充分な加圧圧力が長時間に渡ってキャビティに加わることが可能な材料樹脂を選定した。
また、樹脂成形歯車の各構成部材の形状および寸法を変化させると同時に、加圧開始時期と加圧圧力及びその保持時間を変化させることにより成形された樹脂歯車の円筒変形とJIS B1702(1976)に定められる精度を、詳細に、総合的に研究することにより、上記課題を解決しうることを見出し、本発明を完成するに至った。
The present inventor has formed a web of a resin-molded gear by applying local pressurization within a wide pressure range using an eject pin, and applying a long time that cannot be assumed in the past even at low pressure. It was found that high precision gears can be formed by applying pressure.
In addition, while studying material resins having various melt viscosities and semi-crystallization times, at the same time, the timing of pressurization during the cooling process from the start of injection, the pressurization pressure, and the holding time are determined, and sufficient pressurization pressure is maintained for a long time. The material resin that can be added to the cavity was selected.
Also, the cylindrical deformation of the resin gear formed by changing the shape and dimensions of each component of the resin molded gear and simultaneously changing the pressure start time, pressure and holding time, and JIS B1702 (1976) The present invention has been completed by finding that the above-mentioned problems can be solved by comprehensively and comprehensively studying the accuracy defined in the above.

即ち、本発明の第1は、円筒状に形成されたリム(11)、リム(11)の外周面に円筒の中心軸(12)から外方向に形成された歯(13)、リム(11)の内周面に接合し中心軸(12)の方向に平円板状に延在するウエブ(15)、及びウエブ(15)に接合し中心軸(12)の心部に形成されたボス類(16)からなる樹脂成形歯車(10)を樹脂により一体的に射出成形する方法において、ウエブ(15)を、加圧圧力Pが5〜45MPaで、充填開始基準で、充填開始からゲートシール終了までの時間T4の300〜400%の加圧開始時期T1に、加圧を開始し、加圧時間Tとして上記時間T4の120〜150%の時間、上記加圧圧力範囲内に保持することを特徴とする樹脂成形歯車の成形方法を提供する。
本発明の第2は、ピッチ円歯厚(S)に対するリム厚(Sr)の比率が1.6倍以上であり、且つピッチ円歯厚(S)に対するウエブ厚(Su)の比率が2.0倍以上である本発明の第1に記載の樹脂成形歯車の成形方法を提供する。
本発明の第3は、金型温度が樹脂のガラス転移点以上、融点未満の温度で、加圧圧力Pが5MPa以上、30MPa未満であることを特徴とする本発明の第1又は2に樹脂成形歯車の成形方法を提供する。
本発明の第4は、金型温度が樹脂の(ガラス転移点+50℃)以上、(融点−20℃)以下であることを特徴とする本発明の第3に記載の樹脂成形歯車の成形方法を提供する。
本発明の第5は、ウエブ(15)を、樹脂成形歯車を金型から取り出すために使用するエジェクトピン(37)で加圧することを特徴とする本発明の第1〜4のいずれか1項に記載の樹脂成形歯車の成形方法を提供する。
本発明の第6は、樹脂成形歯車を一度に2個以上成形可能であることを特徴とする本発明の第1〜5のいずれか1項に記載の樹脂成形歯車の成形方法を提供する。
本発明の第7は、樹脂充填後に、ゲート部を機械的に封鎖することを特徴とする本発明の第1〜6のいずれか1項に記載の樹脂成形歯車の成形方法を提供する。
本発明の第8は、樹脂の溶融粘度(ISO 1133によるメルトインデックスに相当する。測定温度は樹脂毎に異なる。)が35〜45(g/10min)で、半結晶化時間thcが80〜120秒である本発明の第1〜7のいずれか1項に記載の樹脂成形歯車の成形方法を提供する。
本発明の第9は、樹脂が、成形時の収縮率1.0%〜3.0%の熱可塑性樹脂である本発明の第1〜8のいずれか1項に記載の樹脂成形歯車の成形方法を提供する。
本発明の第10は、樹脂がポリアセタール樹脂である本発明の第1〜9のいずれか1項に記載の樹脂成形歯車の成形方法を提供する。
本発明の第11は、本発明の第1〜10のいずれか1項に記載の成形方法により得られる樹脂成形歯車を提供する。
本発明の第12は、はすば歯車又は平歯車であることを特徴とする本発明の第11に記載の樹脂成形歯車を提供する。
That is, the first of the present invention is a rim (11) formed in a cylindrical shape, teeth (13) formed on an outer peripheral surface of the rim (11) from a central axis (12) of the cylinder, and a rim (11 ) And a boss formed at the center of the central shaft (12) and joined to the web (15). In the method of integrally injection-molding a resin-molded gear (10) made of resin (16) with resin, the web (15) is gate-sealed from the start of filling on the basis of filling start with a pressure P of 5 to 45 MPa. Pressurization is started at the pressurization start time T1 of 300 to 400% of the time T4 until the end, and the pressurization time T is maintained within the pressurization pressure range for 120 to 150% of the time T4. The molding method of the resin-molded gear characterized by these is provided.
In the second aspect of the present invention, the ratio of the rim thickness (Sr) to the pitch circle tooth thickness (S) is 1.6 times or more, and the ratio of the web thickness (Su) to the pitch circle tooth thickness (S) is 2. The molding method of the resin molded gear according to the first aspect of the present invention, which is 0 times or more, is provided.
A third aspect of the present invention is the resin according to the first or second aspect of the present invention, wherein the mold temperature is a temperature not lower than the glass transition point of the resin and lower than the melting point, and the pressure P is not lower than 5 MPa and lower than 30 MPa. A method for forming a formed gear is provided.
According to a fourth aspect of the present invention, the molding temperature of the resin molded gear according to the third aspect of the present invention is such that the mold temperature is not lower than (glass transition point + 50 ° C.) and not higher than (melting point−20 ° C.) of the resin. I will provide a.
5th of this invention pressurizes a web (15) with the eject pin (37) used in order to take out a resin-molded gear from a metal mold | die, any one of the 1st-4th of this invention characterized by the above-mentioned. The molding method of the resin-molded gear described in 1. is provided.
According to a sixth aspect of the present invention, there is provided the method for molding a resin molded gear according to any one of the first to fifth aspects of the present invention, wherein two or more resin molded gears can be molded at a time.
7th of this invention provides the molding method of the resin molded gear of any one of the 1st-6th of this invention characterized by sealing a gate part mechanically after resin filling.
In the eighth aspect of the present invention, the melt viscosity of the resin (corresponding to the melt index according to ISO 1133. The measurement temperature differs for each resin) is 35 to 45 (g / 10 min), and the half crystallization time t hc is 80 to 80. The molding method of the resin molded gear according to any one of the first to seventh aspects of the present invention, which is 120 seconds.
The ninth of the present invention is the molding of the resin molded gear according to any one of the first to eighth aspects of the present invention, wherein the resin is a thermoplastic resin having a shrinkage rate of 1.0% to 3.0% during molding. Provide a method.
A tenth aspect of the present invention provides the method for molding a resin-molded gear according to any one of the first to ninth aspects of the present invention, wherein the resin is a polyacetal resin.
The eleventh aspect of the present invention provides a resin molded gear obtained by the molding method according to any one of the first to tenth aspects of the present invention.
The twelfth aspect of the present invention provides the resin molded gear according to the eleventh aspect of the present invention, which is a helical gear or a spur gear.

本発明によれば、樹脂成形歯車を、エジェクトピンによる加圧機構を備える標準型の成形機を使用して低加圧圧力で高精度に成形し、更には、樹脂成形歯車の多数個取りを可能にする。
得られた歯車は、複写機・プリンター、ファクシミリ、カメラ、ビデオ、自動車、OA機器等の部品として使用される。
According to the present invention, a resin-molded gear is molded with high accuracy at a low pressure using a standard molding machine equipped with a pressurizing mechanism using an eject pin. enable.
The obtained gear is used as a part of a copier / printer, a facsimile, a camera, a video, an automobile, an OA device, or the like.

本発明の樹脂成形歯車10は、円筒状に形成されたリム11、リム11の外周面に中心軸12に対して外方に形成された歯13、リム11の内周面に中心軸方向に平円板状に延在するウエブ15、及びウエブ15に接合し中心軸心部に形成されたボス類16からなる(図1参照)。ウエブ15の設けられる位置は、リム11の円筒状部分の中間でも上部でも下部でもよい。ボス類16はボスでも軸でもよい。
樹脂成形歯車10は、ピッチ円歯厚Sに対するリム厚Srの比率が1.6倍以上、好ましくは2.0以下である。Sr/Sが上記範囲より小さいと、回転伝達誤差が小さい高精度の成形歯車を得ることができない。
The resin molded gear 10 of the present invention includes a rim 11 formed in a cylindrical shape, teeth 13 formed outwardly with respect to the central axis 12 on the outer peripheral surface of the rim 11, and a central axis direction on the inner peripheral surface of the rim 11. It consists of a web 15 extending in the shape of a flat disk and bosses 16 joined to the web 15 and formed at the central axis (see FIG. 1). The position where the web 15 is provided may be in the middle, upper part or lower part of the cylindrical part of the rim 11. The bosses 16 may be bosses or shafts.
In the resin molded gear 10, the ratio of the rim thickness Sr to the pitch circle tooth thickness S is 1.6 times or more, preferably 2.0 or less. If Sr / S is smaller than the above range, a highly accurate formed gear with a small rotation transmission error cannot be obtained.

また、ウエブ15は平円板状で、リム11の内周面及びボス16の外周へ接合される。ピッチ円歯厚Sに対して、ウエブ15の少なくともリム11及びボス16への接合部のウエブ厚Suの比率が、1.5倍以上、好ましくは1.8〜2.0である。ウエブ厚が上記比率の範囲外では十分な円筒精度が得られない。平円板状のウエブ15は、全面が上記厚みを持つことが好ましいが、必要に応じて、平円板状部分に貫通孔や凹部やリブ等を1つまたは複数個設けてもかまわない。   The web 15 has a flat disk shape and is joined to the inner peripheral surface of the rim 11 and the outer periphery of the boss 16. The ratio of the web thickness Su of the joint portion to at least the rim 11 and the boss 16 of the web 15 to the pitch circle tooth thickness S is 1.5 times or more, preferably 1.8 to 2.0. If the web thickness is out of the above range, sufficient cylindrical accuracy cannot be obtained. The entire surface of the flat disk-like web 15 preferably has the above thickness, but if necessary, one or more through holes, concave parts, ribs, etc. may be provided in the flat disk-like part.

本発明の成形方法は、通常の局部加圧機構を有する標準型の射出成形機、即ち射出力数100トン程度で、エジェクトピン押出し力数10トン程度の成形機により行われる。局部加圧機構としては、通常エジェクトピン、スリーブピン、可動式コア等が挙げられ、好ましくはエジェクトピンである。エジェクトピンは、1個の樹脂成形品あたり1個以上、好ましくは2個以上である。
図2に、樹脂の充填及び局部加圧の例を示す。通常の射出成形機を使用して、溶融樹脂がシリンダー側よりゲート35を経て金型キャビティへ充填される。ゲート35としては、例えばピンゲートが使用される。ゲートの位置は特に限定するものではなく、ボスの下面でもよいし、側面でもよいし、ウエブ上でもよい。又ゲートの個数も特に限定するものではなく、1個から5,6個でもよい。
局部加圧は、例えば、エジェクトピン37を用いて行うことができる。エジェクトピン37の断面形状は丸であっても、四角であってもよく、形状を限定するものではない。又個数に関しても限定するものではない。複数個のエジェクトピン37による局部加圧は、好ましくは均一に加圧される。
ウエブ15を円周方向に対して均一に加圧することが好ましい。このため、ウエブ15上に設定され、中心軸12に対して同心円状にある2つの円の間で形成されるリング状部分15’を加圧することが好ましい。リング状部分15’の面積が、ウエブ15の面積の、80〜90%であるとよい。
The molding method of the present invention is performed by a standard injection molding machine having a normal local pressure mechanism, that is, a molding machine having an ejection force of about 100 tons and an eject pin extrusion force of about 10 tons. Examples of the local pressurizing mechanism include an eject pin, a sleeve pin, a movable core, and the like, and preferably an eject pin. The number of eject pins is one or more, preferably two or more per resin molded product.
FIG. 2 shows an example of resin filling and local pressurization. Using a normal injection molding machine, the molten resin is filled into the mold cavity through the gate 35 from the cylinder side. For example, a pin gate is used as the gate 35. The position of the gate is not particularly limited, and may be the lower surface of the boss, the side surface, or the web. Further, the number of gates is not particularly limited, and may be 1 to 5 or 6.
The local pressurization can be performed using, for example, the eject pin 37. The sectional shape of the eject pin 37 may be round or square, and the shape is not limited. Also, the number is not limited. The local pressurization by the plurality of eject pins 37 is preferably performed uniformly.
It is preferable to pressurize the web 15 uniformly in the circumferential direction. For this reason, it is preferable to pressurize the ring-shaped portion 15 ′ formed between two circles set on the web 15 and concentrically with the central axis 12. The area of the ring-shaped portion 15 ′ is preferably 80 to 90% of the area of the web 15.

樹脂射出充填終了後、保圧が行われる。
樹脂充填開始からゲート部の樹脂が固化するまでの時間をT4とすると、T4は、射出保圧時間と冷却時間の合計を固定し、保圧時間を徐々に増加させ、冷却時間を保圧時間を増加させた分だけ減少させて、スプル、ランナを除く製品重量を測定し、製品重量増加しなくなる射出保圧時間で定義される。
After the resin injection filling is completed, pressure holding is performed.
Assuming that the time from the start of resin filling to the solidification of the resin in the gate is T4, T4 fixes the total injection holding time and cooling time, gradually increases the holding time, and sets the cooling time to the holding time. The product weight excluding the sprue and runner is measured by decreasing the amount by which the product is increased, and is defined as the injection holding time at which the product weight does not increase.

局部加圧するための加圧圧力(即ち、加圧圧力=[加圧力]/[加圧部の面積]である。)をPとすると、加圧圧力Pは5〜45MPa、好ましくは15〜30MPa、さらに好ましくは30MPa未満であり、特に好ましくは25MPa以下である。
加圧圧力Pが上記範囲より小さすぎると、加圧の効果が生じにくく、上記範囲より大きすぎると、加圧による成形品の変形が大きくなり、通常の成形機が使用し難くなったり、多数個取りが困難となる。
When the pressurization pressure for local pressurization (that is, pressurization pressure = [applied pressure] / [area of pressurization section]) is P, the pressurization pressure P is 5 to 45 MPa, preferably 15 to 30 MPa. More preferably, it is less than 30 MPa, and particularly preferably 25 MPa or less.
If the pressurizing pressure P is too smaller than the above range, the effect of pressurizing is difficult to occur. If the pressurizing pressure P is too large, the deformation of the molded product due to pressurization becomes large, making it difficult to use a normal molding machine. It becomes difficult to take pieces.

局部加圧の開始時期、即ち、加圧開始時期T1は、ゲート部が固化後(即ち、ゲートシール後)であり、充填開始基準で、充填開始からゲートシール終了までの時間T4の300〜400%、好ましくは340〜360%である。加圧開始時期T1が上記範囲より早すぎると加圧後の収縮変形が発生し易くなり、遅すぎると加圧の効果が生じ難い。
上記加圧圧力範囲内に保持する加圧時間Tとしては、充填開始からゲートシール終了までの時間T4の120〜150%の時間、好ましくは130〜140%の時間である。加圧時間Tが上記範囲より短すぎると、加圧の効果が生じ難くなり、長すぎると変形が生じやすい。
The local pressurization start timing, that is, pressurization start timing T1 is after the gate portion is solidified (that is, after the gate seal), and 300 to 400 of time T4 from the start of filling to the end of the gate seal on the basis of filling start. %, Preferably 340 to 360%. If the pressurization start timing T1 is too early than the above range, shrinkage deformation after pressurization tends to occur, and if it is too late, the effect of pressurization hardly occurs.
The pressurization time T held within the above pressurization pressure range is 120 to 150%, preferably 130 to 140% of the time T4 from the start of filling to the end of the gate seal. If the pressurization time T is too short than the above range, the effect of pressurization is difficult to occur, and if it is too long, deformation tends to occur.

本発明で使用できる樹脂は、熱可塑性樹脂であり、好ましくは結晶性樹脂である。樹脂は、溶融粘度(ISO 1133に基づいて測定されたメルトインデックス(MI)に相当する。測定温度は樹脂毎に異なる。)が9〜45g/10min、好ましくは35〜45g/10minである。但し、溶融粘度測定温度は樹脂毎に異なる。
溶融粘度が上記範囲より小さい樹脂を用いると圧力伝達が不十分となるため歯車の精度が不十分となり、上記範囲より大きい樹脂を用いると固化速度が速く加圧の効果が低下する。
上記樹脂は、上記溶融粘度に加えて、半結晶化時間thcが30〜200秒、好ましくは80〜120秒である。半結晶化時間thcが上記範囲より短い樹脂を用いると固化が速くて加圧の効果が低下し、長い樹脂を用いると固化が遅くなり、成形サイクルが長くなる。
半結晶化時間thcは、次のように測定される。
装置として示差走査熱量計等を使用し、融点+40℃で、5分間溶融状態に維持後、10℃/分で降温し、融点に保持し、融点到達後結晶化発熱曲線のピークトップが出るまでの時間である。
The resin that can be used in the present invention is a thermoplastic resin, preferably a crystalline resin. The resin has a melt viscosity (corresponding to a melt index (MI) measured based on ISO 1133. The measurement temperature varies depending on the resin) of 9 to 45 g / 10 min, preferably 35 to 45 g / 10 min. However, the melt viscosity measurement temperature differs for each resin.
If a resin having a melt viscosity smaller than the above range is used, pressure transmission becomes insufficient, and the gear accuracy becomes insufficient. If a resin having a melt viscosity larger than the above range is used, the solidification speed is high and the effect of pressurization is reduced.
In addition to the melt viscosity, the resin has a half-crystallization time t hc of 30 to 200 seconds, preferably 80 to 120 seconds. If a resin having a half crystallization time t hc shorter than the above range is used, the solidification is fast and the effect of pressurization is reduced. If a long resin is used, the solidification is slowed down and the molding cycle becomes long.
The half crystallization time t hc is measured as follows.
Use a differential scanning calorimeter or the like as an apparatus, maintain the molten state at a melting point + 40 ° C. for 5 minutes, lower the temperature at 10 ° C./minute, hold the melting point, and reach the peak top of the crystallization exothermic curve after reaching the melting point Is the time.

上記樹脂は、成形時の収縮率が1.0%〜3.0%である熱可塑性樹脂を用いることが好ましい。従来の技術では、この範囲の成形収縮率を有する樹脂を使用すると、成形時の樹脂収縮により成形品と金型形状との寸法差が大きくなり、十分に高精度の歯車を得ることが至難であった。   It is preferable to use a thermoplastic resin having a shrinkage ratio of 1.0% to 3.0% during molding. In the prior art, if a resin having a molding shrinkage rate in this range is used, the dimensional difference between the molded product and the mold shape increases due to resin shrinkage during molding, and it is difficult to obtain a sufficiently accurate gear. there were.

本発明で使用される樹脂は、具体的には、ポリアセタール樹脂、ポリブチレンテレフタレート樹脂、ポリエチレンテレフタレート樹脂、ポリフェニレンサルファイド樹脂又はポリアミド樹脂等が挙げられる。中でも、ポリアセタール樹脂(POM)が、特に好ましく使用できる。   Specific examples of the resin used in the present invention include polyacetal resin, polybutylene terephthalate resin, polyethylene terephthalate resin, polyphenylene sulfide resin, and polyamide resin. Among these, polyacetal resin (POM) can be particularly preferably used.

上記ポリアセタール樹脂は、ホモポリマー、コポリマーのいずれであってもよい。コポリマーの場合には、主鎖の安定化のためにエチレンオキサイド、ジオキソラン等の単量体成分がランダムに共重合されたもの、あるいはブロツクあるいはグラフト重合されたもの、あるいは更に第三成分が導入されたもの等、いかなる共重合形態であってもかまわない。
上記ポリブチレンテレフタレート、ポリエチレンテレフタレート等のポリエステル樹脂は、通常の芳香族ジカルボン酸成分、脂肪族ジオール成分の他に、イソフタル酸、ナフタレンジカルボン酸、アジピン酸等の芳香族又は脂肪族多塩基酸、あるいは、グリコール成分としてエチレングリゴール、ジエチレングリコール、ネオペンチルグリコール等のアルキレングリコールやビスフェノールA等の芳香族ヒドロキシ化合物等を用いて変性させて得られる共重合体であってもかまわない。
これらの樹脂は、通常添加される各種添加剤が配合されていてもよいし、これらを主体とする樹脂組成物であってもよい。
The polyacetal resin may be either a homopolymer or a copolymer. In the case of a copolymer, a monomer component such as ethylene oxide or dioxolane is randomly copolymerized, block or graft polymerized, or a third component is introduced to stabilize the main chain. Any form of copolymerization such as rice cake may be used.
Polyester resins such as polybutylene terephthalate and polyethylene terephthalate, in addition to normal aromatic dicarboxylic acid components and aliphatic diol components, aromatic or aliphatic polybasic acids such as isophthalic acid, naphthalenedicarboxylic acid, and adipic acid, or Further, it may be a copolymer obtained by modification using an alkylene glycol such as ethylene glycol or diethylene glycol or neopentyl glycol or an aromatic hydroxy compound such as bisphenol A as a glycol component.
These resins may be blended with various additives that are usually added, or may be a resin composition mainly composed of these additives.

本発明の樹脂成形歯車10としては、平歯車、はすば歯車、やまば歯車、すぐばかさ歯車、まがりばかさ歯車、ねじば歯車などが挙げられる。歯のねじれ角度は、特に限定されるものではない。
またこれらのはすば歯車や平歯車等はシングル歯車や2段歯車に、または、駆動モータから多段に組み合わせて回転ムラをなくして減速するようにした、組合わせ歯車であってもよい。
Examples of the resin molded gear 10 of the present invention include a spur gear, a helical gear, a helical gear, a short bevel gear, a spiral bevel gear, and a helical gear. The twist angle of the teeth is not particularly limited.
These helical gears and spur gears may be a single gear, a two-stage gear, or a combination gear that is combined in multiple stages from the drive motor and decelerates without rotational unevenness.

(実施例)
以下、実施例により本発明を具体的に説明するが、本発明はこれらに限定されるものではない。
(Example)
EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto.

(比較例1)
結晶性ポリマーであるポリアセタール樹脂として、ジュラコンTMJW-03(ポリプラスチックス(株)製、溶融粘度(MI:45g/10分(190℃))、歯車を成形する上で好ましい推奨保圧力100MPa、thc87秒、Tm175℃、Tg−50℃)を使用し、下記のハスバ歯車を成形して、歯車の精度を(1)最大半径差(円筒幅方向に5箇所、外径を測定し、それから求めた最大半径と最小半径の差である。)、(2)歯形形状誤差、(3)歯筋形状誤差について評価した。結果を表1に示す。
ポリアセタール樹脂の半結晶化時間thcは、次のように測定した。
装置としてパーキンエルマー社製示差走査熱量計DSC7型を使用し、サンプル約5mgを200℃×5分間溶融状態に維持後、10℃/分で降温し、152℃に達した時点で温度を一定に保持し、152℃到達後結晶化発熱曲線のピークのトップが現れるまでの時間である。
成形品歯車諸元:モジュール1、歯数28、圧力角20#、ネジレ角(右)20#、歯幅15mm、ピッチ円直径29.797mm、歯先円外径31.797mm、ウエブ厚3mm、リム厚2.5mm
成形機:住友重機械工業(株)製SE−100D
溶融樹脂温度:200℃
金型温度:60℃
射出速度:17mm/秒
充填時間:0.8秒
保圧圧力:100MPa(推奨保圧圧力)
充填開始からゲートシール終了までの時間T4:6秒
エジェクトピン加圧力:3.4ton(本成形機のエジェクト力の最大値である)
エジェクトピン加圧断面積:262.32mm2
エジェクトピン加圧圧力:120MPa
エジェクトピンストローク量:1.2mm
エジェクトピン加圧開始時期T1:20秒後
エジェクトピン加圧時間T:8秒間
歯車1個取り
(Comparative Example 1)
As polyacetal resin which is a crystalline polymer, Duracon TM JW-03 (manufactured by Polyplastics Co., Ltd., melt viscosity (MI: 45 g / 10 min (190 ° C)), preferable recommended holding pressure of 100 MPa for molding gears, t hc 87 seconds, Tm 175 ° C, Tg-50 ° C), forming the following helical gear, and (1) measuring the accuracy of the gear (1) maximum radius difference (5 locations in the cylinder width direction, outer diameter, It is the difference between the maximum radius and the minimum radius determined from that.) (2) Tooth shape error, (3) Tooth shape error. The results are shown in Table 1.
The semi-crystallization time t hc of the polyacetal resin was measured as follows.
Using a differential scanning calorimeter DSC7 manufactured by PerkinElmer as a device, about 5 mg of sample is maintained in a molten state at 200 ° C. for 5 minutes, then the temperature is lowered at 10 ° C./minute, and when the temperature reaches 152 ° C., the temperature is kept constant. This is the time until the top of the peak of the crystallization exothermic curve appears after reaching 152 ° C.
Molded gear specifications: Module 1, number of teeth 28, pressure angle 20 #, torsion angle (right) 20 #, tooth width 15mm, pitch circle diameter 29.797mm, tip circle diameter 31.797mm, web thickness 3mm, Rim thickness 2.5mm
Molding machine: SE-100D manufactured by Sumitomo Heavy Industries, Ltd.
Molten resin temperature: 200 ° C
Mold temperature: 60 ℃
Injection speed: 17 mm / sec Filling time: 0.8 sec Holding pressure: 100 MPa (recommended holding pressure)
Time from the start of filling to the end of gate seal T4: 6 seconds Ejecting pin pressure: 3.4 ton (this is the maximum ejecting force of this molding machine)
Eject pin pressure cross section: 262.32 mm 2
Eject pin pressure: 120 MPa
Eject pin stroke amount: 1.2mm
Eject pin pressurization start time T1: 20 seconds later Eject pin pressurization time T: 8 seconds Take one gear

(比較例2)
ポリアセタール樹脂として、ジュラコンTMM270-44(ポリプラスチックス(株)製、溶融粘度(MI:27g/10分(190℃))、推奨保圧力100MPa、thc37秒、Tm162℃、Tg−60℃)を使用した他は比較例1と同様に行った。結果を表1に示す。
(Comparative Example 2)
As a polyacetal resin, Duracon TM M270-44 (manufactured by Polyplastics Co., Ltd., melt viscosity (MI: 27 g / 10 min (190 ° C.)), recommended holding pressure 100 MPa, t hc 37 seconds, Tm 162 ° C., Tg-60 ° C. ) Was carried out in the same manner as in Comparative Example 1. The results are shown in Table 1.

(実施例1および2)
エジェクトピンの加圧圧力及び加圧開始時期を、表1に示す条件に変え、歯車を1又は2個取りにした以外は比較例1と同様に行い、歯車の精度を評価した。結果を表1に示す。
(Examples 1 and 2)
The accuracy of the gears was evaluated in the same manner as in Comparative Example 1 except that the pressurization pressure and pressurization start timing of the eject pin were changed to the conditions shown in Table 1 and one or two gears were used. The results are shown in Table 1.

(実施例3)
ポリアセタール樹脂として、前記ジュラコンTMM270-44を使用した他は実施例1と同様に行った。結果を表1に示す。
(Example 3)
The same procedure as in Example 1 was performed except that the Duracon M270-44 was used as the polyacetal resin. The results are shown in Table 1.

低加圧圧力で成形すると、加圧開始時期が、保圧終了後であって、充填開始基準で18秒後から20秒後の間であると、歯筋精度を中心とする寸法精度を従来の条件より向上させることが可能となった。比較例では、加圧圧力120MPaでは加圧開始時期20秒でやや良くなったが、加圧開始時期は非常に狭い範囲であり、成形しにくい。
また従来の4分の1程度の加圧圧力で寸法精度を満足することから、一般的にエジェクトピン加圧を装備している標準成形機においても実現可能レベルである。同時に低圧加圧であるために、多数個取りにも有効である。
When molding is performed at a low pressurizing pressure, when the pressurization start time is after the end of the pressure holding and between 18 seconds and 20 seconds after the filling start reference, the dimensional accuracy centering on the tooth trace accuracy is conventionally achieved. It has become possible to improve from the above conditions. In the comparative example, the pressurization start time was slightly improved at a pressurization start time of 20 seconds at a pressurization pressure of 120 MPa. However, the pressurization start time is in a very narrow range and is difficult to be molded.
In addition, since the dimensional accuracy is satisfied with a pressure of about one-fourth of the conventional pressure, it is generally a feasible level in a standard molding machine equipped with an eject pin pressure. At the same time, because of the low-pressure pressurization, it is effective for multi-cavity picking.

本発明の樹脂成形歯車の一例の縦断面図である。It is a longitudinal cross-sectional view of an example of the resin molded gear of this invention. 図1に示す樹脂成形歯車を成形する金型の断面図である。It is sectional drawing of the metal mold | die which shape | molds the resin molding gear shown in FIG.

符号の説明Explanation of symbols

10 樹脂成形歯車
11 リム
12 中心軸
13 歯
15 ウエブ
15’リング状部分
16 ボス類
31 歯車入れ子
32 ラジアルころがり軸受け
33 スラストころがり軸受け
35 ゲート
37 エジェクトピン
D 歯先円直径
b 歯幅
S ピッチ円歯厚
Sr リム厚
Su ウエブ厚
10 resin molded gear 11 rim 12 central shaft 13 teeth 15 web 15 'ring-shaped portion 16 bosses 31 gear insert 32 radial rolling bearing 33 thrust rolling bearing 35 gate 37 eject pin D tooth tip diameter b tooth width S pitch circle tooth thickness Sr Rim thickness Su Web thickness

Claims (10)

円筒状に形成されたリム(11)、リム(11)の外周面に円筒の中心軸(12)から外方向に形成された歯(13)、リム(11)の内周面に接合し中心軸(12)の方向に平円板状に延在するウエブ(15)、及びウエブ(15)に接合し中心軸(12)の心部に形成されたボス類(16)からなる樹脂成形歯車(10)を樹脂により一体的に射出成形する方法において、
ウエブ(15)を、加圧圧力Pが5〜45MPaで、充填開始基準で、充填開始からゲートシール終了までの時間T4の300〜400%の加圧開始時期T1に、加圧を開始し、加圧時間Tとして上記時間T4の120〜150%の時間、上記加圧圧力範囲内に保持することを特徴とする樹脂成形歯車の成形方法。
The rim (11) formed in a cylindrical shape, the teeth (13) formed outward from the central axis (12) of the cylinder on the outer peripheral surface of the rim (11), and the center joined to the inner peripheral surface of the rim (11) A resin molded gear comprising a web (15) extending in the shape of a flat disk in the direction of the shaft (12), and a boss (16) joined to the web (15) and formed at the center of the central shaft (12) (10) In the method of injection molding integrally with resin,
The pressurization of the web (15) is started at the pressurization start timing T1 of 300 to 400% of the time T4 from the start of filling to the end of the gate seal on the basis of the start of filling at a pressurizing pressure P of 5 to 45 MPa, A method for molding a resin-molded gear, wherein the pressurizing time T is maintained within the range of the pressurizing pressure for 120 to 150% of the time T4.
ピッチ円歯厚(S)に対するリム厚(Sr)の比率が1.6倍以上であり、且つピッチ円歯厚(S)に対するウエブ厚(Su)の比率が2.0倍以上である請求項1に記載の樹脂成形歯車の成形方法。   The ratio of the rim thickness (Sr) to the pitch circle tooth thickness (S) is 1.6 times or more, and the ratio of the web thickness (Su) to the pitch circle tooth thickness (S) is 2.0 times or more. 2. A molding method for a resin-molded gear according to 1. 金型温度が樹脂のガラス転移点以上、融点未満の温度で、加圧圧力Pが5MPa以上、30MPa未満であることを特徴とする請求項1又は2に記載の樹脂成形歯車の成形方法。 The molding method for a resin-molded gear according to claim 1 or 2, wherein the mold temperature is a temperature not lower than the glass transition point of the resin and lower than the melting point, and the pressure P is not lower than 5 MPa and lower than 30 MPa. 金型温度が樹脂の(ガラス転移点+50℃)以上、(融点−20℃)以下であることを特徴とする請求項3に記載の樹脂成形歯車の成形方法。   4. The method for molding a resin-molded gear according to claim 3, wherein the mold temperature is not less than (glass transition point + 50 ° C.) and not more than (melting point−20 ° C.) of the resin. ウエブ(15)を、樹脂成形歯車を金型から取り出すために使用するエジェクトピン(37)で加圧することを特徴とする請求項1〜4のいずれか1項に記載の樹脂成形歯車の成形方法。   The method for molding a resin-molded gear according to any one of claims 1 to 4, wherein the web (15) is pressurized with an eject pin (37) used for removing the resin-molded gear from the mold. . 樹脂成形歯車を一度に2個以上成形可能であることを特徴とする請求項1〜5のいずれか1項に記載の樹脂成形歯車の成形方法。   6. The method for molding a resin molded gear according to claim 1, wherein two or more resin molded gears can be molded at a time. 樹脂充填後に、ゲート部を機械的に封鎖することを特徴とする請求項1〜6のいずれか1項に記載の樹脂成形歯車の成形方法。   The method for molding a resin-molded gear according to any one of claims 1 to 6, wherein the gate portion is mechanically sealed after resin filling. 樹脂の溶融粘度(ISO 1133によるメルトインデックスに相当する。測定温度は樹脂毎に異なる。)が35〜45(g/10min)で、半結晶化時間thcが80〜120秒である請求項1〜7のいずれか1項に記載の樹脂成形歯車の成形方法。 The melt viscosity of the resin (corresponding to the melt index according to ISO 1133. The measurement temperature differs for each resin) is 35 to 45 (g / 10 min), and the half-crystallization time t hc is 80 to 120 seconds. The molding method of the resin molded gear of any one of -7. 樹脂が、成形時の収縮率1.0%〜3.0%の熱可塑性樹脂である請求項1〜8のいずれか1項に記載の樹脂成形歯車の成形方法。   The method of molding a resin molded gear according to any one of claims 1 to 8, wherein the resin is a thermoplastic resin having a shrinkage ratio of 1.0% to 3.0% during molding. 樹脂がポリアセタール樹脂である請求項1〜9のいずれか1項に記載の樹脂成形歯車の成形方法。   The resin molding gear molding method according to any one of claims 1 to 9, wherein the resin is a polyacetal resin.
JP2004270338A 2004-09-16 2004-09-16 Molding method of resin molded gear Active JP4407929B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004270338A JP4407929B2 (en) 2004-09-16 2004-09-16 Molding method of resin molded gear
PCT/JP2005/016908 WO2006030810A1 (en) 2004-09-16 2005-09-14 Method of molding local part by low pressurization and resin-injection molded gear

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004270338A JP4407929B2 (en) 2004-09-16 2004-09-16 Molding method of resin molded gear

Publications (2)

Publication Number Publication Date
JP2006082434A JP2006082434A (en) 2006-03-30
JP4407929B2 true JP4407929B2 (en) 2010-02-03

Family

ID=36060062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004270338A Active JP4407929B2 (en) 2004-09-16 2004-09-16 Molding method of resin molded gear

Country Status (2)

Country Link
JP (1) JP4407929B2 (en)
WO (1) WO2006030810A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5288688B2 (en) * 2006-05-02 2013-09-11 旭化成ケミカルズ株式会社 Injection molded cylindrical rotating parts
JP5175588B2 (en) * 2008-03-26 2013-04-03 バンドー化学株式会社 Injection molding gear
JP2009173040A (en) * 2009-03-25 2009-08-06 Asahi Kasei Chemicals Corp Injection-molding cylindrical rotary component
JP5559994B2 (en) * 2009-06-25 2014-07-23 旭化成ケミカルズ株式会社 Injection molding gear
WO2012076512A1 (en) * 2010-12-08 2012-06-14 Dsm Ip Assets B.V. An apparatus comprising a gear of a thermoplastic polymer composition
JP5812724B2 (en) * 2011-07-04 2015-11-17 キヤノン株式会社 Manufacturing method of resin molded gear by injection molding
JP5904822B2 (en) * 2012-02-29 2016-04-20 キヤノン株式会社 Resin gear and resin gear manufacturing method
JP5405682B1 (en) * 2013-02-22 2014-02-05 株式会社ハマダ工商 Nested member and molding die
JP6463867B1 (en) * 2018-09-07 2019-02-06 株式会社ショーワ Method for manufacturing rotary power transmission member

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002200661A (en) * 2000-11-02 2002-07-16 Tigers Polymer Corp Disk-shaped synthetic resin molding
JP4433442B2 (en) * 2001-02-13 2010-03-17 ポリプラスチックス株式会社 Molding method of resin molded gear and resin molded gear molded by the method

Also Published As

Publication number Publication date
WO2006030810A1 (en) 2006-03-23
JP2006082434A (en) 2006-03-30

Similar Documents

Publication Publication Date Title
WO2006030810A1 (en) Method of molding local part by low pressurization and resin-injection molded gear
CN105269732B (en) Compound gear and its manufacturing method, imaging device, consumptive material and image processing apparatus
CN103842144A (en) Lens and method for forming lens
JP4433442B2 (en) Molding method of resin molded gear and resin molded gear molded by the method
US8815142B2 (en) Method of manufacturing a resin molded gear by injection molding
JP7071208B2 (en) Gears, gear manufacturing methods, and injection molds used to manufacture gears
KR20210080315A (en) Spur gear for use in a spur gear unit, gearwheel pair for a spur gear unit, spur gear unit having such a gearwheel pair, and method for producing a spur gear and its use in spur gear units
US20100184548A1 (en) Injection molded pulleys having low levels of out-of-roundness
JP5645952B2 (en) Plasticizing screw for injection molding and injection molding method using the same
US20090081402A1 (en) Composite gear
JPH04267131A (en) Gear connecting method
JP5004050B2 (en) Worm and worm manufacturing mold
JP2003191288A (en) Plastic molded article
JP2001323991A (en) Synthetic resin molded gear
JP2001323990A (en) Gear of synthetic resin molding
JP5641649B2 (en) Die for injection molding of carrier for planetary gear unit
JP2002248649A (en) Method for injection-molding insert-containing resin gear
JPH0691685A (en) Production of ultrahigh molecular weight polyethylene molded product
JP4274464B2 (en) Injection mold having local pressure structure and injection molding method
JP3770117B2 (en) Thermoplastic molding material for ultra-thin molded product, ultra-thin molded product and method for producing the same
JP5284145B2 (en) Resin molded product with annular outer periphery
JP2002225092A (en) Mold using elastomer and molding method
JPH0266363A (en) Plastic molded gear
JPS5996922A (en) Injection molding of slip gear for timepiece
JP2001065570A (en) Dynamic pressure bearing and manufacture thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090818

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091009

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091104

R150 Certificate of patent or registration of utility model

Ref document number: 4407929

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131120

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250