JP4405330B2 - Gas purification device - Google Patents

Gas purification device Download PDF

Info

Publication number
JP4405330B2
JP4405330B2 JP2004199538A JP2004199538A JP4405330B2 JP 4405330 B2 JP4405330 B2 JP 4405330B2 JP 2004199538 A JP2004199538 A JP 2004199538A JP 2004199538 A JP2004199538 A JP 2004199538A JP 4405330 B2 JP4405330 B2 JP 4405330B2
Authority
JP
Japan
Prior art keywords
gas
target gas
adsorption filter
purification target
purification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004199538A
Other languages
Japanese (ja)
Other versions
JP2006021082A (en
Inventor
尚彦 志村
昇 瀬川
武 今村
裕 内田
邦行 荒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2004199538A priority Critical patent/JP4405330B2/en
Publication of JP2006021082A publication Critical patent/JP2006021082A/en
Application granted granted Critical
Publication of JP4405330B2 publication Critical patent/JP4405330B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)

Description

本発明は、放電光を照射して活性化した光触媒とオゾンの作用により空気等のガスに含まれる除去対象を除去して清浄、脱臭あるいは除菌するガス浄化装置に関する。   The present invention relates to a gas purification apparatus for removing, purifying, deodorizing, or sterilizing a photocatalyst activated by irradiating discharge light and removing a removal target contained in a gas such as air by the action of ozone.

従来、自動車等の車両の車室内、家屋や倉庫の内部、冷蔵庫等の機器の内部等の閉空間における空気を浄化するために、活性炭に代表される吸着剤が用いられる。例えば自動車の車室内の空気を浄化する場合には、カーエアコン装置等が設けられた空気循環用のダクト内に吸着剤を備えた吸着フィルタが設けられる。そして、ダクトを通過して車室内に導かれる空気は吸着フィルタを経由し、吸着フィルタにおいて空気中の臭気成分等の物質が吸着剤により吸着される。この結果、吸着剤の作用により脱臭された空気が車室内に導かれる。   Conventionally, an adsorbent typified by activated carbon is used to purify air in a closed space such as the interior of a vehicle such as an automobile, the interior of a house or warehouse, or the interior of a device such as a refrigerator. For example, when purifying the air in the interior of an automobile, an adsorption filter provided with an adsorbent is provided in an air circulation duct provided with a car air conditioner. The air that passes through the duct and is guided into the passenger compartment passes through the adsorption filter, and substances such as odor components in the air are adsorbed by the adsorbent in the adsorption filter. As a result, the air deodorized by the action of the adsorbent is guided into the passenger compartment.

一方、従来、放電光を照射して活性化した光触媒とオゾンの作用により空気等のガスに含まれる除去対象を分解除去して脱臭、清浄あるいは除菌するガス浄化装置が提案される(例えば特許文献1参照)。   On the other hand, conventionally, a gas purifying apparatus that decomposes and removes a removal target contained in a gas such as air by the action of photocatalyst activated by discharge light and ozone and deodorizes, purifies, or disinfects is proposed (for example, patent) Reference 1).

従来のガス浄化装置1は、図5に示すように光触媒を三次元網目状の構造体に担持させて構成される光触媒モジュール2を空気等の浄化対象ガスXが流れるガス流路3上に設け、光触媒モジュール2の近傍に一対の電極4、4を設置した構成である。そして、高圧電源部5から電極4,4間に高電圧が印加され、電極4、4間には放電光が生成される。生成された放電光は光触媒に照射され、光触媒は活性化せしめられる。   As shown in FIG. 5, the conventional gas purification apparatus 1 is provided with a photocatalyst module 2 configured by supporting a photocatalyst on a three-dimensional network structure on a gas flow path 3 through which a purification target gas X such as air flows. In this configuration, a pair of electrodes 4 and 4 are installed in the vicinity of the photocatalyst module 2. A high voltage is applied between the electrodes 4 and 4 from the high-voltage power supply unit 5, and discharge light is generated between the electrodes 4 and 4. The generated discharge light is irradiated to the photocatalyst, and the photocatalyst is activated.

空気等の浄化対象ガスXは、送風機6の駆動により処理空間からガス流路3内に導かれ、集塵フィルタ7において予め塵や埃が除去される。さらに、浄化対象ガスXは、光触媒モジュール2に導かれ、光触媒モジュール2を通過する際に活性化した光触媒の作用により浄化対象ガスXに含まれる有害物質、臭気物質や菌類等の除去対象が分解されて脱臭、清浄あるいは除菌される。また、放電により、浄化対象ガスXからオゾンがガス流路3内に生成され、オゾンの作用によっても浄化対象ガスXに含まれる除去対象が分解されて脱臭、清浄あるいは除菌される。   The purification target gas X such as air is guided from the processing space into the gas flow path 3 by driving the blower 6, and dust and dust are removed in advance by the dust collection filter 7. Further, the purification target gas X is guided to the photocatalyst module 2, and the removal target of harmful substances, odorous substances, fungi, etc. contained in the purification target gas X is decomposed by the action of the photocatalyst activated when passing through the photocatalyst module 2. Deodorized, cleaned or sterilized. Moreover, ozone is produced | generated in the gas flow path 3 from the purification target gas X by discharge, and the removal target contained in the purification target gas X is decomposed | disassembled also by the effect | action of ozone, and is deodorized, cleaned, or disinfected.

さらに、浄化対象ガスXは残留したオゾンとともに、オゾン処理フィルタ8に導かれ、オゾン処理フィルタ8において浄化対象ガスX中のオゾンが分解される。そして、オゾンの濃度が十分に低減されて無害化された浄化対象ガスXがガス流路3から処理空間に放出される。
特開2003−310731号公報
Further, the purification target gas X is guided to the ozone treatment filter 8 together with the remaining ozone, and the ozone in the purification target gas X is decomposed in the ozone treatment filter 8. Then, the purification target gas X, which has been made harmless by sufficiently reducing the ozone concentration, is discharged from the gas flow path 3 to the processing space.
Japanese Patent Laid-Open No. 2003-310731

従来の吸着剤を用いた脱臭技術では、空気中に含まれる臭気成分等の物質を吸着するのみであり、分解処理を行なわないため、除菌を行なうことが困難である。また、吸着剤が吸着する臭気成分等の物質の吸着量に限界があり、使用が長期間にわたる場合には吸着剤の吸着機能が減少するため吸着剤を交換する必要がある。さらに、吸着剤に吸着機能があり、寿命期間内であっても、寿命末期においては吸着機能が低下しているため、一旦吸着剤に吸着した臭気成分等の物質が空気中に再放出されてしまう恐れがある。   The conventional deodorization technique using an adsorbent only adsorbs substances such as odor components contained in the air, and does not perform a decomposition process, so that it is difficult to perform sterilization. Further, there is a limit to the amount of adsorption of substances such as odorous components adsorbed by the adsorbent, and the adsorbent needs to be replaced because the adsorption function of the adsorbent decreases when used for a long period of time. In addition, the adsorbent has an adsorption function, and even within the lifetime, the adsorption function has declined at the end of the lifetime, so substances such as odor components once adsorbed to the adsorbent are re-released into the air. There is a risk.

一方、光触媒とオゾンを用いた従来のガス浄化装置1では、臭気成分等の物質や菌類を分解処理するため、脱臭のみならず除菌や浄化を行なうこともできる。さらに、ガス浄化装置1では、光触媒モジュール2において臭気成分等の物質や菌類が分解され、堆積することがないため、吸着剤に比べて交換等のメンテナンスの必要性が低い。逆に、吸着剤では交換等のメンテナンスを要するものの、光触媒とオゾンの作用により分解が困難な除去対象を吸着効果により容易に吸着して空気から除去することができる場合もありうる。   On the other hand, in the conventional gas purification apparatus 1 using photocatalyst and ozone, since substances such as odor components and fungi are decomposed, not only deodorization but also sterilization and purification can be performed. Furthermore, in the gas purification apparatus 1, since substances such as odor components and fungi are not decomposed and deposited in the photocatalyst module 2, the need for maintenance such as replacement is lower than that of the adsorbent. On the contrary, although the adsorbent requires maintenance such as replacement, there is a case where a removal target that is difficult to be decomposed by the action of the photocatalyst and ozone can be easily adsorbed and removed from the air by the adsorption effect.

そこで、このような吸着剤が有する除去対象の吸着効果とガス浄化装置1が有する除去対象の分解効果とを併用して双方の利点を活用すべく、ガス浄化装置1を吸着剤とともに家屋、車両、冷蔵庫等の機器内部に代表される閉空間内における空気等の浄化対象ガスが循環するダクト内に設置することが望まれる。   Therefore, in order to utilize both advantages by using both the adsorption effect of the removal target possessed by such an adsorbent and the decomposition effect of the removal target possessed by the gas purification device 1, the gas purification device 1 together with the adsorbent is house, vehicle It is desirable to install in a duct through which a gas to be purified such as air circulates in a closed space typified by equipment such as a refrigerator.

ところが、空気等の浄化対象ガスが循環するダクト内において、吸着フィルタの上流側あるいは下流側のいずれにガス浄化装置1を設けた場合であっても、浄化対象ガスの圧損が増加してしまうという問題がある。特に既に吸着フィルタが設けられた既存のダクト内においては、一般に送風機等の機器は吸着フィルタや既設の機器の圧損に対して浄化対象ガスの流速が所要の流速となるように設計されているため、新たにガス浄化装置1を設置すると浄化対象ガスの圧損が過剰に増加して流速が低下し、十分に閉空間内を循環させることが困難となる恐れがある。このため、既に利用されているダクトにガス浄化装置1を設置することが困難となり、逆にガス浄化装置1を設置するためには送風機やエアコン等の空調機器の設計変更が必要となる場合もありうる。   However, even if the gas purification device 1 is provided on the upstream side or downstream side of the adsorption filter in the duct through which the purification target gas such as air circulates, the pressure loss of the purification target gas increases. There's a problem. Especially in existing ducts already equipped with an adsorption filter, devices such as blowers are generally designed so that the flow rate of the gas to be purified is the required flow rate against the pressure loss of the adsorption filter and existing devices. If the gas purification device 1 is newly installed, the pressure loss of the purification target gas excessively increases and the flow velocity decreases, and it may be difficult to circulate sufficiently in the closed space. For this reason, it becomes difficult to install the gas purification apparatus 1 in a duct that has already been used, and conversely, in order to install the gas purification apparatus 1, it may be necessary to change the design of an air conditioner such as a blower or an air conditioner. It is possible.

本発明はかかる従来の事情に対処するためになされたものであり、浄化対象ガスの圧損の増加を抑制しつつ浄化対象ガス中の除去対象に対する光触媒とオゾンの作用による分解効果と吸着剤による吸着効果とを併用し、より効果的に浄化対象ガスを脱臭、清浄あるいは除菌することが可能なガス浄化装置を提供することを目的とする。   The present invention has been made in order to cope with such a conventional situation, while suppressing the increase in pressure loss of the gas to be purified, and the decomposition effect by the action of the photocatalyst and ozone on the object to be removed in the gas to be purified and the adsorption by the adsorbent. It aims at providing the gas purification apparatus which can deodorize, purify | clean, or disinfect the purification | cleaning object gas more effectively using an effect together.

本発明に係るガス浄化装置は、上述の目的を達成するために、請求項1に記載したように、浄化対象ガスを通過させることが可能な三次元構造の基体に光触媒を担持させた光触媒モジュールと、前記光触媒を活性化するための放電光を生成し、かつ放電により前記浄化対象ガスからオゾンを発生させる放電電極と、前記浄化対象ガスを通過させることが可能な三次元構造の基体に吸着剤を担持させた吸着フィルタとを備え、前記光触媒モジュールと前記吸着フィルタとを前記浄化対象ガスの進行方向に対して互いに並列配置し、かつ前記光触媒モジュールの前記浄化対象ガスに対する圧損と、前記吸着フィルタの前記浄化対象ガスに対する圧損とを同等とみなせる範囲内としたことを特徴とするものである。 In order to achieve the above object, a gas purification apparatus according to the present invention is a photocatalyst module in which a photocatalyst is supported on a three-dimensional structure base capable of passing a gas to be purified as described in claim 1. And a discharge electrode for generating discharge light for activating the photocatalyst and generating ozone from the gas to be purified by discharge, and a substrate having a three-dimensional structure capable of passing the gas to be purified An adsorption filter carrying an agent, the photocatalyst module and the adsorption filter are arranged in parallel with each other in the traveling direction of the gas to be purified , and the pressure loss of the photocatalyst module with respect to the gas to be purified, and the adsorption The pressure loss of the filter with respect to the gas to be purified is within a range that can be regarded as equivalent .

本発明に係るガス浄化装置においては、浄化対象ガスの圧損の増加を抑制しつつ浄化対象ガス中の除去対象に対する光触媒とオゾンの作用による分解効果と吸着剤による吸着効果とを併用し、より効果的に浄化対象ガスを脱臭、清浄あるいは除菌することができる。   In the gas purification apparatus according to the present invention, the decomposition effect by the action of the photocatalyst and ozone on the removal target in the purification target gas and the adsorption effect by the adsorbent are used in combination while suppressing an increase in the pressure loss of the purification target gas, and the effect is more effective. In addition, the gas to be purified can be deodorized, cleaned or sterilized.

本発明に係るガス浄化装置およびガス浄化方法の実施の形態について添付図面を参照して説明する。   Embodiments of a gas purification apparatus and a gas purification method according to the present invention will be described with reference to the accompanying drawings.

図1は本発明に係るガス浄化装置の第1の実施形態を示す断面構成図であり、図2は、図1に示すガス浄化装置10の分解吸着部13におけるA−A断面の断面図である。   FIG. 1 is a cross-sectional configuration diagram showing a first embodiment of a gas purification apparatus according to the present invention, and FIG. 2 is a cross-sectional view of the AA cross section in the decomposition adsorption portion 13 of the gas purification apparatus 10 shown in FIG. is there.

ガス浄化装置10は、家屋、車両、冷蔵庫等の機器内部等の閉空間11内の任意の部位に設けられる。例えば、ガス浄化装置10は、空気等の浄化対象ガスXを閉空間11内に循環させるためのダクト内に設けられ、ガス浄化装置10内にはガス流路12が形成される。ガス浄化装置10は分解吸着部13を備え、浄化対象ガスXの流れを形成させる必要がある場合には送風機14(ファン)が備えられる。ただし、送風機14は既設のものを利用してもよい。   The gas purification apparatus 10 is provided in any part in the closed space 11 such as the inside of a house, vehicle, refrigerator, or other equipment. For example, the gas purification device 10 is provided in a duct for circulating the purification target gas X such as air in the closed space 11, and a gas flow path 12 is formed in the gas purification device 10. The gas purification device 10 includes a decomposition adsorption unit 13 and a blower 14 (fan) when it is necessary to form a flow of the purification target gas X. However, the existing fan 14 may be used.

また、ガス浄化装置10には必要に応じて、特に浄化対象ガスXの浄化対象となる閉空間11が有人の場合には、オゾン処理フィルタ15が設けられる。さらに、ガス浄化装置10には必要に応じて、特に浄化対象ガスXに比較的大きな塵や埃が含まれる場合には、集塵フィルタ16が設けられる。そして、例えばガス流路12の上流側からガス浄化装置10の集塵フィルタ16、送風機14、分解吸着部13、オゾン処理フィルタ15が順に設けられる。   Further, the gas purification device 10 is provided with an ozone treatment filter 15 as necessary, particularly when the closed space 11 to be purified of the purification target gas X is manned. Furthermore, the gas purification apparatus 10 is provided with a dust collection filter 16 as necessary, particularly when the purification target gas X contains relatively large dust or dirt. For example, the dust collection filter 16, the blower 14, the decomposition adsorption unit 13, and the ozone treatment filter 15 of the gas purification device 10 are sequentially provided from the upstream side of the gas flow path 12.

分解吸着部13は、光触媒反応部17と吸着フィルタ18とを有する。   The decomposition adsorption unit 13 includes a photocatalytic reaction unit 17 and an adsorption filter 18.

光触媒反応部17は、対向する放電電極19a,19bおよび光触媒モジュール20を備える。光触媒モジュール20は、例えば三次元網目状のセラミックス基体の表面に酸化チタン等の光触媒を担持させて構成される。このため、光触媒モジュール20内部を浄化対象ガスXが通過することができる。ただし、光触媒モジュール20は、三次元網目状のセラミックス基体に光触媒を担持させる構成のみならず、多孔状、ハニカム状のように浄化対象ガスXを通過させることが可能な三次元構造の所要の素材の基体に光触媒を担持させた構造であればよい。   The photocatalytic reaction unit 17 includes opposed discharge electrodes 19 a and 19 b and a photocatalytic module 20. The photocatalyst module 20 is configured by, for example, supporting a photocatalyst such as titanium oxide on the surface of a three-dimensional network ceramic substrate. For this reason, the purification target gas X can pass through the photocatalyst module 20. However, the photocatalyst module 20 is not only configured to support a photocatalyst on a three-dimensional network ceramic base, but also a required material having a three-dimensional structure that allows the gas X to be purified to pass through, such as a porous or honeycomb-like structure. Any structure may be used as long as the photocatalyst is supported on the substrate.

また、対向する放電電極19a,19bは例えば光触媒モジュール20を挟んでガス流路12の上流側と下流側とに設けられる。各放電電極19a,19bは、高圧電源部21と接続され、高電圧電部から電圧が印加されることにより放電光とともにオゾンを発生させ、発生させた放電光に含まれる紫外線を光触媒モジュール20が担持する光触媒に照射して活性化できるように構成される。また、例えば、一方の放電電極19aはハニカム構造とされ、他方の放電電極19bは網目状構造とされ、電気力線が密となりより低い電圧が印加することにより容易に放電することが可能な形状とされる。   Further, the opposing discharge electrodes 19a and 19b are provided, for example, on the upstream side and the downstream side of the gas flow path 12 with the photocatalyst module 20 interposed therebetween. Each of the discharge electrodes 19a and 19b is connected to a high voltage power source unit 21. When a voltage is applied from the high voltage electric unit, ozone is generated together with the discharge light, and the photocatalyst module 20 generates ultraviolet rays contained in the generated discharge light. The photocatalyst to be supported can be irradiated and activated. In addition, for example, one discharge electrode 19a has a honeycomb structure, and the other discharge electrode 19b has a network structure. The shape of the electric field lines is dense and can be easily discharged when a lower voltage is applied. It is said.

尚、紫外線を光触媒モジュール20の光触媒に照射可能であれば、放電電極19a,19bの形状および位置は任意である。   If the photocatalyst of the photocatalyst module 20 can be irradiated with ultraviolet rays, the shape and position of the discharge electrodes 19a and 19b are arbitrary.

吸着フィルタ18は、例えば多孔状、ハニカム状、三次元網目状の浄化対象ガスXを通過させることが可能な三次元構造の基体に吸着剤を担持させて構成される。そして、吸着フィルタ18は、その内部を通過する浄化対象ガスXに含まれる臭気成分等の物質を吸着する機能を有する。   The adsorption filter 18 is configured by, for example, adsorbing an adsorbent supported on a three-dimensional structure base capable of passing a purification target gas X having a porous shape, a honeycomb shape, or a three-dimensional network shape. The adsorption filter 18 has a function of adsorbing substances such as odor components contained in the purification target gas X passing through the inside of the adsorption filter 18.

また、このように構成される分解吸着部13の光触媒モジュール20と吸着フィルタ18は浄化対象ガスXの進行方向に対して互いに並列に設けられ、必要に応じて光触媒モジュール20と吸着フィルタ18の上流側および下流側の一方あるいは双方のガス流路12はある程度分割される。さらに、例えば、光触媒モジュール20は平板状に、吸着フィルタ18はコ字状の切欠を有する板状にそれぞれ形成され、吸着フィルタ18の切欠に光触媒モジュール20が勘合するように構成される。そして、高圧電源部21は、例えば光触媒モジュール20の吸着フィルタ18と勘合しない側面に設けられる。すなわち、光触媒モジュール20が吸着フィルタ18の支持体を兼ねる構造とされ、吸着フィルタ18を光触媒モジュール20に着脱して容易に交換できるように構成される。   Further, the photocatalyst module 20 and the adsorption filter 18 of the decomposition adsorption unit 13 configured as described above are provided in parallel with each other in the traveling direction of the purification target gas X, and if necessary, upstream of the photocatalyst module 20 and the adsorption filter 18. One or both of the gas flow paths 12 on the side and the downstream side are divided to some extent. Further, for example, the photocatalyst module 20 is formed in a flat plate shape, and the adsorption filter 18 is formed in a plate shape having a U-shaped cutout, and the photocatalyst module 20 is configured to fit into the cutout of the adsorption filter 18. And the high voltage power supply part 21 is provided in the side surface which does not fit with the adsorption filter 18 of the photocatalyst module 20, for example. That is, the photocatalyst module 20 serves as a support for the adsorption filter 18, and the adsorption filter 18 can be easily attached to and detached from the photocatalyst module 20 for easy replacement.

また、光触媒モジュール20を流れる浄化対象ガスXと吸着フィルタ18を流れる浄化対象ガスXの流量比が、所要の範囲内となるように、光触媒モジュール20と吸着フィルタ18の圧損および形状が設計される。つまり、光触媒モジュール20の浄化対象ガスXに対する圧損と吸着フィルタ18の浄化対象ガスXに対する圧損との相対差が大きい程、単位面積当たりでは光触媒モジュール20および吸着フィルタ18の一方により多量の浄化対象ガスXが流れ、他方にはより小量の浄化対象ガスXが流れることとなる。   Further, the pressure loss and the shape of the photocatalyst module 20 and the adsorption filter 18 are designed so that the flow rate ratio between the purification target gas X flowing through the photocatalyst module 20 and the purification target gas X flowing through the adsorption filter 18 is within a required range. . That is, the larger the relative difference between the pressure loss of the photocatalyst module 20 with respect to the purification target gas X and the pressure loss of the adsorption filter 18 with respect to the purification target gas X, the larger the amount of purification target gas per unit area. X flows, and a smaller amount of the purification target gas X flows to the other side.

そこで、光触媒モジュール20および吸着フィルタ18の双方に、十分な量の浄化対象ガスXを導いて光触媒モジュール20および吸着フィルタ18のそれぞれの機能が十分に発揮されるように、光触媒モジュール20および吸着フィルタ18の圧損および形状とが決定される。   Thus, the photocatalyst module 20 and the adsorption filter 18 are introduced so that a sufficient amount of the gas X to be purified is guided to both the photocatalyst module 20 and the adsorption filter 18 and the respective functions of the photocatalyst module 20 and the adsorption filter 18 are sufficiently exhibited. 18 pressure losses and shapes are determined.

図3は、図1に示す光触媒モジュール20および吸着フィルタ18の形状および浄化対象ガスXに対する圧損の設定方法の一例を説明するモデル図である。   FIG. 3 is a model diagram for explaining an example of the method of setting the pressure loss for the shape of the photocatalyst module 20 and the adsorption filter 18 and the purification target gas X shown in FIG.

図3(a)は、圧損の定義を説明するモデル図である。図3(a)に示すように、圧損を単位時間に単位面積S[m]の開口部を持つ媒体Aを通して、単位流量Q[m]の浄化対象ガスXを流出させるための圧力差と定義する。すなわち、単位流量Qの浄化対象ガスXが単位面積Sの開口部を持つ媒体Aを通過する場合における媒体Aの入口における浄化対象ガスXの圧力をP+ΔP[Pa]とし、媒体Aの出口における浄化対象ガスXの圧力をP[Pa]とすると圧損はΔP[Pa]と定義することができる。 FIG. 3A is a model diagram illustrating the definition of pressure loss. As shown in FIG. 3A, the pressure loss is caused to flow out the purification target gas X having the unit flow rate Q 0 [m 3 ] through the medium A having the opening of the unit area S 0 [m 2 ] per unit time. Defined as pressure difference. That is, when the purification target gas X with the unit flow rate Q 0 passes through the medium A having an opening with the unit area S 0 , the pressure of the purification target gas X at the inlet of the medium A is P + ΔP 0 [Pa]. If the pressure of the purification target gas X at the outlet is P [Pa], the pressure loss can be defined as ΔP 0 [Pa].

ここで、面積Sの開口部を持つ媒体Aを通過する浄化対象ガスXの流量Qは、媒体Aの入口における浄化対象ガスXの圧力P+ΔP’と媒体Aの出口における浄化対象ガスXの圧力Pの圧力差ΔP’に比例し、かつ媒体Aの開口部の面積Sに比例すると仮定する。すなわち比例係数をαとして式(1)が成立すると仮定する。   Here, the flow rate Q of the purification target gas X passing through the medium A having the opening of the area S is determined by the pressure P + ΔP ′ of the purification target gas X at the inlet of the medium A and the pressure P of the purification target gas X at the outlet of the medium A. It is assumed that the pressure difference ΔP ′ is proportional to the area S of the opening of the medium A. That is, it is assumed that equation (1) is established with the proportionality coefficient α.

[数1]
Q=αΔP’・S ・・・(1)
[Equation 1]
Q = αΔP ′ · S (1)

式(1)と圧損の定義より、式(2)が導かれる。   Equation (2) is derived from Equation (1) and the definition of pressure loss.

[数2]
=αΔP・S ・・・(2)
[Equation 2]
Q 0 = αΔP 0 · S 0 (2)

従って式(1)、式(2)より、面積Sの開口部を持つ媒体Aを通過する浄化対象ガスXの流量Qは、式(3)で示される。   Therefore, from the equations (1) and (2), the flow rate Q of the purification target gas X that passes through the medium A having the opening having the area S is expressed by the equation (3).

[数3]
Q=(Q)/(ΔP・S)・ΔP’・S ・・・(3)
[Equation 3]
Q = (Q 0 ) / (ΔP 0 · S 0 ) · ΔP ′ · S (3)

次に、この仮定に基づいて圧損の異なる二種類の媒体A1、A2が浄化対象ガスXの進行方向に対して並列配置された場合について考える。図3(b)は、それぞれ単位面積Sの開口部を持つ媒体A1、A2の入口における浄化対象ガスXのガス流路12が分割され、媒体A1、A2それぞれへの浄化対象ガスXの導入圧力が相異する一方、媒体A1、A2の出口における浄化対象ガスXのガス流路12が共通である場合のモデルを示す。 Next, based on this assumption, consider a case where two types of media A1 and A2 having different pressure losses are arranged in parallel with respect to the traveling direction of the purification target gas X. FIG. 3 (b), is the gas flow path 12 is divided in the object gas X at the inlet of the medium A1, A2, each having an opening of a unit area S 0, the introduction of the object gas X to the media A1, A2 respectively While the pressures are different, a model in the case where the gas flow path 12 of the purification target gas X at the outlets of the media A1 and A2 is common is shown.

媒体A1、A2の圧損をそれぞれΔP、ΔPとすると、媒体A1、A2の入口における浄化対象ガスXの圧力がそれぞれP+ΔP、P+ΔPであれば、媒体A1、A2の出口における浄化対象ガスXの圧力は共にPであり、式(2)に示すように流量は共に単位流量Qとなる。このため、媒体A1、A2の出口における浄化対象ガスXの総流量QTOTALは式(4)に示すように2Qとなる。 Medium A1, respectively [Delta] P 1 pressure loss of A2, When [Delta] P 2, when the respective pressure of the object gas X at the inlet of the medium A1, A2 P + ΔP 1, P + ΔP 2, the object gas at the outlet of the medium A1, A2 pressure X are both P, the flow rate as shown in equation (2) are both a unit flow rate Q 0. Accordingly, total flow rate Q TOTAL of the object gas X at the outlet of the medium A1, A2 becomes 2Q 0 as shown in Equation (4).

[数4]
TOTAL=Q+Q=2Q・・・(4)
[Equation 4]
Q TOTAL = Q 0 + Q 0 = 2Q 0 (4)

従って、光触媒モジュール20と吸着フィルタ18の入口側における浄化対象ガスXのガス流路12が分割される一方、光触媒モジュール20と吸着フィルタ18の出口における浄化対象ガスXのガス流路12が共通である場合には、光触媒モジュール20の入口と出口における浄化対象ガスXの圧力差が光触媒モジュール20の圧損となるようにし、かつ吸着フィルタ18の入口と出口における浄化対象ガスXの圧力差が吸着フィルタ18の圧損となるようにすれば、光触媒モジュール20および吸着フィルタ18を流れる浄化対象ガスXの流量は理想的には一致し均等に流すことができる。   Therefore, the gas flow path 12 of the purification target gas X at the inlet side of the photocatalyst module 20 and the adsorption filter 18 is divided, while the gas flow path 12 of the purification target gas X at the outlet of the photocatalyst module 20 and the adsorption filter 18 is common. In some cases, the pressure difference between the purification target gas X at the inlet and the outlet of the photocatalyst module 20 becomes a pressure loss of the photocatalyst module 20, and the pressure difference between the purification target gas X at the inlet and the outlet of the adsorption filter 18 is the adsorption filter. If the pressure loss is 18, the flow rate of the purification target gas X flowing through the photocatalyst module 20 and the adsorption filter 18 is ideally matched and can be made to flow evenly.

また、光触媒モジュール20および吸着フィルタ18をそれぞれ流れる浄化対象ガスXの流量に重み付けを行う場合には、光触媒モジュール20と吸着フィルタ18それぞれへの浄化対象ガスXの導入圧力および各圧損の一方あるいは双方を調整することにより光触媒モジュール20と吸着フィルタ18とを流れる浄化対象ガスXの流量比を変化させることができる。   When weighting the flow rate of the purification target gas X flowing through the photocatalyst module 20 and the adsorption filter 18, one or both of the introduction pressure of the purification target gas X to the photocatalyst module 20 and the adsorption filter 18 and each pressure loss, respectively. The flow rate ratio of the purification target gas X flowing through the photocatalyst module 20 and the adsorption filter 18 can be changed.

この際、光触媒モジュール20と吸着フィルタ18のそれぞれの圧損は、それぞれの厚さや密度を変化させることにより調整することができる。   At this time, the pressure loss of the photocatalyst module 20 and the adsorption filter 18 can be adjusted by changing the thickness and density of each.

図3(c)は、それぞれ単位面積Sの開口部を持つ媒体A1、A2の入口および出口の双方における浄化対象ガスXのガス流路12が共通であり、媒体A1、A2の入口および出口における浄化対象ガスXの圧力が同一である場合のモデルを示す。図3(c)に示すように媒体A1、A2の入口における浄化対象ガスXの圧力がP+ΔP’であり媒体A1、A2の出口における浄化対象ガスXの圧力がPである場合には、媒体A1、A2の入口および出口における浄化対象ガスXの圧力差は共にΔP’である。 3 (c) is a medium A1, A2 of the inlet and outlet the object gas X of the gas flow path 12 in both with the opening of each unit area S 0 is common, inlet and outlet of the medium A1, A2 The model in case the pressure of the purification target gas X in FIG. As shown in FIG. 3C, when the pressure of the purification target gas X at the inlets of the media A1 and A2 is P + ΔP ′ and the pressure of the purification target gas X at the outlets of the media A1 and A2 is P, the medium A1 , The pressure difference of the purification target gas X at the inlet and the outlet of A2 is ΔP ′.

従って、媒体A1、A2の出口における浄化対象ガスXの流量Q、Qは、式(3)に示すように媒体A1、A2の入口および出口における浄化対象ガスXの圧力差ΔP’に比例するため、それぞれ式(5−1)、式(5−2)に示すように求めることができる。 Accordingly, the flow rates Q 1 and Q 2 of the purification target gas X at the outlets of the media A1 and A2 are proportional to the pressure difference ΔP ′ of the purification target gas X at the inlets and outlets of the media A1 and A2, as shown in Expression (3). Therefore, it can obtain | require as shown in Formula (5-1) and Formula (5-2), respectively.

[数5]
=Q/(ΔP・S)・ΔP’・S=Q・(ΔP’/ΔP)・・・(5−1)
=Q/(ΔP・S)・ΔP’・S=Q・(ΔP’/ΔP)・・・(5−2)
[Equation 5]
Q 1 = Q 0 / (ΔP 1 · S 0 ) · ΔP ′ · S 0 = Q 0 · (ΔP ′ / ΔP 1 ) (5-1)
Q 2 = Q 0 / (ΔP 2 · S 0 ) · ΔP ′ · S 0 = Q 0 · (ΔP ′ / ΔP 2 ) (5-2)

そして、媒体A1、A2の出口における浄化対象ガスXの総流量QTOTALは式(6)で示される。 Then, the total flow rate Q TOTAL of the purification target gas X at the outlets of the media A1 and A2 is expressed by Expression (6).

[数6]
TOTAL=Q+Q=Q(ΔP’/ΔP+ΔP’/ΔP)・・・(6)
[Equation 6]
Q TOTAL = Q 1 + Q 2 = Q 0 (ΔP ′ / ΔP 1 + ΔP ′ / ΔP 2 ) (6)

従って、光触媒モジュール20と吸着フィルタ18の入口側および出口側の双方におけるガス流路12が共通であり、かつ光触媒モジュール20と吸着フィルタ18の浄化対象ガスXの流れ方向に対する断面の面積が同程度である場合には、光触媒モジュール20と吸着フィルタ18のそれぞれの圧損(ΔP、ΔP)を一致させれば、光触媒モジュール20および吸着フィルタ18を流れる浄化対象ガスXの流量は理想的には一致し均等に流すことができる。 Therefore, the gas flow path 12 is common on both the inlet side and the outlet side of the photocatalyst module 20 and the adsorption filter 18, and the cross-sectional areas of the photocatalyst module 20 and the adsorption filter 18 with respect to the flow direction of the purification target gas X are approximately the same. If the pressure loss (ΔP 1 , ΔP 2 ) of the photocatalyst module 20 and the adsorption filter 18 are matched, the flow rate of the purification target gas X flowing through the photocatalyst module 20 and the adsorption filter 18 is ideally Match and flow evenly.

従って、光触媒モジュール20および吸着フィルタ18に均等に浄化対象ガスXを流すことが望まれる場合には、光触媒モジュール20と吸着フィルタ18の圧損(ΔP、ΔP)を互いに同等とみなせる範囲内とすること、すなわち光触媒モジュール20の圧損ΔPと吸着フィルタ18の圧損ΔPとの差あるいは比が所要の閾値内となるようにすることが効果的である。 Therefore, when it is desired to flow the purification target gas X evenly through the photocatalyst module 20 and the adsorption filter 18, the pressure loss (ΔP 1 , ΔP 2 ) of the photocatalyst module 20 and the adsorption filter 18 is within a range where they can be regarded as equivalent to each other. In other words, it is effective to make the difference or ratio between the pressure loss ΔP 1 of the photocatalyst module 20 and the pressure loss ΔP 2 of the adsorption filter 18 fall within a required threshold value.

また、光触媒モジュール20および吸着フィルタ18をそれぞれ流れる浄化対象ガスXの流量に重み付けを行なう場合には、光触媒モジュール20と吸着フィルタ18のそれぞれの圧損比を増減して摂動させることにより光触媒モジュール20と吸着フィルタ18とを流れる浄化対象ガスXの割合、すなわち流量比を調整することができる。   Further, when weighting the flow rate of the purification target gas X flowing through the photocatalyst module 20 and the adsorption filter 18, respectively, the photocatalyst module 20 and the photocatalyst module 20 are perturbed by increasing and decreasing the pressure loss ratio of the photocatalyst module 20 and the adsorption filter 18. The ratio of the purification target gas X flowing through the adsorption filter 18, that is, the flow rate ratio can be adjusted.

ところで、光触媒モジュール20と吸着フィルタ18の厚さを同程度とし、それぞれの機能が十分に発揮できる密度とした場合には、単位面積当たりでは光触媒モジュール20の圧損の方が吸着フィルタ18の圧損よりも大きくなる。また、光触媒モジュール20と吸着フィルタ18全体の単位面積当たりの合成圧損、すなわち光触媒モジュール20および吸着フィルタ18を1つの媒体とみなした場合における圧損は、より小さい方が望ましい。   By the way, when the thickness of the photocatalyst module 20 and the adsorption filter 18 are set to the same level, and the density is such that each function can be sufficiently exerted, the pressure loss of the photocatalyst module 20 per unit area is greater than the pressure loss of the adsorption filter 18. Also grows. Further, the combined pressure loss per unit area of the entire photocatalyst module 20 and the adsorption filter 18, that is, the pressure loss when the photocatalyst module 20 and the adsorption filter 18 are regarded as one medium is desirably smaller.

従って、光触媒モジュール20と吸着フィルタ18の浄化対象ガスXの流れ方向に対する断面の面積を同程度とする場合には、光触媒モジュール20の圧損を小さくするために、厚さを極端に薄くするか密度を小さくして粗くする必要が生じる。しかし、このように極端に光触媒モジュール20の厚さが薄い場合や密度が粗い場合には、光触媒モジュール20に担持される光触媒の量が減少し、また浄化対象ガスXと光触媒との接触面積も減少することとなり、光触媒モジュール20の機能を十分に発揮させることが困難となる恐れがある。 Therefore, when the cross-sectional areas of the photocatalyst module 20 and the adsorption filter 18 with respect to the flow direction of the gas X to be purified are made approximately the same, in order to reduce the pressure loss of the photocatalyst module 20, the thickness is extremely reduced or the density is reduced. Need to be made smaller and rougher. However, when the thickness of the photocatalyst module 20 is extremely thin or the density is so rough, the amount of the photocatalyst carried on the photocatalyst module 20 is reduced, and the contact area between the purification target gas X and the photocatalyst is also reduced. will be reduced, it may become difficult to make sufficiently exhibit the function of the photocatalyst module 20.

そこで、光触媒モジュール20と吸着フィルタ18の圧損が異なっていても、浄化対象ガスXの流れ方向に対するそれぞれの断面の面積を調整することにより、光触媒モジュール20および吸着フィルタ18をそれぞれ流れる浄化対象ガスXの流量並びに光触媒モジュール20と吸着フィルタ18全体の合成圧損を設定することができる。   Therefore, even if the pressure loss between the photocatalyst module 20 and the adsorption filter 18 is different, the purification target gas X flowing through the photocatalyst module 20 and the adsorption filter 18 is adjusted by adjusting the area of each cross section with respect to the flow direction of the purification target gas X. And the combined pressure loss of the entire photocatalyst module 20 and the adsorption filter 18 can be set.

図3(d)は、それぞれ異なる面積S、Sの開口部を持つ媒体A1、A2の入口および出口の双方における浄化対象ガスXのガス流路12が共通であり、媒体A1、A2の入口および出口における浄化対象ガスXの圧力が同一である場合のモデルを示す。図3(d)に示すように媒体A1、A2の入口における浄化対象ガスXの圧力がP+ΔP’であり媒体A1、A2の出口における浄化対象ガスXの圧力がPである場合には、媒体A1、A2の入口および出口における浄化対象ガスXの圧力差は共にΔP’である。 FIG. 3 (d) are different areas S 1, S medium A1, A2 object gas X of the gas flow path 12 in both the inlet and outlet of having two openings respectively common, medium A1, A2 A model when the pressure of the purification target gas X at the inlet and the outlet is the same is shown. As shown in FIG. 3D, when the pressure of the purification target gas X at the inlets of the media A1 and A2 is P + ΔP ′ and the pressure of the purification target gas X at the outlets of the media A1 and A2 is P, the medium A1 , The pressure difference of the purification target gas X at the inlet and the outlet of A2 is ΔP ′.

従って、媒体A1、A2の出口における浄化対象ガスXの流量Q、Qは、式(3)に示すように媒体A1、A2の入口および出口における浄化対象ガスXの圧力差ΔP’に比例し、かつ媒体A1、A2の開口部の面積S、Sに比例するため、それぞれ式(7−1)、式(7−2)に示すように求めることができる。 Accordingly, the flow rates Q 1 and Q 2 of the purification target gas X at the outlets of the media A1 and A2 are proportional to the pressure difference ΔP ′ of the purification target gas X at the inlets and outlets of the media A1 and A2, as shown in Expression (3). In addition, since it is proportional to the areas S 1 and S 2 of the openings of the media A1 and A2, they can be obtained as shown in the equations (7-1) and (7-2), respectively.

[数7]
=Q/(ΔP・S)・ΔP’・S
=Q・(ΔP’/ΔP)・(S/S)・・・(7−1)
=Q/(ΔP・S)・ΔP’・S
=Q・(ΔP’/ΔP)・(S/S)・・・(7−2)
[Equation 7]
Q 1 = Q 0 / (ΔP 1 · S 0 ) · ΔP ′ · S 1
= Q 0 · (ΔP ′ / ΔP 1 ) · (S 1 / S 0 ) (7-1)
Q 2 = Q 0 / (ΔP 2 · S 0 ) · ΔP ′ · S 2
= Q 0 · (ΔP ′ / ΔP 2 ) · (S 2 / S 0 ) (7-2)

そして、媒体A1、A2の出口における浄化対象ガスXの総流量QTOTALは式(8)で示される。 Then, the total flow rate Q TOTAL of the purification target gas X at the outlets of the mediums A1 and A2 is expressed by Expression (8).

[数8]
TOTAL=Q+Q
=Q{(ΔP’/ΔP)・(S/S)+(ΔP’/ΔP)・(S/S)}
=ΔP’・Q/S{(S・ΔP)+(S・ΔP)/(ΔP・ΔP)}
・・・(8)
[Equation 8]
Q TOTAL = Q 1 + Q 2
= Q 0 {(ΔP ′ / ΔP 1 ) · (S 1 / S 0 ) + (ΔP ′ / ΔP 2 ) · (S 2 / S 0 )}
= ΔP ′ · Q 0 / S 0 {(S 1 · ΔP 2 ) + (S 2 · ΔP 1 ) / (ΔP 1 · ΔP 2 )}
... (8)

式(8)において、媒体A1、A2の出口における浄化対象ガスXの総流量QTOTALに対して媒体A2の出口における浄化対象ガスXの流量Qが占める割合Rは、式(9)で示される。 In the equation (8), the ratio R 2 of the flow rate Q 2 of the purification target gas X at the outlet of the medium A2 to the total flow rate Q TOTAL of the purification target gas X at the outlets of the media A1 and A2 is expressed by the equation (9). Indicated.

[数9]
=Q/QTOTAL
={Q・(ΔP’/ΔP)・(S/S)}
/[ΔP’・Q/S{(S・ΔP)+(S・ΔP)/(ΔP・ΔP)}]
=S・ΔP/(S・ΔP+S・ΔP)・・・(9)
[Equation 9]
R 2 = Q 2 / Q TOTAL
= {Q 0 · (ΔP ′ / ΔP 2 ) · (S 2 / S 0 )}
/ [ΔP ′ · Q 0 / S 0 {(S 1 · ΔP 2 ) + (S 2 · ΔP 1 ) / (ΔP 1 · ΔP 2 )}]
= S 2 · ΔP 1 / (S 1 · ΔP 2 + S 2 · ΔP 1 ) (9)

式(9)において、流量Qが占める割合Rを仮に0.5(50%)とすると、媒体A1の圧損ΔPが、媒体A2の圧損ΔP1/2倍である場合には、式(10)に示すように媒体A1、A2の開口部の面積S、Sの条件を求めることができる。 In equation (9), if the ratio R 2 occupied by the flow rate Q 2 is 0.5 (50%), the pressure loss ΔP 1 of the medium A1 is ½ times the pressure loss ΔP 2 of the medium A2. As shown in Equation (10), the conditions of the areas S 1 and S 2 of the openings of the media A1 and A2 can be obtained.

[数10]
=0.5=S・ΔP/(S・ΔP+S・ΔP
=S/(2S+S)・・・(10)
∵ΔP(1/2)・ΔP
[Equation 10]
R 2 = 0.5 = S 2 · ΔP 1 / (S 1 · ΔP 2 + S 2 · ΔP 1 )
= S 2 / (2S 1 + S 2 ) (10)
∵ΔP 1 = (1/2) · ΔP 2

すなわち、媒体A1の圧損ΔPが、媒体A2の圧損ΔP1/2倍である場合に、式(10)に示すように媒体A1、A2の開口部の面積S、Sを設定すれば、媒体A1、A2の双方に均等に浄化対象ガスXを流すことができる。このため、媒体A1を光触媒モジュール20と、媒体A2を吸着フィルタ18として式(10)の条件を満たすように浄化対象ガスXの進行方向に対するそれぞれの断面積S、Sを設定すれば、単位面積当たりの光触媒モジュール20の圧損が吸着フィルタ18の圧損の1/2倍であったとしても、光触媒モジュール20および吸着フィルタ18の双方に均等に浄化対象ガスXを流すことができる。 That is, setting the pressure drop [Delta] P 1 of the medium A1 is, if it is half the pressure drop [Delta] P 2 of the medium A2, the area S 1, S 2 of the opening of the medium A1, A2 as shown in equation (10) Then, the purification target gas X can be made to flow evenly through both the media A1 and A2. Therefore, if the cross-sectional areas S 1 and S 2 with respect to the traveling direction of the purification target gas X are set so that the condition of the expression (10) is satisfied with the medium A1 as the photocatalyst module 20 and the medium A2 as the adsorption filter 18, Even if the pressure loss of the photocatalyst module 20 per unit area is ½ times the pressure loss of the adsorption filter 18, the purification target gas X can flow evenly through both the photocatalyst module 20 and the adsorption filter 18.

また、光触媒モジュール20および吸着フィルタ18をそれぞれ流れる浄化対象ガスXの流量に重み付けを行なう場合には、光触媒モジュール20と吸着フィルタ18のそれぞれの圧損比や浄化対象ガスXの進行方向に対するそれぞれの断面積比を増減して摂動させることにより光触媒モジュール20と吸着フィルタ18とを流れる浄化対象ガスXの流量比を調整することができる。特に、光触媒モジュール20と吸着フィルタ18の圧損を互いに同等とみなせる範囲内とすることが可能な場合には、浄化対象ガスXの進行方向に対するそれぞれの断面積比のみを考慮すれば、光触媒モジュール20および吸着フィルタ18をそれぞれ通過する浄化対象ガスXの流量比を調整することができる。   When weighting the flow rates of the purification target gas X flowing through the photocatalyst module 20 and the adsorption filter 18 respectively, the respective pressure loss ratios of the photocatalyst module 20 and the adsorption filter 18 and the disconnection with respect to the traveling direction of the purification target gas X are determined. The flow rate ratio of the purification target gas X flowing through the photocatalyst module 20 and the adsorption filter 18 can be adjusted by perturbing by increasing / decreasing the area ratio. In particular, when the pressure loss of the photocatalyst module 20 and the adsorption filter 18 can be set within a range that can be regarded as equivalent to each other, the photocatalyst module 20 can be considered only by considering the respective cross-sectional area ratios with respect to the traveling direction of the purification target gas X. And the flow rate ratio of the purification target gas X passing through the adsorption filter 18 can be adjusted.

ここで、光触媒モジュール20および吸着フィルタ18をそれぞれ流れる浄化対象ガスXの流量比の設定方法について検討する。一般に光触媒モジュール20や吸着フィルタ18において分解あるいは吸着の対象とされる臭気成分の臭気強度は対数的に感知される。このため、光触媒モジュール20および吸着フィルタ18の一方へ流入する浄化対象ガスXの流量が他方へ流入する浄化対象ガスXの流量の10%未満である場合には、浄化対象ガスXの流量が少ない側による効果は殆ど認識されないと考えられる。   Here, a method for setting the flow rate ratio of the purification target gas X flowing through the photocatalyst module 20 and the adsorption filter 18 will be discussed. In general, the odor intensity of an odor component to be decomposed or adsorbed in the photocatalyst module 20 or the adsorption filter 18 is logarithmically sensed. For this reason, when the flow rate of the purification target gas X flowing into one of the photocatalyst module 20 and the adsorption filter 18 is less than 10% of the flow rate of the purification target gas X flowing into the other, the flow rate of the purification target gas X is small. It is thought that the effect by the side is hardly recognized.

そこで、光触媒モジュール20および吸着フィルタ18の双方の効果を十分に併用させる場合には、光触媒モジュール20および吸着フィルタ18を通過する浄化対象ガスXの総流量に対する光触媒モジュール20あるいは吸着フィルタ18を通過する浄化対象ガスXの流量の割合が少なくとも0.1未満とならないように、式(10)の例に示すように光触媒モジュール20および吸着フィルタ18のそれぞれの圧損や浄化対象ガスXの進行方向に対する断面積を設定する必要がある。つまり、実用的には、光触媒モジュール20を通過する浄化対象ガスXと吸着フィルタ18を通過する浄化対象ガスXの流量比は、0.1から0.9の範囲とすることが必要であると考えられ、このような流量比が得られるように式(10)により光触媒モジュール20および吸着フィルタ18の形状を設計することができる。   Therefore, when the effects of both the photocatalyst module 20 and the adsorption filter 18 are sufficiently used together, the photocatalyst module 20 or the adsorption filter 18 passes through the total flow rate of the purification target gas X that passes through the photocatalyst module 20 and the adsorption filter 18. In order to prevent the flow rate ratio of the purification target gas X from being less than at least 0.1, the pressure loss of each of the photocatalyst module 20 and the adsorption filter 18 and the breakage in the traveling direction of the purification target gas X as shown in the example of Expression (10). It is necessary to set the area. That is, practically, the flow rate ratio between the purification target gas X passing through the photocatalyst module 20 and the purification target gas X passing through the adsorption filter 18 needs to be in the range of 0.1 to 0.9. The shape of the photocatalyst module 20 and the adsorption filter 18 can be designed by equation (10) so that such a flow rate ratio can be obtained.

尚、光触媒モジュール20により多量の浄化対象ガスXを流すために、光触媒モジュール20の浄化対象ガスXの進行方向に対する断面積を大きくすると、光触媒モジュール20の圧損が吸着フィルタ18の圧損よりも大きい場合には、光触媒モジュール20および吸着フィルタ18全体の合成圧損の増加に繋がる。そこで、光触媒モジュール20および吸着フィルタ18全体の合成圧損が予め設定された閾値内となるように、光触媒モジュール20の圧損を設定することが重要となる。   When the cross-sectional area of the photocatalyst module 20 in the traveling direction of the purification target gas X is increased in order to cause a large amount of the purification target gas X to flow through the photocatalyst module 20, the pressure loss of the photocatalyst module 20 is larger than the pressure loss of the adsorption filter 18. This leads to an increase in the combined pressure loss of the entire photocatalyst module 20 and the adsorption filter 18. Accordingly, it is important to set the pressure loss of the photocatalyst module 20 so that the combined pressure loss of the entire photocatalyst module 20 and the adsorption filter 18 is within a preset threshold value.

この結果、例えば、図2に示すように、光触媒モジュール20の浄化対象ガスXの進行方向に対する断面積に比べて、吸着フィルタ18の浄化対象ガスXの進行方向に対する断面積が大きくなるように設計される。そして、光触媒と浄化対象ガスXの接触面積を確保するために光触媒モジュール20の厚さを十分厚く、密度を十分大きく設定し、光触媒モジュール20の圧損を吸着フィルタ18の圧損よりも大きくせざるを得ないような場合であっても、光触媒モジュール20および吸着フィルタ18全体の合成圧損の増加を抑制し、かつ光触媒モジュール20および吸着フィルタ18の双方に要求される流量比の浄化対象ガスXを導くことができるように構成される。   As a result, for example, as shown in FIG. 2, the cross-sectional area of the adsorption filter 18 in the traveling direction of the purification target gas X is designed to be larger than the sectional area of the adsorption filter 18 in the traveling direction of the purification target gas X. Is done. In order to secure the contact area between the photocatalyst and the purification target gas X, the thickness of the photocatalyst module 20 is set to be sufficiently thick and the density is set to be sufficiently large so that the pressure loss of the photocatalyst module 20 is larger than the pressure loss of the adsorption filter 18. Even in such a case, the increase in the combined pressure loss of the entire photocatalyst module 20 and the adsorption filter 18 is suppressed, and the purification target gas X having a flow rate ratio required for both the photocatalyst module 20 and the adsorption filter 18 is introduced. Configured to be able to.

そして、このように圧損や面積が調整されて設計された光触媒モジュール20および吸着フィルタ18がガス流路12上に浄化対象ガスXの進行方向に対して並列配置される。   Then, the photocatalyst module 20 and the adsorption filter 18 designed with the pressure loss and the area adjusted in this manner are arranged in parallel on the gas flow path 12 with respect to the traveling direction of the purification target gas X.

一方、分解吸着部13の上流側に設けられる集塵フィルタ16は、浄化対象ガスXに含まれる塵や埃を除去することにより、分解吸着部13の光触媒モジュール20や吸着フィルタ18の目詰まりを防止する機能を有する。   On the other hand, the dust collection filter 16 provided on the upstream side of the decomposition adsorption unit 13 removes dust and dust contained in the purification target gas X, thereby clogging the photocatalyst module 20 and the adsorption filter 18 of the decomposition adsorption unit 13. It has a function to prevent.

また、送風機14は、浄化対象ガスXの流れをガス流路12上に形成し、浄化対象ガスXを所要の流速で分解吸着部13に送り込む機能を有する。すなわち、送風機14を駆動させることにより、光触媒モジュール20および吸着フィルタ18の入口における浄化対象ガスXの圧力をそれぞれ所要の圧力とし、所要の流量の浄化対象ガスXを光触媒モジュール20および吸着フィルタ18を通過させる機能を有する。   The blower 14 has a function of forming a flow of the purification target gas X on the gas flow path 12 and sending the purification target gas X to the decomposition adsorption unit 13 at a required flow rate. That is, by driving the blower 14, the pressure of the purification target gas X at the inlets of the photocatalyst module 20 and the adsorption filter 18 is set to a required pressure, and the purification target gas X having a required flow rate is set to the photocatalyst module 20 and the adsorption filter 18. Has a function to pass through.

尚、分解吸着部13は、光触媒モジュール20や吸着フィルタ18を並列配置して構成されるため、光触媒モジュール20および吸着フィルタ18全体の合成圧損に対して浄化対象ガスXの流速を所要の流速にできればよい。   Since the decomposition adsorption unit 13 is configured by arranging the photocatalyst module 20 and the adsorption filter 18 in parallel, the flow rate of the purification target gas X is set to a required flow rate with respect to the combined pressure loss of the photocatalyst module 20 and the adsorption filter 18 as a whole. I can do it.

オゾン処理フィルタ15は例えば多孔状、ハニカム状、三次元網目状の構造体にオゾン分解触媒を担持させて構成され、オゾン処理フィルタ15の内部を浄化対象ガスXが通過できる構造とされる。ここで、光触媒反応部17では、オゾンが生成されるためオゾン処理フィルタ15の内部を通過する浄化対象ガスXにはオゾンは含まれることとなる。そこで、オゾン処理フィルタ15には、その内部を通過する浄化対象ガスXに含まれるオゾンを分解処理して除去することにより、閉空間11に放出される浄化対象ガスXを無害化あるいは浄化対象ガスXに含まれるオゾンの濃度を低減させる機能を有する。   The ozone treatment filter 15 is configured, for example, by supporting an ozone decomposition catalyst on a porous, honeycomb, or three-dimensional network structure, and the purification target gas X can pass through the inside of the ozone treatment filter 15. Here, since ozone is generated in the photocatalytic reaction unit 17, ozone is contained in the purification target gas X passing through the inside of the ozone treatment filter 15. Therefore, the ozone treatment filter 15 detoxifies or purifies the purification target gas X released into the closed space 11 by decomposing and removing ozone contained in the purification target gas X passing through the ozone treatment filter 15. It has a function of reducing the concentration of ozone contained in X.

次にガス浄化装置10の作用について説明する。   Next, the operation of the gas purification device 10 will be described.

まず、送風機14が駆動し、家屋、車両、冷蔵庫等の機器内部等の閉空間11内からガス浄化装置10内に形成されたガス流路12に空気等の浄化対象ガスXが流入し、浄化対象ガスXの流れが形成される。すなわち、閉空間11内からガス浄化装置10内のガス流路12に流入した浄化対象ガスXは、ガス流路12を経由して閉空間11に放出され、閉空間11に放出された浄化対象ガスXが、再びガス浄化装置10内のガス流路12に流入する浄化対象ガスXの循環が形成される。   First, the blower 14 is driven, and the purification target gas X such as air flows into the gas passage 12 formed in the gas purification device 10 from the inside of the closed space 11 such as a house, a vehicle, a refrigerator, or the like. A flow of the target gas X is formed. That is, the purification target gas X that has flowed from the closed space 11 into the gas flow path 12 in the gas purification apparatus 10 is discharged to the closed space 11 via the gas flow path 12, and the purification target discharged to the closed space 11. A circulation of the gas X to be purified in which the gas X flows into the gas flow path 12 in the gas purification device 10 again is formed.

ガス浄化装置10内のガス流路12に流入した浄化対象ガスXは、集塵フィルタ16に導かれる。集塵フィルタ16では、浄化対象ガスXに含まれる塵や埃が除去され、光触媒モジュール20や吸着フィルタ18の目詰まりが防止される。集塵フィルタ16を通過した浄化対象ガスXは、送風機14を通過して所要の流速となって、分解吸着部13に送り込まれる。そして、浄化対象ガスXが光触媒モジュール20および吸着フィルタ18の入口に所要の圧力となって導かれる。   The purification target gas X flowing into the gas flow path 12 in the gas purification apparatus 10 is guided to the dust collection filter 16. In the dust collection filter 16, dust and dust contained in the purification target gas X are removed, and the photocatalyst module 20 and the adsorption filter 18 are prevented from being clogged. The purification target gas X that has passed through the dust collection filter 16 passes through the blower 14 and reaches a required flow velocity, and is sent to the decomposition adsorption unit 13. Then, the purification target gas X is guided to the photocatalyst module 20 and the inlet of the adsorption filter 18 at a required pressure.

ここで、光触媒モジュール20と吸着フィルタ18とは浄化対象ガスXの進行方向に対して並列配置され、かつ浄化対象ガスXに対する合成圧損が予め設定された閾値内となるようにされているため、送風機14に消費されるエネルギの増加が抑制される。特に光触媒モジュール20の圧損と吸着フィルタ18の圧損とが同等とみなせる範囲内である場合には、送風機14において消費されるエネルギの消費量は、吸着フィルタ18のみがガス流路12上に設けられた場合と同等なエネルギの消費量となる。このため、送風機14が、吸着フィルタ18や既設の他の機器のみの圧損に対して設計された既設の送風機14であったとしても、そのまま用いることができる。   Here, the photocatalyst module 20 and the adsorption filter 18 are arranged in parallel with respect to the traveling direction of the purification target gas X, and the combined pressure loss with respect to the purification target gas X is within a preset threshold value. An increase in energy consumed by the blower 14 is suppressed. In particular, when the pressure loss of the photocatalyst module 20 and the pressure loss of the adsorption filter 18 are within a range that can be regarded as equivalent, the amount of energy consumed in the blower 14 is such that only the adsorption filter 18 is provided on the gas flow path 12. Energy consumption equivalent to For this reason, even if the air blower 14 is an existing air blower 14 designed for pressure loss of only the adsorption filter 18 and other existing equipment, it can be used as it is.

さらに、光触媒モジュール20および吸着フィルタ18の入口に導かれた浄化対象ガスXは、光触媒モジュール20および吸着フィルタ18の双方に流れ込む。このとき、光触媒モジュール20を流れる浄化対象ガスXと吸着フィルタ18を流れる浄化対象ガスXとの流量比が共に少なくとも0.1から0.9の範囲となるように、光触媒モジュール20および吸着フィルタ18の圧損および浄化対象ガスXの進行方向に対する断面積が調整されているため、光触媒モジュール20および吸着フィルタ18を流れる浄化対象ガスXは、十分に光触媒モジュール20および吸着フィルタ18による効果を得ることができる。   Furthermore, the purification target gas X guided to the inlets of the photocatalyst module 20 and the adsorption filter 18 flows into both the photocatalyst module 20 and the adsorption filter 18. At this time, the photocatalyst module 20 and the adsorption filter 18 are such that the flow rate ratio between the purification target gas X flowing through the photocatalyst module 20 and the purification target gas X flowing through the adsorption filter 18 is in the range of at least 0.1 to 0.9. Therefore, the purification target gas X flowing through the photocatalyst module 20 and the adsorption filter 18 can sufficiently obtain the effect of the photocatalyst module 20 and the adsorption filter 18. it can.

すなわち、吸着フィルタ18の内部に導かれた浄化対象ガスXは、吸着フィルタ18の構造体に担持された吸着剤と接触し、浄化対象ガスXに含まれる臭気成分等の物質が吸着剤により吸着されて除去される。このため、浄化対象ガスXは脱臭され、あるいは清浄されて吸着フィルタ18の出口に放出される。   That is, the purification target gas X guided to the inside of the adsorption filter 18 comes into contact with the adsorbent carried on the structure of the adsorption filter 18, and substances such as odor components contained in the purification target gas X are adsorbed by the adsorbent. To be removed. Therefore, the purification target gas X is deodorized or cleaned and discharged to the outlet of the adsorption filter 18.

一方、高圧電源部21から放電電極19a,19bに電圧が印加される。放電電極19a,19bでは放電が起こり、放電光に含まれる紫外線が光触媒モジュール20に担持された光触媒に照射される。このため、光触媒は活性化され、光触媒モジュール20内部に導かれた浄化対象ガスXは、活性化した光触媒と接触する。そして、浄化対象ガスXに含まれる臭い物質、有害物質、細菌等の物質が活性化した光触媒の表面に付着すると、光触媒からエネルギが供給され、光触媒の表面に付着した物質は酸化され、分解される。   On the other hand, a voltage is applied from the high-voltage power supply unit 21 to the discharge electrodes 19a and 19b. Discharge occurs at the discharge electrodes 19a and 19b, and the photocatalyst carried on the photocatalyst module 20 is irradiated with ultraviolet rays contained in the discharge light. For this reason, the photocatalyst is activated, and the purification target gas X guided into the photocatalyst module 20 comes into contact with the activated photocatalyst. Then, when substances such as odorous substances, harmful substances and bacteria contained in the purification target gas X adhere to the activated photocatalyst surface, energy is supplied from the photocatalyst, and the substance adhering to the surface of the photocatalyst is oxidized and decomposed. The

また、放電電極19a,19bからの放電に伴って放電プラズマが生成され、浄化対象ガスX中に含まれる酸素分子Oは励起および解離し、プラズマ反応の結果オゾンOが生成される。また、同時に放電により発生する紫外光の中で波長が300nm以下の短波長成分を酸素分子Oが吸収することにより励起され、酸素分子Oのプラズマ反応と同様に反応の結果オゾンO3が生成される。オゾンOは浄化対象ガスX中に含まれる臭い物質、有害物質、細菌等の物質と衝突し、酸化、分解反応を起こす。 Further, discharge plasma is generated along with the discharge from the discharge electrodes 19a and 19b, the oxygen molecules O 2 contained in the gas X to be purified are excited and dissociated, and ozone O 3 is generated as a result of the plasma reaction. At the same time, oxygen molecules O 2 are excited by absorption of short wavelength components having a wavelength of 300 nm or less in ultraviolet light generated by discharge, and ozone O 3 is generated as a result of the reaction in the same manner as the plasma reaction of oxygen molecules O 2. Is done. Ozone O 3 collides with substances such as odorous substances, harmful substances, and bacteria contained in the purification target gas X, and causes oxidation and decomposition reactions.

この結果、光触媒モジュール20内部に導かれた浄化対象ガスXは、活性化した光触媒とオゾンの酸化分解作用により除菌、脱臭あるいは清浄される。そして、浄化後の浄化対象ガスXは、オゾンとともに光触媒モジュール20の出口に放出される。   As a result, the purification target gas X introduced into the photocatalyst module 20 is sterilized, deodorized, or purified by the oxidative decomposition action of the activated photocatalyst and ozone. Then, the purified gas X after purification is released to the outlet of the photocatalyst module 20 together with ozone.

さらに、吸着フィルタ18の出口に放出された浄化対象ガスXと、光触媒モジュール20の出口に放出された浄化対象ガスXとは合流し、さらに光触媒モジュール20および吸着フィルタ18の下流側においてオゾンの作用により除菌、脱臭あるいは清浄される。そして、浄化対象ガスXは残留するオゾンとともにオゾン処理フィルタ15に導かれる。   Further, the purification target gas X released to the outlet of the adsorption filter 18 and the purification target gas X released to the outlet of the photocatalyst module 20 merge, and further the action of ozone on the downstream side of the photocatalyst module 20 and the adsorption filter 18. Is sterilized, deodorized or cleaned. The purification target gas X is guided to the ozone treatment filter 15 together with the remaining ozone.

オゾン処理フィルタ15内部では、浄化対象ガスXに含まれる残留オゾンが構造体に担持されたオゾン分解触媒と接触し、浄化対象ガスXから残留オゾンが分解処理される。そして、オゾン処理フィルタ15において残留オゾンが除去されて無害化あるいはオゾンの濃度が十分に低減した浄化対象ガスXは、ガス浄化装置10内のガス流路12を経由して閉空間11に放出される。   Inside the ozone treatment filter 15, the residual ozone contained in the purification target gas X comes into contact with the ozone decomposition catalyst carried on the structure, and the residual ozone is decomposed from the purification target gas X. Then, the purification target gas X, in which the residual ozone is removed by the ozone treatment filter 15 to make it harmless or the concentration of ozone is sufficiently reduced, is released into the closed space 11 via the gas flow path 12 in the gas purification device 10. The

さらに、閉空間11とガス浄化装置10内のガス流路12内との間には、浄化対象ガスXが循環する流れが形成されているため、ガス浄化装置10において、除菌、脱臭あるいは清浄されて閉空間11に放出された浄化対象ガスXは、再びガス浄化装置10内のガス流路12に導かれる。そして、同様な光触媒モジュール20および吸着フィルタ18による浄化対象ガスXの除菌、脱臭あるいは清浄等の浄化処理がガス浄化装置10内のガス流路12において繰返し施される。   Further, since a flow through which the purification target gas X circulates is formed between the closed space 11 and the gas flow path 12 in the gas purification device 10, the gas purification device 10 performs sterilization, deodorization, or purification. The purification target gas X that has been released into the closed space 11 is again guided to the gas flow path 12 in the gas purification apparatus 10. Then, purification treatment such as sterilization, deodorization, or purification of the purification target gas X by the similar photocatalyst module 20 and the adsorption filter 18 is repeatedly performed in the gas flow path 12 in the gas purification apparatus 10.

このため、ガス浄化装置10内のガス流路12に導かれた浄化対象ガスXは、光触媒モジュール20および吸着フィルタ18のいずれかのみを通過するものの、浄化対象ガスXの循環により繰返しガス浄化装置10内のガス流路12に導かれるため、閉空間11内の浄化対象ガスXは徐々に除菌、脱臭あるいは清浄される。つまり、活性化した光触媒とオゾンによる臭気成分や菌類等の除去対象に対する分解効果と、吸着剤による臭気成分等の物質の吸着効果の双方の効果を閉空間11内の浄化対象ガスXに対して得ることができる。   For this reason, the purification target gas X guided to the gas flow path 12 in the gas purification apparatus 10 passes through only one of the photocatalyst module 20 and the adsorption filter 18, but is repeatedly gas purification apparatus by circulation of the purification target gas X. Since the gas X is guided to the gas flow path 12 in the closed space 11, the purification target gas X in the closed space 11 is gradually sterilized, deodorized, or purified. That is, the effect of both the decomposition effect on the removal target of odorous components and fungi by activated photocatalyst and ozone, and the effect of adsorption of substances such as the odorous component by the adsorbent on the purification target gas X in the closed space 11. Obtainable.

以上のような、ガス浄化装置10によれば、光触媒モジュール20と吸着フィルタ18とを浄化対象ガスXの進行方向に対して並列配置した構成であるため、浄化対象ガスXの圧損の増加を抑制することが可能となり、送風機14等のガス流路12上の他の機器に要求される設計性能の増加を抑えることができる。このため、送風機14等の機器が吸着フィルタ18の圧損のみを想定して設計された既設のものであっても、そのままあるいはより簡易な修正により用いることができる。   According to the gas purification apparatus 10 as described above, since the photocatalyst module 20 and the adsorption filter 18 are arranged in parallel with respect to the traveling direction of the purification target gas X, an increase in pressure loss of the purification target gas X is suppressed. Thus, an increase in design performance required for other devices on the gas flow path 12 such as the blower 14 can be suppressed. For this reason, even if the equipment such as the blower 14 is an existing equipment designed with only the pressure loss of the adsorption filter 18, it can be used as it is or with a simpler modification.

また、この際、光触媒モジュール20と吸着フィルタ18の圧損および浄化対象ガスXの進行方向に対する断面積が調整されて、光触媒モジュール20と吸着フィルタ18の双方に十分な流量の浄化対象ガスXを導くことができるため、光触媒とオゾンの作用による浄化対象ガス中の除去対象に対する分解効果と吸着剤による吸着効果とを併用し、より効果的に浄化対象ガスを脱臭、清浄あるいは除菌することができる。   At this time, the pressure loss of the photocatalyst module 20 and the adsorption filter 18 and the cross-sectional area with respect to the traveling direction of the purification target gas X are adjusted to guide the purification target gas X having a sufficient flow rate to both the photocatalyst module 20 and the adsorption filter 18. Therefore, it is possible to deodorize, purify, or disinfect the purification target gas more effectively by using both the decomposition effect on the removal target in the purification target gas by the action of the photocatalyst and ozone and the adsorption effect by the adsorbent. .

このため、従来、吸着剤のみでは、行なえなかった除菌等の浄化処理を光触媒とオゾンの作用により行うことが可能となるのみならず、臭気成分等の物質の分解処理能力を向上させることができる。また、このような効果により、吸着フィルタ18に堆積する物質の量を低減させて吸着フィルタ18の交換等のメンテナンスの労力を低減させることが期待される。   For this reason, it becomes possible not only to perform sterilization and the like, which could not be performed with an adsorbent conventionally, by the action of the photocatalyst and ozone, but also to improve the ability to decompose substances such as odor components. it can. In addition, such an effect is expected to reduce the amount of substances deposited on the adsorption filter 18 and reduce maintenance work such as replacement of the adsorption filter 18.

さらに、光触媒モジュール20は、吸着フィルタ18の支持体を兼ねているため、吸着フィルタ18の交換が容易となり、かつ支持体のスペースを浄化対象ガスXの浄化処理のために有効活用することもできる。また、光触媒モジュール20と吸着フィルタ18の勘合形状を従来用いられる既設の吸着フィルタ18と同等な形状とすれば、従来の吸着フィルタ18との互換性を持たせることもできる。   Furthermore, since the photocatalyst module 20 also serves as a support for the adsorption filter 18, the adsorption filter 18 can be easily replaced, and the space of the support can be effectively used for the purification process of the purification target gas X. . In addition, if the fitting shape of the photocatalyst module 20 and the adsorption filter 18 is the same as that of an existing adsorption filter 18 that is conventionally used, compatibility with the conventional adsorption filter 18 can be achieved.

他方、光触媒とオゾンの作用により分解が困難ではあるが、吸着剤の吸着効果により容易に吸着して空気から除去することが可能な除去対象が浄化対象ガスXに含まれる場合には、図5に示す従来のガス浄化装置1では浄化対象ガスXの浄化処理が不十分となる恐れがあるのに対し、図1に示す本発明のガス浄化装置10では、吸着剤の作用によりそのような除去対象が浄化対象ガスXに含まれていても吸着除去することができる。   On the other hand, if the purification target gas X includes a removal target that is difficult to decompose due to the action of the photocatalyst and ozone but can be easily adsorbed by the adsorption effect of the adsorbent and removed from the air, FIG. In the conventional gas purification apparatus 1 shown in FIG. 1, there is a possibility that the purification process of the purification target gas X may be insufficient, whereas in the gas purification apparatus 10 of the present invention shown in FIG. Even if the target is contained in the purification target gas X, it can be removed by adsorption.

図4は本発明に係るガス浄化装置の第2の実施形態を示す断面構造図である。   FIG. 4 is a cross-sectional structural view showing a second embodiment of the gas purification apparatus according to the present invention.

図4に示された、ガス浄化装置10Aでは、光触媒反応部17に誘電体30を設けた点が図1に示すガス浄化装置10と相違する。他の構成および作用については図1に示すガス浄化装置10と実質的に異ならないため分解吸着部13の断面構造図のみ図示し、同一の構成については同符号を付して説明を省略する。   The gas purification apparatus 10A shown in FIG. 4 is different from the gas purification apparatus 10 shown in FIG. 1 in that a dielectric 30 is provided in the photocatalytic reaction unit 17. Since other configurations and operations are not substantially different from those of the gas purification apparatus 10 shown in FIG. 1, only the sectional structure diagram of the decomposition adsorption unit 13 is illustrated, and the same components are denoted by the same reference numerals and description thereof is omitted.

ガス浄化装置10Aの分解吸着部13は、光触媒反応部17と吸着フィルタ18とを有し、光触媒反応部17は、対向する放電電極19c,19dと光触媒モジュール20とを備える。   The decomposition adsorption unit 13 of the gas purification apparatus 10A includes a photocatalytic reaction unit 17 and an adsorption filter 18, and the photocatalytic reaction unit 17 includes discharge electrodes 19c and 19d and a photocatalyst module 20 that face each other.

対向する放電電極19c,19dは例えば光触媒モジュール20を挟んで浄化対象ガスXの進行方向に略並行な面に設けられる。一方の放電電極19cは例えば板状構造とされ、他方の放電電極19dは網目状構造とされる。そして、電気力線が密となりより低い電圧が印加されてもより容易に放電することが可能な形状とされる。さらに、放電電極19c,19d間の任意の部位、例えば板状構造の放電電極19cの他方の放電電極19d側に面した部位は誘電体30で覆われる。   The opposing discharge electrodes 19c and 19d are provided on a surface substantially parallel to the traveling direction of the purification target gas X with the photocatalyst module 20 interposed therebetween, for example. One discharge electrode 19c has a plate-like structure, for example, and the other discharge electrode 19d has a mesh-like structure. The electric lines of force become dense so that the discharge can be performed more easily even when a lower voltage is applied. Furthermore, an arbitrary portion between the discharge electrodes 19c and 19d, for example, a portion facing the other discharge electrode 19d side of the discharge electrode 19c having a plate-like structure is covered with the dielectric 30.

そして、ガス浄化装置10Aでは、誘電体30を介して放電が行なわれる。このため、放電は誘電体バリア放電となり安定したコロナ放電となる。これにより、より高電圧を放電電極19c,19d間に印加してもアーク放電に移行することなく、よりエネルギの大きい放電光を安定して発生させることができる。   In the gas purification apparatus 10 </ b> A, discharge is performed via the dielectric 30. For this reason, the discharge becomes a dielectric barrier discharge and becomes a stable corona discharge. Thereby, even if a higher voltage is applied between the discharge electrodes 19c and 19d, discharge light with higher energy can be stably generated without shifting to arc discharge.

このため、ガス浄化装置10Aでは、図1に示すガス浄化装置10の効果に加え、より高エネルギの放電光を発生させて、光触媒モジュール20における浄化対象ガスXの浄化機能を向上させることができる。   Therefore, in the gas purification apparatus 10A, in addition to the effects of the gas purification apparatus 10 shown in FIG. 1, it is possible to generate higher energy discharge light and improve the purification function of the purification target gas X in the photocatalyst module 20. .

本発明に係るガス浄化装置の第1の実施形態を示す断面構成図。The cross-sectional block diagram which shows 1st Embodiment of the gas purification apparatus which concerns on this invention. 図1に示すガス浄化装置の分解吸着部におけるA−A断面の断面図。Sectional drawing of the AA cross section in the decomposition | disassembly adsorption part of the gas purification apparatus shown in FIG. 図1に示す光触媒モジュールおよび吸着フィルタの形状および浄化対象ガスに対する圧損の設定方法の一例を説明するモデル図。The model figure explaining an example of the setting method of the pressure loss with respect to the shape of the photocatalyst module and adsorption filter which are shown in FIG. 1, and purification object gas. 本発明に係るガス浄化装置の第2の実施形態を示す断面構造図。The cross-section figure which shows 2nd Embodiment of the gas purification apparatus which concerns on this invention. 従来のガス浄化装置の断面構成図。The cross-sectional block diagram of the conventional gas purification apparatus.

符号の説明Explanation of symbols

10,10A ガス浄化装置
11 閉空間
12 ガス流路
13 分解吸着部
14 送風機
15 オゾン処理フィルタ
16 集塵フィルタ
17 光触媒反応部
18 吸着フィルタ
19a,19b,19c,19d 放電電極
20 光触媒モジュール
21 高圧電源部
30 誘電体
X 浄化対象ガス
DESCRIPTION OF SYMBOLS 10,10A Gas purification apparatus 11 Closed space 12 Gas flow path 13 Decomposition adsorption part 14 Blower 15 Ozone processing filter 16 Dust collection filter 17 Photocatalyst reaction part 18 Adsorption filter 19a, 19b, 19c, 19d Discharge electrode 20 Photocatalyst module 21 High voltage power supply part 30 Dielectric X Gas to be purified

Claims (9)

浄化対象ガスを通過させることが可能な三次元構造の基体に光触媒を担持させた光触媒モジュールと、前記光触媒を活性化するための放電光を生成し、かつ放電により前記浄化対象ガスからオゾンを発生させる放電電極と、前記浄化対象ガスを通過させることが可能な三次元構造の基体に吸着剤を担持させた吸着フィルタとを備え、前記光触媒モジュールと前記吸着フィルタとを前記浄化対象ガスの進行方向に対して互いに並列配置し、かつ前記光触媒モジュールの前記浄化対象ガスに対する圧損と、前記吸着フィルタの前記浄化対象ガスに対する圧損とを同等とみなせる範囲内としたことを特徴とするガス浄化装置。 A photocatalyst module in which a photocatalyst is supported on a three-dimensional structure base capable of passing the gas to be purified, discharge light for activating the photocatalyst, and generating ozone from the gas to be purified by discharge A discharge electrode, and an adsorption filter in which an adsorbent is supported on a three-dimensional structure that allows the gas to be purified to pass therethrough, and the photocatalyst module and the adsorption filter are moved in the traveling direction of the gas to be purified. And a pressure loss of the photocatalyst module with respect to the purification target gas and a pressure loss of the adsorption filter with respect to the purification target gas are within a range that can be regarded as equivalent . 前記光触媒モジュールの前記浄化対象ガスに対する圧損と前記吸着フィルタの前記浄化対象ガスに対する圧損との合成圧損が予め設定された閾値内となるようにしたことを特徴とする請求項1記載のガス浄化装置。 2. The gas purification device according to claim 1, wherein a combined pressure loss of a pressure loss of the photocatalyst module with respect to the purification target gas and a pressure loss of the adsorption filter with respect to the purification target gas is within a preset threshold value. . 前記光触媒モジュールおよび前記吸着フィルタの入口における前記浄化対象ガスのガス流路を分割し、前記光触媒モジュールおよび前記吸着フィルタの入口における前記浄化対象ガスの各導入圧力並びに前記光触媒モジュールおよび前記吸着フィルタの前記浄化対象ガスに対する各圧損の少なくとも1つを調整することにより前記光触媒モジュールを通過する前記浄化対象ガスと前記吸着フィルタを通過する前記浄化対象ガスとの流量比が所要の範囲となるようにしたことを特徴とする請求項1記載のガス浄化装置。 The gas flow path of the purification target gas at the entrance of the photocatalyst module and the adsorption filter is divided, and the introduction pressure of the purification target gas at the entrance of the photocatalyst module and the adsorption filter, and the photocatalyst module and the adsorption filter The flow rate ratio between the purification target gas passing through the photocatalyst module and the purification target gas passing through the adsorption filter is adjusted to be within a required range by adjusting at least one of the pressure losses with respect to the purification target gas. The gas purification apparatus according to claim 1. 前記光触媒モジュールおよび前記吸着フィルタの前記浄化対象ガスに対する圧損比を調整することにより前記光触媒モジュールを通過する前記浄化対象ガスと前記吸着フィルタを通過する前記浄化対象ガスとの流量比が所要の範囲となるようにしたことを特徴とする請求項1記載のガス浄化装置。 By adjusting the pressure loss ratio of the photocatalyst module and the adsorption filter to the purification target gas, the flow rate ratio between the purification target gas passing through the photocatalyst module and the purification target gas passing through the adsorption filter is within a required range. The gas purifier according to claim 1, wherein the gas purifier is configured as follows. 前記光触媒モジュールおよび前記吸着フィルタの前記浄化対象ガスの進行方向に対する断面積比を調整することにより前記光触媒モジュールを通過する前記浄化対象ガスと前記吸着フィルタを通過する前記浄化対象ガスとの流量比が所要の範囲となるようにしたことを特徴とする請求項1記載のガス浄化装置。 The flow rate ratio between the purification target gas passing through the photocatalyst module and the purification target gas passing through the adsorption filter is adjusted by adjusting the cross-sectional area ratio of the photocatalyst module and the adsorption filter with respect to the traveling direction of the purification target gas. The gas purifier according to claim 1, wherein the gas purifier is within a required range. 前記光触媒モジュールを通過する前記浄化対象ガスと前記吸着フィルタを通過する前記浄化対象ガスとの流量比が0.1から0.9の範囲となるようにしたことを特徴とする請求項1記載のガス浄化装置。 The flow rate ratio between the purification target gas passing through the photocatalyst module and the purification target gas passing through the adsorption filter is in a range of 0.1 to 0.9 . Gas purification device. 前記光触媒モジュールが前記吸着フィルタの支持体を兼ね、前記吸着フィルタを前記光触媒モジュールに着脱可能としたことを特徴とする請求項1記載のガス浄化装置。 The gas purification apparatus according to claim 1, wherein the photocatalyst module also serves as a support for the adsorption filter, and the adsorption filter is detachable from the photocatalyst module. 前記放電電極による放電を誘電体バリア放電とするための誘電体を設けたことを特徴とする請求項1記載のガス浄化装置。 The gas purification apparatus according to claim 1, further comprising a dielectric for making the discharge by the discharge electrode a dielectric barrier discharge. 前記放電電極による放電により生成されたオゾンを分解するオゾン分解触媒を設けたことを特徴とする請求項1記載のガス浄化装置。 The gas purification apparatus according to claim 1, further comprising an ozone decomposition catalyst for decomposing ozone generated by discharge by the discharge electrode.
JP2004199538A 2004-07-06 2004-07-06 Gas purification device Expired - Fee Related JP4405330B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004199538A JP4405330B2 (en) 2004-07-06 2004-07-06 Gas purification device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004199538A JP4405330B2 (en) 2004-07-06 2004-07-06 Gas purification device

Publications (2)

Publication Number Publication Date
JP2006021082A JP2006021082A (en) 2006-01-26
JP4405330B2 true JP4405330B2 (en) 2010-01-27

Family

ID=35794742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004199538A Expired - Fee Related JP4405330B2 (en) 2004-07-06 2004-07-06 Gas purification device

Country Status (1)

Country Link
JP (1) JP4405330B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104964510B (en) * 2015-06-10 2019-02-01 海信容声(广东)冰箱有限公司 A kind of method and cold storage plant of purification
CN104964501B (en) * 2015-06-10 2018-11-27 海信容声(广东)冰箱有限公司 A kind of cold storage plant and purification method

Also Published As

Publication number Publication date
JP2006021082A (en) 2006-01-26

Similar Documents

Publication Publication Date Title
KR102027031B1 (en) Air purifier unit with ultraviolet photo catalysis and air purifier apparatus comprising the same
US7651555B2 (en) Onsite chemistry air filtration system
KR101708799B1 (en) Sterilization and purifying apparatus using hydroxyl radical
JP4270826B2 (en) Method and apparatus for oxidizing carbon monoxide
KR100809022B1 (en) an air purification system of a cattle shed, removing device ammonium-nitrate of ozonizer
JP2008522822A (en) Photocatalyst protection method
KR200407830Y1 (en) Hybrid type air purification apparatus for industry
KR20100070642A (en) Deodorizing device using ultraviolet ray and photocatalyst
KR100807152B1 (en) Device for purifying polluted air
KR20180129215A (en) Air treatment device and air treatment module
KR20070046281A (en) Hybrid type air purification apparatus for industry
JP2004305395A (en) Gas purifying system and gas purifying method, and air-conditioner utilizing gas purifying system
KR101463216B1 (en) Apparatus for omitting bad smell having improved efficiency
WO2005099778A1 (en) Method for decomposing harmful substance and apparatus for decomposing harmful substance
KR20090095169A (en) Air Cleaner
WO2001076726A1 (en) Air cleaning unit using photocatalyst and air cleaning system having the same
JP4405330B2 (en) Gas purification device
KR200388479Y1 (en) Air purge sterilization system
KR20070027276A (en) Air clean filter assembly of car
JP3000056B2 (en) Air purifier
JP2004105811A (en) Photocatalytic reaction apparatus
JP2005201586A (en) Air cleaning unit for air conditioner
JP4468069B2 (en) Gas purification device and gas purification method
KR20060118781A (en) Photocatalytic air purification device of a car
JP2005245550A (en) Air control method of air cleaner using photocatalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090728

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091006

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091104

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121113

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121113

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131113

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees