JP4403087B2 - Method for producing silicon iron nitride powder - Google Patents

Method for producing silicon iron nitride powder Download PDF

Info

Publication number
JP4403087B2
JP4403087B2 JP2005045319A JP2005045319A JP4403087B2 JP 4403087 B2 JP4403087 B2 JP 4403087B2 JP 2005045319 A JP2005045319 A JP 2005045319A JP 2005045319 A JP2005045319 A JP 2005045319A JP 4403087 B2 JP4403087 B2 JP 4403087B2
Authority
JP
Japan
Prior art keywords
iron
silicon
free
powder
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2005045319A
Other languages
Japanese (ja)
Other versions
JP2005194185A (en
Inventor
弘 大野
元晴 深澤
鉄夫 加賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2005045319A priority Critical patent/JP4403087B2/en
Publication of JP2005194185A publication Critical patent/JP2005194185A/en
Application granted granted Critical
Publication of JP4403087B2 publication Critical patent/JP4403087B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Products (AREA)

Description

本発明は、窒化珪素鉄粉末に関する。   The present invention relates to silicon iron nitride powder.

従来、レンガ等の炭素含有定形耐火物や、高炉出銑口閉塞用マッド材、出銑樋材等の炭素含有不定形耐火物においては、高温スラグ等に対する耐食性を向上させるため、シリカ、アルミナ、炭化珪素、カーボン等の耐熱性骨材と、窒化珪素鉄粉末と、タール、フェノール樹脂等の加熱によって炭素が生成する有機物質とを含む混合物が使用されている(特許文献1の欄参照)。この耐火物における今日の課題は、近年の更なる溶鋼の操業条件の過酷化と、要求特性の高度化に対応するため、耐食性と強度を更に高め、しかも両者をバランスさせることである。
適切な先行技術文献がないので明示することができない。炭素及び/又は加熱によって遊離炭素を生成する炭素前駆体と、Fe分1〜20重量%の酸窒化珪素と、骨材とを含有させた耐火物ならば特開平9−221351号公報があり、窒化珪素鉄粉末と骨材とを含有させた耐火物ならば特開平8−325004号公報がある。
Conventionally, in carbon-containing shaped refractories such as bricks, blast furnace outlet clogging mud materials, carbon-containing unshaped refractories such as brewing materials, in order to improve the corrosion resistance against high temperature slag, silica, alumina, A mixture containing heat-resistant aggregates such as silicon carbide and carbon, silicon iron powder, and an organic substance that produces carbon by heating such as tar and phenol resin is used (see the column of Patent Document 1). Today's challenge in this refractory is to further increase corrosion resistance and strength, and to balance both, in order to cope with the recent severer operating conditions of molten steel and the sophistication of required properties.
It cannot be specified because there is no appropriate prior art document. JP-A-9-221351 discloses a refractory containing carbon and / or a carbon precursor that generates free carbon by heating, silicon oxynitride having an Fe content of 1 to 20% by weight, and an aggregate, JP-A-8-32004 discloses a refractory containing silicon iron nitride powder and aggregate.

本発明の目的は、この課題を解決することであり、窒化珪素鉄粉末中の窒化珪素(Si)、珪素鉄(FeSi)及び遊離鉄(free−Fe)の割合を適正化することによって達成することができる。 An object of the present invention is to solve this problem, the silicon nitride of the silicon nitride iron powder (Si 3 N 4), the proportion of silicon iron (Fe x Si y) and free iron (free-Fe) proper Can be achieved.

すなわち、本発明は、原料粒度の45μm篩下量が40〜70%であるFeSi分及び/又はSi分とFe分を含む原料を、窒化温度を1300℃〜1600℃とし、窒化雰囲気の窒素分圧を30kPa〜100kPaとして窒化することにより、窒化珪素(Si)50質量%以上、珪素鉄(FeSi)2〜35質量%、遊離鉄(free−Fe)2〜15質量%を含み、しかも、全Fe量4質量%以上、(FeSi中のFe/free−Fe)のモル比が0.6〜2.0である窒化珪素鉄粉末を製造することを特徴とする窒化珪素鉄粉末の製造方法である。この場合において、(FeSi中のFe/free−Fe)のモル比が0.8〜2.0であることが好ましい。 That is, the present invention relates to a raw material containing FeSi content and / or Si content and Fe content with a 45 μm sieving amount of the raw material particle size of 40 to 70%, a nitriding temperature of 1300 ° C. to 1600 ° C., and a nitrogen content in the nitriding atmosphere. by nitriding the pressure of 30KPa~100kPa, silicon nitride (Si 3 N 4) 50 wt% or more, ferrosilicon (Fe x Si y) 2~35 wt%, free iron (free-Fe) 2~15 wt% includes, moreover, the total Fe content 4 wt% or more, to produce a molar ratio of Ru der 0.6 to 2.0 nitrided silicon iron powder (Fe x Si y in Fe / free-Fe) It is the manufacturing method of the silicon iron nitride powder characterized . In this case, the molar ratio of (Fe / free-Fe in Fe x Si y ) is preferably 0.8 to 2.0.

本発明によれば、強度と高温スラグに対する耐食性が共に高く、しかも両者のバランスのとれた窒化珪素鉄粉末が提供される。   According to the present invention, there is provided a silicon iron nitride powder that has both high strength and high corrosion resistance against high-temperature slag, and is well balanced between the two.

炭素含有耐火物の耐食性と強度をバランスさせるには、窒化珪素鉄粉末を用いるのがよいことは経験的に知られている。この作用は、Si成分の耐食性と、Fe成分が関与するSi成分の分解反応及びそれに続くSiCの生成反応によって説明されている。すなわち、耐火物が使用温度1300℃以上に加熱されると、Siの分解によって生成したFeSiは、周囲の炭素成分と反応してSiCを生成しながら耐火物の組織内に浸潤・拡散し、耐火物の耐食性を向上させる。また、Siの分解によって発生したN2 は、耐火物組織内の気孔の内圧を高め、高温スラグが浸潤するのを防止する。したがって、この反応が速すぎると耐食性は向上するが強度が弱くなり、反応が遅いとその逆の傾向となる。
Si+Fe+C→FeSi+N2↑+C→SiC+Fe
It is empirically known that silicon iron powder should be used to balance the corrosion resistance and strength of the carbon-containing refractory. This effect, Si 3 N 4 and the corrosion resistance of the component, Fe component is described by the formation reaction of the decomposition reaction and SiC subsequent the Si 3 N 4 components involved. That is, when the refractory is heated to a service temperature of 1300 ° C. or higher, the Fe x Si y produced by the decomposition of Si 3 N 4 reacts with the surrounding carbon components to form SiC while forming SiC. Infiltrate and diffuse to improve the corrosion resistance of refractories. Further, N 2 generated by the decomposition of Si 3 N 4 increases the internal pressure of the pores in the refractory structure and prevents the high temperature slag from infiltrating. Therefore, if this reaction is too fast, the corrosion resistance is improved, but the strength is weakened, and if the reaction is slow, the opposite tendency occurs.
Si 3 N 4 + Fe + C → Fe x Si y + N 2 ↑ + C → SiC + Fe

ところで、窒化珪素鉄粉末は、窒化珪素(Si)と鉄分とを必須成分として含み、カーボン、シリコン等を不可避成分とする平均粒径100μm以下の粉末である。耐食性と強度の上記バランスは、窒化珪素鉄粉末の鉄分含有量、粒度分布等の適正化によって行われてきたが、近年の要求を十分に満足させることができない状況となっている。そこで、本発明者らは鋭意検討したところ、窒化珪素鉄粉末に含まれるFe成分には多くの形態があり、後記分析法で測定された、FeSiで示されるSiに固溶したFeと、free−Feで示される遊離Feが上記反応速度に大きく影響し、これらの含有量を適正化すると上記バランスが高度に発現することを見いだした。従来、窒化珪素鉄粉末による上記バランスの発現は、FeSiが経由するSiCの生成反応によることは概念的に知られていたが、FeSiのx、y値を含めその詳細は不明であったものである。 By the way, the silicon iron nitride powder is a powder having an average particle size of 100 μm or less containing silicon nitride (Si 3 N 4 ) and iron as essential components and carbon, silicon and the like as inevitable components. The above balance between corrosion resistance and strength has been achieved by optimizing the iron content, particle size distribution, etc. of the silicon nitride iron powder, but it has not been possible to sufficiently satisfy recent demands. Therefore, the present inventors have intensively studied and found that there are many forms of the Fe component contained in the silicon iron iron powder, and the Fe dissolved in Si indicated by Fe x Si y measured by the analysis method described later. The free Fe shown by free-Fe has a great influence on the reaction rate, and it has been found that the balance is highly expressed when the content of these elements is optimized. Conventionally, the expression of the balance by the silicon iron nitride powder was conceptually known to be due to the formation reaction of SiC through Fe x Si y, but details including the x and y values of Fe x Si y It was unknown.

本発明の窒化珪素鉄粉末には、以下の手順で分析された珪素鉄(FeSi)2〜35%と遊離鉄(free−Fe)2〜15%とを含み、しかも(FeSi中のFe/free−Fe)のモル比が0.5〜2.0、好ましくは0.6〜2.0の割合で含有されてなるものである。残部が主として窒化珪素(Si)であり、不可避成分としてシリカ、シリコン、カーボン等を合計で10%以下(0を含む)で含有するものである。本発明の窒化珪素鉄粉末は、従来の窒化珪素鉄粉末の上記モル比が約0.3であったことに比較して特異的である。 Silicon nitride iron powder of the present invention comprises the following steps SiFe analyzed by (Fe x Si y) 2~35% and the free iron (free-Fe) 2~15%, yet (Fe x Si The molar ratio of Fe / free-Fe in y is 0.5 to 2.0, preferably 0.6 to 2.0. The balance is mainly silicon nitride (Si 3 N 4 ), and contains silica, silicon, carbon and the like as inevitable components in a total of 10% or less (including 0). The silicon iron nitride powder of the present invention is specific compared to the conventional silicon iron nitride powder having a molar ratio of about 0.3.

珪素鉄(FeSi)は、FeSi中のFe分及び/又はfree−Fe分が上記反応にあずかる際の緩衝剤として機能し、FeSiが高融点なものであるほど反応速度が低下する。この反応速度の低下によってN2 ガスが発生する時間も長時間化するので、組織内への高温スラグ浸潤防止効果も長時間化する。しかしながら、この反応が極端に抑制されると組織が強化されずに高温スラグによる侵食が進み好ましくはない。 Ferrosilicon (Fe x Si y) is, Fe content in the Fe x Si y and / or free-Fe content acts as a buffer when participate in the reaction, as the Fe x Si y is of refractory The reaction rate decreases. Since the time for generating N 2 gas is prolonged due to the decrease in the reaction rate, the effect of preventing the high temperature slag infiltration into the tissue is also prolonged. However, if this reaction is extremely suppressed, the structure is not strengthened and erosion due to high-temperature slag proceeds, which is not preferable.

すなわち、珪素鉄(FeSi)含有量が2%未満では遊離鉄(free−Fe)が過多となり反応速度が大きくなってスラグ浸潤防止効果が短時間化し、35%超であると上記反応速度が極端に小さくなってSiC生成による組織の強化が進まず耐食性に劣る。遊離鉄(free−Fe)含有量が2%未満では反応が抑制され組織強化が十分に行われないので耐食性が劣り、15%超であると反応速度が大きくなってスラグ浸潤防止効果が短時間化する。また、上記モル比が0.5未満では上記反応が促進されN2ガスの発生が短時間化するのでスラグ浸潤防止効果も短時間化し、2.0超では反応が極端に抑制されるので組織強化が不十分となり、高温スラグによる侵食が進むこととなる。 That is, silicon iron (Fe x Si y) content is less than 2% turned into short time free iron (free-Fe) and increases the reaction rate becomes excessive slag infiltration preventing effect, the reaction to be 35 percent The speed becomes extremely small, and the strengthening of the structure due to the generation of SiC does not proceed and the corrosion resistance is poor. If the free iron (free-Fe) content is less than 2%, the reaction is suppressed and the structure is not sufficiently strengthened, resulting in poor corrosion resistance. If it exceeds 15%, the reaction rate increases and the effect of preventing slag infiltration is short. Turn into. Further, when the molar ratio is less than 0.5, the reaction is promoted and the generation of N 2 gas is shortened, so that the effect of preventing slag infiltration is also shortened. When the molar ratio is more than 2.0, the reaction is extremely suppressed. Strengthening will be insufficient and erosion by high temperature slag will proceed.

なお、窒化珪素鉄粉末中の全Fe量の最小値は4%以上で、最大値は20%以下であることが好ましく、これよりも過多になると、反応が過剰になったり、耐食成分である窒化珪素成分が不足するようになる。全Fe量の最小値が4%未満であると、反応が不足し組織強化が十分に行われないため耐食性が劣る。また、粒度はできるだけ微粉化されていることが望ましく、平均粒子径が1mm以下、特に100μm以下であることが好ましい。   In addition, the minimum value of the total Fe amount in the silicon iron nitride powder is 4% or more, and the maximum value is preferably 20% or less. If it is more than this, the reaction becomes excessive or it is a corrosion-resistant component. The silicon nitride component becomes insufficient. If the minimum value of the total Fe content is less than 4%, the reaction is insufficient and the structure is not sufficiently strengthened, resulting in poor corrosion resistance. The particle size is desirably as fine as possible, and the average particle size is preferably 1 mm or less, particularly preferably 100 μm or less.

分析手順について説明すると、試料(窒化珪素鉄粉末)1gを精密に秤量し、四フッ化エチレン製ビーカーに移す。メタノール:蟻酸:Br=45:5:1.5mlの混合液24ml加え3時間撹拌する。この操作によって遊離鉄(free−Fe)のみが溶解するので、0.5μm−親水性PTFEメンブランフィルターでろ別する。 Explaining the analysis procedure, 1 g of a sample (silicon iron nitride powder) is precisely weighed and transferred to a beaker made of tetrafluoroethylene. Add 24 ml of a mixture of methanol: formic acid: Br 2 = 45: 5: 1.5 ml and stir for 3 hours. Since only free iron (free-Fe) is dissolved by this operation, it is filtered with a 0.5 μm-hydrophilic PTFE membrane filter.

ろ液にHCl(1+1)10ml加えウォーターバスで乾固させ、更にHClO10ml加えて再び乾固させた後、HCl(1+1)10ml加えて内容物を溶解し、250mlメスフラスコに定容する。これを100倍に希釈しICP−AES(誘導結合プラズマ発光分光分析法)でFe分を定量し、遊離鉄(free−Fe)とする。 Add 10 ml of HCl (1 + 1) to the filtrate, dry to dryness in a water bath, add 10 ml of HClO 4 to dryness again, add 10 ml of HCl (1 + 1) to dissolve the contents, and make up to a 250 ml volumetric flask. This is diluted 100 times, and Fe content is quantified by ICP-AES (inductively coupled plasma emission spectroscopy) to obtain free iron (free-Fe).

一方、ろ別された固形物はビーカーに移し、水20mlとNaOH5gを加えて砂浴上で1時間加熱しSi及びSiOを溶解する。放冷後、0.5μm−親水性PTFEメンブランフィルターでろ過し、水と希塩酸で洗浄後再び水で洗浄する。この固形物をビーカーに移し、HNO5mlとHF10mlを加え、室温で1時間静かに撹拌する。この操作によって珪素鉄(FeSi)が溶解する。ついで、ホウ酸5gを加え、0.5μm−親水性PTFEメンブランフィルターでろ過する。ろ液を250ml−樹脂製メスフラスコに定容する。これを100倍に希釈しICP−AESでFe分とSi分を定量し、珪素鉄(FeSi)中のFe成分及びSi成分とし、その合計量を珪素鉄量とする。 On the other hand, the solid matter separated by filtration is transferred to a beaker, 20 ml of water and 5 g of NaOH are added and heated on a sand bath for 1 hour to dissolve Si and SiO 2 . After cooling, it is filtered through a 0.5 μm-hydrophilic PTFE membrane filter, washed with water and dilute hydrochloric acid, and then washed again with water. Transfer the solid to a beaker, add 5 ml HNO 3 and 10 ml HF, and gently stir at room temperature for 1 hour. Ferrosilicon This action (Fe x Si y) is dissolved. Next, 5 g of boric acid is added and filtered through a 0.5 μm-hydrophilic PTFE membrane filter. The filtrate is fixed in a 250 ml-resin measuring flask. This was quantified Fe min Si content with diluted ICP-AES 100-a Fe component and Si component in silicon iron (Fe x Si y), to the total amount of the silicon-iron content.

窒化珪素鉄粉末中の窒化珪素(Si)は、窒化珪素鉄粉末を不活性ガス中にて加熱し、発生N量を赤外線吸収法にて測定し、その値よりSiに換算して算出する。 Silicon nitride (Si 3 N 4 ) in the silicon iron nitride powder is obtained by heating the silicon iron nitride powder in an inert gas and measuring the amount of generated N by an infrared absorption method. From the value, Si 3 N 4 is converted into Si 3 N 4 . Convert and calculate.

本発明の窒化珪素鉄粉末は、窒化珪素(Si)と珪素鉄(FeSi)と遊離鉄(free−Fe)との所定量をボールミル、ミキサー等の混合機を用いて混合することによって製造することができるが、生産性の点から以下の方法が好ましい。 Silicon nitride iron powder of the present invention, mixing a predetermined amount of silicon iron nitride (Si 3 N 4) (Fe x Si y) and free iron (free-Fe) using a ball mill, a mixer such as mixer However, the following method is preferable from the viewpoint of productivity.

すなわち、FeSi分及び/又はSi分とFe分を含む原料を、窒素、アンモニア等の窒素含有非酸化性雰囲気下で窒化して窒化珪素鉄のインゴットを得、これをジョークラッシャー、ロールミル等で粗砕後、ボールミル、縦型ローラーミル、トップグラインダー、アトライターミル、振動ミル、縦型ボールミル等の粉砕機で微粉砕する方法において、(1)原料粒度の45μm篩下量を10〜90%、特に好ましくは30〜70%とし、(2)窒化温度を1200℃〜1600℃、特に好ましくは1300〜1500℃とし、(3)窒化雰囲気の窒素分圧を好ましくは25kPa〜101.3kPaとすることである。これによって、Siの窒化反応が急速かつ均一に起こり、珪素鉄(FeSi)の生成量の適正化が容易となる。 That is, the FeSi content and / or the raw material containing the Si content and the Fe content is nitrided in a nitrogen-containing non-oxidizing atmosphere such as nitrogen or ammonia to obtain an iron ingot of silicon nitride, which is roughened by a jaw crusher, a roll mill or the like. In the method of pulverizing with a pulverizer such as a ball mill, a vertical roller mill, a top grinder, an attritor mill, a vibration mill, and a vertical ball mill after pulverization, Particularly preferably 30 to 70%, (2) the nitriding temperature is 1200 ° C. to 1600 ° C., particularly preferably 1300 to 1500 ° C., and (3) the nitrogen partial pressure in the nitriding atmosphere is preferably 25 kPa to 101.3 kPa. It is. Thus, nitriding reaction of Si occurs rapidly and uniformly, the amount of money of silicon iron (Fe x Si y) is facilitated.

原料粒度の45μm篩下量が10%未満、窒化温度が1200℃未満又は窒素分圧が25kPa未満であると、製造される窒化珪素鉄粉末には珪素鉄(FeSi)が増大し上記モル比が2.0を超えやすくなり、また原料粒度の45μm篩下量が90%超、窒化温度が1600℃超又は窒素分圧が101.3kPa超であると、上記モル比が0.5未満になりやすくなる。 When the sieving amount of the raw material particle size is less than 10%, the nitriding temperature is less than 1200 ° C., or the nitrogen partial pressure is less than 25 kPa, silicon iron (Fe x Si y ) increases in the produced silicon iron nitride powder. When the molar ratio tends to exceed 2.0, the 45 μm sieving amount of the raw material particle size exceeds 90%, the nitriding temperature exceeds 1600 ° C., or the nitrogen partial pressure exceeds 101.3 kPa, the molar ratio is 0.5. It becomes easy to become less.

本発明の窒化珪素鉄粉末は、例えば耐火物を製造する際の材料として使用することができる。それを例示すると、本発明の窒化珪素鉄粉末と、耐熱性骨材と、炭素粉末及び/又は加熱によって炭素となる有機物質とを必須成分として含有させた耐火物である。耐熱性骨材としては、炭化珪素、シリカ、黒鉛、カーボン、コークス等の炭素粉末、アルミナ、ボーキサイト、ロー石等が使用され、有機物質としては、タール、ピッチ、フェノール樹脂等が使用される。これらの材料割合の好ましい一例を示すと、本発明の窒化珪素鉄含有粉末5〜50%、シリカ及び/又はアルミナ2〜60%、炭化珪素1〜30%、炭素粉末1〜30%、有機物質3〜30%である。この配合割合からなる耐火物は、特に高炉出銑口閉塞材、出銑樋材として好適である。   The silicon iron nitride powder of the present invention can be used as a material for producing a refractory, for example. Illustratively, it is a refractory material containing, as essential components, silicon iron nitride powder of the present invention, heat-resistant aggregate, carbon powder and / or an organic substance that becomes carbon by heating. As the heat-resistant aggregate, carbon powder such as silicon carbide, silica, graphite, carbon and coke, alumina, bauxite, rholite and the like are used, and tar, pitch, phenol resin and the like are used as the organic substance. A preferable example of these material ratios is as follows: the silicon iron nitride-containing powder 5 to 50% of the present invention, silica and / or alumina 2 to 60%, silicon carbide 1 to 30%, carbon powder 1 to 30%, organic substance 3 to 30%. The refractory having this blending ratio is particularly suitable as a blast furnace outlet closing material and an output material.

実施例1〜16 参考例 比較例1〜
表1に示される各種粒度に調整された金属珪素鉄(FeSi純度97%)とポリビニルアルコ−ル6%水溶液10〜20%を混合し、圧力20MPaでプレス成形して20〜30cm程度の円柱状成形体を成形し、120℃にて10時間乾燥した。これを密閉炉に充填し、表1に示される各種窒素分圧の非酸化性雰囲気下、1200〜1600℃に昇温し、そのまま3時間保持して窒化し冷却した。得られたインゴットをロ−ルミルで粗砕し、更にボ−ルミルで粒度0.2mm下まで微粉砕して、表2に示される窒化珪素(Si)、珪素鉄(FeSi)、遊離鉄(free−Fe)、全Fe分を含み、(FeSi中のFe/free−Fe)のモル比が異なる種々の窒化珪素鉄粉末を製造した。
Example 1-16 Example Comparative Example 1-5
Metal silicon iron (FeSi purity 97%) adjusted to various particle sizes shown in Table 1 and polyvinyl alcohol 6% aqueous solution 10-20% are mixed, press-molded at a pressure of 20 MPa, and a circle of about 20-30 cm 3 A columnar shaped body was molded and dried at 120 ° C. for 10 hours. This was filled in a closed furnace, heated to 1200 to 1600 ° C. in a non-oxidizing atmosphere of various nitrogen partial pressures shown in Table 1, held for 3 hours, nitrided and cooled. The resulting ingot Russia - was granulated with mill, further ball - comminuted to under the particle size 0.2mm in mill, silicon nitride shown in Table 2 (Si 3 N 4), silicon iron (Fe x Si y ), free iron (free-Fe), wherein the total Fe content was produce various silicon nitride iron powder molar ratios are different in (Fe x Si y in Fe / free-Fe).

得られた窒化珪素鉄粉末の耐火物としての性能を評価するため、以下に従って炭素含有耐火物を製造し、高温スラグに対する耐食性と高温強度を測定した。それらの結果を表2に示す。   In order to evaluate the performance of the obtained silicon iron nitride powder as a refractory, a carbon-containing refractory was produced according to the following, and the corrosion resistance and high temperature strength against high temperature slag were measured. The results are shown in Table 2.

(1)炭素含有耐火物の製造
窒化珪素鉄粉末(0.2mm下)を20%、アルミナ質骨材としてボーキサイト粉末(1mm下)20%、炭化珪素粉末(1mm下)20%、コ−クス粉末(1mm下)20%、有機物質として無水タ−ル20%を配合し、60℃に加熱しながら混練した後、耐食性評価用サンプル(50mm×50mm×160mm)、高温強度評価用サンプル(25mm×25mm×160mm)をプレス成形して製造した。この評価用サンプルを、乾燥機に入れ、400℃まで加熱して脱ガスし、焼成炉に移し、アルゴンガス雰囲気下、1400℃×3時間焼成し評価に供した。
(1) Manufacture of carbon-containing refractories 20% silicon nitride iron powder (under 0.2 mm), bauxite powder (under 1 mm) 20% as alumina aggregate, 20% silicon carbide powder (under 1 mm), coke 20% powder (under 1 mm) and 20% anhydrous tar as an organic substance were mixed and kneaded while heating to 60 ° C., followed by a sample for corrosion resistance evaluation (50 mm × 50 mm × 160 mm), a sample for high temperature strength evaluation (25 mm) × 25 mm × 160 mm) was produced by press molding. This sample for evaluation was put into a dryer, heated to 400 ° C., degassed, transferred to a baking furnace, and baked at 1400 ° C. for 3 hours in an argon gas atmosphere for evaluation.

(2)高温スラグに対する耐食性
回転ドラム法によりドラムの内側にサンプルを内張りし、高温スラグを入れ中通しした発熱体で1500℃に加熱し、ドラムを低速で回転させながら10時間侵食試験を行い侵食量を測定した。数値の小さい方が耐食性は良好である。
(2) Corrosion resistance against high-temperature slag A sample is lined on the inside of the drum by the rotating drum method, heated to 1500 ° C with a heating element through which high-temperature slag is put, and eroded by performing an erosion test for 10 hours while rotating the drum at low speed. The amount was measured. The smaller the value, the better the corrosion resistance.

(3)高温強度
耐火物をアルゴンガス雰囲気中で1500℃に加熱し、3点曲げ強度を測定した。
(3) High temperature strength The refractory was heated to 1500 ° C. in an argon gas atmosphere, and the three-point bending strength was measured.

Figure 0004403087
Figure 0004403087

Figure 0004403087
Figure 0004403087

本発明の窒化珪素鉄粉末は、例えば高炉出銑口閉塞材、出銑樋材等の耐火物などを製造する際の材料として使用することができる。   The silicon iron nitride powder of the present invention can be used, for example, as a material for producing refractories such as a blast furnace outlet closing material and an outgoing material.

Claims (2)

原料粒度の45μm篩下量が40〜70%であるFeSi分及び/又はSi分とFe分を含む原料を、窒化温度を1300℃〜1600℃とし、窒化雰囲気の窒素分圧を30kPa〜100kPaとして窒化することにより、窒化珪素(Si)50質量%以上、珪素鉄(FeSi)2〜35質量%、遊離鉄(free−Fe)2〜15質量%を含み、しかも、全Fe量4質量%以上、(FeSi中のFe/free−Fe)のモル比が0.6〜2.0である窒化珪素鉄粉末を製造することを特徴とする窒化珪素鉄粉末の製造方法。 The raw material particle size of 45 μm and the SiSi content and / or the raw material containing the Si content and the Fe content of 40 to 70% are nitriding temperature 1300 ° C. to 1600 ° C. and nitrogen partial pressure in the nitriding atmosphere is 30 kPa to 100 kPa. by nitriding, wherein silicon nitride (Si 3 N 4) 50 wt% or more, ferrosilicon (Fe x Si y) 2~35 wt%, 2 to 15 wt% of free iron (free-Fe), moreover, all the Fe of 4 mass% or more, the molar ratio of silicon nitride iron, characterized in that the production of der Ru nitrided silicon iron powder 0.6 to 2.0 of (Fe x Si Fe / free- Fe in y) Powder manufacturing method. 前記(FeSi中のFe/free−Fe)のモル比が0.8〜2.0であることを特徴とする請求項1に記載の窒化珪素鉄粉末の製造方法The method for producing a silicon iron nitride powder according to claim 1, wherein a molar ratio of (Fe / free-Fe in Fe x Si y ) is 0.8 to 2.0.
JP2005045319A 2005-02-22 2005-02-22 Method for producing silicon iron nitride powder Expired - Lifetime JP4403087B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005045319A JP4403087B2 (en) 2005-02-22 2005-02-22 Method for producing silicon iron nitride powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005045319A JP4403087B2 (en) 2005-02-22 2005-02-22 Method for producing silicon iron nitride powder

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2001187871A Division JP3737038B2 (en) 2001-06-21 2001-06-21 Refractory

Publications (2)

Publication Number Publication Date
JP2005194185A JP2005194185A (en) 2005-07-21
JP4403087B2 true JP4403087B2 (en) 2010-01-20

Family

ID=34824768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005045319A Expired - Lifetime JP4403087B2 (en) 2005-02-22 2005-02-22 Method for producing silicon iron nitride powder

Country Status (1)

Country Link
JP (1) JP4403087B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4847237B2 (en) * 2006-07-11 2011-12-28 イビデン株式会社 Composite ceramic powder and manufacturing method thereof
JP2011016667A (en) * 2007-11-08 2011-01-27 Denki Kagaku Kogyo Kk Ferrosilicon nitride powder and refractory

Also Published As

Publication number Publication date
JP2005194185A (en) 2005-07-21

Similar Documents

Publication Publication Date Title
CN107382347B (en) Sliding plate brick for converter slag stopping and preparation method thereof
CN103880448B (en) A kind of casting is large-scale from combined silicon carbide product
JP4847237B2 (en) Composite ceramic powder and manufacturing method thereof
WO2017016079A1 (en) Method for synthesizing high-purity ultrafine zrc-sic composite powder
CN104311075A (en) Alloy combined unfired sliding plate
JP7317737B2 (en) Hexagonal boron nitride powder and raw material composition for sintered body
JP4403087B2 (en) Method for producing silicon iron nitride powder
JP4743387B2 (en) Method for producing aluminum nitride powder
JP3737038B2 (en) Refractory
JP2011016667A (en) Ferrosilicon nitride powder and refractory
JP4166760B2 (en) Silicon iron nitride powder, manufacturing method thereof and refractory
CN111732417A (en) Scouring-resistant ultra-low-carbon magnesia-carbon brick with excellent oxidation resistance and preparation method thereof
CN111777072A (en) Production process of hafnium disilicide
YU Preparation of ZrN-Si3N4 composite powder with zircon and carbon black as raw materials
JP3672476B2 (en) Silicon iron nitride powder and refractory
JP2003171184A (en) SiC FOR MONOLITHIC REFRACTORY HAVING EXCELLENT CORROSION RESISTANCE, SPALLING RESISTANCE AND DRYNESS, PRODUCTION METHOD THEREFOR, AND RAW MATERIAL FOR THE MONOLITHIC REFRACTORY
JP3617765B2 (en) Slide gate plate and manufacturing method thereof
CN110845244A (en) Sliding plate brick for high-calcium steel and production process thereof
JP4397839B2 (en) Silicon iron nitride powder and refractory
JP3853198B2 (en) Silicon iron nitride powder, production method thereof and refractory
CN111205071A (en) Low-temperature-sintered aluminum-zirconium-carbon sliding plate containing nano silica fume and preparation method thereof
JP5184858B2 (en) Silicon iron nitride powder and refractory
RU2351435C1 (en) Process of receiving composition ceramic powder on the basis of silicon nitride and zirconium oxide and charge for its implementation
JP2001247370A (en) Ferro-silicon nitride-containing powder and carbon- containing refractory
JPH0781909A (en) Production of silicon nitride

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080325

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080519

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080529

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080529

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080529

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090729

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091026

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091030

R150 Certificate of patent or registration of utility model

Ref document number: 4403087

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121106

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131106

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term