JP4401998B2 - High-gloss rolled copper foil for copper-clad laminate and method for producing the same - Google Patents

High-gloss rolled copper foil for copper-clad laminate and method for producing the same Download PDF

Info

Publication number
JP4401998B2
JP4401998B2 JP2005102387A JP2005102387A JP4401998B2 JP 4401998 B2 JP4401998 B2 JP 4401998B2 JP 2005102387 A JP2005102387 A JP 2005102387A JP 2005102387 A JP2005102387 A JP 2005102387A JP 4401998 B2 JP4401998 B2 JP 4401998B2
Authority
JP
Japan
Prior art keywords
rolling
copper foil
rolled copper
oil
rolled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005102387A
Other languages
Japanese (ja)
Other versions
JP2006281249A (en
Inventor
嘉一郎 中室
俊之 小野
真吾 船橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Mining Holdings Inc
Original Assignee
Nippon Mining and Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining and Metals Co Ltd filed Critical Nippon Mining and Metals Co Ltd
Priority to JP2005102387A priority Critical patent/JP4401998B2/en
Publication of JP2006281249A publication Critical patent/JP2006281249A/en
Application granted granted Critical
Publication of JP4401998B2 publication Critical patent/JP4401998B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、銅張積層基板用圧延銅箔及びその製造方法に関するものであり、圧延銅箔をエッチング後の残部の樹脂の透明性が要求される分野に好適な銅張積層基板用圧延銅箔及びその製造方法に関するものである。ここでいう樹脂とはポリイミド樹脂や液晶ポリマー等銅張積層板に用いられるものをいう。   TECHNICAL FIELD The present invention relates to a rolled copper foil for copper-clad laminates and a method for producing the same, and is suitable for a field where transparency of the remaining resin after etching the rolled copper foil is required. And a manufacturing method thereof. Resin here means what is used for copper clad laminated boards, such as a polyimide resin and a liquid crystal polymer.

近年、小型電子部品の実装方法として、実装用フィルムキャリアテープを用いた方式が採用されており、中でもより高密度の実装を行う方法として、ICチップをフィルムキャリアテープ上に直接搭載するCOF(チップ・オン・フィルム)方式が実用化されている。COF用フィルムキャリアテープには、導体(銅箔)と樹脂絶縁層とが予め積層された積層フィルムが用いられ、ICチップの配線パターン上への直接搭載に必要な位置決めパターンは導体側に形成される。従って、ICチップ搭載時の位置合わせは、銅張積層板の銅箔をエッチングした後に残る樹脂絶縁層を透過して視認される位置決めパターンを介して行われる。このため、COFに用いられるフィルムキャリアテープでは樹脂の透明性が重要である。
この場合、表面粗度の大きな銅箔を用いると、その銅箔をエッチングした後に残る樹脂絶縁層の表面が粗くなり透明性不良の原因となる。そこで、位置合わせが容易な銅張積層板として、ポリイミドフィルム等にNi等をスパッタ後に銅めっきした積層板(フィルム)が用いられているが、接着強度が低い、耐(イオン)マイグレーション性に劣るという問題があった。イオンマイグレーションとは、水分が付着した状態で導体金属に電圧が印加されることにより、溶解、移行、析出を繰り返し、回路間が短絡する現象である。
In recent years, a method using a mounting film carrier tape has been adopted as a mounting method for small electronic components, and a COF (chip which directly mounts an IC chip on a film carrier tape as a method for mounting at a higher density among others.・ On-film method has been put into practical use. The film carrier tape for COF uses a laminated film in which a conductor (copper foil) and a resin insulating layer are laminated in advance, and a positioning pattern necessary for directly mounting an IC chip on a wiring pattern is formed on the conductor side. The Therefore, the positioning at the time of mounting the IC chip is performed through a positioning pattern that is visible through the resin insulating layer remaining after etching the copper foil of the copper clad laminate. For this reason, the transparency of the resin is important in the film carrier tape used for COF.
In this case, when a copper foil having a large surface roughness is used, the surface of the resin insulating layer remaining after etching the copper foil becomes rough, which causes a poor transparency. Therefore, as a copper-clad laminate that is easy to align, a laminate (film) obtained by sputtering Ni or the like on a polyimide film or the like is used, but the adhesive strength is low and the (ion) migration resistance is poor. There was a problem. Ion migration is a phenomenon in which a circuit is short-circuited by repeating dissolution, migration, and precipitation when a voltage is applied to a conductor metal with moisture attached.

又、銅張積層板は、表面に粗化めっきが施された圧延銅箔を使用しても製造できる。この圧延銅箔は、通常タフピッチ銅(酸素含有量100〜500重量ppm)又は無酸素銅(酸素含有量10重量ppm以下)を素材として使用し、これらのインゴットを熱間圧延した後、所定の厚さまで冷間圧延と焼鈍とを繰り返して製造される。特許文献1には表面の光沢度が高い低粗度電解箔を導体層として用いることが提案されている。
一方、特許文献2では屈曲性に優れる銅箔として、油膜制御等の条件下の冷間圧延工程で形成された表面上のオイルピットの深さが2.0μm以下である圧延銅箔が提案されている。
Moreover, a copper clad laminated board can also be manufactured even if it uses the rolled copper foil by which the rough plating was given to the surface. This rolled copper foil usually uses tough pitch copper (oxygen content of 100 to 500 ppm by weight) or oxygen-free copper (oxygen content of 10 ppm by weight or less) as a raw material, and after hot rolling these ingots, It is manufactured by repeating cold rolling and annealing to a thickness. Patent Document 1 proposes to use a low-roughness electrolytic foil having a high surface glossiness as a conductor layer.
On the other hand, Patent Document 2 proposes a rolled copper foil having an oil pit depth of 2.0 μm or less on the surface formed by a cold rolling process under conditions such as oil film control as a copper foil having excellent flexibility. ing.

特開2004−98659号公報JP 2004-98659 A 特開2001−58203号公報JP 2001-58203 A

特許文献1において、黒化処理又はめっき処理後の有機処理剤により接着性が改良処理されて得られる低粗度銅箔は、銅張積層板に屈曲性が要求される用途では、疲労によって断線することがあり、樹脂透視性に劣る場合がある。又、特許文献2に記載された程度のオイルピット状態を有する圧延銅箔を使用しても樹脂の充分な透明性は得られない。このように従来技術では圧延銅箔をエッチングで除去した後の樹脂透視性が低く、チップの位置合わせを円滑に行うことができなかった。
本発明は、圧延銅箔をエッチングで除去した後の樹脂透明性に優れ、屈曲性と樹脂との接着強度が実用可能な銅張積層基板用圧延銅箔を提供する。
In Patent Document 1, a low-roughness copper foil obtained by improving adhesion with an organic treatment agent after blackening treatment or plating treatment is broken due to fatigue in applications where flexibility is required for a copper-clad laminate. May be inferior in resin transparency. Further, even if a rolled copper foil having an oil pit state as described in Patent Document 2 is used, sufficient transparency of the resin cannot be obtained. Thus, in the prior art, the resin transparency after removing the rolled copper foil by etching was low, and the chip alignment could not be performed smoothly.
The present invention provides a rolled copper foil for a copper-clad laminate that is excellent in resin transparency after removing the rolled copper foil by etching and has practical flexibility and adhesive strength between the resin.

本発明者らは鋭意研究を重ねた結果、圧延銅箔のオイルピットが圧延銅箔をエッチング除去した後の樹脂透明性に影響を及ぼすことを見出した。すなわち、本発明の好ましい圧延銅箔は、オイルピットが偏在してオイルピット粗部とオイルピット密部が形成されることである。
このようなオイルピットの状態が得られると、本発明として圧延直角方向の算術平均粗さRaが0.1μm以下であり、かつ圧延平行方向の光沢度(JIS Z8741準拠)がG60(入射角60度)で300〜500%である銅張積層基板用圧延銅箔となる。
上記銅箔は、圧延直角方向の凹凸の平均間隔Sm(JIS B0601−2001、ISO4287−1997準拠)が0.07mm以上であることが好ましい。
上記銅箔の厚みは5〜20μmであることが好ましい。
上記銅箔の導電率は80%IACS以上であることが好ましい。
本発明は又、圧延時の油膜当量≦45000となる条件で冷間圧延する、上記銅張積層基板用圧延銅箔の製造方法に関する。ただし上記油膜当量は下記式で表される。
(油膜当量)={(圧延油粘度、40℃の動粘度;cSt)×(圧延速度;m/分)}/{(材料の降伏応力;kg/mm2)×(ロール噛込角;rad)}
As a result of intensive studies, the present inventors have found that the oil pit of the rolled copper foil affects the resin transparency after the rolled copper foil is removed by etching. That is, the preferred rolled copper foil of the present invention is that oil pits are unevenly distributed to form oil pit rough portions and oil pit dense portions.
When such an oil pit state is obtained, the arithmetic average roughness Ra in the direction perpendicular to the rolling is 0.1 μm or less and the gloss in the rolling parallel direction (according to JIS Z8741) is G60 (incident angle 60). Degree) in the range of 300 to 500%.
It is preferable that the said copper foil is 0.07 mm or more in the average space | interval Sm (JIS B0601-2001, ISO4287-1997 conformity) of the unevenness | corrugation of the orthogonal direction of rolling.
The thickness of the copper foil is preferably 5 to 20 μm.
The conductivity of the copper foil is preferably 80% IACS or more.
The present invention also relates to a method for producing the rolled copper foil for a copper-clad laminate, which is cold-rolled under conditions of an oil film equivalent at rolling ≦ 45000. However, the oil film equivalent is represented by the following formula.
(Oil film equivalent) = {(rolling oil viscosity, kinematic viscosity at 40 ° C .; cSt) × (rolling speed; m / min)} / {(yield stress of material; kg / mm 2 ) × (roll biting angle; rad )}

本発明の高光沢で表面の平滑な圧延銅箔は、平滑な表面を得るための後工程を必要としないため、銅張積層基板用圧延銅箔の製造コストを従来よりも抑えることができる。又、本発明の圧延銅箔は、特定の条件下で冷間圧延により製造されることができ、圧延銅箔をエッチングで除去した後の樹脂透視性に優れる銅張積層基板用圧延銅箔を提供できる。   Since the rolled copper foil having a high gloss and a smooth surface according to the present invention does not require a post-process for obtaining a smooth surface, the production cost of the rolled copper foil for a copper-clad laminate can be suppressed as compared with the conventional method. In addition, the rolled copper foil of the present invention can be manufactured by cold rolling under specific conditions, and the rolled copper foil for a copper clad laminated substrate having excellent resin transparency after removing the rolled copper foil by etching. Can be provided.

銅張積層基板用の圧延銅箔は、一般に油潤滑によって高速で加工される。又、必要とする厚みが薄いため、最終圧延の加工度(板厚減少率)が本質的に大きいものとなる。そのため、銅張積層基板用の銅箔の圧延工程は、5μm〜20μmの製品厚さ付近では、材料の塑性変形であるせん断帯変形によってでしか変形できない領域での加工になる。このせん断帯は、圧延時にロールと材料の間に導入される油膜が厚い場合、圧延加工表面にオイルピットと呼ばれる微小な凹凸をつくる。一方、油膜が薄ければ材料表面の凸部は圧延ロールと接触するため変形が制限され、オイルピットが発達せず、圧延ロールの平滑な表面プロフィルが転写され、平滑な表面が形成される。高光沢を得るためにはオイルピットの成長を抑えることはもちろん、オイルピットの少ない領域を広くすることが必要である。
上述したように、本発明は、圧延銅箔のオイルピットの分布に着目したものである。
本発明の好ましい圧延銅箔は、オイルピットが偏在してオイルピット粗部とオイルピット密部が形成されることである。
A rolled copper foil for a copper-clad laminate is generally processed at high speed by oil lubrication. Moreover, since the required thickness is thin, the workability (sheet thickness reduction rate) of the final rolling becomes essentially large. Therefore, the rolling process of the copper foil for the copper-clad laminate is performed in a region that can be deformed only by shear band deformation, which is plastic deformation of the material, in the vicinity of the product thickness of 5 μm to 20 μm. When the oil film introduced between the roll and the material is thick during rolling, the shear band creates minute irregularities called oil pits on the rolled surface. On the other hand, if the oil film is thin, the convex portion on the surface of the material comes into contact with the rolling roll, so that deformation is limited, the oil pit does not develop, the smooth surface profile of the rolling roll is transferred, and a smooth surface is formed. In order to obtain high gloss, it is necessary not only to suppress the growth of the oil pit but also to widen the area where the oil pit is small.
As described above, the present invention focuses on the distribution of oil pits in a rolled copper foil.
A preferred rolled copper foil of the present invention is that oil pits are unevenly distributed to form oil pit rough portions and oil pit dense portions.

図1は、圧延銅箔の延伸直角断面で見たオイルピットの好ましい断面の概念図である。
図1では、深さ0.1μmを超えるピットが存在しない表面平坦部(オイルピット粗部)及び表面粗部(オイルピット密部)が延伸方向に帯状に平行に存在することが目視で確認できる。上記深さとは、目的とするオイルピットの最深部とそのオイルピットに隣接する頭頂部との高さの差をいう。
尚、表面粗さの指標として電解銅箔でよく使われていたRzは十点平均粗さを表すものであり、JIS B0601に準拠して測定されていた。しかしRzはオイルピットの深さの指標としては有効であるが、オイルピットの分布を表すことができない。本発明の好ましい圧延銅箔ではオイルピットが遍在してオイルピット粗部と密部が形成されているため、オイルピット分布を示すための指標としてSmを用いた。Smは表面性状を輪郭曲線方式で表すJIS B0601−2001(ISO4287−1997準拠)において、凹凸の「凹凸の平均間隔」と規定されており、基準長さ内での各凹凸の輪郭長さの平均をいう。従って、本発明における圧延銅箔表面の延伸直角断面のSmは、延伸方向に帯状に平行に存在する表面平坦部及び表面粗部の幅の和を示す指標として使用できる。Smの測定において、基準長L(通常、0.25〜0.8mm)内の、平均線(図1及び2では点線で表される。)よりも高い部分が連続してプラトーを形成する部分を平坦部とし、凹凸がそれぞれ独立した単一のピークを形成している部分を表面粗部とした。又、基準長Lは、1つの表面平坦部の幅及びそれに隣接する1つの表面粗部の幅との和よりも大きいことが必要である。Smは、好ましくは0.07mm以上、更に好ましくは0.08mm以上、更に好ましくは0.10mm以上である。表面平坦部の幅の指標としてのSmは大きいほど好ましい。従来技術の延伸銅箔の延伸直角断面を図2に示す。図2では基準長内の全てにわたり平均線よりも高い部分は連続しておらず、それぞれ独立した単一のピークを形成している。
本発明の圧延銅箔表面の平坦部の延伸方向に平行な長さは、深さ0.1μmを超えるピットと延伸方向に平行に平坦部を挟んで隣接する深さ0.1μmを超えるピットとの間隔で表され、例えば0.1mm以上、好ましくは0.2mm以上、更に好ましくは0.3mm以上であり長いほど好ましい。
FIG. 1 is a conceptual diagram of a preferred cross section of an oil pit viewed in a cross-section perpendicular to the stretch of a rolled copper foil.
In FIG. 1, it can be visually confirmed that a surface flat portion (oil pit rough portion) and a surface rough portion (oil pit dense portion) where no pit exceeding a depth of 0.1 μm exists are parallel to the extending direction in a strip shape. . The depth refers to the difference in height between the deepest part of the target oil pit and the top part adjacent to the oil pit.
Rz, which is often used in electrolytic copper foils as an indicator of surface roughness, represents ten-point average roughness and was measured in accordance with JIS B0601. However, Rz is effective as an index of the depth of the oil pit, but cannot represent the oil pit distribution. In the preferred rolled copper foil of the present invention, oil pits are ubiquitous and oil pit rough parts and dense parts are formed, so Sm was used as an index to show the oil pit distribution. In JIS B0601-2001 (conforms to ISO 4287-1997), Sm is defined as the “concave / convex average distance” of the unevenness, and the average of the contour lengths of the unevennesses within the reference length. Say. Therefore, Sm of the cross-section perpendicular to the surface of the rolled copper foil in the present invention can be used as an index indicating the sum of the widths of the surface flat portion and the surface rough portion existing in parallel to the strip in the stretching direction. In the measurement of Sm, a portion where a portion higher than the average line (represented by a dotted line in FIGS. 1 and 2) within the reference length L (usually 0.25 to 0.8 mm) forms a plateau. Was a flat portion, and a portion where the unevenness formed a single peak independent of each other was defined as a rough surface portion. The reference length L needs to be larger than the sum of the width of one flat surface portion and the width of one rough surface portion adjacent thereto. Sm is preferably 0.07 mm or more, more preferably 0.08 mm or more, and still more preferably 0.10 mm or more. A larger Sm as an index of the width of the flat surface portion is more preferable. FIG. 2 shows a cross-section perpendicular to the stretched copper foil of the prior art. In FIG. 2, the portion higher than the average line is not continuous over the entire reference length, and forms a single independent peak.
The length parallel to the extending direction of the flat portion of the rolled copper foil surface of the present invention is a pit exceeding a depth of 0.1 μm and a pit exceeding a depth of 0.1 μm adjacent to the flat portion in parallel to the extending direction. For example, it is 0.1 mm or more, preferably 0.2 mm or more, more preferably 0.3 mm or more.

上述したオイルピットの分布を有する本発明の圧延銅箔は以下のようになる。
本発明の圧延銅箔は、圧延直角方向の算術平均粗さRaが0.1μm以下であり、好ましくは0.07μm以下、更に好ましくは0.05μm以下である。算術平均粗さが0.1μmを超えると、圧延銅箔をエッチングで除去した後の樹脂透明性に劣る。上記表面粗さは、圧延直角方向に接触粗さ計を使用し、JIS B0601に準拠して測定した算術平均粗さ(Ra;μm)である。
本発明の圧延銅箔の圧延平行方向の光沢度(JIS Z8741準拠)は、G60(入射角60度)で300〜500%であり、好ましくは350%以上、更に好ましくは370%以上である。300%未満であるとCOF用フィルムキャリアテープに使用した場合、ICチップ搭載時の位置決めパターンの視認性が悪くなり、正確な位置決めが困難となる。一方、500%を超えることは表面が平滑すぎるため箔を樹脂と積層する処理での搬送性が悪化する。上記光沢度は、JIS Z8741に準拠した光沢度計を使用し、圧延方向に直角な方向の入射角60度で測定する。
The rolled copper foil of the present invention having the oil pit distribution described above is as follows.
The rolled copper foil of the present invention has an arithmetic average roughness Ra in the direction perpendicular to the rolling of 0.1 μm or less, preferably 0.07 μm or less, more preferably 0.05 μm or less. When the arithmetic average roughness exceeds 0.1 μm, the resin transparency after removing the rolled copper foil by etching is inferior. The surface roughness is an arithmetic average roughness (Ra; μm) measured in accordance with JIS B0601 using a contact roughness meter in the direction perpendicular to the rolling.
The gloss in the rolling parallel direction of the rolled copper foil of the present invention (according to JIS Z8741) is 300 to 500% in terms of G60 (incident angle 60 degrees), preferably 350% or more, more preferably 370% or more. If it is less than 300%, when it is used for a film carrier tape for COF, the visibility of the positioning pattern when the IC chip is mounted deteriorates, and accurate positioning becomes difficult. On the other hand, if it exceeds 500%, since the surface is too smooth, the transportability in the process of laminating the foil with the resin deteriorates. The glossiness is measured using a glossiness meter based on JIS Z8741 at an incident angle of 60 degrees in a direction perpendicular to the rolling direction.

本発明の圧延銅箔の厚みは、例えば重量法によりIPC−TM−650に準拠して測定でき、好ましくは5〜20μmである。5μm未満であると屈曲の際の曲げ部外周に生じる歪みが減少するため、屈曲性は向上するが、製造工程での歩留まりが非常に悪くなる。一方、20μmを超えると、屈曲の際の曲げ部外周に生じる歪みが増大するため、屈曲性が低下する。
本発明の圧延銅箔の導電率は、例えば電気抵抗をIPC−TM−650に準拠して測定し計算することで求めることができるが、積層板用としてはできるかぎり導電率が高いことが望ましい。一方、求められる特性を得るために元素を添加した合金箔が用いられる。たとえば、耐熱性等の要求を満たすために、Sn、Agを添加した銅合金や高強度媚態するCr-Zr等2種類以上の元素を添加した多元系銅合金が挙げられる。ただし、元素の過剰な添加は導電率の低下を招く。80%IACS未満であるとCOF用銅張積層基板用銅箔に適さない。好ましくは60%IACS以上、更に好ましくは80%IACS以上である。この導電率を満たす銅合金であればよい。
The thickness of the rolled copper foil of this invention can be measured based on IPC-TM-650, for example with a weight method, Preferably it is 5-20 micrometers. If the thickness is less than 5 μm, the distortion generated on the outer periphery of the bent portion at the time of bending is reduced, so that the flexibility is improved, but the yield in the manufacturing process becomes very poor. On the other hand, if the thickness exceeds 20 μm, the distortion generated on the outer periphery of the bent portion at the time of bending increases, so that the flexibility is lowered.
The electrical conductivity of the rolled copper foil of the present invention can be obtained, for example, by measuring and calculating the electrical resistance in accordance with IPC-TM-650, but it is desirable that the electrical conductivity is as high as possible for a laminate. . Hand, the alloy foil obtained by adding an element to obtain the sought properties are used. For example, in order to satisfy requirements such as heat resistance, a copper alloy added with Sn and Ag and a multi-component copper alloy added with two or more kinds of elements such as Cr-Zr with high strength. However, excessive addition of elements causes a decrease in conductivity. If it is less than 80% IACS, it is not suitable for a copper foil for a copper clad laminated substrate for COF. Preferably it is 60% IACS or more, more preferably 80% IACS or more. Any copper alloy satisfying this conductivity may be used.

通常、オイルピットの生成の制御には、素材表面状況、圧延ロールの直径、圧延ロール面の粗さ、圧下率、圧延速度、圧延油の粘度等の圧延条件の調節が行なわれるが、本発明では、圧延油粘度、圧延速度、材料の降伏応力、ロール噛込角を変数として含む「油膜当量」に着目した。即ち、本発明の製造方法では圧延時の圧延ロールと被圧延材料間に入り、潤滑の役割をする油の量を制御することでオイルピットの成長を抑制するとともに、オイルピットが少なく平滑な圧延面を広くもつ銅箔を製造できる。   Normally, the control of oil pit generation involves adjustment of rolling conditions such as material surface conditions, rolling roll diameter, rolling roll surface roughness, rolling reduction, rolling speed, and rolling oil viscosity. Then, attention was paid to “oil film equivalent” including rolling oil viscosity, rolling speed, material yield stress, and roll bite angle as variables. That is, in the production method of the present invention, the rolling between the rolling roll and the material to be rolled at the time of rolling is controlled, and the amount of oil that plays a role of lubrication is controlled to suppress the growth of oil pits. Copper foil with a wide surface can be manufactured.

本発明の製造方法の条件因子として重要な油膜当量は、例えば30000以下、好ましくは25000以下、である。油膜当量が30000を超えると、圧延銅箔をエッチングで除去した後の樹脂透明性に劣る。一方、油膜当量が10000を下回ると、圧延抵抗が増加し加工性が低下するため好ましくない。
本発明の油膜当量を達成するためには、圧延油粘度(40℃の動粘度)は低く、圧延速度も低く、ロール噛込角(圧下量に対応する)は大きいことが好ましい。本発明の製造方法の条件としては、例えば、直径250mm以下で表面粗さRarollが0.1μm以下(好ましくは0.01〜0.04μm、更に好ましくは0.01〜0.02μm)に調整された圧延ロールにより、粘度が3〜8cSt(好ましくは3〜5cSt、更に好ましくは3〜4cSt)の圧延油を使用し、圧延速度100〜500m/分(好ましくは200〜450m/分、更に好ましくは250〜400m/分)、圧下率95〜80%(好ましくは95〜85%、更に好ましくは90〜85%)、パス毎の圧下率10〜60%が挙げられる。又、ロール噛込角は、例えば0.001〜0.04rad、好ましくは0.002〜0.03rad、更に好ましくは0.003〜0.03radである。
The oil film equivalent important as a condition factor of the production method of the present invention is, for example, 30000 or less, preferably 25000 or less. If the oil film equivalent exceeds 30000, the resin transparency after removing the rolled copper foil by etching is inferior. On the other hand, if the oil film equivalent is less than 10,000, the rolling resistance increases and the workability decreases, which is not preferable.
In order to achieve the oil film equivalent of the present invention, it is preferable that the rolling oil viscosity (kinematic viscosity at 40 ° C.) is low, the rolling speed is low, and the roll biting angle (corresponding to the reduction amount) is large. As the conditions of the production method of the present invention, for example, the diameter is 250 mm or less and the surface roughness Ra roll is adjusted to 0.1 μm or less (preferably 0.01 to 0.04 μm, more preferably 0.01 to 0.02 μm). By using the rolled roll, a rolling oil having a viscosity of 3 to 8 cSt (preferably 3 to 5 cSt, more preferably 3 to 4 cSt) is used, and a rolling speed of 100 to 500 m / min (preferably 200 to 450 m / min, more preferably). 250 to 400 m / min), a reduction rate of 95 to 80% (preferably 95 to 85%, more preferably 90 to 85%), and a reduction rate of 10 to 60% for each pass. The roll biting angle is, for example, 0.001 to 0.04 rad, preferably 0.002 to 0.03 rad, and more preferably 0.003 to 0.03 rad.

圧延ロールの表面粗さRarollが0.1μmを超えるとロール表面の凹凸が転写され、材料表面の平滑性が損なわれる。上記条件で圧延することで、オイルピットのない表面平坦部の面積を広くできる。圧延油の粘度が8cStを超えると油膜当量が大きくなり表面光沢が得られず、一方、3cSt未満であると圧延抵抗が大きくなり圧下率を上げることができない。圧延速度500m/分を超えると導入油量が増えるため光沢度が低下し、一方、100m/分未満であると充分な圧下量がとれず、また生産性の観点から不都合である。圧下率が95%を超えると加工硬化がすすむため変形能力がなくなり最終パスの圧下率が確保できなくなり、一方、80%未満であると圧延集合組織が発達せず、表面平滑性が得られない。ロール噛込角が0.04radを超えるとロール周速度と材料速度との差が大きくなり、材料表面の平滑性が損なわれる。一方、0.002rad未満であると圧延ロールと被圧延材料間に入り、潤滑の役割をする油の量が大きく、光沢が低下する。
最終圧延加工度は、例えば20〜40%、好ましくは20〜35%、更に好ましくは25〜35%である。加工度が35%を超えるとせん断帯が発達してオイルピットが発生する。一方、20%未満であるとパス数が増えるために生産性が悪化する。
When the surface roughness Ra roll of the rolling roll exceeds 0.1 μm, irregularities on the roll surface are transferred, and the smoothness of the material surface is impaired. By rolling under the above conditions, the area of the flat surface portion without oil pits can be increased. If the viscosity of the rolling oil exceeds 8 cSt, the oil film equivalent becomes large and surface gloss cannot be obtained. On the other hand, if it is less than 3 cSt, the rolling resistance increases and the rolling reduction cannot be increased. When the rolling speed exceeds 500 m / min, the amount of introduced oil increases and the glossiness decreases. On the other hand, when the rolling speed is less than 100 m / min, a sufficient amount of reduction cannot be obtained, which is disadvantageous from the viewpoint of productivity. If the rolling reduction exceeds 95%, work hardening proceeds and the deformability is lost, and the rolling reduction in the final pass cannot be secured. On the other hand, if the rolling reduction is less than 80%, the rolling texture does not develop and surface smoothness cannot be obtained. . If the roll bite angle exceeds 0.04 rad, the difference between the roll peripheral speed and the material speed increases, and the smoothness of the material surface is impaired. On the other hand, if it is less than 0.002 rad, the amount of oil that enters between the rolling roll and the material to be rolled and plays the role of lubrication is large, and the gloss is lowered.
The final rolling degree is, for example, 20 to 40%, preferably 20 to 35%, and more preferably 25 to 35%. When the degree of processing exceeds 35%, a shear band develops and an oil pit is generated. On the other hand, if it is less than 20%, the number of passes increases, so the productivity deteriorates.

尚、本発明の銅箔として、多量の合金元素を含有し高温で焼鈍しないと軟質化しないような銅合金は積層板用金属箔として適当ではない。一方、常温保管時の軟化を防止し、軟化温度を低下させる必要がある。そのため、タフピッチ銅及び/又は無酸素銅に対して、微量のAg又はSn等を添加して軟化温度を適度な範囲に調整した合金が挙げられる。合金元素を含有しても、微量な濃度範囲(例えば0.03〜0.15重量%程度)であれば、立方体集合組織の発達を阻害しないためである。本発明の材料の降伏応力は、例えば30〜50kg/mm2、好ましくは35〜45kg/mm2、更に好ましくは35〜40kg/mm2である。50kg/mm2を超えると圧下率を得られず、一方、30kg/mm2未満であると圧延油膜当量が大きくなり光沢が得られない。
オイルピットは、そのくぼみの先端形状が鋭角状であるため、銅箔に屈曲変形を繰り返し与えた場合に、クラックの起点として作用することがある。従って、オイルピットの形成が抑制された本発明の圧延銅箔は耐屈曲性にも優れている。
As the copper foil of the present invention, a copper alloy that contains a large amount of alloy elements and does not soften unless annealed at a high temperature is not suitable as a metal foil for laminated plates. On the other hand, it is necessary to prevent softening during normal temperature storage and to lower the softening temperature. Therefore, an alloy in which a slight amount of Ag or Sn or the like is added to tough pitch copper and / or oxygen-free copper to adjust the softening temperature to an appropriate range can be given. This is because even if the alloy element is contained, if it is in a very small concentration range (for example, about 0.03 to 0.15% by weight), it does not hinder the development of the cube texture. Yield stress of the material of the present invention, for example, 30 to 50 kg / mm 2, preferably 35~45kg / mm 2, more preferably from 35~40kg / mm 2. If it exceeds 50 kg / mm 2 , the rolling reduction cannot be obtained. On the other hand, if it is less than 30 kg / mm 2 , the rolling oil film equivalent becomes large and gloss cannot be obtained.
The oil pit has an acute-angled tip shape, and therefore may act as a crack starting point when the copper foil is repeatedly bent and deformed. Therefore, the rolled copper foil of the present invention in which the formation of oil pits is suppressed is also excellent in bending resistance.

下記に本発明の態様を実施例により説明する。尚、各種評価は下記の通り行なった。
(1)表面粗さ(Ra,Rz,Sm)の測定;
接触粗さ計(小坂研究所製、商品名「SE−3400」)を使用してJIS B0601に準拠した算術平均粗さ(Ra;μm)として測定し、オイルピット深さRzはJIS B0601−1994に準拠して十点平均粗さを測定した。測定基準長さ0.8mm、評価長さ4mm、カットオフ値0.8mm、送り速さ0.1mm/秒の条件で圧延方向と平行に測定位置を変えて10回行ない、10回の測定での値を求めた。また凹凸の平均間隔(Sm;mm)は、測定基準長さ0.8mm、評価長さ4mm、カットオフ値0.8mm、送り速さ0.1mm/秒の条件で圧延方向と平行に測定位置を変えて10回行ない、10回の測定での値を求めた。
(2) 光沢度;
JIS Z8741に準拠した光沢度計(日本電色工業製、商品名「PG-1M」)を使用し、圧延方向に直角な方向の入射角60度で測定した。
(3)視認性(樹脂透明性);
銅箔サンプルを用いて、キャスティング法でポリイミド(商品名「U−ワニスA」、宇部興産製)を使用してCCL(Cupper Clad Laminate)を樹脂厚みが25〜35μmになるように作製し(温度は商品カタログ記載の推奨温度プロファイル)、銅箔をエッチング(塩化第2鉄水溶液)で除去してサンプルフィルムを作成した。得られた樹脂層を透視して直径50μmのドットパターンをCCDカメラで撮影し、CCD画像を256階調で2値化できる画像解析装置を使用して、予め実装試験で合格したサンプルフィルムを透過して得られるデモ用のアラインメントマークの2値化像と比較し、パターン視認の可否を判定した。フィルムと同様の2値化像が得られたものを「○」(合格)、マークの輪郭が崩れたものを「×」(不合格)と評価した。
Embodiments of the present invention will be described below with reference to examples. Various evaluations were performed as follows.
(1) Measurement of surface roughness (Ra, Rz, Sm);
Using a contact roughness meter (trade name “SE-3400” manufactured by Kosaka Laboratories), it was measured as arithmetic average roughness (Ra; μm) in accordance with JIS B0601, and the oil pit depth Rz was JIS B0601-1994. The ten-point average roughness was measured according to the above. The measurement position is changed 10 times in parallel with the rolling direction under the conditions of a measurement standard length of 0.8 mm, an evaluation length of 4 mm, a cut-off value of 0.8 mm, and a feed rate of 0.1 mm / second. The value of was obtained. In addition, the average interval of unevenness (Sm; mm) is a measurement position parallel to the rolling direction under the conditions of a measurement reference length of 0.8 mm, an evaluation length of 4 mm, a cut-off value of 0.8 mm, and a feed rate of 0.1 mm / second. The measurement was repeated 10 times, and the values for 10 measurements were obtained.
(2) Glossiness;
A gloss meter (trade name “PG-1M”, manufactured by Nippon Denshoku Industries Co., Ltd.) conforming to JIS Z8741 was used, and measurement was performed at an incident angle of 60 degrees in a direction perpendicular to the rolling direction.
(3) Visibility (resin transparency);
Using a copper foil sample, CCL (Cupper Clad Laminate) is produced using a polyimide (trade name “U-Varnish A”, manufactured by Ube Industries) by a casting method so that the resin thickness is 25 to 35 μm (temperature) Is the recommended temperature profile described in the product catalog), and the copper foil was removed by etching (ferric chloride aqueous solution) to prepare a sample film. The obtained resin layer was seen through, a dot pattern with a diameter of 50 μm was photographed with a CCD camera, and the sample film that passed the mounting test in advance was transmitted using an image analyzer that can binarize the CCD image with 256 gradations. In comparison with the binarized image of the alignment mark for demonstration obtained in this way, whether or not the pattern is visible was determined. A film having a binary image similar to that of the film was evaluated as “◯” (passed), and a mark with a broken outline was evaluated as “×” (failed).

(4)厚み;
重量法でIPC−TM−650に準拠して測定した。
(5)導電率;
電気抵抗をIPC−TM−650に準拠して測定し、得られた比抵抗ρ(μΩ・cm)から次式で%IACSを算出した。導電率が80%IACS以上のものを「○」として表した。
%IACS=1.7241×102/ρ
(6)銅箔強度(接着強度=ピール強度);
PC−TM−650に準拠し、引張り試験機オートグラフ100で常態ピール強度と150℃のオーブン中で1週間置いた後の常態で測定したピール強度を測定し、上記常態ピール強度が0.7N/mm以上で150℃暴露後のピール強度維持率が80%以上の場合を銅張積層基板用途に使用できるものとして「○」、常態ピール強度が0.7N/mm未満もしくは150℃暴露後の維持率が80%未満の場合を不適当なものとして「×」と評価した。
(7)屈曲性;
屈曲疲労寿命の測定を行った。使用した装置は、発振駆動体に振動伝達部材を結合した構造になっており、被試験銅箔は、ねじ部と振動伝達部材の先端部の計4点で装置に固定される。振動伝達部材が上下に駆動すると、銅箔の中間部は、所定の曲率半径rでヘアピン状に屈曲される。下記条件下で屈曲を繰り返した時の破断までの回数を求めた。
銅箔の片面に厚み約50nmのNiめっきを施し、クロメート処理後に宇部興産製UワニスAをキャスティング法で厚さ40μmで塗膜し、その後、試験片幅12.7mm、試験片長さ:200mm、試験片採取方向:試験片の長さ方向が圧延方向と平行になるように採取、曲率半径r:2.5mm、振動ストローク:25mm、振動速度:1500回/分の条件で加速試験を行った。電気抵抗が10%増加した時点を試験の終点とし、その時の屈曲回数が105回以上の場合を「○」、105回未満を「×」とした。
(4) Thickness;
It measured based on IPC-TM-650 by the gravimetric method.
(5) conductivity;
The electrical resistance was measured according to IPC-TM-650, and% IACS was calculated by the following formula from the obtained specific resistance ρ (μΩ · cm). Those having an electrical conductivity of 80% IACS or higher are represented as “◯”.
% IACS = 1.7241 × 10 2 / ρ
(6) Copper foil strength (adhesion strength = peel strength);
In accordance with PC-TM-650, the normal peel strength was measured with a tensile tester Autograph 100 and the peel strength measured in a normal state after being placed in an oven at 150 ° C. for 1 week, and the normal peel strength was 0.7 N. When the peel strength maintenance rate after exposure at 150 ° C. is 80% or more at a thickness of / mm or more, “○” indicates that it can be used for a copper-clad laminate substrate, and the normal peel strength is less than 0.7 N / mm or after exposure at 150 ° C. The case where the maintenance ratio was less than 80% was evaluated as “x” as inappropriate.
(7) Flexibility;
The bending fatigue life was measured. The used apparatus has a structure in which a vibration transmission member is coupled to an oscillation driver, and the copper foil to be tested is fixed to the apparatus at a total of four points, that is, a screw portion and a tip portion of the vibration transmission member. When the vibration transmitting member is driven up and down, the intermediate portion of the copper foil is bent into a hairpin shape with a predetermined radius of curvature r. The number of times to break when bending was repeated under the following conditions was determined.
Ni plating with a thickness of about 50 nm is applied to one side of the copper foil, and U varnish A manufactured by Ube Industries Co., Ltd. is coated with a thickness of 40 μm by the casting method after chromate treatment. Thereafter, the test piece width is 12.7 mm, the test piece length is 200 mm, Specimen sampling direction: Specimen length direction was parallel to the rolling direction, radius of curvature r: 2.5 mm, vibration stroke: 25 mm, vibration speed: 1500 times / min. . The time point when the electrical resistance increased by 10% was taken as the end point of the test, and the case where the number of flexing times was 10 5 or more was designated as “◯”, and the value less than 10 5 was designated as “X”.

実施例1〜2,比較例1〜5
Snを1200ppm含有し、Sn以外の不純物元素が無酸素銅C1020で規定されるケークを溶解鋳造し、熱間圧延、冷間圧延(加工度98.9%)、最終焼鈍、仕上圧延(加工度91%)の順で加工し、厚み9μmの箔を得た(実施例1)。最終焼鈍では完全に再結晶させた(以下同様)。
Snを1200ppm含有する無酸素銅C1020のケークを溶解鋳造し、熱間圧延、冷間圧延(1)(加工度83%)、中間焼鈍、冷間圧延(2)(加工度93%)、最終焼鈍、仕上圧延の順で加工し、実施例2(仕上圧延加工度88%)及び比較例1(仕上圧延加工度91%)の圧延銅箔を得た。
Snを1200ppm含有する無酸素銅C1020のケークを溶解鋳造し、熱間圧延、冷間圧延、最終焼鈍、仕上圧延の順で加工し、比較例2(仕上圧延加工度90%)、比較例3(仕上圧延加工度90%)、比較例4(仕上圧延加工度90%)の圧延銅箔を得た。
Snを1200ppm含有する無酸素銅C1020のケークを溶解鋳造し、従来技術(熱間圧延、冷間圧延(加工度98.9%)、最終焼鈍、仕上圧延(加工度91%)の順)によって厚み9μmの箔に加工し、比較例5の圧延銅箔を得た。
圧延条件と測定結果を表1〜2に示す。また実施例1と比較例5との表面の二次電子顕微鏡画像を図3a〜4bに示す。
一般に光沢を得るためには、ロール噛み込み量を大きくする、圧延速度を下げる等の方法があるが、噛み込み量を大きくするためには圧延速度を上げる必要があるので、高光沢が得られる圧延条件の範囲が限定される。
比較例1は仕上圧延加工度に対して圧延速度が速いため光沢度が350未満となり、視認性が劣っていた。比較例2及び3は圧延速度が速いため光沢度及びSmが本発明の範囲外であり、視認性及び屈曲性が劣っていた。比較例4はロール粗さRarollが0.15μmであったため得られた圧延銅箔のRa及びSmが本発明の範囲外であり、視認性及び屈曲性が劣っていた。比較例5は圧延速度が早いため光沢度、Ra及びSmが本発明の範囲外であり、視認性が劣っていた。
Examples 1-2, Comparative Examples 1-5
A cake containing 1200 ppm Sn and having an impurity element other than Sn defined by oxygen-free copper C1020 is melt cast, hot rolling, cold rolling (working degree 98.9%), final annealing, finish rolling (working degree) 91%) to obtain a foil having a thickness of 9 μm (Example 1). In the final annealing, it was completely recrystallized (the same applies hereinafter).
An oxygen-free copper C1020 cake containing 1200 ppm of Sn is melt cast, hot rolling, cold rolling (1) (working degree 83%), intermediate annealing, cold rolling (2) (working degree 93%), final It processed in order of annealing and finish rolling, and obtained the rolled copper foil of Example 2 (finish rolling work degree 88%) and Comparative Example 1 (finish rolling work degree 91%).
An oxygen-free copper C1020 cake containing 1200 ppm of Sn is melt cast and processed in the order of hot rolling, cold rolling, final annealing, and finish rolling. Comparative Example 2 (finish rolling work degree 90%), Comparative Example 3 The rolled copper foil of (finishing rolling process degree 90%) and the comparative example 4 (finishing rolling process degree 90%) was obtained.
Oxygen-free copper C1020 cake containing 1200 ppm Sn is melt cast and according to conventional techniques (in the order of hot rolling, cold rolling (working degree 98.9%), final annealing, finish rolling (working degree 91%)). A rolled copper foil of Comparative Example 5 was obtained by processing into a 9 μm thick foil.
The rolling conditions and measurement results are shown in Tables 1-2. Moreover, the secondary electron microscope image of the surface of Example 1 and the comparative example 5 is shown to FIG.
In general, in order to obtain gloss, there are methods such as increasing the roll biting amount and lowering the rolling speed, but in order to increase the biting amount, it is necessary to increase the rolling speed, so high gloss can be obtained. The range of rolling conditions is limited.
In Comparative Example 1, since the rolling speed was higher than the finish rolling work degree, the glossiness was less than 350, and the visibility was poor. Since Comparative Examples 2 and 3 had a high rolling speed, the glossiness and Sm were outside the scope of the present invention, and the visibility and flexibility were inferior. In Comparative Example 4, since the roll roughness Ra roll was 0.15 μm, Ra and Sm of the obtained rolled copper foil were outside the scope of the present invention, and visibility and flexibility were inferior. Since Comparative Example 5 had a high rolling speed, the glossiness, Ra, and Sm were outside the scope of the present invention, and the visibility was poor.

本発明の圧延銅箔表面の延伸直角断面の一例の概略図である。It is the schematic of an example of the extending | stretching orthogonal cross section of the rolled copper foil surface of this invention. 従来技術の圧延銅箔表面の延伸直角断面の一例の概略図である。It is the schematic of an example of the extending | stretching perpendicular cross section of the rolled copper foil surface of a prior art. 実施例1の圧延銅箔の表面の二次電子顕微鏡画像である(倍率250)。It is a secondary electron microscope image of the surface of the rolled copper foil of Example 1 (magnification 250). 実施例1の圧延銅箔の表面の二次電子顕微鏡画像である(倍率1000)。It is a secondary electron microscope image of the surface of the rolled copper foil of Example 1 (magnification 1000). 比較例5の圧延銅箔の表面の二次電子顕微鏡画像である(倍率250)。It is a secondary electron microscope image of the surface of the rolled copper foil of the comparative example 5 (magnification 250). 比較例5の圧延銅箔の表面の二次電子顕微鏡画像である(倍率1000)。It is a secondary electron microscope image of the surface of the rolled copper foil of the comparative example 5 (magnification 1000).

Claims (4)

圧延直角方向の算術平均粗さRaが0.1μm以下であり、かつ圧延平行方向の光沢度(JIS Z8741準拠)がG60(入射角60度)で350〜500%であり、圧延直角方向の凹凸の平均間隔Smが0.076mm以上である銅張積層基板用圧延銅箔。 Perpendicular to the rolling direction of and at an arithmetic mean roughness Ra of 0.1μm or less, and parallel to the rolling direction of the glossiness (JIS Z8741 compliant) is Ri 350-500% der in G60 (incident angle 60 degrees), perpendicular to the rolling direction average interval Sm is rolled copper foil for a copper-clad laminate board Ru der than 0.076mm of irregularities. 厚みが5〜20μmである請求項1に記載の銅張積層基板用圧延銅箔。 The rolled copper foil for a copper clad laminated substrate according to claim 1, wherein the thickness is 5 to 20 µm. 導電率が60%IACS以上である請求項1又は2に記載の銅張積層基板用圧延銅箔。 The rolled copper foil for copper-clad laminates according to claim 1 or 2 , wherein the conductivity is 60% IACS or more. 圧延時の油膜当量≦30000となる条件で冷間圧延する、請求項1〜のいずれか1項に記載の銅張積層基板用圧延銅箔の製造方法。
ただし上記油膜当量は下記式で表される。
(油膜当量)={(圧延油粘度、40℃の動粘度;cSt)×(圧延速度;m/分)}/{(材料の降伏応力;kg/mm2)×(ロール噛込角;rad)}
The manufacturing method of the rolled copper foil for copper clad laminated substrates of any one of Claims 1-3 which cold-rolls on the conditions used as the oil film equivalent ≤30000 at the time of rolling.
However, the oil film equivalent is represented by the following formula.
(Oil film equivalent) = {(rolling oil viscosity, kinematic viscosity at 40 ° C .; cSt) × (rolling speed; m / min)} / {(yield stress of material; kg / mm 2 ) × (roll biting angle; rad )}
JP2005102387A 2005-03-31 2005-03-31 High-gloss rolled copper foil for copper-clad laminate and method for producing the same Active JP4401998B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005102387A JP4401998B2 (en) 2005-03-31 2005-03-31 High-gloss rolled copper foil for copper-clad laminate and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005102387A JP4401998B2 (en) 2005-03-31 2005-03-31 High-gloss rolled copper foil for copper-clad laminate and method for producing the same

Publications (2)

Publication Number Publication Date
JP2006281249A JP2006281249A (en) 2006-10-19
JP4401998B2 true JP4401998B2 (en) 2010-01-20

Family

ID=37403686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005102387A Active JP4401998B2 (en) 2005-03-31 2005-03-31 High-gloss rolled copper foil for copper-clad laminate and method for producing the same

Country Status (1)

Country Link
JP (1) JP4401998B2 (en)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI393629B (en) * 2007-04-18 2013-04-21 Asahi Chemical Ind Metal - resin laminate
JP5057932B2 (en) * 2007-10-31 2012-10-24 Jx日鉱日石金属株式会社 Rolled copper foil and flexible printed wiring board
JP4972115B2 (en) * 2009-03-27 2012-07-11 Jx日鉱日石金属株式会社 Rolled copper foil
JP5373453B2 (en) * 2009-03-31 2013-12-18 Jx日鉱日石金属株式会社 Copper foil for printed wiring boards
JP5094834B2 (en) * 2009-12-28 2012-12-12 Jx日鉱日石金属株式会社 Copper foil manufacturing method, copper foil and copper clad laminate
CN103154327A (en) * 2010-10-06 2013-06-12 古河电气工业株式会社 Copper foil and manufacturing method therefor, copper foil with carrier and manufacturing method therefor, printed circuit board, and multilayer printed circuit board
KR101376037B1 (en) 2010-10-28 2014-03-19 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Rolled copper foil
JP5698634B2 (en) * 2010-10-28 2015-04-08 Jx日鉱日石金属株式会社 Rolled copper foil
JP5758205B2 (en) * 2011-02-18 2015-08-05 Jx日鉱日石金属株式会社 Copper foil for producing graphene and method for producing graphene using the same
JP5822669B2 (en) 2011-02-18 2015-11-24 Jx日鉱日石金属株式会社 Copper foil for producing graphene and method for producing graphene using the same
JP5124039B2 (en) * 2011-03-23 2013-01-23 Jx日鉱日石金属株式会社 Copper foil and copper-clad laminate using the same
JP5189683B2 (en) * 2011-03-24 2013-04-24 Jx日鉱日石金属株式会社 Rolled copper alloy foil
JP5411192B2 (en) 2011-03-25 2014-02-12 Jx日鉱日石金属株式会社 Rolled copper foil and method for producing the same
JP5571616B2 (en) * 2011-05-17 2014-08-13 Jx日鉱日石金属株式会社 Rolled copper foil, and negative electrode current collector, negative electrode plate and secondary battery using the same
JP5850720B2 (en) 2011-06-02 2016-02-03 Jx日鉱日石金属株式会社 Copper foil for producing graphene and method for producing graphene
WO2012165548A1 (en) 2011-06-02 2012-12-06 Jx日鉱日石金属株式会社 Copper foil for manufacturing graphene and graphene manufacturing method
JP5721609B2 (en) 2011-11-15 2015-05-20 Jx日鉱日石金属株式会社 Copper foil for producing graphene and method for producing graphene
JP5261595B1 (en) * 2012-06-29 2013-08-14 Jx日鉱日石金属株式会社 Rolled copper foil, method for producing the same, and laminate
JP6078024B2 (en) 2014-06-13 2017-02-08 Jx金属株式会社 Rolled copper foil for producing a two-dimensional hexagonal lattice compound and a method for producing a two-dimensional hexagonal lattice compound
JP2016036829A (en) * 2014-08-07 2016-03-22 Jx日鉱日石金属株式会社 Rolled copper foil, and secondary battery power collector using the same
JP6170516B2 (en) * 2015-03-18 2017-07-26 Jx金属株式会社 Rolled copper foil and manufacturing method thereof, copper-clad laminate, flexible printed circuit board, and electronic device
JP6611751B2 (en) * 2017-03-31 2019-11-27 Jx金属株式会社 Rolled copper foil for lithium ion battery current collector and lithium ion battery
JP7296757B2 (en) 2019-03-28 2023-06-23 Jx金属株式会社 Copper alloys, copper products and electronic equipment parts

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2543933B2 (en) * 1988-02-01 1996-10-16 新日本製鐵株式会社 Manufacturing method of metal foil
JPH0491801A (en) * 1990-08-03 1992-03-25 Hitachi Ltd Method and device for controlling brightness difference in strip rolling
JPH079008A (en) * 1993-06-28 1995-01-13 Sumitomo Metal Ind Ltd Production of titanium plate and titanium alloy plate excellent in surface gloss
JP2002143904A (en) * 2000-11-14 2002-05-21 Sumitomo Light Metal Ind Ltd High-gloss aluminum plate and method for manufacturing the same
JP2003041333A (en) * 2001-08-01 2003-02-13 Nippon Mining & Metals Co Ltd Copper alloy foil for laminate
JP2004098659A (en) * 2002-07-19 2004-04-02 Ube Ind Ltd Copper-clad laminate and its manufacturing process
JP2004298938A (en) * 2003-03-31 2004-10-28 Kobe Steel Ltd Aluminum sheet and aluminum foil and method for manufacturing them

Also Published As

Publication number Publication date
JP2006281249A (en) 2006-10-19

Similar Documents

Publication Publication Date Title
JP4401998B2 (en) High-gloss rolled copper foil for copper-clad laminate and method for producing the same
JP4972115B2 (en) Rolled copper foil
KR101498436B1 (en) Surface-treated copper foil and laminate using the same
JP5427943B1 (en) Rolled copper foil, surface-treated copper foil, laminate and printed circuit board
KR101671130B1 (en) Rolled copper foil, method for producing same, and laminate plate
JP2007107036A (en) Rolled copper alloy foil to be bent
KR20160037148A (en) Surface-treated rolled copper foil, laminate, printed wiring board, electronic device, and method of manufacturing printed wiring board
JP2014148691A (en) Surface-treated copper foil and laminate plate using the same, copper foil, printed wiring board, electronic apparatus, and method for manufacturing printed wiring board
KR101586594B1 (en) Rolled copper foil
KR101387301B1 (en) Rolled copper foil
JP2006283078A (en) Rolled copper foil for copper-clad laminate, and manufacturing method therefor
WO2014003019A1 (en) Rolled copper foil, method for producing same, and laminate plate
JP2014065965A (en) Surface-treated copper foil, and laminate, copper-clad laminate, printed-wiring board, and electronic apparatus using the same
JP6305001B2 (en) Copper foil, copper-clad laminate and flexible printed wiring board
JP4354930B2 (en) Low gloss rolled copper foil for copper-clad laminates
JP2014065974A (en) Surface-treated copper foil, and laminate, copper-clad laminate, printed-wiring board, and electronic apparatus using the same
JP2014111277A (en) Rolled copper foil, surface-treated copper foil, and laminate plate
JP2014011451A (en) Rolled copper foil, process of manufacturing the same, and laminate sheet
WO2012132857A1 (en) Rolled copper foil
KR101376037B1 (en) Rolled copper foil
JP6170516B2 (en) Rolled copper foil and manufacturing method thereof, copper-clad laminate, flexible printed circuit board, and electronic device
JP6190619B2 (en) Copper foil and manufacturing method thereof, copper-clad laminate and flexible printed wiring board
CN111757599A (en) Copper foil for flexible printed board, copper-clad laminate using same, flexible printed board, and electronic device
JP2012106283A (en) Rolled copper foil
JP2014218690A (en) Copper foil, production method thereof, copper-clad laminate and flexible printed wiring board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060915

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080815

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080826

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081021

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091027

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091028

R150 Certificate of patent or registration of utility model

Ref document number: 4401998

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121106

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121106

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121106

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121106

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131106

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250