JP4399221B2 - Hydrogen water supply equipment - Google Patents

Hydrogen water supply equipment Download PDF

Info

Publication number
JP4399221B2
JP4399221B2 JP2003331212A JP2003331212A JP4399221B2 JP 4399221 B2 JP4399221 B2 JP 4399221B2 JP 2003331212 A JP2003331212 A JP 2003331212A JP 2003331212 A JP2003331212 A JP 2003331212A JP 4399221 B2 JP4399221 B2 JP 4399221B2
Authority
JP
Japan
Prior art keywords
water
gas
hydrogen
water supply
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003331212A
Other languages
Japanese (ja)
Other versions
JP2005105289A (en
Inventor
昭信 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinwa Industry Co Ltd
Original Assignee
Shinwa Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinwa Industry Co Ltd filed Critical Shinwa Industry Co Ltd
Priority to JP2003331212A priority Critical patent/JP4399221B2/en
Publication of JP2005105289A publication Critical patent/JP2005105289A/en
Application granted granted Critical
Publication of JP4399221B2 publication Critical patent/JP4399221B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Description

本願発明は、上水道等から給水された飲料水中に水素ガスを溶存させて所謂水素水を製造する電気分解式給水装置に関し、更に詳しくは、電気分解槽において従来から用いられて来た陽極と陰極間に配置するイオン交換膜や半透膜を用いることなく、効率的に水素ガスを発生させて水素水を製造する給水装置に関する。   The present invention relates to an electrolysis-type water supply device for producing so-called hydrogen water by dissolving hydrogen gas in drinking water supplied from a water supply or the like, and more specifically, an anode and a cathode conventionally used in an electrolysis tank The present invention relates to a water supply apparatus for producing hydrogen water by efficiently generating hydrogen gas without using an ion exchange membrane or a semipermeable membrane disposed therebetween.

水素ガスを飲料水に飽和させた所謂水素水は、病気の治療、病気の予防、健康の増進等に効果があることは知られている。このため、簡単に水素水を製造する装置として、電気分解式のものが公知である。
特開2002−361250号公報 この発明は、電気分解により活性水素含有水を製造する発明であって、活性水素含有水に確認される機能水としての特性を工業規模で有効に活用すべく、人体に有益な活性水素含有水を工業的に効率よく製造するために、水を電気分解することによって陰極側に活性水素を含む水を生成せしめ、これに有機酸を加えて中和することにより、酸化還元電位が60〜150mV、pHが中性付近の活性水素含有水を製造する方法である。 このように、水を電気分解することによって水素ガスを発生するときには、陽極と陰極間にイオン交換膜あるいは半透膜を用いているが、このようないイオン交換膜あるいは半透膜を用いると次のような問題がある。1.飲料水に含まれている金属イオンがイオン交換膜や半透膜に吸着されてこの 寿命が短かくなる。2.電極にカルシウム、マグネシウムなどの水酸化物や酸化物が付着するため、 電気の流れが妨害されて、経時的に効率が低下する。
It is known that so-called hydrogen water in which hydrogen gas is saturated with drinking water is effective in treating diseases, preventing diseases, and promoting health. For this reason, an electrolysis type apparatus is known as an apparatus for easily producing hydrogen water.
SUMMARY OF THE INVENTION The present invention is an invention for producing active hydrogen-containing water by electrolysis, and in order to effectively utilize the characteristics as functional water confirmed in the active hydrogen-containing water on an industrial scale, In order to efficiently produce industrially useful active hydrogen-containing water, water containing active hydrogen is generated on the cathode side by electrolyzing water, and an organic acid is added thereto to neutralize the water. This is a method for producing active hydrogen-containing water having an oxidation-reduction potential of 60 to 150 mV and a pH near neutral. As described above, when hydrogen gas is generated by electrolyzing water, an ion exchange membrane or a semipermeable membrane is used between the anode and the cathode. When such an ion exchange membrane or semipermeable membrane is used, There is a problem like this. 1. The life of the metal ions contained in the drinking water is shortened by being adsorbed on the ion exchange membrane or semipermeable membrane. 2. Since hydroxides and oxides such as calcium and magnesium adhere to the electrode, the flow of electricity is obstructed and the efficiency decreases over time.

本発明の目的は、電気分解方式により水素水を製造するに際し、陽極と陰極間に、イオン交換膜や半透膜を用いないで水素ガスを発生させ、これを飲料水中に直接飽和させて水素水を製造し、これを給水することができる水素水給水装置を提供することである。   An object of the present invention is to produce hydrogen gas without using an ion exchange membrane or a semipermeable membrane between an anode and a cathode when producing hydrogen water by an electrolysis method, and directly saturate it in drinking water to produce hydrogen water. It is to provide a hydrogen water supply device that can produce water and supply it.

上記目的を達成するため、請求項1に記載の発明においては、水素水製造装置において、
a.水素水製造用のガス逃がし弁17を設けた電気分解槽内に多数の透孔を形成した陽極13と陰極14を組み込むと共にこの陽極13と陰極14間に多数の透孔を形成し且つ電気絶縁性と耐水、耐酸化性を有するセパレータ12を配置したこと、
b.前記電気分解槽6内底部と給水源1間をモーター式開閉弁4と水流計15を経由して結んだこと、
c.前記電気分解槽6の上部に過剰の水素ガスと酸素ガスを放出するガス逃がし弁17を取り付けると共に電気分解槽6と給水出口3間に電磁式逃がし弁19付の混合器10を取り付け、この混合器10と電気分解槽6を結ぶ水路にはモーター式開閉弁5を取り付けたこと、
d.前記混合器10内に水面レベルセンサ18を取り付け、この水面レベルセンサ18で検出される水面レベルの変化から混合器10内に蓄積された水素ガス及び酸素ガス及び給水に含まれる窒素ガス量を水位の変化から検出し、これに応じて前記電磁式逃がし弁19を制御するように構成したこと、
e.前記水流計15で水流が検出されないときには陽極13と陰極14へ通電する通電用電極7、8への通電を停止する制御及び電極7、8間の抵抗値の変化を検出し、この抵抗値が設定値となったときに極性の反転を制御し、前記混合器6内へモーター式開閉弁2を制御して給水源1から給水を行うことにより、電解水との混合比を制御し、更に給水出口3に酸化還元電位計11を設置して電極7、8への通電電流を制御するマイクロコンピューターを設けたこと、
f.を特徴とするものである。
In order to achieve the above object, in the invention according to claim 1, in the hydrogen water production apparatus,
a. An anode 13 and a cathode 14 having a large number of through holes are incorporated in an electrolysis tank 6 provided with a gas relief valve 17 for producing hydrogen water, and a number of through holes are formed between the anode 13 and the cathode 14 and are electrically Arranging the separator 12 having insulation, water resistance and oxidation resistance ,
b. Connecting the bottom of the electrolysis tank 6 and the water supply source 1 via a motor-type on-off valve 4 and a water flow meter 15;
c. A gas relief valve 17 for releasing excess hydrogen gas and oxygen gas is attached to the upper part of the electrolysis tank 6 and a mixer 10 with an electromagnetic relief valve 19 is attached between the electrolysis tank 6 and the feed water outlet 3. A motor type on-off valve 5 is attached to the water channel connecting the vessel 10 and the electrolysis tank 6;
d. A water level sensor 18 is installed in the mixer 10, and the hydrogen gas and oxygen gas accumulated in the mixer 10 from the change in the water level detected by the water level sensor 18 and the amount of nitrogen gas contained in the water supply are changed to the water level. That is configured to control the electromagnetic relief valve 19 in accordance with
e. When the water flow is not detected by the water flow meter 15, control for stopping energization of the energizing electrodes 7, 8 energizing the anode 13 and the cathode 14 and a change in resistance value between the electrodes 7, 8 are detected. When the set value is reached, the reversal of the polarity is controlled, the motor type on-off valve 2 is controlled into the mixer 6 to supply water from the water supply source 1, thereby controlling the mixing ratio with the electrolyzed water, The installation of a redox potentiometer 11 at the water supply outlet 3 to provide a microcomputer for controlling the current applied to the electrodes 7 and 8;
f. It is characterized by.

以上に記した本発明は、次の効果を奏する。
請求項1の発明によると、イオン交換膜や半透膜を使用しないため、イオン交換膜や半透膜を使用したときのように、これら膜に金属イオンや酸化物が付着してトラブルが発生する心配がなくなる。また、電極をメッシュ状に形成したことにより、電極間に通水が発生し、効果的な水素ガスの発生を促すことができる。また、セパレータを多孔板としたことにより、通水に加えて、電極を接近させ、これにより通電抵抗を下げて効率的に水素ガスを発生させることができる。
また、高電圧を電極に印加することにより、発生した水素ガスは数ミクロンのマイクロバルーンとなり、同時に発生する酸素ガスと協力して飲料水の窒素ガスを低下させることもできる。例えば、純水1000ml中に10から15ml溶存していた窒素ガスは6から8mlに低下していることが実験で確認できた。
The present invention described above has the following effects.
According to the invention of claim 1, since ion exchange membranes and semipermeable membranes are not used, trouble occurs due to metal ions and oxides adhering to these membranes as when using ion exchange membranes and semipermeable membranes. No worries to do. Further, since the electrodes are formed in a mesh shape, water can flow between the electrodes, and effective generation of hydrogen gas can be promoted. In addition, since the separator is a perforated plate, in addition to water flow, the electrodes can be brought close to each other, thereby reducing the energization resistance and generating hydrogen gas efficiently.
Further, by applying a high voltage to the electrode, the generated hydrogen gas becomes a micro-balloon of several microns, and the nitrogen gas in the drinking water can be lowered in cooperation with the oxygen gas generated at the same time. For example, it was confirmed by experiments that the nitrogen gas dissolved in 10 to 15 ml in 1000 ml of pure water was reduced from 6 to 8 ml.

また、通常、飲料水に溶解する水素ガスは6〜7mlが限度と言われているが、完全に気体を抜いた純水に溶解する水素ガスは20℃で18mlであり、本発明による装置で溶解させた水素水を30分間放置したあと計測した水素水の溶解水素ガス量は20℃で10〜16ml存在していることが確認できた。また、水素ガスのマイクロバルーンを含んだ状態では20〜30mlも含有していことが確認できた。よって、本発明の給水装置から配水蛇口まで短時間で供給する方式であれば、水素ガスの多量のマイクロバルーンを含んだ水素水を提供することが可能である。
微量の水素ガスは、人体に入って生体膜でのガス交換によって吸収され、水素水と共に活性酸素の中和に貢献する。
In addition, it is said that the hydrogen gas dissolved in drinking water is usually limited to 6-7 ml, but the hydrogen gas dissolved in pure water completely degassed is 18 ml at 20 ° C., which is an apparatus according to the present invention. It was confirmed that 10 to 16 ml of dissolved hydrogen gas was measured at 20 ° C. after the dissolved hydrogen water was allowed to stand for 30 minutes. In addition, it was confirmed that 20-30 ml was contained in the state including the microballoon of hydrogen gas. Therefore, hydrogen water containing a large amount of microballoons of hydrogen gas can be provided if the method of supplying water from the water supply apparatus of the present invention to the water distribution faucet in a short time.
A trace amount of hydrogen gas enters the human body and is absorbed by gas exchange in the biological membrane, and contributes to neutralization of active oxygen together with hydrogen water.

また、飲料水の流量に比例して電解電流は自動的に変化し、水素水に溶解する水素濃度は設定値どおりに安定して供給することが出来る。 In addition , the electrolysis current automatically changes in proportion to the flow rate of drinking water, and the hydrogen concentration dissolved in the hydrogen water can be stably supplied as set values.

また、電極に電着する不純物が増加して電流効率が数パーセント低下する時点で極性を反転させることにより、不純物の大部分は水中に溶解し、電流効率の低下を防ぐことが出来る。なお、フィルターに残留する固形物は100時間経過してもわずかである(平均24Vで5A 100時間の試験:約12kW )。 Further , by reversing the polarity at the time when the number of impurities electrodeposited on the electrode is increased and the current efficiency is reduced by several percent, most of the impurities are dissolved in water, and a decrease in the current efficiency can be prevented. In addition, the solid matter remaining on the filter is small even after 100 hours have passed (test of 5A 100 hours at an average of 24 V: about 12 kW).

また、電気分解の条件を自動的に制御しても発生する気泡について、電気分解槽の内部で発生する大きな気泡はガス逃がし弁によって自動的に除去される。また、混合器に発生する気泡は、マイクロバルーンとならず水素水から分離成長した大きな気泡が集合して水位を押し下げるが、多少のガス溜が存在しないと水圧変化が激しくなるので必要である。そこで、この条件を守るため、一定以上増加したガスは水面レベルセンサの信号で電磁式ガス逃がし弁を開閉することによって適量を放出させることにより、安定した水素水の給水が可能となる。 Further , with respect to bubbles generated even when the electrolysis conditions are automatically controlled, large bubbles generated inside the electrolysis tank are automatically removed by the gas relief valve. The bubbles generated in the mixer are not microballoons, but large bubbles separated and grown from hydrogen water gather to push down the water level, but this is necessary because the water pressure change becomes severe if there is no gas reservoir. Therefore, in order to keep this condition, a stable amount of hydrogen water can be supplied by releasing an appropriate amount of gas that has increased more than a certain amount by opening and closing the electromagnetic gas relief valve with a signal from the water level sensor.

また、水素ガスはマイクロバルーンとなって発生し、水中に効率的に飽和し、経時的な減少傾向を抑えることができる。
以上、請求項1〜7に記載した本発明による水素水は、飲料水として刺激が少なく飲みやすく、イオン交換膜や半透膜を使用しないため、多量に飲んでもpHの変化が少ないので、体調に悪い影響を与えない。
Moreover , hydrogen gas is generated as a microballoon, is saturated efficiently in water, and the tendency to decrease over time can be suppressed.
As described above, the hydrogen water according to the present invention described in claims 1 to 7 has little irritation as drinking water and is easy to drink, and does not use an ion exchange membrane or a semipermeable membrane. Will not be adversely affected.

水に水素ガスを溶解させることは容易ではなく、純水で窒素や酸素が全く含まれない条件では、水1000mlに気温20℃で水素ガスは約18ml溶解するが、溶解した水素は不安定であり、短時間で急速に減少する。水道水などの飲料水にはすでに窒素や酸素が飽和状態で含まれておるため、単に水素ガスを吹き込んでも6〜7ml位しか溶解しない。   It is not easy to dissolve hydrogen gas in water, and under conditions where pure water does not contain nitrogen or oxygen at all, about 18 ml of hydrogen gas dissolves in 1000 ml of water at a temperature of 20 ° C, but the dissolved hydrogen is unstable. Yes, it decreases rapidly in a short time. Drinking water such as tap water already contains nitrogen and oxygen in a saturated state, so even if only hydrogen gas is blown, only about 6 to 7 ml is dissolved.

飲料水からこれらの飽和したガスを抜くことは容易でなく、真空状態や気体透過半透膜を利用する方法や、煮沸などで除去することは可能であるが、装置が高価で大掛かりとなり現実的ではない。
電気分解による方式は高圧ガスを使用しないこと、必要最小限の水素ガスを自由に制御出来るため理想的で安全であるが、イオン交換膜や半透膜の寿命や電極に付着する水酸化物や酸化物の除去について解決しなければならない。
It is not easy to remove these saturated gases from drinking water, and it is possible to remove them by vacuum or by using a gas permeable semipermeable membrane, or by boiling, but the equipment is expensive and large and realistic. is not.
The electrolysis method is ideal and safe because it does not use high-pressure gas and the minimum hydrogen gas can be controlled freely, but the lifetime of ion-exchange membranes and semipermeable membranes, There must be a solution for oxide removal.

このようなことから、本発明では、電極の間に配置するイオン交換膜や半透膜を無くした。その上で、電極間には、水素ガスや酸素ガス、および電解水(飲料水)が自由に移動出来る多孔絶縁板として例えばポリプロピレンで作られたメッシュ(網)等を配置した。   For this reason, in the present invention, the ion exchange membrane and the semipermeable membrane disposed between the electrodes are eliminated. In addition, a mesh (net) made of, for example, polypropylene was disposed between the electrodes as a porous insulating plate from which hydrogen gas, oxygen gas, and electrolyzed water (drinking water) can freely move.

イオン交換膜などの電解質を使用しないと飲料水のイオン伝導度は低く、通常の電圧(約2.7V)では電気分解が起こりにくいため、高電圧DC12〜48Vを加える。この結果、水素ガスと酸素ガスの気泡は非常に微細(数ミクロンから数十ミクロンの気泡)なマイクロバルーンとなるため、飲料水への水素ガスは効率良く溶解される。   If an electrolyte such as an ion exchange membrane is not used, the ionic conductivity of drinking water is low, and electrolysis hardly occurs at a normal voltage (about 2.7 V), so a high voltage of DC 12 to 48 V is applied. As a result, the bubbles of hydrogen gas and oxygen gas become very fine (bubbles of several to several tens of microns), so that the hydrogen gas in the drinking water is efficiently dissolved.

同時に発生する酸素ガスはそのまま飲料水に溶解させても問題ない。
次に、給水する飲料水の量に比例し、溶解する必要最低限の水素ガスのみ発生するようにするためには、給水量からの信号を演算して電気分解する電流を制御することが必要である。さらに本発明の装置内に一定以上遊離した水素ガスが発生すると電気分解を遮断し、ガス逃がし弁を開く安全構造も実施化においては必要である。
There is no problem even if oxygen gas generated at the same time is dissolved in drinking water as it is.
Next, in order to generate only the minimum necessary hydrogen gas to be dissolved in proportion to the amount of drinking water to be supplied, it is necessary to calculate the signal from the amount of water supply and control the electrolysis current It is. Furthermore, a safety structure that shuts off electrolysis and opens a gas relief valve when hydrogen gas liberated above a certain level is generated in the apparatus of the present invention is also necessary in the implementation.

また、電気分解を続けることによって飲料水に含まれる酸化物や水酸化物が電極に付着して電気の流れを悪くするので、極性を反転させることによって付着物が溶解あるいは剥離除去する。この方法として、反転時期を検出するために交流ブリッジ回路(発振機)を電極の表面に取り付けて、抵抗値の上昇を検出し、その信号によって自動的に電極の極性を反転させると共にこれを繰り返すことによって、常に最適な電気分解が持続することが可能となる。
次に、電解電流を制御しても長期間の間に発生する電気分解装置内部や給水管内に残留する水素ガスや酸素ガスが一定の量を越えて水面レベルを押し下げた場合、水面レベルセンサでこれを検出し、電磁式ガス逃がし弁を開いて除去することも実施化では必要である。
Moreover, since the oxide and hydroxide contained in drinking water adhere to an electrode by continuing electrolysis and an electrical flow is made worse, a deposit | attachment melt | dissolves or peels and removes by reversing a polarity. In this method, an AC bridge circuit (oscillator) is attached to the surface of the electrode in order to detect the inversion time, the rise in resistance value is detected, and the polarity of the electrode is automatically inverted by that signal and this is repeated. This makes it possible to always maintain the optimum electrolysis.
Next, if the hydrogen level or oxygen gas remaining in the electrolyzer or water supply pipe that is generated over a long period of time even when the electrolysis current is controlled pushes down the water level beyond a certain amount, the water level sensor It is also necessary in the implementation to detect this and open and remove the electromagnetic gas relief valve.

以下、本発明の実施例を添付図面を参照して説明する。
図1に本発明の全体構成を示す。先ず、水道などからの給水源1から流入した飲料水は、モーター式開閉弁2を経由して給水出口3から各戸へ配水される。ここでモーター開閉弁(B)4とモーター開閉弁(C)5を開いて電気分解槽6へ給水流を起し、しかる後に通電用電極(A)7と通電用電極(B)8へ直流電源から通電する。陽極、陰極の指定は無く最初はどちらでも良い。なお給水出口3から給水消費が無い場合は、水流計(A)15からの信号が停止するため、通電用電極(A)7(B)8への通電は自動的に停止する。
Embodiments of the present invention will be described below with reference to the accompanying drawings.
FIG. 1 shows the overall configuration of the present invention. First, drinking water flowing in from a water supply source 1 from a water supply or the like is distributed to each house from a water supply outlet 3 via a motor type on-off valve 2. Here, the motor type on / off valve (B) 4 and the motor type on / off valve (C) 5 are opened to cause a water supply flow to the electrolysis tank 6, and then the energizing electrode (A) 7 and energizing electrode (B) 8 Energize from a DC power source. There is no designation of the anode and cathode, and either may be used at first. When there is no consumption of water from the water supply outlet 3, since the signal from the water flow meter (A) 15 stops, the energization to the energizing electrodes (A) 7 (B) 8 automatically stops.

やがて電気分解が起こりマイクロバルーン化された水素ガスと酸素ガスを含んだ飲料水は、フィルター9を通って混合器10へ供給され、ここでモーター式開閉弁(A)から供給
された供給水と混合されて給水出口3へ向かう。
混合器10での給水配合は、モーター式開閉弁(A)2とモーター式開閉弁(B)4との加減で任意に調整出来るようにプログラム化されており、通常はモーター式開閉弁(C)5
は開放状態となる。
The drinking water containing hydrogen gas and oxygen gas that have undergone electrolysis and microballoons is supplied to the mixer 10 through the filter 9, where the supply water supplied from the motor type on-off valve (A) After mixing, head to water supply outlet 3.
The blending of water supply in the mixer 10 is programmed so that it can be arbitrarily adjusted by adjusting the motor type on / off valve (A) 2 and motor type on / off valve (B) 4. )Five
Is open.

給水出口10には溶存水素計もしくは酸化還元電位計11を設置し、水質を管理すると同時に通電電流も制御出来るようにしてある。
電気分解槽6はポリプロピレンやポリアセタール、ポリエチレンテレフタレートなどで
作られた図2(A)に示すメッシュ状の電極用セパレーター12とチタニウムに白金をメッ
キした金網状電極(A)13と金網状電極(B)14から構成されている。なお、このメッシュ状は、図2(B)に示すようなハニカムあるいは(C)に示すような多孔板でも良く、
孔の形状は問わない。
A dissolved hydrogen meter or oxidation-reduction potentiometer 11 is installed at the feed water outlet 10 so that the current can be controlled at the same time as managing the water quality.
The electrolysis tank 6 is made of polypropylene, polyacetal, polyethylene terephthalate, etc. The mesh electrode separator 12 shown in FIG. ) It consists of 14. The mesh shape may be a honeycomb as shown in FIG. 2 (B) or a perforated plate as shown in (C).
The shape of the hole does not matter.

電気分解する電流は水流計(A)15と水流計(B)16および溶存水素計又は酸化還元電位計11からの信号に応じてマイクロコンピューターによって自動的に制御される。
17は電気分解槽6から発生する過剰の水素ガスや酸素ガス等を放出するガス逃がし弁、18は混合器10に蓄積された水素ガス、酸素ガス、および給水に含まれる窒素ガスなどを電
磁式逃がし弁19から放出させるために設けられた水面レベルセンサである。
The electrolysis current is automatically controlled by a microcomputer in response to signals from the water flow meter (A) 15 and the water flow meter (B) 16 and the dissolved hydrogen meter or redox potential meter 11.
17 is a gas relief valve that releases excess hydrogen gas, oxygen gas, etc. generated from the electrolysis tank 6, 18 is an electromagnetic type that stores hydrogen gas, oxygen gas, and nitrogen gas contained in the water supply, etc. accumulated in the mixer 10 This is a water level sensor provided for discharging from the relief valve 19.

20は圧力計、20と21は電気分解槽6を洗浄するための洗浄用の手動弁、22は漏電対策のアース(接地)である。
図3は電源と制御システムを示したものである。
23,24はAC100VあるいはAC200Vの商用電源、25は直流電源装置で陽極26と陰極27
から出力され、極性切替回路28を通して通電ケーブル32,33により通電用電極(A)7と通電用電極(B)8へ電力は供給される。
20 is a pressure gauge, 20 and 21 are cleaning manual valves for cleaning the electrolysis tank 6, and 22 is a ground for earth leakage countermeasures.
FIG. 3 shows a power supply and a control system.
23 and 24 are AC100V or AC200V commercial power supply, 25 is a DC power supply, and anode 26 and cathode 27
The power is supplied to the energizing electrode (A) 7 and the energizing electrode (B) 8 through the polarity switching circuit 28 by the energizing cables 32 and 33.

通電ケーブルの手前にはコンデンサー29,30を通じて電気分解用電極すなわちメッシュ
状電極13,14に電着する不純物を抵抗の変化と捕らえる電極の抵抗値計測用交流ブリッジ31が配置され、その信号34によって極性切替回路が作動し、極性は反転するので電着する
不純物は剥離、溶解する。
剥離した不純物はフィルター9に集められ、随時清掃交換される。
An AC bridge 31 for measuring the resistance value of the electrode that catches impurities that are electrodeposited on the electrode for electrolysis, that is, the mesh electrodes 13 and 14 through the capacitors 29 and 30 as a change in resistance, is disposed in front of the energizing cable. Since the polarity switching circuit is activated and the polarity is reversed, the electrodeposited impurities are peeled off and dissolved.
The separated impurities are collected in the filter 9 and are cleaned and replaced as needed.

水流計(A)15、水流計(B)16、水面レベルセンサ18、溶存水素計又は酸化還元電位計11からの各種センサからの信号36はマイクロコンピューターと電流の比例制御35によ得られた電気信号は37を経由し直流電源25を制御する。
38は電気分解の条件を手動で設定するための制御板で39を経由して設定される。
Signal 36 from various sensors from water flow meter (A) 15, water flow meter (B) 16, water level sensor 18, dissolved hydrogen meter or redox potentiometer 11 was obtained by microcomputer and proportional control 35 of current. The electrical signal controls the DC power supply 25 via 37.
Reference numeral 38 denotes a control plate for manually setting electrolysis conditions, which is set via 39.

本発明に係る水素水製造装置の説明図。Explanatory drawing of the hydrogenous water manufacturing apparatus which concerns on this invention. (A)はメッシュ状電極及びセパレータの正面図、(B)はハニカム状電極及びセパレータの正面図、(C)は円孔板から成る電極及びセパレータの正面図。(A) is a front view of a mesh electrode and a separator, (B) is a front view of a honeycomb electrode and a separator, and (C) is a front view of an electrode and a separator made of a circular hole plate. 電源と制御装置(図略)の説明図。Explanatory drawing of a power supply and a control apparatus (not shown).

1 給水源
2 開閉弁
3 給水出口
4、5 モーター式開閉弁
6 電気分解槽
7、8 通電用電極
9 フイルター
10 混合器
11 溶存水素計(酸化還元電位計)
12 セパレータ
13 陽極
14 陰極
15、16 水流計
17 自動ガス逃し弁
18 水面レベルセンサ
19 電動ガス逃し弁
20 圧力計
21 手動バルブ
22 アース
DESCRIPTION OF SYMBOLS 1 Water supply source 2 On-off valve 3 Water supply outlet 4, 5 motor-type on-off valve 6 Electrolysis tank 7, 8 Electrode 9 Filter 10 Mixer 11 Dissolved hydrogen meter (redox potential meter)
12 Separator 13 Anode 14 Cathode 15 and 16 Water Flow Meter 17 Automatic Gas Relief Valve 18 Water Level Sensor 19 Electric Gas Relief Valve 20 Pressure Gauge 21 Manual Valve 22 Ground

Claims (1)

a.水素水製造用のガス逃がし弁17を設けた電気分解槽内に多数の透孔を形成した陽極13と陰極14を組み込むと共にこの陽極13と陰極14間に多数の透孔を形成し且つ電気絶縁性と耐水、耐酸化性を有するセパレータ12を配置したこと、
b.前記電気分解槽6内底部と給水源1間をモーター式開閉弁4と水流計15を経由して結んだこと、
c.前記電気分解槽6の上部に過剰の水素ガスと酸素ガスを放出するガス逃がし弁17を取り付けると共に電気分解槽6と給水出口3間に電磁式逃がし弁19付の混合器10を取り付け、この混合器10と電気分解槽6を結ぶ水路にはモーター式開閉弁5を取り付けたこと、
d.前記混合器10内に水面レベルセンサ18を取り付け、この水面レベルセンサ18で検出される水面レベルの変化から混合器10内に蓄積された水素ガス及び酸素ガス及び給水に含まれる窒素ガス量を水位の変化から検出し、これに応じて前記電磁式逃がし弁19を制御するように構成したこと、
e.前記水流計15で水流が検出されないときには陽極13と陰極14へ通電する通電用電極7、8への通電を停止する制御及び電極7、8間の抵抗値の変化を検出し、この抵抗値が設定値となったときに極性の反転を制御し、前記混合器6内へモーター式開閉弁2を制御して給水源1から給水を行うことにより、電解水との混合比を制御し、更に給水出口3に酸化還元電位計11を設置して電極7、8への通電電流を制御するマイクロコンピューターを設けたこと、
f.を特徴とする水素水給水装置。
a. An anode 13 and a cathode 14 having a large number of through holes are incorporated in an electrolysis tank 6 provided with a gas relief valve 17 for producing hydrogen water, and a number of through holes are formed between the anode 13 and the cathode 14 and are electrically Arranging the separator 12 having insulation, water resistance and oxidation resistance ,
b. Connecting the bottom of the electrolysis tank 6 and the water supply source 1 via a motor-type on-off valve 4 and a water flow meter 15;
c. A gas relief valve 17 for releasing excess hydrogen gas and oxygen gas is attached to the upper part of the electrolysis tank 6 and a mixer 10 with an electromagnetic relief valve 19 is attached between the electrolysis tank 6 and the feed water outlet 3. A motor type on-off valve 5 is attached to the water channel connecting the vessel 10 and the electrolysis tank 6;
d. A water level sensor 18 is installed in the mixer 10, and the hydrogen gas and oxygen gas accumulated in the mixer 10 from the change in the water level detected by the water level sensor 18 and the amount of nitrogen gas contained in the water supply are changed to the water level. That is configured to control the electromagnetic relief valve 19 in accordance with
e. When the water flow is not detected by the water flow meter 15, control for stopping energization of the energizing electrodes 7, 8 energizing the anode 13 and the cathode 14 and a change in resistance value between the electrodes 7, 8 are detected. When the set value is reached, the reversal of the polarity is controlled, the motor type on-off valve 2 is controlled into the mixer 6 to supply water from the water supply source 1, thereby controlling the mixing ratio with the electrolyzed water, The installation of a redox potentiometer 11 at the water supply outlet 3 to provide a microcomputer for controlling the current applied to the electrodes 7 and 8;
f. Hydrogen water supply device characterized by.
JP2003331212A 2003-09-24 2003-09-24 Hydrogen water supply equipment Expired - Lifetime JP4399221B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003331212A JP4399221B2 (en) 2003-09-24 2003-09-24 Hydrogen water supply equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003331212A JP4399221B2 (en) 2003-09-24 2003-09-24 Hydrogen water supply equipment

Publications (2)

Publication Number Publication Date
JP2005105289A JP2005105289A (en) 2005-04-21
JP4399221B2 true JP4399221B2 (en) 2010-01-13

Family

ID=34532163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003331212A Expired - Lifetime JP4399221B2 (en) 2003-09-24 2003-09-24 Hydrogen water supply equipment

Country Status (1)

Country Link
JP (1) JP4399221B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101777452B1 (en) * 2015-03-26 2017-09-26 강성만 Straight Male Hydrogen Reduction of Water Production Device and Manufacturing Method thereof and thereof use

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007038149A (en) * 2005-08-03 2007-02-15 Fuji Electric Retail Systems Co Ltd Apparatus for forming micro bubble
JP4721921B2 (en) * 2006-01-30 2011-07-13 三洋電機株式会社 Air sanitizer
KR100801166B1 (en) 2006-05-25 2008-02-11 주식회사 디오이에스 Pipe type reactor for the use of electrolysis
JP4744381B2 (en) * 2006-07-20 2011-08-10 三洋電機株式会社 Air sanitizer
JP4753824B2 (en) * 2006-09-26 2011-08-24 三洋電機株式会社 Air sanitizer
JP5320000B2 (en) 2008-05-27 2013-10-16 パナソニック株式会社 Functional water atomizer
EP2338610A4 (en) 2008-09-25 2013-02-20 Panasonic Corp Reduced water mist generating device and electrical equipment
JP5324177B2 (en) * 2008-09-30 2013-10-23 パナソニック株式会社 Reduced water mist generator, reduced water mist generating method
JP5878300B2 (en) * 2011-05-11 2016-03-08 株式会社スイソサム Hydrogen water supply device
CN102603036B (en) * 2012-03-23 2014-01-22 烟台市马可波罗电子科技有限公司 Device for manufacturing hydrogen water
JP6324659B2 (en) * 2013-02-08 2018-05-16 幸信 森 Hydrogen water production apparatus and hydrogen water production method
JP6439908B2 (en) * 2014-02-07 2018-12-19 パナソニックIpマネジメント株式会社 Microbial killing device in ballast water
KR101647304B1 (en) * 2015-04-28 2016-08-10 강구일 High-purity hydrogen water purifying apparatus
JP6297010B2 (en) * 2015-07-10 2018-03-20 株式会社ドクターズチョイス Hydrogen water server
CN106995927A (en) * 2016-01-25 2017-08-01 吾土产业株式会社 Skin rejuvenation equipment
JP6232087B2 (en) * 2016-02-05 2017-11-15 株式会社日本トリム Electrolyzed water generating apparatus and electrolyzed water server equipped with the same
CN106086927B (en) * 2016-08-11 2018-06-01 李志林 A kind of hydrogen-rich food draft machine
CA3053495A1 (en) * 2017-03-06 2018-09-13 Evoqua Water Technologies Llc Pulsed power supply for sustainable redox agent supply for hydrogen abatement during electrochemical hypochlorite generation
CN109354132A (en) * 2018-12-03 2019-02-19 刘新志 Pure apparatus for electrolyzing and electrolysis barrel water drinking machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101777452B1 (en) * 2015-03-26 2017-09-26 강성만 Straight Male Hydrogen Reduction of Water Production Device and Manufacturing Method thereof and thereof use

Also Published As

Publication number Publication date
JP2005105289A (en) 2005-04-21

Similar Documents

Publication Publication Date Title
JP4399221B2 (en) Hydrogen water supply equipment
JP3716042B2 (en) Acid water production method and electrolytic cell
RU2164219C2 (en) Method and plant for electrochemical treatment of water for its softening
KR101831743B1 (en) Electrolysis device and apparatus for producing electrolyzed ozonated water
JP4627337B2 (en) Sterilization method and sterilization apparatus
JPH09262583A (en) Preparation of acidic water and alkaline water
JP2012081448A (en) Sterilized water making apparatus, and method for making sterilized water
JP2011131118A (en) Method and apparatus for preparing spray water for plant
JP3753987B2 (en) Reduced water generator
KR100533706B1 (en) manufacturing apparatus of electrolyzed-reduced water
JP4929279B2 (en) Electrolytic hydrogen water generator
KR102026420B1 (en) Water ionizer
JPH10328667A (en) Method for making sterilized water
JP2008279408A (en) Water treatment apparatus and water treatment system
JP4353159B2 (en) Electrolyzed water generator
JP2000202449A (en) Alkaline ionized water producer
JP3056511B2 (en) Treatment water treatment equipment
JP2007090147A (en) Electrolytic water generator
JP4181170B2 (en) Drinking electrolyzed water and method for producing the same
EP2383229A1 (en) Adaptable electrode holder for electrolysis
JP3014427B2 (en) Treatment of treated water
JP2605642B2 (en) Electrolytic ionic water generating apparatus and electrolytic ionic water generating method
JP3840710B2 (en) ELECTROLYTIC DEVICE AND ION WATER GENERATOR HAVING THE SAME
JPH11221566A (en) Production of electrolytic water
JPH09248574A (en) Alkali ion water production device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090702

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090828

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090924

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091026

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121030

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4399221

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121030

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121030

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121030

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131030

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term