JP4394096B2 - Discharge lamp - Google Patents

Discharge lamp Download PDF

Info

Publication number
JP4394096B2
JP4394096B2 JP2006200854A JP2006200854A JP4394096B2 JP 4394096 B2 JP4394096 B2 JP 4394096B2 JP 2006200854 A JP2006200854 A JP 2006200854A JP 2006200854 A JP2006200854 A JP 2006200854A JP 4394096 B2 JP4394096 B2 JP 4394096B2
Authority
JP
Japan
Prior art keywords
electrode
discharge
lamp
discharge tube
discharge lamp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006200854A
Other languages
Japanese (ja)
Other versions
JP2008027802A (en
Inventor
浩一 新井
進 北川
博美 尾形
Original Assignee
浩一 新井
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浩一 新井 filed Critical 浩一 新井
Priority to JP2006200854A priority Critical patent/JP4394096B2/en
Publication of JP2008027802A publication Critical patent/JP2008027802A/en
Application granted granted Critical
Publication of JP4394096B2 publication Critical patent/JP4394096B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Discharge Lamp (AREA)
  • Vessels And Coating Films For Discharge Lamps (AREA)

Description

本発明は、照明用蛍光灯、殺菌灯、オゾン発生管、紫外線灯、バックライト管、ハロゲンエキシマランプ等の放電灯に関する。   The present invention relates to a discharge lamp such as a fluorescent lamp for illumination, a germicidal lamp, an ozone generating tube, an ultraviolet lamp, a backlight tube, and a halogen excimer lamp.

従来の放電灯においては、加熱された電極から蒸発した電極物質が放電管のガラス壁に触れると冷えて付着し(結露と同じ現象である。)、電極付近のガラス壁が黒くなって(黒化して)、比較的短時間で明るさが失われて、寿命が尽きるという問題があった。このような問題を解決するため、下記特許文献1では、図6に示したような放電灯を開示している。
この放電灯では、放電管1内に小さなノズル孔7を有するノズル部6を設け、このノズル部6内の電極空間5に電極13を配置している。
In the conventional discharge lamp, the electrode material evaporated from the heated electrode cools and adheres when it touches the glass wall of the discharge tube (the same phenomenon as condensation), and the glass wall near the electrode becomes black (black). There is a problem that the brightness is lost in a relatively short time and the lifetime is exhausted. In order to solve such a problem, the following Patent Document 1 discloses a discharge lamp as shown in FIG.
In this discharge lamp, a nozzle portion 6 having a small nozzle hole 7 is provided in the discharge tube 1, and an electrode 13 is disposed in the electrode space 5 in the nozzle portion 6.

このような放電灯を放電させると、電極13からの蒸発した電極物質は、ノズル部6内の電極空間5内に閉じ込められる。電極物質が、ノズル孔7から出ようとすると、ノズル部6内壁に触れ温度が下がり、凝結してノズル部6内壁に付着する。このため、電極物質が放電管1の大部分を占め明るく発光している陽光柱部4にまで侵入することがない。したがって、この放電灯は、放電管1のガラス壁を広く黒化することがなく、長時間高効率で発光でき長寿命になる。   When such a discharge lamp is discharged, the electrode material evaporated from the electrode 13 is confined in the electrode space 5 in the nozzle portion 6. When the electrode material tries to come out of the nozzle hole 7, the temperature touches the inner wall of the nozzle part 6, the temperature decreases, and it condenses and adheres to the inner wall of the nozzle part 6. For this reason, the electrode material occupies most of the discharge tube 1 and does not penetrate into the positive column portion 4 that emits bright light. Therefore, this discharge lamp does not blacken the glass wall of the discharge tube 1 widely, can emit light with high efficiency for a long time, and has a long life.

特許第3586836号公報Japanese Patent No. 3586836

ところで、前記特許文献1に開示された放電灯は、放電管1のガラス壁に電極13からの蒸発した電極物質が付着して黒化することは防止できるが、放電管1内部に小さなノズル孔7を有するノズル部6を形成しなくてはならず、製造が難しいという問題があった。   By the way, the discharge lamp disclosed in Patent Document 1 can prevent the electrode material evaporated from the electrode 13 from adhering to the glass wall of the discharge tube 1 and blackening, but the discharge tube 1 has a small nozzle hole. 7 has to be formed, and there is a problem that it is difficult to manufacture.

本発明は、前記問題に鑑みてなされたものであって、放電管のガラス壁が電極から蒸発した電極物質で黒化しないようにしながら、低コストで簡単に製造できる放電灯を提供することを課題とする。   The present invention has been made in view of the above problems, and provides a discharge lamp that can be easily manufactured at low cost while preventing the glass wall of the discharge tube from being blackened by the electrode material evaporated from the electrode. Let it be an issue.

前記課題を解決するため、請求項1に係る発明の放電灯は、放電管の両端付近に多孔質ガラスで閉鎖した電極空間を画定し、該電極空間内に電極を配置し、前記放電管内にはハロゲンガスを封入した。 In order to solve the above-described problem, the discharge lamp according to the first aspect of the present invention defines an electrode space closed with porous glass near both ends of the discharge tube, and an electrode is disposed in the electrode space , Filled with halogen gas .

請求項1に係る発明によれば、この放電灯を放電させると、電極から蒸発した電極物質は、放電管の両端付近に多孔質ガラスで閉鎖した電極空間内に閉じ込められ、陽光柱部が位置する放電管の発光部にまで侵入することが防止される。このため、この放電灯は、電極空間周囲のガラス壁が黒化するだけで、発光部周囲のガラス壁を黒化しないので、長時間高効率に発光することができる。しかも、従来のノズル部を形成したものに比べて、低コストで簡単に製造でき、製造の自動化も容易である。   According to the first aspect of the invention, when the discharge lamp is discharged, the electrode material evaporated from the electrode is confined in the electrode space closed with porous glass near both ends of the discharge tube, and the positive column portion is located. Intrusion into the light emitting part of the discharge tube is prevented. For this reason, this discharge lamp can emit light efficiently for a long time because the glass wall around the electrode space is blackened only, and the glass wall around the light emitting portion is not blackened. In addition, it can be easily manufactured at a low cost as compared with a conventional nozzle portion, and the manufacturing is easy to automate.

さらに、多孔質ガラスで閉鎖された電極空間内を放電に伴う発熱で高温にする事により、この電極空間内では、電極からの蒸発した電極物質がハロゲンガスと化合してハロゲン化物となり、このハロゲン化物がガラス壁に触れても該ガラス管壁に付着せず、対流によって電極付近に戻ってきたとき、電極物質とハロゲンガスに熱分解し、電極物質が再び電極に付着する。これにより、前記電極空間付近も黒化することもなくなり、寿命末期まで長時間高効率に発光することができる。 Furthermore, the electrode space closed by the porous glass is heated to a high temperature by the heat generated by the discharge, and in this electrode space, the electrode material evaporated from the electrode combines with the halogen gas to become a halide. Even if a chemical substance touches the glass wall, it does not adhere to the glass tube wall, and when it returns to the vicinity of the electrode by convection, it thermally decomposes into an electrode material and a halogen gas, and the electrode material adheres to the electrode again. Thereby, the vicinity of the electrode space is not blackened, and light can be emitted with high efficiency for a long time until the end of the lifetime.

以下、図面に基づいて、本発明の実施例について説明する。図1〜図4は、本発明を一般の放電灯に適用した第1実施例を説明する図である。   Embodiments of the present invention will be described below with reference to the drawings. 1 to 4 are diagrams for explaining a first embodiment in which the present invention is applied to a general discharge lamp.

この放電灯は、直線状の放電管1を有し、放電管1の両端付近に多孔質ガラス20で閉鎖した電極空間22を画定し、この電極空間22内に電極13を配置している。多孔質ガラス20は、封入ガスが自由に通り抜けられる程度の多数の小孔を有するガラスである。多孔質ガラス20の形状は、図2の(A)(B)(C)に示したように、それぞれ円盤形、半球形、球形等の適宜形状としてもよい。多孔質ガラス20は、接着剤等の適宜手段によって放電管1内に固定する。   This discharge lamp has a linear discharge tube 1, an electrode space 22 closed with a porous glass 20 is defined near both ends of the discharge tube 1, and an electrode 13 is disposed in the electrode space 22. The porous glass 20 is a glass having a large number of small holes that allow the sealed gas to pass through freely. The shape of the porous glass 20 may be an appropriate shape such as a disc shape, a hemispherical shape, a spherical shape, etc., as shown in FIGS. The porous glass 20 is fixed in the discharge tube 1 by appropriate means such as an adhesive.

これ以外は、従来の放電灯と全く同じである。すなわち、放電管1の両端部24には端子26が固定され、この端子26と電極13とが導体28で接続されている。もちろん、放電管1は、直線状をしている必要はなく、図3の(A)に正面図を、同(B)に側面図を示したようなU字形状の他、円環状等、適宜形状でもよい。   The rest is exactly the same as the conventional discharge lamp. That is, a terminal 26 is fixed to both ends 24 of the discharge tube 1, and the terminal 26 and the electrode 13 are connected by a conductor 28. Of course, the discharge tube 1 does not need to have a straight line shape. In addition to the U-shape as shown in FIG. 3A, the front view is shown in FIG. An appropriate shape may be used.

本実施例によれば、この放電灯を放電させると、電極13からの蒸発した電極物質は、電極空間22内に閉じ込められ、放電管1のガラス壁に触れると冷えて凝結してガラス壁に付着する。電極物質は、他孔質ガラス20の小孔を通過しようとしても、小孔の内壁に触れると冷えて凝結して、小孔の内壁に付着し、陽光柱部4が形成される発光部にまで侵入することができない。しかし、電子およびイオンは多孔質ガラス20を自在に通過して陽光柱部4に出入り可能で、高効率に発光し続ける事が出来る。このため、この放電灯は、電極空間22周囲のガラス壁が黒くなるだけで、図4に示したように、陽光柱部4が形成される発光部周囲のガラス壁を黒化することがないので、長時間高効率に発光することができ長寿命となる。本実施例では、電極空間22を極力短くして、陽光柱部4が形成される発光部ができるだけ黒化しないように、多孔質ガラス22をできるだけ電極13に近づけることが望ましい。   According to this embodiment, when this discharge lamp is discharged, the electrode material evaporated from the electrode 13 is confined in the electrode space 22, and when it touches the glass wall of the discharge tube 1, it cools and condenses on the glass wall. Adhere to. Even if the electrode material tries to pass through the small holes of the other porous glass 20, when it touches the inner wall of the small holes, it cools and condenses, adheres to the inner wall of the small holes, and forms the positive column portion 4 in the light emitting portion. Can't penetrate. However, electrons and ions can freely pass through the porous glass 20 and enter and leave the positive column 4 and can continue to emit light with high efficiency. For this reason, in this discharge lamp, only the glass wall around the electrode space 22 becomes black, and as shown in FIG. 4, the glass wall around the light emitting part where the positive column part 4 is formed is not blackened. Therefore, it can emit light with high efficiency for a long time and has a long life. In the present embodiment, it is desirable to make the electrode space 22 as short as possible so that the porous glass 22 is as close as possible to the electrode 13 so that the light emitting portion where the positive column portion 4 is formed is not blacked as much as possible.

次に、図5に基づいて、本発明をハロゲンエキシマランプに適用した第2実施例について説明する。ハロゲンエキシマランプとは、放電管1内にハロゲンガスh及び不活性ガスを含む無水銀の混合ガスを封入した放電灯である。これ以外は、前記第1実施例と同じである。   Next, a second embodiment in which the present invention is applied to a halogen excimer lamp will be described with reference to FIG. The halogen excimer lamp is a discharge lamp in which a mixed gas of anhydrous silver containing a halogen gas h and an inert gas is sealed in the discharge tube 1. Other than this, the second embodiment is the same as the first embodiment.

本実施例の場合は、多孔質ガラス20で画定された電極空間22内を放電に伴う発熱を閉じこめて高温にする事により、この電極空間22内でハロゲンサイクルを発生させている。ハロゲンサイクルとは、電極13からの蒸発した電極物質がハロゲンガスと化合してハロゲン化物となり、このハロゲン化物が対流によって電極13付近に戻ってきたとき、電極物質とハロゲンガスに熱分解し、電極物質が再び電極に付着することである。   In the case of the present embodiment, the halogen cycle is generated in the electrode space 22 by confining the heat generated by the discharge in the electrode space 22 defined by the porous glass 20 to a high temperature. In the halogen cycle, the evaporated electrode material from the electrode 13 combines with the halogen gas to become a halide, and when this halide returns to the vicinity of the electrode 13 by convection, it is thermally decomposed into the electrode material and the halogen gas, The material is again attached to the electrode.

通常、ハロゲンサイクルに使われる沃素I、臭素Br、塩素Clが、蒸発した電極物質Wと反応するためには、高い温度が必要とされる。たとえば臭素Brを使用したハロゲンランプの場合、消費電力1W当たり0.1ml以下の容積に入れなければ、ハロゲンサイクルを起こす管壁温度は望めない。一例を挙げると、ランプ内で蒸発した電極物質Wと臭素Brが反応して臭化物WBrになるが、この臭化WBrが対流により低温のガラス壁に接した時、そのガラス壁の温度が250℃以上有れば管壁に付着せず、そのまま又対流により電極13付近に運ばれる。臭化物WBrの熱分解温度は電極物質Wの臭化温度より遙かに高いため、熱分解は電極13周辺においてしか起こらず、熱分解した電極物質Wの大半は直ぐ近くに存在する電極13の低温部に付着する。   Usually, high temperatures are required for the iodine I, bromine Br, and chlorine Cl used in the halogen cycle to react with the evaporated electrode material W. For example, in the case of a halogen lamp using bromine Br, the tube wall temperature causing the halogen cycle cannot be expected unless the volume is less than 0.1 ml per 1 W of power consumption. For example, the electrode material W evaporated in the lamp and bromine Br react to form bromide WBr. When this bromide WBr comes into contact with a low temperature glass wall by convection, the temperature of the glass wall is 250 ° C. If it exists, it does not adhere to the tube wall and is carried to the vicinity of the electrode 13 as it is or by convection. Since the thermal decomposition temperature of bromide WBr is much higher than the bromide temperature of the electrode material W, the thermal decomposition occurs only in the vicinity of the electrode 13, and most of the pyrolyzed electrode material W is at a low temperature of the electrode 13 present immediately nearby. Adhere to the part.

このようなハロゲンサイクルが生じると、放電管1のガラス壁が電極物質の付着で黒化することが防止される。特に、本実施例では、陽光柱部4が位置する発光部ばかりでなく、電極空間22周囲のガラス壁が電極物質で黒化することも防止できる。これに対して、従来のハロゲンエキシマランプでは、ランプ全体のガラス管壁を高温にしなければならないが、これはランプ大きさと消費電力の問題で不可能であった。   When such a halogen cycle occurs, the glass wall of the discharge tube 1 is prevented from being blackened due to the adhesion of the electrode material. In particular, in this embodiment, it is possible to prevent not only the light emitting portion where the positive column portion 4 is located but also the glass wall around the electrode space 22 from being blackened by the electrode material. On the other hand, in the conventional halogen excimer lamp, the glass tube wall of the entire lamp has to be heated, but this is impossible due to the problem of lamp size and power consumption.

なお、このハロゲンエキシマランプでは、より反応性の強い塩素Cl、を用いると、ガラス管壁がさらに低温でもハロゲンサイクルを起こす事が出来る。   In this halogen excimer lamp, when chlorine, which is more reactive, is used, a halogen cycle can be caused even at a lower temperature on the glass tube wall.

以上のことから、このハロゲンエキシマランプにおいては電極空間22を出来るだけ小さくする事が必要で、封入したハロゲンガスの種類により変わるが、概ね、消費電力1W当たり0.01〜1.0mlの範囲内が望まれる。   From the above, in this halogen excimer lamp, it is necessary to make the electrode space 22 as small as possible, and it varies depending on the type of halogen gas enclosed, but is generally desired to be within a range of 0.01 to 1.0 ml per 1 W of power consumption. .

次に、本発明を紫外線ランプに適用した第3実施例について説明する。紫外線ランプは特に紫外線を多く発生させる放電管であり、その放電管には紫外線をよく透す石英ガラスが用いられる。例えば、水銀が持つ主波長の一つである184.9nmの紫外線を受けると酸素分子がオゾンになる。この非常に強いエネルギ−を持つ短波長の紫外線から石英ガラスを守るため、放電管の内部にはアルミナ(Al)の保護膜を形成する。 Next, a third embodiment in which the present invention is applied to an ultraviolet lamp will be described. The ultraviolet lamp is a discharge tube that generates particularly a large amount of ultraviolet rays, and quartz glass that transmits ultraviolet rays well is used for the discharge tube. For example, when it receives 184.9nm ultraviolet light, one of the main wavelengths of mercury, oxygen molecules become ozone. In order to protect the quartz glass from ultraviolet rays having a very strong energy and short wavelengths, a protective film of alumina (Al 2 O 3 ) is formed inside the discharge tube.

石英ガラス管内にアルミナの保護膜を形成する1例として、次のようにする。まず、水酸化アルミニウム5.2%、プロピオン酸10.4%、アセチルアセトン4.1%、エチルアルコール及びイソプロピルアルコール70.0%を含む保護膜生成溶液を作る。次に、上下が開放している石英ガラス管の下端を保護膜生成溶液に浸ける。次に、石英ガラス管の上端から真空ポンプで脱気し、保護膜生成溶液を上昇させる。規定面まで保護膜生成溶液を上昇させた後は、真空ポンプによる脱気を止めて、石英ガラス管の上端から空気を進入させ、保護膜生成溶液を降下させる。この際の、保護膜生成溶液の降下速度で保護膜の厚さが決まるので、その降下速度は必ず10〜40cm/秒の範囲にする。室温にて30分乾燥させた後に、500〜600°Cの炉内で焼き付け、アルミナの保護膜を完成させる。   An example of forming an alumina protective film in a quartz glass tube is as follows. First, a protective film forming solution containing 5.2% aluminum hydroxide, 10.4% propionic acid, 4.1% acetylacetone, 70.0% ethyl alcohol and isopropyl alcohol is prepared. Next, the lower end of the quartz glass tube whose top and bottom are open is immersed in the protective film forming solution. Next, it deaerates from the upper end of a quartz glass tube with a vacuum pump, and a protective film production | generation solution is raised. After the protective film generating solution is raised to the specified surface, deaeration by the vacuum pump is stopped, air is introduced from the upper end of the quartz glass tube, and the protective film generating solution is lowered. At this time, since the thickness of the protective film is determined by the descending speed of the protective film forming solution, the descending speed is always in the range of 10 to 40 cm / second. After drying at room temperature for 30 minutes, baking is performed in a furnace at 500 to 600 ° C. to complete an alumina protective film.

また、本実施例では、放電管内には従来のアルゴンArガスと水銀Hgガスを0.3%ほど封入する他に、塩化水素HClガス又は沃化水素HIガスを0.01%〜0.1%ほど封入し、六硼化ガドリニウムGdB又は六硼化ランタンLaBの電極を備える。これらのこと以外は、前記第1実施例と同じである。 In this embodiment, the argon arc gas and mercury Hg gas of about 0.3% are sealed in the discharge tube, and hydrogen chloride HCl gas or hydrogen iodide HI gas is added in an amount of 0.01% to 0.1%. %, And an electrode of gadolinium hexaboride GdB 6 or lanthanum hexaboride LaB 6 is provided. Except for these, the second embodiment is the same as the first embodiment.

本実施例によれば、放電管がアルミナの保護膜で短波長紫外線から守られるので、いっそうの長寿命化が図れる。   According to the present embodiment, since the discharge tube is protected from the short wavelength ultraviolet rays by the protective film made of alumina, the life can be further increased.

また、本実施例によれば、塩化水素ガス又は沃化水素ガスが赤外線スペクトルを発生するので、放電管内が速く加熱され、従来の紫外線ランプより短時間で安定した放電電流に達して安定な発光に至る。これにより、従来の紫外線ランプよりも省電力を実現できる。ただし、塩化水素ガス又は沃化水素ガスを入れすぎると、放電電圧が高くなって不経済である。速やかに所定の放電電流に達するようにするには、電極面積を従来の50%〜75%ほどに小さくし、放電管内圧を25〜35mmHgと従来よりも低くすることが望ましい。   In addition, according to the present embodiment, hydrogen chloride gas or hydrogen iodide gas generates an infrared spectrum, so that the inside of the discharge tube is heated faster and reaches a stable discharge current in a shorter time than a conventional ultraviolet lamp, and stable light emission. To. Thereby, power saving can be realized as compared with the conventional ultraviolet lamp. However, too much hydrogen chloride gas or hydrogen iodide gas is uneconomical because the discharge voltage increases. In order to quickly reach a predetermined discharge current, it is desirable to reduce the electrode area to about 50% to 75% of the conventional one and to reduce the internal pressure of the discharge tube to 25 to 35 mmHg.

さらに、本実施例によれば、六硼化ガドリニウム又は六硼化ランタンの電極が従来のタングステンの電極よりも塩化水素ガス又は沃化水素ガスに冒され難いので、放電管内に塩化水素ガス又は沃化水素ガスを封入しながら、放電灯を長寿命化させることができる。   Furthermore, according to the present embodiment, the gadolinium hexaboride or lanthanum hexaboride electrode is less susceptible to hydrogen chloride gas or hydrogen iodide gas than the conventional tungsten electrode. The life of the discharge lamp can be extended while enclosing the hydrogen fluoride gas.

もちろん、本実施例は、紫外線ランプだけでなく、放電管一般に広く実施できるものである。   Of course, this embodiment can be widely implemented not only for ultraviolet lamps but also for general discharge tubes.

本発明の第1実施例に係る放電灯を説明する図である。It is a figure explaining the discharge lamp which concerns on 1st Example of this invention. 前記放電灯に用いられる多孔質ガラスの形状を説明する図である。It is a figure explaining the shape of the porous glass used for the said discharge lamp. 前記放電灯に用いられる放電管の別の形状を説明する図である。It is a figure explaining another shape of the discharge tube used for the said discharge lamp. 本発明の第1実施例に係る放電灯の効果を説明する図である。It is a figure explaining the effect of the discharge lamp which concerns on 1st Example of this invention. 本発明の第2実施例に係る放電灯を説明する図である。It is a figure explaining the discharge lamp which concerns on 2nd Example of this invention. 放電管の黒化を防止した従来の放電灯を説明する図である。It is a figure explaining the conventional discharge lamp which prevented blackening of the discharge tube.

符号の説明Explanation of symbols

1 放電管
13 電極
20 多孔質ガラス
22 電極空間
DESCRIPTION OF SYMBOLS 1 Discharge tube 13 Electrode 20 Porous glass 22 Electrode space

Claims (1)

放電管の両端付近に多孔質ガラスで閉鎖した電極空間を画定し、該電極空間内に電極を配置し、前記放電管内にはハロゲンガスを封入した放電灯。 A discharge lamp in which an electrode space closed with porous glass is defined near both ends of a discharge tube, electrodes are arranged in the electrode space, and halogen gas is sealed in the discharge tube.
JP2006200854A 2006-07-24 2006-07-24 Discharge lamp Expired - Fee Related JP4394096B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006200854A JP4394096B2 (en) 2006-07-24 2006-07-24 Discharge lamp

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006200854A JP4394096B2 (en) 2006-07-24 2006-07-24 Discharge lamp

Publications (2)

Publication Number Publication Date
JP2008027802A JP2008027802A (en) 2008-02-07
JP4394096B2 true JP4394096B2 (en) 2010-01-06

Family

ID=39118214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006200854A Expired - Fee Related JP4394096B2 (en) 2006-07-24 2006-07-24 Discharge lamp

Country Status (1)

Country Link
JP (1) JP4394096B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5526724B2 (en) * 2009-11-17 2014-06-18 ウシオ電機株式会社 Discharge lamp
JP7206810B2 (en) * 2018-10-30 2023-01-18 ウシオ電機株式会社 gas processor

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5750761A (en) * 1980-09-10 1982-03-25 Matsushita Electric Works Ltd Fluorescent lamp
JPS63153467U (en) * 1987-03-30 1988-10-07
JPH031436A (en) * 1988-10-04 1991-01-08 Minoru Obara High efficiency excimer discharge lamp
JPH06310096A (en) * 1993-04-27 1994-11-04 Hitachi Ltd Low-pressure mercury vapor lamp device
JPH1021873A (en) * 1996-06-28 1998-01-23 Toshiba Lighting & Technol Corp Discharge lamp electrode, manufacture of discharge lamp electrode, discharge lamp and back light device, and illumination system
JP2004250725A (en) * 2003-02-18 2004-09-09 Kohan Kogyo Kk Boride ceramics for electrode, electrode obtained by using the same, and method of producing boride ceramics for electrode

Also Published As

Publication number Publication date
JP2008027802A (en) 2008-02-07

Similar Documents

Publication Publication Date Title
EP0443964B1 (en) Low watt metal halide lamp
JP2931819B2 (en) Lamps with sulfur or selenium
JP2004172056A (en) Mercury-free arc tube for discharge lamp device
TW200933691A (en) Excimer discharge lamp
JP2003229088A (en) Discharge lamp and method for increasing quantity of visible light from lamp
JP4394096B2 (en) Discharge lamp
CN101593663B (en) Short-arc mercury lamp
TWI455173B (en) Metal halide lamp
JP3648905B2 (en) Mercury vapor discharge lamp
TWI463523B (en) Metal halide lamp
TWI459432B (en) Metal halide lamp
JP2011090924A (en) Excimer lamp
WO2006003894A1 (en) Metal halidee lamp, lighting device for metal halide lamp and headlight
JP2019520670A (en) Mercury-free UV gas discharge lamp
JP3228090B2 (en) Dielectric barrier discharge lamp
JP5362098B2 (en) Deuterium lamp
JP2009238471A (en) Excimer lamp
JP2005528758A (en) Low-pressure mercury vapor discharge lamp and compact fluorescent lamp
JP2008311170A (en) Hid lamp
JP3246666U (en) Amalgam Lamp
JP2007273377A (en) Metal halide lamp and lighting system
JPH09293482A (en) Metal vapor discharge lamp
JP5045065B2 (en) Ceramic metal halide lamp
JP2000164171A (en) Discharge lamp
JP3243812B2 (en) Metal vapor discharge lamp

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080624

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091006

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091014

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121023

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121023

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131023

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees