JP4391392B2 - Method for producing granules for nitrate nitrogen treatment - Google Patents

Method for producing granules for nitrate nitrogen treatment Download PDF

Info

Publication number
JP4391392B2
JP4391392B2 JP2004332776A JP2004332776A JP4391392B2 JP 4391392 B2 JP4391392 B2 JP 4391392B2 JP 2004332776 A JP2004332776 A JP 2004332776A JP 2004332776 A JP2004332776 A JP 2004332776A JP 4391392 B2 JP4391392 B2 JP 4391392B2
Authority
JP
Japan
Prior art keywords
sulfur
nitrate nitrogen
powder
granulated product
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004332776A
Other languages
Japanese (ja)
Other versions
JP2006142149A (en
Inventor
勝弘 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel and Sumikin Chemical Co Ltd
Original Assignee
Nippon Steel and Sumikin Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Chemical Co Ltd filed Critical Nippon Steel and Sumikin Chemical Co Ltd
Priority to JP2004332776A priority Critical patent/JP4391392B2/en
Publication of JP2006142149A publication Critical patent/JP2006142149A/en
Application granted granted Critical
Publication of JP4391392B2 publication Critical patent/JP4391392B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Description

本発明は、硫黄酸化細菌による生物的処理によって水中の硝酸性窒素を脱窒処理するために使用される硫黄-アルカリ土類炭酸塩系の硝酸性窒素処理材に関する。   The present invention relates to a sulfur-alkaline earth carbonate-based nitrate nitrogen treatment material used for denitrification of nitrate nitrogen in water by biological treatment with sulfur-oxidizing bacteria.

河川、湖沼、閉鎖水域,閉鎖海域などの富栄養化の原因となる生活排水、産業排水、畜産排水、農業排水、水産養殖排水中の硝酸性窒素(硝酸イオン、亜硝酸イオン又はこれらのイオンを放出する塩をいう)を除去する技術として、独立栄養系硫黄酸化脱窒細菌(以下、硫黄酸化細菌という)や、従属栄養系脱窒細菌を用いたシステムが提案されている。従属栄養系脱窒細菌を用いたシステムは、廃液中に含まれるBODを利用して、またBODを含まない場合には、液体状のメタノール等の水素供給源の添加が必要になる。これらのシステムでは、処理中にpH変化が起こるため、それらを常時管理しながら運転する必要があり、また多量の汚泥処理等も必要となる。それに対して独立栄養系硫黄酸化脱窒細菌を用いた処理システムは、炭酸を用いて菌体を生成するため、余剰汚泥発生量は少なく、従属栄養系脱窒細菌を用いたシステムに比べ維持コストが少ないため、最近では各方面で注目されている。   Nitrate nitrogen (nitrate ion, nitrite ion or these ions in domestic wastewater, industrial wastewater, livestock wastewater, agricultural wastewater, aquaculture wastewater that causes eutrophication of rivers, lakes, closed water areas, closed sea areas, etc. As a technique for removing a released salt, a system using an autotrophic sulfur oxidative denitrifying bacterium (hereinafter referred to as sulfur oxidizing bacterium) or a heterotrophic denitrifying bacterium has been proposed. A system using heterotrophic denitrifying bacteria requires the addition of a hydrogen supply source such as liquid methanol using BOD contained in the waste liquid, or in the case where BOD is not contained. In these systems, pH changes occur during the treatment, so that it is necessary to operate them constantly and a large amount of sludge treatment is also required. On the other hand, the treatment system using autotrophic sulfur-oxidizing denitrifying bacteria generates cells using carbonic acid, so the amount of excess sludge generated is small, and the maintenance cost is lower than the system using heterotrophic denitrifying bacteria. Recently, it has been attracting attention in various directions.

特公昭62-56798号公報Japanese Patent Publication No.62-56798 特公昭63-45274号公報Japanese Patent Publication No.63-45274 特公昭60-3876号公報Japanese Patent Publication No. 60-3876 特公平1-31958号公報Japanese Patent Publication No. 1-31958 特公平4-9199号公報Japanese Patent Publication No.4-9199 特開平4-74598号公報Japanese Patent Laid-Open No. 4-74598 特開平4-151000号公報Japanese Patent Laid-Open No. 4-151000 特開平4-197498号公報Japanese Unexamined Patent Publication No. 4-197498 特開平6-182393号公報JP-A-6-182393 特開11-285377公報JP 11-285377 A 特開2000-93997号公報JP 2000-93997 特開2004-167471公報JP 2004-167471 A 特開2004-174328号公報JP 2004-174328 A

硫黄酸化細菌を用いた硝酸性窒素除去システム(以下、脱窒システムという)については、例えば特許文献1〜9など種々提案されている。
特許文献10には、硫黄と石灰石を混合して、硫黄を加熱溶融して石灰石を分散させた後、冷却、粉砕、分級を行ったものに硫黄酸化細菌を付着させた脱窒システムが提案されており、石灰石を共存させているため、発生する硫酸イオンは自然に中和されることからpHの調整は不要であり、メンテナンスの容易さと脱窒処理にかかるコストの面で優れた効果を示している。しかし処理材としては、石灰石粉は最終的には溶融固化した硫黄中に分散することになり、したがって材料中で微生物が活動できる面積はかなり小さく限定されることになる。
Various nitrate nitrogen removal systems (hereinafter referred to as denitrification systems) using sulfur-oxidizing bacteria have been proposed, for example, in Patent Documents 1-9.
Patent Literature 10 proposes a denitrification system in which sulfur and limestone are mixed, sulfur is heated and melted to disperse limestone, and then cooled, ground and classified, and sulfur-oxidizing bacteria are attached. Since limestone coexists, the generated sulfate ions are naturally neutralized, so there is no need to adjust the pH, and it has excellent effects in terms of ease of maintenance and denitrification costs. ing. However, as a treatment material, limestone powder will eventually disperse in the melted and solidified sulfur, so that the area in which the microorganisms can operate in the material is limited to a rather small size.

特許文献11では、微生物の活動面積を拡大して脱窒能力をさらに高めるために、石灰石だけでなく、微細孔隙を有する物質を共存させることを提案している。しかし、特許文献10〜11はともにその処理材の製造において、硫黄を完全に加熱溶融してマトリックスを形成させ、その中に石灰石粉が分散させた状態にした後に冷却、粉砕、分級する方法であることから、石灰石や微細孔隙を有する物質の表面の多くが溶融、固化した硫黄に覆われるものとなる。脱窒には、脱窒の進行にともなって発生する硫酸イオンを中和するための石灰石の作用や微生物の活動面積を拡大するための微細孔隙が必要であるが、硫黄に覆われるものとなることにより、例え微細孔隙を有する物質の添加効果したとしても、脱窒性能を充分には発揮しえないものとなってしまう。このような理由から、その処理材の硝酸性窒素の処理能力は、従来の従属栄養系脱窒細菌を用いたシステムにくらべ、まだかなり低いため、処理時間が長くかかり、工業や畜産等から発生する廃液の大量処理や高濃度処理に対しては改良が求められている。更に、このような製造方法においては、急冷、粉砕、分級といった工程が必要となり量産性にも改良が望まれるものである。   Patent Document 11 proposes to coexist not only limestone but also a substance having a fine pore in order to expand the activity area of microorganisms and further enhance the denitrification ability. However, both Patent Documents 10 to 11 are methods for cooling, pulverizing, and classifying sulfur after completely heating and melting it to form a matrix in which the limestone powder is dispersed therein. For this reason, most of the surfaces of limestone and substances having fine pores are covered with molten and solidified sulfur. Denitrification requires the action of limestone to neutralize sulfate ions generated as denitrification progresses and micropores to expand the active area of microorganisms, but it is covered with sulfur. As a result, even if a substance having a fine pore is added, the denitrification performance cannot be sufficiently exhibited. For this reason, the treatment capacity of nitrate nitrogen of the treatment material is still much lower than that of the conventional system using heterotrophic denitrifying bacteria. Improvement is demanded for mass processing and high concentration processing of waste liquid. Furthermore, in such a manufacturing method, processes such as rapid cooling, pulverization, and classification are required, and improvement in mass productivity is desired.

そこで、本発明者らは、特許文献12〜13において、硫黄と石灰石を水不溶性または水難溶性の有機バインダーを用いて押し出し機等で造粒した後、乾燥することで一体化を実現し、硫黄と石灰石を粉の状態で分散させて、微生物の活動面積を大きくすることで、微細孔隙を有する物質を共存させる必要もなく、脱窒速度を高めることができ、従来の硫黄の加熱溶融法に比べ処理材の量産性を高め、より高い処理能力を有し硝酸性窒素処理材を提供できることを報告した。   Therefore, the inventors of the present invention disclosed in Patent Documents 12 to 13 that sulfur and limestone were granulated with an extruder or the like using a water-insoluble or poorly water-soluble organic binder, and then dried to achieve integration. And limestone are dispersed in the form of powder and the active area of microorganisms is increased, so there is no need for coexistence of substances with fine pores and the denitrification rate can be increased. We reported that we could improve the mass productivity of treated materials and provide nitrate-treated nitrogen materials with higher processing capacity.

しかしながら、上記組成の処理材においても、直接的には微生物反応に不要な有機バインダーが存在していることから、やはり硫黄粉や石灰石粉の表面や粒子間にかなりの部分に有機バインダーが存在することになり、その点では脱窒効率にとってはマイナスとなっていると考えられる。また、有機バインダーは硫黄酸化細菌だけによる分解はかなり困難であると思われることから硫黄と炭酸塩が消耗した後も汚泥として残存することがある。そこで、残存する有機バインダーがなく又は可及的に少なく、また直接的には微生物の代謝には必要ではない微細孔隙を有する物質をあえて添加しなくとも高い脱窒能力を有した量産性に優れた脱窒処理用造粒品の製造方法が求められている。   However, even in the treatment material having the above composition, since an organic binder unnecessary for microbial reaction is present directly, the organic binder is also present in a considerable portion between the surface and particles of sulfur powder and limestone powder. In this respect, it is considered that the denitrification efficiency is negative. In addition, organic binders may remain as sludge even after exhaustion of sulfur and carbonate because it is considered that decomposition by sulfur-oxidizing bacteria alone is quite difficult. Therefore, there is no remaining organic binder or as little as possible, and excellent mass productivity with high denitrification ability without adding a substance with micropores that is not directly required for microbial metabolism. There is a need for a method for producing a denitrified granulated product.

したがって、本発明の目的は、溶融固化した硫黄をバインダーとし、しかも一定以上の空隙を有する硫黄粉末と炭酸塩粉末を一体化させた高い脱窒能力を有する量産性に優れた脱窒処理用造粒品の製造方法を提供することにある。   Therefore, an object of the present invention is to provide a mass-producing denitrification treatment with high denitrification ability, in which melted and solidified sulfur is used as a binder, and sulfur powder having a predetermined gap or more and carbonate powder are integrated. It is in providing the manufacturing method of a grain product.

本発明者は、かかる課題を解決するために鋭意検討を重ねた結果、硫黄−炭酸塩の系において、第一ステップで、必要に応じて水を添加して造粒物を作成した後に、第2ステップでその造粒物を加熱処理することにより、溶融した硫黄で炭酸塩粉末が空隙を持って接着架橋することで硫黄−炭酸塩を充分な強度でかつ空隙率を高めた状態で一体化することが可能となり、上記目的を達成できることを見出し、本発明を完成した。   As a result of intensive studies to solve such problems, the present inventor, in the sulfur-carbonate system, in the first step, after adding water as necessary to create a granulated product, By heat-treating the granulated product in two steps, the sulfur-carbonate is integrated with sufficient strength and increased porosity by bonding and cross-linking the molten carbonate powder with voids. The present invention has been completed by finding that the above object can be achieved.

すなわち、本発明は、硫黄酸化細菌による生物的処理によって硝酸性窒素を脱窒処理するために使用されるアルカリ土類金属炭酸塩及び硫黄を主成分とする硝酸性窒素処理材を製造するに当り、アルカリ土類金属炭酸塩粉末40〜90重量部及び硫黄粉末10〜60重量部の割合で配合し、且つアルカリ土類金属塩粉末と硫黄粉末の合計100重量部に対して、水を2〜25重量部添加し、造粒して造粒品を得て、次いで造粒品を120〜150℃で加熱処理して硫黄粉末の少なくとも一部を溶融させ、前記造粒品と同一又は類似形状を有した状態で、溶融させた硫黄で炭酸塩粉末を接着架橋させることを特徴とする下記式(1)で表される空隙率(V)が10〜40%であり、木屋式硬度計により測定される強度が100N以上である粒状の硝酸性窒素処理材の製造方法である。
V%=(A-B)×100/B (1)
(但し、Aは理論最大比重であり、Bは見かけ比重である)
That is, the present invention provides an alkaline earth metal carbonate used for denitrification treatment of nitrate nitrogen by biological treatment with sulfur-oxidizing bacteria and a nitrate nitrogen treatment material mainly containing sulfur. , 40 to 90 parts by weight of alkaline earth metal carbonate powder and 10 to 60 parts by weight of sulfur powder , and 2 to 2 parts of water for a total of 100 parts by weight of alkaline earth metal salt powder and sulfur powder. Add 25 parts by weight, granulate to obtain a granulated product, then heat-treat the granulated product at 120 to 150 ° C. to melt at least a part of the sulfur powder, and have the same or similar shape as the granulated product The porosity (V) represented by the following formula (1) is characterized by bonding and cross-linking carbonate powder with molten sulfur in a state of having 10 to 40%. Granular nitric acid with measured strength of 100N or more It is a manufacturing method of a basic nitrogen treatment material.
V% = (A−B) × 100 / B (1)
(However, A is the theoretical maximum specific gravity, and B is the apparent specific gravity.)

ここで、造粒して造粒品を得るに当り、アルカリ土類金属塩粉末と硫黄粉末の合計100重量部に対して、水を2〜25重量部添加して造粒することにより、有機バインダー等の使用をしなくとも加熱処理に耐えうる造粒品を有利に得ることができる。また、造粒品を加熱処理するに当り、110〜170℃で、1分間〜10時間加熱することにより、溶融した硫黄での炭酸塩粉末の接着架橋の際、所望の空隙を持ってすることを有利に行うことができる。   Here, in order to obtain a granulated product by granulation, 2 to 25 parts by weight of water is added and granulated with respect to a total of 100 parts by weight of the alkaline earth metal salt powder and the sulfur powder. A granulated product that can withstand heat treatment can be advantageously obtained without using a binder or the like. In addition, when the granulated product is heat-treated, it is heated at 110 to 170 ° C. for 1 minute to 10 hours to have a desired void at the time of adhesive crosslinking of carbonate powder with molten sulfur. Can be advantageously performed.

以下、更に本発明の硝酸性窒素処理材の製造方法について説明する。
本発明の硝酸性窒素処理材の製造方法で得られる硝酸性窒素処理材は、溶融した硫黄で炭酸塩粉末が空隙を持って接着架橋することで硫黄−炭酸塩が一体化した空隙率の高い造粒品である。
Hereinafter, the manufacturing method of the nitrate nitrogen processing material of this invention is demonstrated.
The nitrate nitrogen treatment material obtained by the method for producing a nitrate nitrogen treatment material of the present invention has a high porosity in which sulfur-carbonate is integrated by melting and crosslinking the carbonate powder with voids. It is a granulated product.

アルカリ(土類)金属炭酸塩(以下、炭酸塩ともいう)は、硫黄酸化細菌の炭素源となる炭酸を有した化合物であり、カルシウム、マグネシウムなどのアルカリ土類金属の炭酸塩、ナトリウム、カリウム、リチウムなどのアルカリ金属の炭酸塩あるいは重炭酸塩又はそれらの混合物などが挙げられる。しかし、本発明では、水処理に用いるために水不溶性である必要があり、アルカリ土類金属の炭酸塩が適する。アルカリ土類金属炭酸塩としては、カルシウムを多量に含む石灰石(炭酸カルシウム)やマグネシウムとカルシウムを含有する苦石灰(ドロマイト)又はマグネシウムを多量に含む菱苦土石(マグネサイト)の粉末が天然品として存在することから有用である。これらは、適度に混ざったものでもよく、また、合成品であっても差し支えない。   Alkali (earth) metal carbonate (hereinafter also referred to as carbonate) is a compound having carbonic acid as a carbon source for sulfur-oxidizing bacteria, and carbonates of alkaline earth metals such as calcium and magnesium, sodium and potassium And carbonates or bicarbonates of alkali metals such as lithium or mixtures thereof. However, in the present invention, it is necessary to be insoluble in water for use in water treatment, and an alkaline earth metal carbonate is suitable. As alkaline earth metal carbonates, limestone (calcium carbonate) containing a large amount of calcium, dolomite containing magnesium and calcium, or rhododendron stone (magnesite) containing a large amount of magnesium are natural products. Useful because it exists. These may be mixed appropriately or may be a synthetic product.

次に、硫黄としては、例えば石油脱硫や石炭脱硫プラントの回収硫黄や天然硫黄などが上げられるが特に制限されるものではない。   Next, examples of sulfur include, but are not particularly limited to, sulfur recovered from petroleum desulfurization and coal desulfurization plants, natural sulfur, and the like.

硫黄及び炭酸塩は粉末として使用されるが、その粒径としては特に限定されないが、0.1μm〜200μm程度が好ましい。本来、微生物が硫黄を消費することを考えると、その接触面積を大きくするため粒子を小さくした方が好ましいが、あまりに小さすぎると一体化させるときの温度制御が難しくなり、また大きすぎると融着させるための時間が長くなることから上記範囲が適当となる。   Sulfur and carbonate are used as powders, but the particle size is not particularly limited, but is preferably about 0.1 μm to 200 μm. Originally, considering that microorganisms consume sulfur, it is preferable to make the particles smaller in order to increase the contact area, but if it is too small, temperature control when integrating is difficult, and if it is too large, it is fused. The above-mentioned range is appropriate because the time required for this is long.

硫黄と炭酸塩の混合の割合は、硫黄酸化細菌の増殖の促進及びそれに伴い発生する硫酸イオンを中和することが必要であることから、硫黄含有量は10〜60重量部、炭酸塩含有量は40〜90重量部が好ましい。この範囲外では、短期間的には脱窒は進行するもの、硫黄含有量が10重量部未満で、炭酸塩が90重量部を超える場合には、微生物が硫黄を消費して、硫黄が消滅すると同時に脱窒反応はストップして大過剰の炭酸塩のみが残存することになる。また逆に、硫黄含有量が60重量部を超え、炭酸塩が40重量部未満の場合には、脱窒と同時に発生する硫酸イオンを中和するアルカリ土類金属イオンがかなり不足して酸性化が起こり、微生物の活性が極端に低下する。   Since the mixing ratio of sulfur and carbonate is necessary to promote the growth of sulfur-oxidizing bacteria and neutralize the sulfate ions that accompany it, the sulfur content is 10 to 60 parts by weight, the carbonate content Is preferably 40 to 90 parts by weight. Outside this range, denitrification proceeds in a short period of time, but when the sulfur content is less than 10 parts by weight and the carbonate exceeds 90 parts by weight, the microorganisms consume sulfur and the sulfur disappears. At the same time, the denitrification reaction is stopped and only a large excess of carbonate remains. Conversely, if the sulfur content exceeds 60 parts by weight and the carbonate is less than 40 parts by weight, the alkaline earth metal ions that neutralize the sulfate ions generated simultaneously with denitrification are considerably insufficient and acidified. Occurs, and the activity of microorganisms is extremely reduced.

本発明の製造方法においては、硫黄粉末と炭酸塩粉末を上記の割合で配合して造粒する。造粒方法としては、まず両者をよく混合してペレット状や顆粒状等に造粒する。造粒に際しては、有機や無機のバインダー類は使用してもよいが、使用しないか、少量にとどめ、空気中の水分や液体の水を使用することが望ましい。   In the production method of the present invention, the sulfur powder and carbonate powder are blended in the above ratio and granulated. As a granulation method, first, both are well mixed and granulated into pellets or granules. For granulation, organic or inorganic binders may be used, but it is preferable not to use them or to use only a small amount and use water or liquid water in the air.

水を使用する場合、必要となる水分は造粒方法によっても異なるが、アルカリ土類金属塩粉末と硫黄粉末の合計100重量部に対して、水を2〜25重量部添加することで造粒が容易となる。水が2重量部未満では、造粒品としては脆くなりすぎ形状が保てない。逆に25重量部を越えては、水分が多すぎて粒子同士が付着するなどやはり形状が保てない。また、水分を除去するために乾燥時間が長くなりすぎ、生産性を低下させる原因となる。   When water is used, the required moisture differs depending on the granulation method, but granulation is performed by adding 2 to 25 parts by weight of water to 100 parts by weight of the total of alkaline earth metal salt powder and sulfur powder. Becomes easy. If the amount of water is less than 2 parts by weight, the granulated product becomes too brittle and the shape cannot be maintained. On the other hand, if the amount exceeds 25 parts by weight, the shape cannot be maintained, for example, particles are adhered due to too much moisture. In addition, the drying time becomes too long to remove moisture, which causes a decrease in productivity.

ここで造粒の方法は、既存の方法でよく、たとえば、攪拌混合造粒、転動造粒、押し出し造粒、破砕造粒、流動層造粒、噴霧乾燥造粒、圧縮造粒などがあるが特には限定されない。造粒品の大きさも、脱窒処理のシステムや処理条件により特に限定はされないが、0.5mm〜50mm程度は容易に製造することができる。   Here, the granulation method may be an existing method, for example, stirring and mixing granulation, rolling granulation, extrusion granulation, crushing granulation, fluidized bed granulation, spray drying granulation, compression granulation, etc. There is no particular limitation. The size of the granulated product is not particularly limited depending on the system and processing conditions of the denitrification process, but it can be easily manufactured to have a size of about 0.5 mm to 50 mm.

バインダーを使用することなく又は十分量のバインダーを使用することなく得られた造粒品は、そのままでは結合力が弱く、水中に置いたときに崩壊してしまい、汚泥となるだけで処理材としては使用できない。そこで造粒品内の結合力及び水中での形状維持性を高める必要があるが、その方法としては、加熱処理して硫黄を溶融させ、溶融硫黄の固化したときの結合力を利用することが簡便である。このようにして得られた粒状の硝酸性窒素処理材(単に、処理材ともいう)に、高い脱窒性能を付与させるためには、処理材の空隙率を保持させる必要がある。そこで、従来のように硫黄がマトリックスを作って、その中に炭酸塩が分散するような形とはならないようにすることが重要である。   A granulated product obtained without using a binder or without using a sufficient amount of binder has a weak binding force as it is, and when it is placed in water, it collapses and becomes sludge as a treatment material. Cannot be used. Therefore, it is necessary to improve the bonding strength in the granulated product and the shape maintenance property in water, but as a method thereof, it is possible to melt the sulfur by heat treatment and use the bonding strength when the molten sulfur is solidified. Convenient. In order to impart high denitrification performance to the granular nitrate nitrogen treatment material (also simply referred to as a treatment material) thus obtained, it is necessary to maintain the porosity of the treatment material. Therefore, it is important that sulfur does not form a matrix in which the carbonate is dispersed in the matrix as in the prior art.

ここで、高い脱窒性能と処理材の強度の両方を維持するためには、処理材の空隙率が10〜40%であることがよい。ここで処理材の空隙率(V)は、硫黄が完全に溶融して空隙が全くないと仮定して計算される理論最大比重(A)と処理材の見かけの比重(B)から上記計算式(1)で与えられる値と定義する。   Here, in order to maintain both high denitrification performance and the strength of the treatment material, the porosity of the treatment material is preferably 10 to 40%. Here, the porosity (V) of the treatment material is calculated from the theoretical maximum specific gravity (A) calculated on the assumption that sulfur is completely melted and there are no voids and the apparent specific gravity (B) of the treatment material. It is defined as the value given in (1).

計算式(1)において、理論最大比重(A)は、硫黄粉が完全に溶融して、且つ、低粘度となって、均一に混ざって、空隙率が0となった状態の比重を言う。これは、低粘度溶融硫黄が浸入し得ないような細孔又は閉鎖空間を内部に有する原料を使用しない場合は、使用する原料の真比重から計算される。すなわち、硫黄及び炭酸塩及び必要により少量加えられる添加剤の各真比重にそれぞれの配合重量を乗じて得られる値を、全重量で除することにより得られる。低粘度溶融硫黄が浸入し得ないような細孔又は閉鎖空間を内部に有する原料を使用する場合は、この原料の見掛け比重を真比重として材料の理論最大比重を求める。   In the calculation formula (1), the theoretical maximum specific gravity (A) refers to the specific gravity in a state in which the sulfur powder is completely melted and has a low viscosity, is uniformly mixed, and the porosity is zero. This is calculated from the true specific gravity of the raw material to be used when a raw material having pores or closed spaces in which low-viscosity molten sulfur cannot enter is not used. That is, it can be obtained by dividing the value obtained by multiplying the true specific gravity of sulfur and carbonate and additives added in small amounts if necessary by the respective blending weights by the total weight. When using a raw material having pores or closed spaces in which low-viscosity molten sulfur cannot enter, the theoretical maximum specific gravity of the material is obtained with the apparent specific gravity of the raw material as the true specific gravity.

見かけの比重(B)は、例えば、処理材10gをメスシリンダー中の水10mlに加えたときの、容積増加量(水面の上昇量)から計算できる。全体で14mlになった場合、容積増加量4mlなので、その見かけの比重は10g/4ml=2.5と計算される。   The apparent specific gravity (B) can be calculated from, for example, the volume increase amount (water surface rise amount) when 10 g of the treatment material is added to 10 ml of water in the graduated cylinder. When the total amount is 14 ml, the volume increase is 4 ml, so the apparent specific gravity is calculated as 10 g / 4 ml = 2.5.

例えば、真比重2.07の硫黄、真比重2.71の炭酸カルシウムを、45:55の重量比で使用した場合には、理論最大比重(A)は、2.07×0.45+2.71×0.55=2.42と計算される。   For example, when sulfur having a true specific gravity of 2.07 and calcium carbonate having a true specific gravity of 2.71 are used at a weight ratio of 45:55, the theoretical maximum specific gravity (A) is 2.07 × 0.45 + 2.71 × 0.55 = Calculated as 2.42.

ここで、空隙率が10%未満の場合は、微生物の活動面積は限定されることになり高い脱窒性能を発現できない。また、40%を越える空隙率を有する造粒物の製造は技術的に非常に難しく、製造できたとしても、その造粒品は充分な強度を保持させることが困難になり最終的には汚泥となりやすい。   Here, when the porosity is less than 10%, the active area of the microorganism is limited and high denitrification performance cannot be expressed. In addition, it is technically very difficult to produce a granulated product having a porosity exceeding 40%, and even if it can be produced, it is difficult to maintain the sufficient strength of the granulated product, and eventually sludge is produced. It is easy to become.

上記のような空隙率を与え、実用的な強度を与えるために、造粒品を加熱処理して硫黄の少なくとも一部を溶融して、これが固化したときの接着力を利用する。加熱処理の方法としては、造粒物を連続的またはバッチ的に1min〜10時間、110〜170℃の雰囲気にさらすことがよい。この場合、造粒品の形状が崩れないように加熱して、加熱処理後の形状を造粒品と同一又は類似の形状に保持する。なお、類似の形状とは多少加熱収縮しただけの類似形状、角部が多少滑らかとなっただけの類似形状等をいう。そうすることにより造粒物内に分散して存在する硫黄粒子は溶融し、共存する炭酸塩は溶融した硫黄を介して接着架橋して充分な空隙率を保持させることができ、かつ水中でも容易には崩壊しないほどの強度を有する一体化物が製造できる。予め造粒品としておき、形状が維持された状態で硫黄の溶融を生じさせることにより、硫黄を介して接着架橋した粒状の処理材を得ることができる。なお、加熱処理条件を高温、長時間とし過ぎると、硫黄が完全に溶融し、しかも低粘度となってしまい、形状がくずれ、且つ、空隙率が減少する。   In order to give the above void ratio and give practical strength, the granulated product is heat-treated to melt at least a part of sulfur, and the adhesive force when this is solidified is used. As a heat treatment method, the granulated product is preferably exposed to an atmosphere of 110 to 170 ° C. continuously or batchwise for 1 min to 10 hours. In this case, it heats so that the shape of a granulated product may not collapse, and the shape after heat processing is hold | maintained in the same or similar shape as a granulated product. Note that the similar shape refers to a similar shape that is slightly heat-shrinked, a similar shape that is slightly smooth at the corners, and the like. By doing so, the sulfur particles dispersed and present in the granulated material are melted, and the coexisting carbonate can be adhesively cross-linked through the melted sulfur to maintain a sufficient porosity, and easily in water. Therefore, it is possible to produce an integrated product having a strength that does not collapse. It is possible to obtain a granular treatment material that is adhesively crosslinked via sulfur by preliminarily forming a granulated product and causing sulfur to melt in a state in which the shape is maintained. If the heat treatment conditions are too high for a long time, the sulfur is completely melted and the viscosity becomes low, the shape is deformed, and the porosity is reduced.

加熱処理方法としては、最も簡単には高温乾燥機、連続的な乾燥炉を用いればよい。また、雰囲気は空気中でもよいが硫黄は危険物であることから火気には十分注意する必要がある。その場合、安全性を考慮して窒素などの不活性ガス中や水蒸気中又は真空雰囲気で行なうことがよい。   As a heat treatment method, the simplest method is to use a high-temperature dryer and a continuous drying furnace. In addition, the atmosphere may be in air, but sulfur is a dangerous substance, so it is necessary to be careful with fire. In that case, in consideration of safety, it may be performed in an inert gas such as nitrogen, in water vapor, or in a vacuum atmosphere.

ここで材料の組成比、強度、熱処理温度、熱処理時間、空隙率、硬度、脱窒処理能力は、相互にかかわっている。110℃より低温では、10時間熱処理を行っても、硫黄が充分に溶融せず実用的な強度は得られない。また、10時間をこえる処理時間にさらすことは、生産性が悪くなる。逆に、熱処理時間を1分未満にするために170℃をこえる温度では、亜硫酸ガスの発生や硫黄の昇華が激しくなり、更に火災など安全上の問題が生じる。   Here, the composition ratio, strength, heat treatment temperature, heat treatment time, porosity, hardness, and denitrification capacity of the materials are mutually related. At a temperature lower than 110 ° C., even if heat treatment is performed for 10 hours, sulfur is not sufficiently melted and practical strength cannot be obtained. Further, exposure to a processing time exceeding 10 hours deteriorates productivity. Conversely, at temperatures exceeding 170 ° C. in order to make the heat treatment time less than 1 minute, the generation of sulfurous acid gas and sulfur sublimation become severe, and further safety problems such as fires arise.

ところで、本発明の処理材には、炭酸塩と硫黄の他に、必要に応じてその他の添加剤を配合することができる。例えば、水酸化アルミニウムや水酸化マグネシウムなどの難燃剤や酸化鉄、活性炭等の硫化水素発生防止剤、処理中のpH変化を抑えるための少量の水酸化マグネシウム、酸化マグネシウム、珪酸カルシウム、珪酸マグネシウムフライアッシュ、ベントナイト、製鉄スラグ又はコンクリート粉砕物などの中和剤、更には、ゼオライトやロックール等の微生物保持材、ベントナイトやタルク等の成形改良材等を添加してもよい。また、ガラスバルーン、シラス、シラスバルーン、火山礫など中空粒子や発砲粒子を添加して比重調整を行うこともできる。これらは、造粒前に炭酸塩と硫黄粉末に配合され、混合されることがよい。   By the way, in addition to carbonate and sulfur, the additive of the present invention can contain other additives as required. Examples include flame retardants such as aluminum hydroxide and magnesium hydroxide, hydrogen sulfide generation inhibitors such as iron oxide and activated carbon, and small amounts of magnesium hydroxide, magnesium oxide, calcium silicate, and magnesium silicate fly to suppress pH changes during processing. Neutralizing agents such as ash, bentonite, iron slag or concrete pulverized material, further microorganism holding materials such as zeolite and rockul, and molding improving materials such as bentonite and talc may be added. In addition, the specific gravity can be adjusted by adding hollow particles such as glass balloons, shirasu, shirasu balloons, and volcanic gravel and firing particles. These may be blended and mixed with carbonate and sulfur powder before granulation.

好ましい添加剤としては、微細孔隙を有する物質やロックウールやワラストナイト等をはじめとする鉱物繊維類がある。これらは、強度を保ったり、空隙率を高めたりするために有効である。微細孔隙を有する物質や鉱物繊維類を配合する場合は、アルカリ土類金属塩粉末と硫黄粉末の合計100重量部に対して、10重量部以下がよい。10重量部を超える場合には、直接的に微生物の脱窒に寄与する物質、つまり硫黄と炭酸塩の含有量が低くなるためにランニングコストとして不利になるばかりか、汚泥の発生量が増加することになる。   Preferred additives include substances having fine pores and mineral fibers such as rock wool and wollastonite. These are effective for maintaining the strength and increasing the porosity. When a substance having fine pores and mineral fibers are blended, the amount is preferably 10 parts by weight or less with respect to 100 parts by weight in total of the alkaline earth metal salt powder and the sulfur powder. When the amount exceeds 10 parts by weight, the content of substances that directly contribute to the denitrification of microorganisms, that is, sulfur and carbonate, becomes low, which is disadvantageous as a running cost, and the generation amount of sludge increases. It will be.

本発明の処理材が実用的な強度を有するためには、造粒品を加熱処理して得た処理材を24時間空冷したのち、木屋式硬度計により測定される処理材粒子当りの強度が10ON以上である必要がある。具体的には、実施例に記載の方法で測定される。また、水中での強度としては、処理材の使用方法によっても異なってくると思われるが、処理材を24時間水に浸漬した直後の強度が5N以上を保っておくことが望ましいと考えられる。これは、造粒品の造粒条件や加熱処理条件や処理材中の硫黄含有量あるいは無機繊維の配合の有無等で調整可能である。   In order for the treatment material of the present invention to have a practical strength, the strength per particle of the treatment material measured by a Kiyama-type hardness meter is measured after air-cooling the treatment material obtained by heating the granulated product for 24 hours. Must be 10ON or more. Specifically, it is measured by the method described in the examples. In addition, the strength in water seems to vary depending on the method of using the treatment material, but it is considered desirable that the strength immediately after the treatment material is immersed in water for 24 hours is maintained at 5 N or more. This can be adjusted by the granulation conditions, the heat treatment conditions of the granulated product, the sulfur content in the treated material, or the presence or absence of blending of inorganic fibers.

本発明の製造方法は、造粒物だけではなくセラミック・プラスチック・金属・有機又は無機繊維などの担体に、炭酸塩粉末及び硫黄粉末の混合物をコーティングする方法にも利用できる。担体への被着については、硫黄と炭酸塩の粉末とバインダー混合物を公知の方法、たとえば浸漬・噴霧・塗布などにより行なうことができる。   The production method of the present invention can be used not only for a granulated product but also for a method of coating a mixture of carbonate powder and sulfur powder on a carrier such as ceramic, plastic, metal, organic or inorganic fiber. For deposition on the carrier, sulfur and carbonate powder and binder mixture can be applied by a known method such as dipping, spraying or coating.

硫黄粉末と炭酸塩粉末を強固に一体化させたものであって、適当な空隙率と高い脱窒能力を有する量産性に優れた粒状の脱窒処理材を得ることができる。   Sulfur powder and carbonate powder are firmly integrated, and a granular denitrification treatment material having an appropriate porosity and high denitrification ability and excellent mass productivity can be obtained.

硝酸性窒素処理材の作成には、硫黄は200メッシュの粉末(軽井沢精錬社製)を、炭酸塩は200メッシュのドロマイトタンカル粉末(MgCO3含有量38%、CaCO3含有量62%駒形石灰工業社製)を用いた。また硫化水素防止及び微生物の活性化剤として比表面積30m2/g(リモナイト工業社製)の酸化鉄主体の黄土粉体を用いた。バインダーとしては、大日本インキ化学工業(株)製水分散型ウレタン樹脂(製品名:1980NS)を使用した。 For the preparation of nitrate nitrogen treatment materials, sulfur is 200 mesh powder (manufactured by Karuizawa Seimitsu Co., Ltd.), carbonate is 200 mesh dolomite tankal powder (MgCO 3 content 38%, CaCO 3 content 62% Komagata Lime Industry) Used). Further, a loess powder mainly composed of iron oxide having a specific surface area of 30 m 2 / g (manufactured by Limonite Kogyo Co., Ltd.) was used as a hydrogen sulfide prevention and microorganism activation agent. As a binder, water dispersion type urethane resin (product name: 1980NS) manufactured by Dainippon Ink & Chemicals, Inc. was used.

実施例1〜5
表1に示す配合で、硫黄、ドロマイトタンカル、水及びその他の添加剤を配合し、まずダルトン社製の万能混合機で粉末及び水を混合混練後、ダルトン社製のディスクペレッター(半乾式押し出し機)により5mmφ、長さ5〜10mmに造粒して造粒品を得た。この造粒品を表1に示す条件で、熱風高温乾燥炉で熱処理して処理材を作成した。得られた処理材について、目視で観察したところ、形状はいずれも造粒品とほぼ同じであり、表面は多孔質で、ざらざら感を与えたが、溶融固化した硫黄があることが認められた。
Examples 1-5
In the formulation shown in Table 1, sulfur, dolomite tankal, water and other additives are blended. First, powder and water are mixed and kneaded in a universal mixer manufactured by Dalton, and then a disk pelleter manufactured by Dalton (semi-dry extrusion) Machine) to obtain a granulated product. The granulated product was heat-treated in a hot air high-temperature drying furnace under the conditions shown in Table 1 to prepare a treated material. When the obtained treated material was visually observed, the shape was almost the same as that of the granulated product, the surface was porous and rough, but it was recognized that there was melted and solid sulfur. .

得られた処理材について、理論最大比重(A)と見かけの比重(B)から空隙率(V)を算出した。更に、処理材の実用時の強度の指標として、加熱処理して24時間放置後の処理材及びその処理材を24時間水に浸漬した後の強度を木屋式硬度計で測定した。測定は、無作為に10粒取り出し、最も高いものと低いものを除いた8粒の平均値とした。   About the obtained processing material, the porosity (V) was computed from theoretical maximum specific gravity (A) and apparent specific gravity (B). Furthermore, as an index of the strength of the treated material in practical use, the treated material after being heat-treated and allowed to stand for 24 hours and the strength after the treated material was immersed in water for 24 hours were measured with a Kiyama hardness tester. The measurement was carried out by taking 10 grains at random and taking the average value of 8 grains excluding the highest and lowest ones.

この処理材を使用して水中の硝酸性窒素の除去試験を行った。処理材への硫黄酸化細菌の担持は、ポリビンに処理材1kgと硝酸カリウム溶液(硝酸性窒素濃度で200mg−N/kg)500g及び硫黄酸化細菌培養汚泥を50g添加し、硝酸性窒素濃度が10mg−N/kg以下になった時点で硝酸カリウムを硝酸性窒素濃度で200mg−N/kgになるように添加して、3週間担持培養を行った。評価に際しては、かるく水洗浄して、試験用の菌付処理材とした。   Using this treated material, a removal test for nitrate nitrogen in water was conducted. The treatment material is loaded with sulfur-oxidizing bacteria by adding 1 kg of treatment material, 500 g of potassium nitrate solution (200 mg-N / kg in nitrate nitrogen concentration) and 50 g of sulfur-oxidizing bacteria culture sludge to polybin, and the nitrate nitrogen concentration is 10 mg- When N / kg or less was reached, potassium nitrate was added to a nitrate nitrogen concentration of 200 mg-N / kg, and support culture was performed for 3 weeks. In the evaluation, it was washed with water and used as a test material with bacteria.

脱窒性能は、上記のようにして得られた菌付処理材200gと硝酸性窒素濃度で400mg−N/kgに調整した硝酸カリウム溶液100gを250mlのポリビンに入れ、3時間後に硝酸性窒素濃度をイオンクロマトグラフィーで測定して、初期の硝酸性窒素からの減少で評価した。   The denitrification performance is as follows: 200 g of the treated material obtained as described above and 100 g of a potassium nitrate solution adjusted to a nitrate nitrogen concentration of 400 mg-N / kg are placed in a 250 ml polybin, and the nitrate nitrogen concentration is adjusted after 3 hours. It was measured by ion chromatography and evaluated by the decrease from the initial nitrate nitrogen.

比較例1〜4
表2に示す配合で、硫黄、ドロマイトタンカル、水及びその他の添加剤を配合し、実施例と同様にして造粒品を得た。この造粒品を表2に示す条件で、熱風高温乾燥炉で熱処理して処理材を作成した。なお、比較例2及び4においては、硫黄の十分な溶融が認められなかった。
Comparative Examples 1-4
In the formulation shown in Table 2, sulfur, dolomite tankal, water and other additives were blended, and a granulated product was obtained in the same manner as in the example. The granulated product was heat-treated in a hot air high-temperature drying furnace under the conditions shown in Table 2 to prepare a treated material. In Comparative Examples 2 and 4, sufficient melting of sulfur was not observed.

比較例5〜6
比較例1において、水の量を1.0重量部又は40.0重量部とした他は、同じ配合とし、実施例と同様にして造粒を行った。水の量を1.0重量部とした例では、ダイスが詰まり造粒不能となった。水の量を40.0重量部とした例では、流動性が高く造粒不能となった。
Comparative Examples 5-6
In Comparative Example 1, except that the amount of water was 1.0 part by weight or 40.0 parts by weight, the same composition was used, and granulation was performed in the same manner as in the example. In the example in which the amount of water was 1.0 part by weight, the die was clogged and granulation was impossible. In the example in which the amount of water was 40.0 parts by weight, the fluidity was high and granulation was impossible.

比較例7
表2に示す配合となるように、硫黄をまず160℃で溶融した後、ドロマイトタンカルと黄土を添加して、よく混合して、水で急冷却し、5〜20mmに粉砕分級した処理材を作成した。
Comparative Example 7
First, after melting sulfur at 160 ° C. so as to have the composition shown in Table 2, add dolomite tankal and ocher, mix well, rapidly cool with water, and pulverize and classify to 5 to 20 mm. Created.

比較例1〜4及び7で得られた処理材について、実施例と同様に空隙率、水浸漬24時間後の強度の測定及び硝酸性窒素除去試験(脱窒性能)を行った結果を表2示す。   About the processing material obtained by Comparative Examples 1-4 and 7, the result of having performed the measurement of the porosity after 24 hours of water immersion, and the nitrate-nitrogen removal test (denitrification performance) similarly to an Example is shown in Table 2. Show.

表において、配合量を示す数字は重量部である。表1及び表2から明らかなように、実施例で得られた硝酸性窒素処理材は、高い処理能力を有する。   In the table, the numbers indicating the amounts are parts by weight. As is clear from Tables 1 and 2, the nitrate nitrogen treatment materials obtained in the examples have a high treatment capacity.

Figure 0004391392
Figure 0004391392

Figure 0004391392
Figure 0004391392

Claims (3)

硫黄酸化細菌による生物的処理によって硝酸性窒素を脱窒処理するために使用されるアルカリ土類金属炭酸塩及び硫黄を主成分とする硝酸性窒素処理材を製造するに当り、アルカリ土類金属炭酸塩粉末40〜90重量部及び硫黄粉末10〜60重量部の割合で配合し、且つアルカリ土類金属塩粉末と硫黄粉末の合計100重量部に対して、水を2〜25重量部添加し、造粒して造粒品を得て、次いで造粒品を120〜150℃で加熱処理して硫黄粉末の少なくとも一部を溶融させ、前記造粒品と同一又は類似形状を有した状態で、溶融させた硫黄で炭酸塩粉末を接着架橋させることを特徴とする下記式(1)で表される空隙率(V)が10〜40%であり、木屋式硬度計により測定される強度が100N以上である粒状の硝酸性窒素処理材の製造方法。
V%=(A-B)×100/B (1)
(但し、Aは理論最大比重であり、Bは見かけ比重である)
In producing alkaline earth metal carbonates used for denitrification of nitrate nitrogen by biological treatment with sulfur-oxidizing bacteria and nitrate nitrogen treatment materials containing sulfur as a main component, alkaline earth metal carbonate 40 to 90 parts by weight of the salt powder and 10 to 60 parts by weight of the sulfur powder, and 2 to 25 parts by weight of water are added to 100 parts by weight of the alkaline earth metal salt powder and the sulfur powder. Granulate to obtain a granulated product, and then heat-treat the granulated product at 120 to 150 ° C. to melt at least a part of the sulfur powder, in a state having the same or similar shape as the granulated product, The porosity (V) represented by the following formula (1), characterized by bonding and crosslinking carbonate powder with molten sulfur, is 10 to 40%, and the strength measured by a Kiya-type hardness meter is 100N. How to make granular nitrate nitrogen treatment material Law.
V% = (A−B) × 100 / B (1)
(However, A is the theoretical maximum specific gravity, and B is the apparent specific gravity.)
硝酸性窒素処理材の空隙率が10〜40%であることを特徴とする請求項1記載の硝酸性窒素処理材の製造方法。 The method for producing a nitrate nitrogen treatment material according to claim 1 , wherein the porosity of the nitrate nitrogen treatment material is 10 to 40% . 造粒品を加熱処理するに当り、120〜150℃で、1分間〜10時間加熱することを特徴とする請求項1又は2に記載の硝酸性窒素処理材の製造方法。
3. The method for producing a nitrate nitrogen treatment material according to claim 1, wherein the granulated product is heated at 120 to 150 ° C. for 1 minute to 10 hours.
JP2004332776A 2004-11-17 2004-11-17 Method for producing granules for nitrate nitrogen treatment Expired - Fee Related JP4391392B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004332776A JP4391392B2 (en) 2004-11-17 2004-11-17 Method for producing granules for nitrate nitrogen treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004332776A JP4391392B2 (en) 2004-11-17 2004-11-17 Method for producing granules for nitrate nitrogen treatment

Publications (2)

Publication Number Publication Date
JP2006142149A JP2006142149A (en) 2006-06-08
JP4391392B2 true JP4391392B2 (en) 2009-12-24

Family

ID=36622430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004332776A Expired - Fee Related JP4391392B2 (en) 2004-11-17 2004-11-17 Method for producing granules for nitrate nitrogen treatment

Country Status (1)

Country Link
JP (1) JP4391392B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5422461B2 (en) * 2010-03-30 2014-02-19 新日鉄住金エンジニアリング株式会社 Purifying material and method for purifying nitrate-containing water
CN113387426B (en) * 2021-06-03 2022-12-06 北京市水科学技术研究院 Matrix modifier for ecological water replenishing rivers and lakes and modification method thereof
CN113860518A (en) * 2021-11-03 2021-12-31 威海百克环保工程有限公司 Sulfur autotrophic composite filter material and preparation method and application thereof
WO2023122998A1 (en) * 2021-12-28 2023-07-06 北京建工环境修复股份有限公司 Mineralized iron-carbon composite material, preparation method therefor, and application thereof
CN115304159B (en) * 2022-06-23 2023-11-10 无锡映川环境技术有限公司 Broad-spectrum adaptive autotrophic denitrification filter material and preparation method thereof

Also Published As

Publication number Publication date
JP2006142149A (en) 2006-06-08

Similar Documents

Publication Publication Date Title
JPH0634993B2 (en) Three-phase fluidized bed water purification method
EP1129996A1 (en) Denitrifying composition for removing nitrate nitrogen and process for producing the same
JP2007014923A (en) Phosphorus removal material
JP4391392B2 (en) Method for producing granules for nitrate nitrogen treatment
KR100839589B1 (en) Producting method of liquefied water treatment material for removal of suspend solid, nitrate, phosphate and stench
KR101010011B1 (en) Solidifying agent for sludge and manufacturing method of it
JP2004174328A (en) Method and apparatus for removing nitrate nitrogen in water and denitrification treatment material
JP4269086B2 (en) Nitrate nitrogen denitrification composition and method for producing the same
JP2000343097A (en) Nitrate nitrogen denitrification substrate and its production
JP2007044589A (en) Waste water treatment method, and sulfur-containing denitrification material
JP4162704B2 (en) Foamed glass and manufacturing method thereof
KR20070066467A (en) Artificial soil composition for the greening and method of manufacturing the same
JP4947247B2 (en) Composition for removing nitrate nitrogen and the like and method for producing the same
JP2001047086A (en) Activation material for denitrifying nitrate nitrogen
JP4549429B2 (en) Foamed glass material containing porcelain powder and water treatment method, bottom quality improving method and soil improving material using the same
JP4269087B2 (en) Method for producing activated material for removing nitrate nitrogen
JPH11285377A (en) Composition provided with microbial activity, and its production
JP4602025B2 (en) Nitrate nitrogen treatment material and waste water treatment method
JP4474690B2 (en) Porous stone for water purification and water purification method
JP4541110B2 (en) Method of treating wastewater containing fluorine and nitrate nitrogen
JP4593183B2 (en) Nitrate-containing nitrogen-treated material containing denitrifying bacteria and method for producing the same
JP4467530B2 (en) Method for producing foamed glass material containing porcelain powder
CN111790348A (en) Method for preparing spherical particle adsorbent by using Bayer process red mud and electrolytic manganese slag
KR100506329B1 (en) Material for water-treating and water-treating apparatus
JPS623056A (en) Granulation for coal ash

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090707

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091006

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091007

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121016

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151016

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151016

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151016

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees