JP4390962B2 - High purity ferritic stainless steel with excellent surface properties and corrosion resistance - Google Patents

High purity ferritic stainless steel with excellent surface properties and corrosion resistance Download PDF

Info

Publication number
JP4390962B2
JP4390962B2 JP2000102583A JP2000102583A JP4390962B2 JP 4390962 B2 JP4390962 B2 JP 4390962B2 JP 2000102583 A JP2000102583 A JP 2000102583A JP 2000102583 A JP2000102583 A JP 2000102583A JP 4390962 B2 JP4390962 B2 JP 4390962B2
Authority
JP
Japan
Prior art keywords
corrosion resistance
stainless steel
ferritic stainless
less
high purity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000102583A
Other languages
Japanese (ja)
Other versions
JP2001288544A (en
Inventor
阿部  雅之
明彦 高橋
祐司 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel and Sumikin Stainless Steel Corp
Original Assignee
Nippon Steel and Sumikin Stainless Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Stainless Steel Corp filed Critical Nippon Steel and Sumikin Stainless Steel Corp
Priority to JP2000102583A priority Critical patent/JP4390962B2/en
Publication of JP2001288544A publication Critical patent/JP2001288544A/en
Application granted granted Critical
Publication of JP4390962B2 publication Critical patent/JP4390962B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高純度フェライト系ステンレス鋼に関するものであって、フェライト系ステンレス鋼に特有な耐リジング特性等の表面特性が優れ、また耐食性が優れた高純度フェライト系ステンレス鋼に関する。
【0002】
【従来の技術】
フェライト系ステンレス鋼は、オ−ステナイト系ステンレス鋼に比べてNi含有量が少なく低価格であるため、建材や厨房器具、また自動車の排気系部品等をはじめ広く使用されている。特に近年の精錬技術の進歩に伴い、精錬時にC,Nを極力下げて、Ti等の安定化元素を添加した高純フェライト系ステンレス鋼も多く開発されてきている。この高純度フェライト系ステンレス鋼は、従来のSUS430鋼よりも延性や深絞り特性等の加工特性に優れるのが大きな特徴である。
【0003】
ところがSUS430鋼と違い極低C,Nのため、製造中にオ−ステナイト相が析出する可能性が殆どないため、鋳造組織が粗大になり易く、且つその影響が製品まで残存しやすい。このため、高純度フェライト系ステンレス鋼においても従来のフェライト系ステンレス鋼と同様に、加工時にオーステナイト系ステンレス鋼では殆ど見られないリジングといわれる表面凹凸が発生する。
【0004】
このリジングは加工度に比例して大きくなるため、強加工したところでは著しく美観を損ねることになる。また、一旦成形後2次加工を受ける場合は、凹凸によって加工条件が局所的に変化して割れの原因となることもあり、耐リジング特性等の表面特性を改善することが必要である。この点に関し上述のようにリジング対策として、熱延板焼鈍や熱延条件の適正化等が採られてきた。しかしこのような熱延工程の適正化だけでは、リジング特性は改善されるものの、ステンレス鋼の基本特性である耐食性に関しては改善効果は小さい。
【0005】
また、Tiを添加することによりC,Nを固定するが、特にTiNは溶鋼中に晶出する場合には鋳片の微細化に寄与するものの、多量に出ると疵の原因となるため、スラブ手入れ等を必要としコストアップの原因となっていた。
【0006】
更にステンレス鋼の基本特性である耐食性に関しては、従来から介在物に着目したり、また低S化等の対策により耐銹性を改善する試みがなされてきた。低S化では精錬コストの上昇など、安価なフェライト系ステンレス鋼のメリットを減少させるなど、実プロセスでは適用に限界がある。
また介在物組成に関しては、特開平10−237596号公報に示されるように、複合介在物の組成制御による耐食性改善が開示されている。しかしこの発明では、塩基度はCaO,CaF2 を用いて調整するとの通常範囲の技術的記述しかなく、具体的介在物制御方法は開示されておらず、耐食性に優れたフェライト系ステンレス鋼を得ることができない。
【0007】
【発明が解決しようとする課題】
従って本発明の目的は、高純度フェライト系ステンレス鋼のTiNに起因する疵を防止し、且つNリジング等の表面特性や耐食性も改善した高純度フェライト系ステンレス鋼を提供することにある。
【0008】
【課題を解決するための手段】
本発明者等は、疵を防止、耐リジング性善や耐食性の改善するため種々の検討を実施し、鋼成分に関して微量成分を制御することで上記課題を解決する方法を見出した。具体的には、Mg,Ca等の微量成分を規定に加えて、TiとC,N,P,S,Oの関係を制御することで、疵の防止及び耐リジング特性を改善しつつ、耐食性の低下を防止できることを見いだした。特に、Mgを適量添加することで鋳片組織の微細等軸晶化されることにより、熱延組織集合組織の改善がなされ、リジング特性が改善されることを知見した。
【0009】
また同時に、精錬時に使用されるCaOや介在物性の特性改善に用いられるCaの影響について詳細に検討し、Mg、Caを同時に制御することに加え、C,Nを固定するTiに関しても、C,N,P,S,Oとの関係を規定することでより耐食性が改善することを知見して、下記の通り本発明を完成した。
【0010】
即ち本発明は以下の構成を要旨とする。
(1)質量%で
C :0.0005〜0.03%、 Si:0.01〜1%、
Mn:0.01〜1%、 P :0.04%以下、
S :0.01%以下、 Cr:7〜30%、
Ti:0.8%以下、 O :0.01%以下、
N :0.0002〜0.03%、 Mg:0.0014〜0.006%
Ca:0.0005%以下
を含有し、且つMg+10xCa≦0.006%、Ti≧1.5x(P+S)+3xN+4x(C+O)、TixN≦0.003を満足し、残部がFeおよび不可避的不純物からなる表面特性及び耐食性に優れた高純度フェライト系ステンレス鋼。
(2)更に質量%で、
Al:0.001〜0.2%
を含有することを特徴とする前記(1)記載の表面特性及び耐食性に優れた高純度フェライト系ステンレス鋼。
(3)更に質量%で、
B :0.005%以下
を含有することを特徴とする前記(1)1または(2)に記載の表面特性及び耐食性に優れた高純度フェライト系ステンレス鋼。
(4)更に質量%で、
Nb:0.01〜2%、 Zr:0.01〜2%、
W :0.01〜2%、 V :0.01〜2%
の1種以上を含有することを特徴とする前記(1)乃至(3)のいずれか1項に記載の表面特性及び耐食性に優れた高純度フェライト系ステンレス鋼。
(5)更に質量%で、
Mo:0.01〜2%、 Sn:0.01〜0.5%、
Co:0.01〜2%、 Ni:0.01〜2%、
Cu:0.01〜3%
の1種以上を含有することを特徴とする前記(1)1乃至(4)のいずれか1項に記載の表面特性及び耐食性に優れた高純度フェライト系ステンレス鋼。
【0012】
【発明の実施の形態】
本発明によれば、高純度フェライト系ステンレス鋼の製造時の疵防止に加え、リジング特性及び耐食性を改善できる。
以下に本発明を詳細に説明する。
本発明者らは、実験室で11%Cr−0.005%C−0.007%N−0.005%S−0.025%P−Ti添加系を基本成分とするフェライト系ステンレス鋼の50kg鋼塊を溶製した。溶製に際してはMg,Ca等の微量元素と鋳片組織の関係、及び疵の原因と考えられるTiNの晶析出状況について着目して詳細に調査した。また、この鋼塊を実験室で熱延実験を行って3〜5mmの熱延板を製造し、酸洗後、1mm厚みまで冷延し840℃にて焼鈍を行い、特性評価用サンプルを作成した。
【0013】
リジング特性は、製品板の圧延方向からJIS5号試験試験片を採取し、16%引張試験後、圧延方向に対して直角方向に粗度計により凹凸を測定した。また耐食性はJIS G0577に準じて、30℃の3.5%NaCl溶液中にて孔食電位を測定した。測定にあたっては、介在物の影響を明確にするため600番研磨仕上のままで行い、Vc’10を孔食電位として評価した。
【0014】
その結果、Mg添加によるリジング特性改善はMg量が5ppm 以上で現れること、疵の原因と考えられるTiNの晶析出については、TiとNの積が0.003%以下であれば10μmを超える粗大なTiNの出現を防止できること、さらには耐食性の改善効果はCa量を5ppm 未満とし、且つMg+10Ca≦0.006%を満足することに加え、Ti≧1.5x(P+S)+3xN+6x(C+O)とすることで、耐食性をより改善できることが判明した。
【0015】
リジング特性の改善は、溶鋼中に生成したMg系酸化物による異質核生成による等軸細粒化効果に起因した熱延集合組織改善によるもの、また耐食性改善はMg酸化物やMg系硫化物に加え、Ca酸化物及び硫化物の体積分率低減による銹起点の減少と、上記介在物上へのTi系析出物の析出によるものと考えられる。
【0016】
図1に、0.17%Ti添加材の孔食電位とMg+10Caの関係、図2に、0.08〜0.2Ti%−0.001%Mg−0.0001%Ca系における、孔食電位に及ぼすTi−1.5x(P+S)+3xN+6x(C+O)の関係を示す。この図に示すごとく、Mg+10Caを0.006%以下とすること、及びTi≧1.5x(P+S)+3xN+6x(C+O)を満足することで、耐食性の低下を防止できる。
【0017】
上記の関係について成分範囲を広げて検討した結果、本発明は下記の成分系で成り立つことが判明した。
すなわち、本発明のフェライト系ステンレス鋼は、質量%で
C :0.0005〜0.03%、 Si:0.01〜1%、
Mn:0.01〜1%、 P :0.04%以下、
S :0.01%以下、 Cr:7〜30%、
Ti:0.8%以下、 O :0.01%以下、
N :0.0002〜0.03%、 Mg:0.0014〜0.006%
Ca:0.0005%以下を含有し、さらに必要に応じ
Al:0.001〜0.2%、 B :0.005%以下、
Nb:0.01〜2%、 Zr:0.01〜2%、
W :0.01〜2%、 V :0.01〜2%、
Mo:0.01〜2%、 Sn:0.01〜0.5%、
Co:0.01〜2%、 Ni:0.01〜2%、
Cu:0.01〜3%の1種以上を含有する。
【0018】
以下に本発明における成分の限定理由を述べる。
C:Cは耐食性の点では有害であり、特に溶接部の耐食性に悪影響を与えるが、現状では0.0005%未満にするには製造コストが高くなり、また0.03%を超えて添加すると加工性、靭性及び耐食性が劣化するため、Cは0.0005〜0.03%とした。
【0019】
Si:Siは脱酸剤として使用されるが、0.01%未満では十分な効果がなく、また1%を超えて添加すると脆化を著しく促進させ延性、靭性を劣化させるので、0.01〜1%を添加する。
【0020】
Mn:Mnは脱酸元素として添加するが、0.01%未満では効果が十分でなく、1%を超えて添加しても効果が飽和するため、0.01〜1%添加する。
【0021】
P:Pは熱延時の再結晶を遅らせリジング特性を低下させたり、加工性、耐食性を低下させるため、含有量は少ないほど望ましく、0.04%以下とする。
【0022】
S:Sは硫化物として存在すると耐食性低下の原因となるため、本発明では0.01%以下とした。
【0023】
Cr:Crは本発明の高純度フェライト系ステンレス鋼の主要元素であり、耐食性の観点から7%以上添加する必要がある。しかし、30%を超えて添加してもコストアップや製造性の低下が大きく、また加工性や靭性が劣化するので、Crの上限は30%とした。
【0024】
Ti:TiはC,N,P,S,Oを固定することで、加工性、耐食性の改善に有効な元素であり、0.8%以下で添加し、上記C,N,P,S,Oとの関係でTi≧1.5x(P+S)+3xN+4x(C+O)を満たすように添加する。0.8%を超えて添加しても効果は飽和し、靭性の低下またコストアップの原因となる。
【0025】
O:Oは酸化物を形成し、鋳造時のノズル詰まりやキズ発生の原因となったり、耐食性を低下させる原因となるため、本発明では0.01%以下とした。
【0026】
N:NはCと同様に含有量が少ないほど耐食性、加工性の点では好ましいが、0.0002%未満にすることは工業的には困難であり、また0.03%を超えて添加すると加工性、靭性、耐食性が劣化するため、0.0002〜0.03%の範囲とする。
【0027】
Mg:Mgは鋳造時の異質核生成となる酸化物を形成し、鋳片組織の等軸晶化やリジング特性の改善に必須の成分であり、0.0014%以上添加する。但し、多量に添加すると発銹起点となる酸化物や硫化物の体積分率が高くなるため、上限を0.006%と、Caとの関係でMg+10Ca≦0.006%を満足することが必要である。
【0028】
Ca:Caは耐食性を確保する観点から本発明において制御する重要な成分であり、0.0005%以下とし、Mgとの関係でMg+10Ca≦0.006%を満足することが重要である。
【0029】
Al:Alは脱酸元素やNの固定に必要に応じて使用される。この場合、0.001%以上が必要であり、0.2%超では上記効果も飽和するため、0.001〜0.2%とする。
【0030】
B:Bは粒界に偏析しやすい元素であり、Nの固定や加工性を改善するために必要に応じて添加する。特に、2次加工割れに対しては有効である。但し、0.005%を超えて添加しても二次加工性やγ相の分散効果が飽和するので、0.005%以下で添加する。
【0031】
本発明では、耐食性改善の観点からNb,Zr,W,Vのいずれか1種以上を含有させることができる。
Nb:NbはCやNを固定し、耐食性の点で好ましい元素であり、必要に応じて選択元素として添加できる。0.01%未満ではその効果は十分でなく、また2%を超えて添加してもその効果は飽和し、また高価となるため、0.01〜2%とした。
【0032】
Zr:ZrはCやNを固定するため、また、特に溶接部でのCr炭窒化物の析出を抑制して耐食性を向上させ、また排気材料として高温強度を必要とする場合は必要に応じて添加できる。0.01%未満では効果が十分でなく、また2%を超えて添加しても効果は飽和し、また高価となるため0.01〜2%とした。
【0033】
W:WはCを固定して耐食性を向上させ、また高温での強度を得るのに有効な元素であり、必要に応じて添加できる。0.01%未満ではその効果が十分でなく、また2%を超えて添加してもその効果は飽和し、また高価となるため0.01〜2%とした。
【0034】
V:VはCやNを固定するため、特に溶接部でのCr炭窒化物の析出を抑制して耐食性を向上させ、また高温強度を必要とする場合は必要に応じて添加できる。0.01%未満ではその効果が十分でなく、また2%を超えて添加してもその効果は飽和し、また高価となるため0.01〜2%とした。
【0035】
さらに本発明では必要に応じてMo,Sn,Co,Ni,Cuのいずれか1種以上を含有させることができる。
Mo:Moは耐食性の点で好ましい元素であり、必要に応じて選択元素として添加できる。0.01%未満ではその効果が十分でなく、また2%を超えて添加してもその効果は飽和し、また高価となるため0.01〜2%とした。
【0036】
Sn:Snは耐食性の点で好ましい元素であり、必要に応じ選択元素として添加できる。0.01%未満では効果が十分でなく、また0.5%を超えて添加してもその効果は飽和し、また靭性が低下するため、0.01〜0.5%とした。
【0037】
Co:Coは耐食性の点で好ましい元素であり、必要に応じて選択元素として添加できる。0.01%未満ではその効果が十分でなく、また2%を超えて添加してもその効果は飽和し、また高価となるため0.01〜2%とした。
【0038】
Ni:Niは耐食性の点で好ましい元素であり、必要に応じて選択元素として添加できる。0.01%未満ではその効果は十分でなく、また2%を超えて添加してもその効果は飽和し、また高価となるため0.01〜2%とした。
【0039】
Cu:Cuは耐食性の点で好ましい元素であり、必要に応じて選択元素として添加できる。0.01%未満ではその効果は十分でなく、また3%を超えて添加してもその効果は飽和し、また高価となるため0.01〜3%とした。
【0040】
本発明では上記成分を満足することで、通常プロセス条件で製造しても、耐リジング特性ならびに耐食性を十分確保可能であるが、上記成分に加えて熱延条件を規制することで、特性の安定化や更なる特性向上が可能となる。
以下に、製造条件の限定理由を述べる。
【0041】
加熱温度を1300℃以下としたのは、1300℃を超えて加熱すると本発明の細粒化された鋳片を用いても、加熱時の粒成長によりリジング特性が改善できなくなるためであり、またスケールの発生が多量になり歩留まり低下を招くためであり、加熱温度としては1300℃以下とすることが必要である。
【0042】
また粗圧延終了温度を1000℃以上とし、熱延後の捲取温度を750℃以上900℃以下としたのは、上記条件で熱延を実施することにより熱延途中や捲取時の再結晶を促進することができ、リジング特性を更に改善することができるからであり、使用する部位や加工度によっては熱延板焼鈍を省略することも可能となり、低コスト化できる。
【0043】
また粗圧延終了温度を1000℃以上とし、熱延後の捲取温度を750℃未満とし、熱延板焼鈍を実施するとしたのは、熱延板焼鈍を実施する場合、粗圧延を1000℃以上で終了させることで熱延中の再結晶を促進させ、且つ捲取温度を750℃未満とすることで熱延板焼鈍時の再結晶を促進させることができ、リジング特性を著しく改善できるからである。
【0044】
(実施例1)
次に、本発明の実施例を説明する。表1に示す成分のフェライト系ステンレス鋼をラボの真空溶解にて溶製し、厚み100mmの50kg鋼塊を製造した。この後、表2に示す条件で加熱後、粗圧延を5パスで20mmまで実施し、仕上熱延を20mmから3mmまで6パスで実施し、そのまま熱延板を850〜550℃の炉に挿入し1時間保定後、炉冷して捲取をシミュレ−トした。表中の捲取温度はこのシミュレ−トの保定温度である。この後、熱延板焼鈍を実施あるいは省略した後に酸洗し、1mmの厚さまで冷延後、焼鈍を800〜840℃で実施し、リジング特性及び耐食性を評価した。
【0045】
リジング特性は製品板の圧延方向からからJIS5号試験試験片を採取し、16%引張試験後、圧延方向に対して直角方向に粗度計により凹凸を測定した。凹凸高さが10μm以下を評点A、10超〜20μm以下をB、20超〜30μm以下をC、30μm超をDとした。実用上評点A,Bであれば問題ない。
耐食性はJIS G0557に準じて、30℃の3.5%NaCl溶液中にて孔食電位を測定した。測定にあたっては、介在物の影響を明確にするため、600番研磨仕上の研磨ままの状態で行い、Vc’10を孔食電位として評価した。
【0046】
その結果、本発明条件を満たすB〜Mは、リジング特性も評点AまたはBであり、且つ孔食電位も50mV以上と良好な特性を示した。
これに対し、N鋼はMgによるリジング改善効果が見られず、またO,P,Q,R鋼は本発明条件よりもMgが多いかCaが多いため、耐食性確保のための条件であるMg+10Ca≦0.006を満たすことができず耐食性が不良であり、S鋼はTiが微量成分との関係で本発明の条件を満たさず、耐食性が低い。T鋼は粗大なTiNが見られ疵の原因となることが判明した。また加熱温度が1300℃を超えたU鋼は、加熱組織が粗大化しリジング特性が劣化した。
【0047】
(実施例2)
表3に示す成分の高純度フェライト系ステンレス鋼を溶製した後、連続鋳造にて250mm厚のCCスラブとした。スラブ手入れを実施せず、熱間圧延前の加熱を1180℃で均熱120分の条件とし、3mm厚まで熱間圧延を行って760℃で捲取り、熱延板焼鈍を省略して酸洗を施し、0.8mmまで冷延した後、840℃×60秒の焼鈍を行って製品とした。評価項目として、疵の発生状況、リジング特性、耐食性を評価した。
その結果、本発明例であるA1鋼は疵の発生もなく、耐リジング特性及び耐食性も良好であるのに対し、本発明の条件から外れたB1鋼は疵の発生がみられ、C1鋼はリジング特性が不良、D1、E1鋼、F1鋼は耐食性が不良であり、本発明の効果が認められた。
【0048】
【表1】
【0049】
【表2】
【0050】
【表3】
【0051】
【発明の効果】
上記のように、本発明は高純度フェライト系ステンレス鋼のTi添加による疵や加工時の課題であるリジング特性を改善しかつ、耐食性も改善可能な高純度フェライト系ステンレス鋼を提供できる。
【図面の簡単な説明】
【図1】0.17%Ti添加材の孔食電位とMg+10Caの関係を示す図。
【図2】0.08〜0.2%Ti−0.001%Mg−0.0001%Ca系における孔食電位に及ぼすTi−1.5×(P+S)+3×N+6×(C+0)の関係を示す図。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a high purity ferritic stainless steel, excellent surface properties such as specific anti-ridging property in ferritic stainless steels, also relates to high purity ferritic stainless steel corrosion resistance excellent.
[0002]
[Prior art]
Ferritic stainless steel has a lower Ni content and is less expensive than austenitic stainless steel, and is therefore widely used for building materials, kitchen appliances, automobile exhaust system parts, and the like. In particular, with the advancement of refining technology in recent years, many high purity ferritic stainless steels in which C and N are reduced as much as possible during refining and a stabilizing element such as Ti is added have been developed. This high-purity ferritic stainless steel has a great feature that it is superior in processing characteristics such as ductility and deep drawing characteristics than the conventional SUS430 steel.
[0003]
However, unlike SUS430 steel, because of its extremely low C and N, there is almost no possibility that an austenite phase precipitates during the production, so that the cast structure tends to become coarse and the effect tends to remain up to the product. For this reason, also in high purity ferritic stainless steel, surface irregularities called ridging, which are hardly seen in austenitic stainless steel, occur during processing, as in conventional ferritic stainless steel.
[0004]
Since this ridging becomes larger in proportion to the degree of processing, the aesthetics are remarkably impaired when strongly processed. In addition, once subjected to secondary processing after molding, the processing conditions may locally change due to unevenness and cause cracking, and it is necessary to improve surface characteristics such as ridging resistance. In this regard, as described above, hot rolling sheet annealing, optimization of hot rolling conditions, and the like have been adopted as measures against ridging. However, by just optimizing the hot rolling process, the ridging characteristics are improved, but the improvement effect is small with respect to the corrosion resistance, which is a basic characteristic of stainless steel.
[0005]
In addition, C and N are fixed by adding Ti. Especially when TiN is crystallized in molten steel, it contributes to refinement of the cast slab, but if it comes out in a large amount, it will cause flaws. Care was required and increased costs.
[0006]
Furthermore, with respect to the corrosion resistance, which is a basic characteristic of stainless steel, conventionally, attempts have been made to improve the weather resistance by paying attention to inclusions or by measures such as lowering S. There is a limit to application in the actual process, such as reducing the merit of inexpensive ferritic stainless steel, such as an increase in refining cost if the S is low.
Regarding the inclusion composition, as disclosed in JP-A-10-237596, improvement in corrosion resistance by controlling the composition of the composite inclusion is disclosed. However, in this invention, there is only a technical description in the normal range that the basicity is adjusted using CaO and CaF 2, and no concrete inclusion control method is disclosed, and a ferritic stainless steel having excellent corrosion resistance is obtained. I can't.
[0007]
[Problems to be solved by the invention]
Accordingly, an object of the present invention is to provide a high purity ferritic stainless steel to prevent flaws caused by TiN, and high-purity ferritic stainless steel with improved surface properties and corrosion resistance, such as N ridging.
[0008]
[Means for Solving the Problems]
The present inventors have conducted various studies to prevent wrinkles, improve ridging resistance and improve corrosion resistance, and have found a method for solving the above-described problems by controlling trace components with respect to steel components. Specifically, in addition to the definition of trace components such as Mg and Ca, by controlling the relationship between Ti and C, N, P, S, O, corrosion resistance while improving the prevention of wrinkles and ridging resistance characteristics We found that we can prevent the decline. In particular, it has been found that by adding an appropriate amount of Mg, the slab structure is made fine equiaxed crystallization, thereby improving the hot rolled texture and improving the ridging characteristics.
[0009]
At the same time, the effects of CaO used during refining and Ca used to improve the properties of inclusion properties are examined in detail, and in addition to simultaneously controlling Mg and Ca, Ti that fixes C and N is also C, Knowing that the corrosion resistance is further improved by defining the relationship with N, P, S, O, the present invention has been completed as follows.
[0010]
That is, the gist of the present invention is as follows.
(1) By mass% C: 0.0005-0.03%, Si: 0.01-1%,
Mn: 0.01 to 1%, P: 0.04% or less,
S: 0.01% or less, Cr: 7-30%,
Ti: 0.8% or less, O: 0.01% or less,
N: 0.0002 to 0.03%, Mg: 0.0014 to 0.006% ,
Ca: not more than 0.0005% and satisfying Mg + 10xCa ≦ 0.006%, Ti ≧ 1.5x (P + S) + 3xN + 4x (C + O), TixN ≦ 0.003, the balance being Fe and inevitable impurities High purity ferritic stainless steel with excellent surface properties and corrosion resistance.
(2) Furthermore, in mass%,
Al: 0.001 to 0.2%
The high-purity ferritic stainless steel having excellent surface characteristics and corrosion resistance as described in (1) above .
(3) Furthermore, in mass%,
B: High purity ferritic stainless steel excellent in surface characteristics and corrosion resistance according to (1) 1 or (2), characterized by containing 0.005% or less.
(4) Furthermore, in mass%,
Nb: 0.01-2%, Zr: 0.01-2%,
W: 0.01-2%, V: 0.01-2%
The high purity ferritic stainless steel excellent in surface characteristics and corrosion resistance according to any one of the above (1) to (3), comprising at least one of the following .
(5) Further, by mass%,
Mo: 0.01-2%, Sn: 0.01-0.5%,
Co: 0.01-2%, Ni: 0.01-2%,
Cu: 0.01 to 3%
The high purity ferritic stainless steel excellent in surface characteristics and corrosion resistance according to any one of the above (1) 1 to (4), comprising at least one of the following .
[0012]
DETAILED DESCRIPTION OF THE INVENTION
According to the present invention, ridging characteristics and corrosion resistance can be improved in addition to prevention of wrinkles during production of high purity ferritic stainless steel.
The present invention is described in detail below.
The inventors of the present invention have studied the ferritic stainless steel based on an 11% Cr-0.005% C-0.007% N-0.005% S-0.025% P-Ti added system in a laboratory. A 50 kg steel ingot was melted. During the melting, a detailed investigation was conducted focusing on the relationship between trace elements such as Mg and Ca and the slab structure, and the TiN crystal precipitation that is considered to be the cause of defects. Moreover, this steel ingot is subjected to a hot rolling experiment in a laboratory to produce a hot rolled sheet of 3 to 5 mm, pickled, cold rolled to a thickness of 1 mm, and annealed at 840 ° C. to prepare a sample for characteristic evaluation. did.
[0013]
For ridging characteristics, a JIS No. 5 test specimen was taken from the rolling direction of the product plate, and after a 16% tensile test, the roughness was measured with a roughness meter in a direction perpendicular to the rolling direction. Corrosion resistance was measured in accordance with JIS G0577 by measuring the pitting potential in a 3.5% NaCl solution at 30 ° C. In the measurement, in order to clarify the influence of inclusions, it was performed with the 600th polished finish, and Vc′10 was evaluated as a pitting corrosion potential.
[0014]
As a result, the improvement of ridging characteristics due to the addition of Mg appears when the amount of Mg is 5 ppm or more. Regarding the precipitation of TiN, which is considered to be the cause of soot, the coarseness exceeds 10 μm if the product of Ti and N is 0.003% or less. In addition to satisfying Mg + 10Ca ≦ 0.006% and satisfying Mg + 10Ca ≦ 0.006%, Ti ≧ 1.5x (P + S) + 3 × N + 6x (C + O) is achieved. Thus, it has been found that the corrosion resistance can be further improved.
[0015]
The improvement of ridging characteristics is due to the improvement of hot-rolling texture due to the equiaxed grain refinement effect due to heterogeneous nucleation by Mg-based oxides formed in the molten steel, and the corrosion resistance is improved to Mg oxides and Mg-based sulfides. In addition, it is considered that this is due to a decrease in the starting point due to a reduction in the volume fraction of Ca oxide and sulfide, and precipitation of Ti-based precipitates on the inclusions.
[0016]
FIG. 1 shows the relationship between the pitting potential of 0.17% Ti additive and Mg + 10Ca, and FIG. 2 shows the pitting potential in the 0.08-0.2Ti% -0.001% Mg-0.0001% Ca system. The relationship of Ti-1.5x (P + S) + 3xN + 6x (C + O) is shown. As shown in this figure, a decrease in corrosion resistance can be prevented by making Mg + 10Ca 0.006% or less and satisfying Ti ≧ 1.5x (P + S) + 3xN + 6x (C + O).
[0017]
As a result of expanding the component range for the above relationship, it was found that the present invention is composed of the following component systems.
That is, the ferritic stainless steel of the present invention is, in mass%, C: 0.0005-0.03%, Si: 0.01-1%,
Mn: 0.01 to 1%, P: 0.04% or less,
S: 0.01% or less, Cr: 7-30%,
Ti: 0.8% or less, O: 0.01% or less,
N: 0.0002 to 0.03%, Mg: 0.0014 to 0.006% ,
Ca: 0.0005% or less is contained, and if necessary, Al: 0.001-0.2%, B: 0.005% or less,
Nb: 0.01-2%, Zr: 0.01-2%,
W: 0.01-2%, V: 0.01-2%,
Mo: 0.01-2%, Sn: 0.01-0.5%,
Co: 0.01-2%, Ni: 0.01-2%,
Cu: One or more of 0.01 to 3% is contained.
[0018]
The reasons for limiting the components in the present invention will be described below.
C: C is harmful in terms of corrosion resistance, and particularly has an adverse effect on the corrosion resistance of welds. However, at present, if it is less than 0.0005%, the manufacturing cost becomes high, and if added over 0.03%, Since workability, toughness, and corrosion resistance deteriorate, C was made 0.0005 to 0.03%.
[0019]
Si: Si is used as a deoxidizer, but if less than 0.01%, there is no sufficient effect, and if added over 1%, embrittlement is remarkably promoted and ductility and toughness deteriorate. Add ~ 1%.
[0020]
Mn: Mn is added as a deoxidizing element, but if it is less than 0.01%, the effect is not sufficient, and if it exceeds 1%, the effect is saturated, so 0.01 to 1% is added.
[0021]
P: P delays recrystallization during hot rolling, lowers ridging characteristics, and lowers workability and corrosion resistance. Therefore, the smaller the content, the more desirable it is to be 0.04% or less.
[0022]
S: If S exists as a sulfide, it causes a decrease in corrosion resistance. Therefore, in the present invention, the content is set to 0.01% or less.
[0023]
Cr: Cr is a main element of the high purity ferritic stainless steel of the present invention, and it is necessary to add 7% or more from the viewpoint of corrosion resistance. However, even if added over 30%, cost increases and manufacturability are greatly reduced, and workability and toughness deteriorate. Therefore, the upper limit of Cr is set to 30%.
[0024]
Ti: Ti is an element effective for improving workability and corrosion resistance by fixing C, N, P, S, O, and is added at 0.8% or less, and the above C, N, P, S, In relation to O, Ti is added so as to satisfy Ti ≧ 1.5 × (P + S) + 3 × N + 4 × (C + O). Even if added over 0.8%, the effect is saturated, leading to a decrease in toughness and an increase in cost.
[0025]
O: O forms an oxide, which causes nozzle clogging and scratching at the time of casting, and reduces corrosion resistance. Therefore, in the present invention, the content was made 0.01% or less.
[0026]
N: N, like C, has a lower content in terms of corrosion resistance and workability, but it is industrially difficult to make it less than 0.0002%, and if added over 0.03%, Since workability, toughness, and corrosion resistance are deteriorated, the range is 0.0002 to 0.03%.
[0027]
Mg: Mg forms an oxide that forms heterogeneous nuclei during casting, and is an essential component for equiaxed crystallization of the slab structure and improvement of ridging characteristics, and is added in an amount of 0.0014% or more . However, if added in a large amount, the volume fraction of oxides and sulfides as starting points increases, so the upper limit is 0.006%, and it is necessary to satisfy Mg + 10Ca ≦ 0.006% in relation to Ca. It is.
[0028]
Ca: Ca is an important component to be controlled in the present invention from the viewpoint of ensuring corrosion resistance. It is important that the content is 0.0005% or less and that Mg + 10Ca ≦ 0.006% is satisfied in relation to Mg.
[0029]
Al: Al is used as necessary for fixing deoxidizing elements and N. In this case, 0.001% or more is necessary, and if it exceeds 0.2%, the above effect is saturated, so 0.001 to 0.2% is set.
[0030]
B: B is an element that easily segregates at the grain boundary, and is added as necessary to improve the fixation and workability of N. In particular, it is effective against secondary processing cracks. However, even if added over 0.005%, secondary workability and the effect of dispersing the γ phase are saturated, so 0.005% or less is added.
[0031]
In the present invention, one or more of Nb, Zr, W, and V can be contained from the viewpoint of improving corrosion resistance.
Nb: Nb fixes C and N and is a preferable element in terms of corrosion resistance, and can be added as a selective element as necessary. If it is less than 0.01%, the effect is not sufficient, and even if added over 2%, the effect is saturated and expensive, so 0.01 to 2% was made.
[0032]
Zr: Zr fixes C and N, and also suppresses precipitation of Cr carbonitride in the weld zone to improve corrosion resistance. Also, if high temperature strength is required as an exhaust material, it is necessary. Can be added. If it is less than 0.01%, the effect is not sufficient, and even if added in excess of 2%, the effect is saturated and expensive, so 0.01-2%.
[0033]
W: W is an element effective for fixing C to improve corrosion resistance and obtaining strength at high temperatures, and can be added as necessary. If it is less than 0.01%, the effect is not sufficient, and even if added over 2%, the effect is saturated and expensive, so the content was made 0.01 to 2%.
[0034]
V: V fixes C and N, so that the precipitation of Cr carbonitride in the weld zone is suppressed to improve the corrosion resistance, and when high temperature strength is required, it can be added as necessary. If it is less than 0.01%, the effect is not sufficient, and even if added over 2%, the effect is saturated and expensive, so the content was made 0.01 to 2%.
[0035]
Furthermore, in the present invention, one or more of Mo, Sn, Co, Ni, and Cu can be contained as necessary.
Mo: Mo is a preferable element in terms of corrosion resistance, and can be added as a selective element as necessary. If it is less than 0.01%, the effect is not sufficient, and even if added over 2%, the effect is saturated and expensive, so the content was made 0.01 to 2%.
[0036]
Sn: Sn is a preferable element in terms of corrosion resistance, and can be added as a selective element as necessary. If it is less than 0.01%, the effect is not sufficient, and even if added over 0.5%, the effect is saturated and the toughness is lowered.
[0037]
Co: Co is a preferable element in terms of corrosion resistance, and can be added as a selective element as necessary. If it is less than 0.01%, the effect is not sufficient, and even if added over 2%, the effect is saturated and expensive, so the content was made 0.01 to 2%.
[0038]
Ni: Ni is a preferable element in terms of corrosion resistance, and can be added as a selective element as necessary. If it is less than 0.01%, the effect is not sufficient, and even if added over 2%, the effect is saturated and expensive, so the content was made 0.01 to 2%.
[0039]
Cu: Cu is a preferable element in terms of corrosion resistance, and can be added as a selective element as necessary. If it is less than 0.01%, the effect is not sufficient, and even if added over 3%, the effect is saturated and expensive, so the content was made 0.01 to 3%.
[0040]
In the present invention, by satisfying the above components, it is possible to sufficiently ensure ridging properties and corrosion resistance even when produced under normal process conditions. However, by regulating the hot rolling conditions in addition to the above components, stable properties can be obtained. And further improvements in characteristics are possible.
The reasons for limiting the manufacturing conditions will be described below.
[0041]
The reason for setting the heating temperature to 1300 ° C. or lower is that when heated above 1300 ° C., the ridging characteristics cannot be improved due to grain growth during heating even when the finely slabd slab of the present invention is used. This is because a large amount of scale is generated, leading to a decrease in yield, and the heating temperature needs to be 1300 ° C. or lower.
[0042]
Moreover, the rough rolling end temperature is set to 1000 ° C. or higher, and the cutting temperature after hot rolling is set to 750 ° C. or higher and 900 ° C. or lower because recrystallization during hot rolling or during cutting is performed by performing hot rolling under the above conditions. This is because the ridging characteristics can be further improved, and depending on the part to be used and the degree of processing, it is possible to omit hot-rolled sheet annealing, thereby reducing the cost.
[0043]
Moreover, the rough rolling end temperature is set to 1000 ° C. or higher, the cutting temperature after hot rolling is set to less than 750 ° C., and the hot rolled sheet annealing is performed when the hot rolled sheet annealing is performed. It is possible to promote recrystallization during hot-rolling by finishing the process, and to promote recrystallization during hot-rolled sheet annealing by setting the cutting temperature to less than 750 ° C., which can significantly improve ridging characteristics. is there.
[0044]
Example 1
Next, examples of the present invention will be described. Ferritic stainless steel having the components shown in Table 1 was melted by vacuum melting in a laboratory to produce a 50 kg steel ingot having a thickness of 100 mm. Then, after heating under the conditions shown in Table 2, rough rolling is performed to 20 mm in 5 passes, finishing hot rolling is performed in 6 passes from 20 mm to 3 mm, and the hot rolled sheet is inserted into a furnace at 850 to 550 ° C. as it is. Then, after holding for 1 hour, the furnace was cooled and simulated towing. The collection temperature in the table is the holding temperature of this simulation. Then, after performing or omitting hot-rolled sheet annealing, pickling was performed, and after cold rolling to a thickness of 1 mm, annealing was performed at 800 to 840 ° C. to evaluate ridging characteristics and corrosion resistance.
[0045]
For ridging characteristics, a JIS No. 5 test specimen was taken from the rolling direction of the product plate, and after a 16% tensile test, the roughness was measured with a roughness meter in a direction perpendicular to the rolling direction. The ruggedness height of 10 μm or less was rated A, B was 10 to 20 μm or less, C was 20 to 30 μm or less and D was 30 μm or more. There is no problem if the scores A and B are practical.
Corrosion resistance was measured in accordance with JIS G0557 by measuring the pitting potential in a 3.5% NaCl solution at 30 ° C. In the measurement, in order to clarify the influence of inclusions, the polishing was performed in the state of polishing of No. 600 polishing, and Vc′10 was evaluated as a pitting corrosion potential.
[0046]
As a result, B to M satisfying the present invention exhibited favorable characteristics such as ridging characteristics of A or B and pitting potential of 50 mV or more.
On the other hand, N steel does not show the effect of improving ridging by Mg, and O, P, Q, R steel has more Mg or more Ca than the conditions of the present invention, so Mg + 10Ca is a condition for ensuring corrosion resistance. ≦ 0.006 cannot be satisfied and the corrosion resistance is poor, and S steel does not satisfy the conditions of the present invention due to the relationship between Ti and trace components, and the corrosion resistance is low. The T steel was found to have coarse TiN and cause wrinkles. Moreover, in U steel whose heating temperature exceeded 1300 ° C., the heating structure became coarse and the ridging characteristics deteriorated.
[0047]
(Example 2)
After melting high-purity ferritic stainless steel having the components shown in Table 3, a 250 mm thick CC slab was formed by continuous casting. Without slab care, heating before hot rolling is performed at 1180 ° C for 120 minutes soaking, hot rolling up to 3mm thickness, cutting at 760 ° C, pickling without hot-rolled sheet annealing After cold rolling to 0.8 mm, annealing was performed at 840 ° C. for 60 seconds to obtain a product. As evaluation items, the occurrence of wrinkles, ridging characteristics, and corrosion resistance were evaluated.
As a result, the A1 steel, which is an example of the present invention, has no flaws and good ridging characteristics and corrosion resistance, whereas the B1 steel outside the conditions of the present invention shows flaws, and the C1 steel The ridging characteristics were poor, and D1, E1 steel, and F1 steel had poor corrosion resistance, and the effects of the present invention were recognized.
[0048]
[Table 1]
[0049]
[Table 2]
[0050]
[Table 3]
[0051]
【The invention's effect】
As described above, the present invention can provide high-purity ferritic stainless steel that can improve the ridging characteristics, which are problems in processing and processing due to the addition of Ti in high-purity ferritic stainless steel, and can also improve the corrosion resistance.
[Brief description of the drawings]
FIG. 1 is a diagram showing the relationship between pitting corrosion potential of 0.17% Ti additive and Mg + 10Ca.
FIG. 2 shows the relationship of Ti−1.5 × (P + S) + 3 × N + 6 × (C + 0) on the pitting corrosion potential in the 0.08 to 0.2% Ti-0.001% Mg-0.0001% Ca system. FIG.

Claims (5)

質量%で、
C :0.0005〜0.03%、 Si:0.01〜1%、
Mn:0.01〜1%、 P :0.04%以下、
S :0.01%以下、 Cr:7〜30%、
Ti:0.8%以下、 O :0.01%以下、
N :0.0002〜0.03%、 Mg:0.0014〜0.006%
Ca:0.0005%以下
を含有し、且つMg+10xCa≦0.006%、Ti≧1.5x(P+S)+3xN+4x(C+O)、TixN≦0.003を満足し、残部がFeおよび不可避的不純物からなる表面特性及び耐食性に優れた高純度フェライト系ステンレス鋼。
% By mass
C: 0.0005 to 0.03%, Si: 0.01 to 1%,
Mn: 0.01 to 1%, P: 0.04% or less,
S: 0.01% or less, Cr: 7-30%,
Ti: 0.8% or less, O: 0.01% or less,
N: 0.0002 to 0.03%, Mg: 0.0014 to 0.006% ,
Ca: not more than 0.0005% and satisfying Mg + 10xCa ≦ 0.006%, Ti ≧ 1.5x (P + S) + 3xN + 4x (C + O), TixN ≦ 0.003, the balance being Fe and inevitable impurities High purity ferritic stainless steel with excellent surface properties and corrosion resistance.
更に質量%で、
Al:0.001〜0.2%
を含有することを特徴とする請求項1記載の表面特性及び耐食性に優れた高純度フェライト系ステンレス鋼。
In addition ,
Al: 0.001 to 0.2%
The high-purity ferritic stainless steel having excellent surface characteristics and corrosion resistance according to claim 1 , characterized by comprising :
更に質量%で、
B :0.005%以下
を含有することを特徴とする請求項1または2に記載の表面特性及び耐食性に優れた高純度フェライト系ステンレス鋼。
In addition ,
The high purity ferritic stainless steel excellent in surface characteristics and corrosion resistance according to claim 1 or 2, wherein B: 0.005% or less.
更に質量%で、
Nb:0.01〜2%、 Zr:0.01〜2%、
W :0.01〜2%、 V :0.01〜2%
の1種以上を含有することを特徴とする請求項1乃至3のいずれか1項に記載の表面特性及び耐食性に優れた高純度フェライト系ステンレス鋼。
In addition ,
Nb: 0.01-2%, Zr: 0.01-2%,
W: 0.01-2%, V: 0.01-2%
The high purity ferritic stainless steel excellent in surface characteristics and corrosion resistance according to any one of claims 1 to 3, wherein the high purity ferritic stainless steel contains at least one of the following .
更に質量%で、
Mo:0.01〜2%、 Sn:0.01〜0.5%、
Co:0.01〜2%、 Ni:0.01〜2%、
Cu:0.01〜3%
の1種以上を含有することを特徴とする請求項1乃至4のいずれか1項に記載の表面特性及び耐食性に優れた高純度フェライト系ステンレス鋼。
In addition ,
Mo: 0.01-2%, Sn: 0.01-0.5%,
Co: 0.01-2%, Ni: 0.01-2%,
Cu: 0.01 to 3%
The high purity ferritic stainless steel excellent in surface characteristics and corrosion resistance according to any one of claims 1 to 4, wherein the high purity ferritic stainless steel contains at least one of the following .
JP2000102583A 2000-04-04 2000-04-04 High purity ferritic stainless steel with excellent surface properties and corrosion resistance Expired - Lifetime JP4390962B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000102583A JP4390962B2 (en) 2000-04-04 2000-04-04 High purity ferritic stainless steel with excellent surface properties and corrosion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000102583A JP4390962B2 (en) 2000-04-04 2000-04-04 High purity ferritic stainless steel with excellent surface properties and corrosion resistance

Publications (2)

Publication Number Publication Date
JP2001288544A JP2001288544A (en) 2001-10-19
JP4390962B2 true JP4390962B2 (en) 2009-12-24

Family

ID=18616433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000102583A Expired - Lifetime JP4390962B2 (en) 2000-04-04 2000-04-04 High purity ferritic stainless steel with excellent surface properties and corrosion resistance

Country Status (1)

Country Link
JP (1) JP4390962B2 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2776892C (en) * 2006-05-09 2014-12-09 Nippon Steel & Sumikin Stainless Steel Corporation Ferritic stainless steel excellent in resistance to crevice corrosion and formability
WO2009041430A1 (en) * 2007-09-27 2009-04-02 Nippon Steel & Sumikin Stainless Steel Corporation Ferritic stainless steel having excellent atmospheric corrosion resistance
JP2009097079A (en) * 2007-09-27 2009-05-07 Nippon Steel & Sumikin Stainless Steel Corp Ferritic stainless steel having excellent atmospheric corrosion resistance
JP4651682B2 (en) 2008-01-28 2011-03-16 新日鐵住金ステンレス株式会社 High purity ferritic stainless steel with excellent corrosion resistance and workability and method for producing the same
JP5563203B2 (en) * 2008-03-12 2014-07-30 新日鐵住金ステンレス株式会社 Ferritic stainless steel with excellent corrosion resistance in urea water and ferritic stainless steel for urea SCR system
US20110110812A1 (en) * 2008-07-23 2011-05-12 Nobulhiko Hiraide Ferrite stainless steel for use in producing urea water tank
JP4624473B2 (en) 2008-12-09 2011-02-02 新日鐵住金ステンレス株式会社 High purity ferritic stainless steel with excellent weather resistance and method for producing the same
JP5664826B2 (en) * 2012-12-07 2015-02-04 Jfeスチール株式会社 Ferritic stainless steel sheet
KR101485643B1 (en) 2012-12-26 2015-01-22 주식회사 포스코 Al coated stainless steel for automotive exhaust system with excellent high temperature oxidation resistance and excellent corrosion resistance for water condensation, and the method of manufacturing the same
CN104870674B (en) 2012-12-24 2018-01-30 Posco公司 The ferritic stainless steel and its manufacture method for automobile exhaust system with excellent resistance to condensate liquid corrosivity, mouldability and high temperature oxidation resistance
JP5987821B2 (en) * 2013-12-27 2016-09-07 Jfeスチール株式会社 Ferritic stainless steel
WO2015174079A1 (en) 2014-05-14 2015-11-19 Jfeスチール株式会社 Ferritic stainless steel
JP6179485B2 (en) * 2014-08-14 2017-08-16 Jfeスチール株式会社 Ferritic stainless steel sheet
US20170275722A1 (en) 2014-08-14 2017-09-28 Jfe Steel Corporation Ferritic stainless steel sheet
EP3318654B1 (en) * 2015-09-30 2019-05-01 JFE Steel Corporation Ferrite stainless steel sheet
KR101844577B1 (en) 2016-12-13 2018-04-03 주식회사 포스코 Ferritic stainless steel for automotive exhaust system with improved heat resistance and corrosion resistance for water condensation and method of manufacturing the same
WO2019189858A1 (en) * 2018-03-30 2019-10-03 日鉄ステンレス株式会社 Ferritic stainless steel with excellent ridging resistance
JP7271261B2 (en) * 2019-03-29 2023-05-11 日鉄ステンレス株式会社 High-purity ferritic stainless steel and high-purity ferritic stainless steel slab

Also Published As

Publication number Publication date
JP2001288544A (en) 2001-10-19

Similar Documents

Publication Publication Date Title
JP4390962B2 (en) High purity ferritic stainless steel with excellent surface properties and corrosion resistance
JP4390961B2 (en) Ferritic stainless steel with excellent surface properties and corrosion resistance
JP3446667B2 (en) Ferritic stainless steel, ferritic stainless steel ingot excellent in workability and toughness, and method for producing the same
JPH09512061A (en) Mixed grain stainless steel and manufacturing method thereof
US6413332B1 (en) Method of producing ferritic Cr-containing steel sheet having excellent ductility, formability, and anti-ridging properties
KR20040075981A (en) Cr-CONTAINING HEAT-RESISTANT STEEL SHEET EXCELLENT IN WORKABILITY AND METHOD FOR PRODUCTION THEREOF
JP3746045B2 (en) Ferritic stainless steel slabs and steel plates and methods for producing them
KR20220073804A (en) Ferritic stainless steel sheet, manufacturing method thereof, and ferritic stainless steel member
KR100547536B1 (en) Cast member and steel plate of ferritic stainless steel and manufacturing method thereof
JP4562280B2 (en) Ferritic stainless steel with excellent workability and small in-plane anisotropy and method for producing the same
JP3806186B2 (en) Method for producing ferritic stainless steel with excellent anti-roping properties
EP2220260A1 (en) Low chrome ferritic stainless steel with high corrosion resistance and stretchability and method of manufacturing the same
JP3922740B2 (en) Method for producing ferritic stainless steel sheet with excellent surface characteristics and corrosion resistance
JP3941363B2 (en) Ferritic stainless cold-rolled steel sheet excellent in ductility, workability and ridging resistance, and method for producing the same
JP3288626B2 (en) High workability ferritic stainless steel sheet excellent in ridging characteristics and method for producing the same
JP2001271143A (en) Ferritic stainless steel excellent in ridging resistance and its production method
JP3857807B2 (en) Method for producing ferritic stainless steel with excellent surface properties and low anisotropy
JP4457492B2 (en) Stainless steel with excellent workability and weldability
CN116529396A (en) High Ni alloy excellent in weld high temperature cracking resistance
JP3290598B2 (en) Ferritic stainless steel sheet excellent in formability and ridging resistance and method for producing the same
KR102463485B1 (en) Ferritic stainless steel sheet, manufacturing method thereof, and ferritic stainless steel member
JP3455047B2 (en) Ferritic stainless steel sheet excellent in workability and roping properties and method for producing the same
JP3779784B2 (en) Method for producing ferritic stainless steel with excellent surface properties
JPS59166655A (en) High purity and high cleanliness stainless steel excellent in gap corrosion resistance and anti-rust property and preparation thereof
JP3884899B2 (en) Ferritic stainless steel with excellent workability and corrosion resistance and low surface flaws

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20050216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050225

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050225

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070301

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090303

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091006

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091007

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121016

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4390962

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131016

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

EXPY Cancellation because of completion of term