JP3857807B2 - Method for producing ferritic stainless steel with excellent surface properties and low anisotropy - Google Patents

Method for producing ferritic stainless steel with excellent surface properties and low anisotropy Download PDF

Info

Publication number
JP3857807B2
JP3857807B2 JP11391098A JP11391098A JP3857807B2 JP 3857807 B2 JP3857807 B2 JP 3857807B2 JP 11391098 A JP11391098 A JP 11391098A JP 11391098 A JP11391098 A JP 11391098A JP 3857807 B2 JP3857807 B2 JP 3857807B2
Authority
JP
Japan
Prior art keywords
rolling
stainless steel
ferritic stainless
less
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11391098A
Other languages
Japanese (ja)
Other versions
JPH11302739A (en
Inventor
阿部  雅之
明彦 高橋
鉄也 島田
武秀 瀬沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP11391098A priority Critical patent/JP3857807B2/en
Publication of JPH11302739A publication Critical patent/JPH11302739A/en
Application granted granted Critical
Publication of JP3857807B2 publication Critical patent/JP3857807B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は表面特性が優れ、異方性が小さいフェライト系ステンレス鋼の製造方法に関するものである。
【0002】
【従来の技術】
フェライト系ステンレス鋼はオーステナイト系ステンレス鋼に比べてNi含有量が少なく低価格であるため、厨房器具や自動車の排気系部品等をはじめ広く使用されている。
【0003】
このような製品に加工される場合に必要な特性として、プレス加工性と加工後の表面特性が挙げられるが、フェライト系ステンレス鋼はオーステナイト系ステンレス鋼に比較して加工性及び表面特性の点で劣っているのが実状である。
【0004】
フェライト系ステンレス鋼の場合、プレス加工性を示す特性値としてr値が挙げられる。r値が高いほど深絞り特性が向上するが、フェライト系ステンレス鋼では面内異方性が大きく、特に圧延方向に対して45゜方向のr値が圧延方向や圧延方向に直角方向のr値より低いのが通常である。
【0005】
このため、加工性改善の観点からは全体のr値を高くすることが検討されてきた。しかし、45゜方向のr値が低いと、加工性が45゜方向のr値に影響されるため、むしろ面内の異方性が小さい鋼板が加工性の点からは望ましい。
【0006】
また表面特性としては、加工するとリジングと言われる表面凹凸が発生することが知られている。このリジングは加工度に比例して大きくなるため、強加工したところでは著しく美観を損ねることになる。また、一旦成形後2次加工を受ける場合は、凹凸によって加工条件が局所的に変化して割れの原因となることもあり、耐リジング性の良好な鋼板が望まれる。
【0007】
上記に対して、これまでも多くの検討がなされいる。すなわち、加工性改善の観点からは特開平4−99151号公報には、900℃以下の圧下率を50%以上とし、800℃以下の仕上温度で圧延を行い、600℃以上で捲取りを行い、熱延板焼鈍を実施する方法が開示されている。また、特開平5−98352号公報にも同様に仕上圧延温度を800℃以下とし熱延板焼鈍する方法が開示されている。さらに、特開平9−235621号公報には成分規定を行ってかつ600℃以上で捲取る方法が開示されている。
【0008】
リジング対策として、特開平9−53155号公報では、耐リジング性が良好な合金が示されているが、その実施例で示されているように熱間圧延後、熱延板焼鈍を実施するものであり、熱延板焼鈍を行うことによるコストアップやまた焼鈍によるスケール増加による酸洗コスト増などの原因となる。
【0009】
従って、リジング低減のために従来工程に新工程を付加することは、安価なフェライト系ステンレス鋼のメリットを失う可能性が大きく、耐リジング特性及び加工性が良好なフェライト系ステンレス鋼を熱延板焼鈍を省略した、いわゆる普通鋼プロセスで製造できれば、フェライト系ステンレス鋼をさらに安価に提供できることとなる。
【0010】
【発明が解決しようとする課題】
従って本発明の目的は、フェライト系ステンレス鋼の異方性を改善し、かつ耐リジングを改善できるフェライト系ステンレス鋼の製造方法を提供することにある。
【0011】
【課題を解決するための手段】
本発明者等は、従来プロセスで実施されている熱延板焼鈍や、冷延と冷延の間に中間焼鈍を実施する、いわゆる2回冷延法を用いずとも耐リジング性や加工性を改善できる方法を検討した。その結果、微量成分を規定して熱間圧延時の圧下条件また熱延後の捲取条件を一貫で適正化することで耐リジング性と加工性を同時に改善できることを見出し、本発明を完成した。
【0012】
すなわち、本発明は以下の構成を要旨とする。
(1)質量%で
C :0.0005〜0.010%、 Si:0.01〜1.0%、
Mn:0.01〜1.0%、 S :0.0010〜0.040%、
P :0.025%以下、 Cr:10.0〜20.0%、
Ti:0.4%以下、 Al:0.005〜0.05%、
N :0.0005〜0.020%、 O :0.01%以下
を含有し、残部Feおよび不可避的不純物からなり、2≦S/C≦4及び1.5(P+S)+4(C+N+O)≦Tiを満足するフェライト系ステンレス鋼を熱間圧延するに際し、加熱温度を1250℃以下とし、粗圧延の全圧下率が80%以上で、かつ粗圧延の最終3パスを累積圧下率60%以上として1000℃以上で粗圧延を終了した後、粗圧延の全歪(対数歪:εr)と仕上圧延の全歪(対数歪:εf )をεr ≦εf となるように仕上圧延を行った後、600℃未満で捲取り、熱延板焼鈍を実施することなく酸洗し、冷延、焼鈍を実施することを特徴とする表面特性が優れ、異方性が小さいフェライト系ステンレス鋼の製造方法。
【0013】
(2)さらに質量%で、B:0.0003〜0.0020%を含有することを特徴とする前項(1)に記載の表面特性が優れ、異方性が小さいフェライト系ステンレス鋼の製造方法。
【0014】
(3)さらに質量%で、Mg:0.0005〜0.0050%を含有することを特徴とする前項(1)または(2)に記載の表面特性が優れ、異方性が小さいフェライト系ステンレス鋼の製造方法。
【0015】
(4)さらに質量%で、
Mo:0.05〜2.0%、 Nb:0.05〜2.0%、
Zr:0.05〜2.0%、 W :0.05〜2.0%、
V :0.05〜2.0%
の1種以上を含有することを特徴とする前(1)乃至(3)の何れか1項に記載の表面特性が優れ、異方性が小さいフェライト系ステンレス鋼の製造方法。
【0016】
(5)熱間圧延に際し、仕上圧延におけるロールと圧延板の平均摩擦係数を0.2以下となるように潤滑することを特徴とする前項(1)乃至(4)の何れか1項に記載の表面特性が優れ、異方性が小さいフェライト系ステンレス鋼の製造方法。
【0017】
【発明の実施の形態】
本発明者らは、実験室で11Cr−0.002〜0.007C−0.004〜0.015N−Ti添加鋼を基本成分とするフェライト系ステンレス鋼の50kg鋼塊を溶製し、熱延実験を行って3〜5mmの熱延板を製造し、酸洗〜冷延〜焼鈍を行った。r値は、製品板から圧延方向に対して0,45,90℃方向からJIS5号試験試験片を採取し、15%引張試験後に測定した。またリジング特性は、製品板の圧延方向からからJIS5号試験試験片を採取し、16%引張試験を行った後、圧延方向に対して直角方向に粗度計により凹凸を測定した。この両特性値に及ぼす成分、熱延条件の影響を調査し、成分、及び熱間圧延を一貫して制御することで表面特性及び加工性を改善することが可能となった。
【0018】
以下に、本発明を詳細に説明する。
成分では、耐リジング特性、加工性改善の点からPを0.025%以下にし、下記式で示されるSとC、及びP,S,C,N,OとTiの関係を満足するリジング、r値が改善されることが判明した。
2≦S/C≦4及び1.5(P+S)+4(C+N+O)≦Ti
成分的にこの式を満たすと、加熱〜熱間圧延時の析出物の安定化が図られ、加熱時の粒成長を防止し、また粗圧延時の再結晶を促進することができ、鋳造組織の破壊を押し進めることができる。
【0019】
本発明において、加熱温度を1250℃以下としたのは、1250℃を超えるような高温加熱では粒径が粗大になり、熱延時の再結晶が遅延したり、本発明の成分制御を行っても析出物が加熱時に溶解し、熱延時中や捲取時また、冷延後の焼鈍時に再析出するなど、再結晶を遅延させるため、1250℃以下とする。
【0020】
加熱温度の下限は特に定めないが、1000℃より低温では、圧延中の再結晶を活用できず、また圧延温度が低温化するために焼き付きによる疵が発生しやすくなるため、実用上1000℃が加熱温度の下限と考えられる。
【0021】
粗圧延では鋳造組織を破壊し、仕上圧延の前に再結晶組織とすることが重要であり、このためには粗圧延では初期板厚に対し80%以上の圧下率をとること、また粗圧延から仕上圧延の間に十分再結晶を促すために、粗圧延の最終3パスの累積圧下率(最終3パス前の板厚に対する圧下率)として60%以上を確保し、粗圧延終了温度を1000℃以上とすることで、仕上圧延前の組織として混粒組織等の組織的異方性をなくすことができる。
【0022】
仕上圧延に関しては、上述の粗圧延条件を満足させてかつ粗圧延の全ひずみ(対数歪みεr )と仕上圧延の全ひずみ(対数歪みεf )がεr ≦εf となるように仕上圧延を行うことがr値の異方性を小さくし、またリジング改善に有効である。
【0023】
また、潤滑圧延の適用により熱延板表層の剪断変形を防止する効果があるため、仕上圧延に実施すると加工性改善が可能となる。この際に仕上圧延としてロールと圧延板の平均摩擦係数を0.2以下となる潤滑圧延を実施することが重要である。ここで、ロールと圧延板の間の摩擦係数を0.2以下としたのは、摩擦力による剪断歪みの影響を小さくすることが可能となるからであり、摩擦係数が小さいほどr値改善効果が大きくなる。
【0024】
熱延後の冷却は可能な限り急冷とするのが望ましく、また捲取は600℃より低温にする。600℃以上の捲取温度では、捲取後の冷却中に回復、再結晶が生じてしまい、製品板の45゜方向のr値が小さくなり異方性が大きくなり、またコイルの冷却時の熱履歴が長手方向で変化するため加工性のバラツキが生じてしまうためであり、本発明では600℃より低温で巻き取ることでコイル内の特性のバラツキを防止できることになる。
【0025】
上記の関係について成分範囲を広げて検討した結果、本発明は下記の成分系で成り立つことが判明した。すなわち、本発明のフェライト系ステンレス鋼は、質量%で、
C :0.0005〜0.010%、 Si:0.01〜1.0%、
Mn:0.01〜1.0%、 S :0.0010〜0.040%、
P :0.025%以下、 Cr:10.0〜20.0%、
Ti:0.4%以下、 Al:0.005〜0.05%、
N :0.0005〜0.020%、 O :0.01%以下、
また、必要に応じ、
B :0.0020%以下、 Mg:0.0005〜0.0050%の1種または2種、さらに、選択元素として下記の元素の1種以上を添加できる。
Mo:0.05〜2.0%、 Nb:0.05〜2.0%、
Zr:0.05〜2.0%、 W :0.05〜2.0%、
V :0.05〜2.0%
【0026】
以下に本発明における成分の限定理由を述べる。
C:Cは加工性、耐食性の点では有害であり、特に溶接部の耐食性に悪影響を与えるため、低いほど望ましい。現状では0.0005%未満にするには製造コストが高くなり、また0.010%を超えて添加すると加工性、靭性及び耐食性が劣化するために、Cは0.0005〜0.01%とした。
【0027】
S:Sは本発明では加工性、リジング特性改善にとって重要な元素であり、Cとの関係で規制されるため、下限は0.0010%であり、上限は0.04%である。これを超えて添加しても、特性改善効果は少なく、また降伏強度が高くなり加工性が劣化する。
【0028】
P:Pは本発明において耐リジング性及び加工性に対しても有害であり、その含有量は少ないほど望ましく、0.025%以下とする。
【0029】
Cr:Crは本発明のフェライト系ステンレス鋼の主要元素であり、耐食性の観点から10%以上添加する必要がある。しかし、20%を超えて添加しても耐食性は向上するが、コストアップが大きく、また加工性や靭性が劣化するので、Crの上限は20%とした。
【0030】
Ti:本発明においては耐リジング性及び加工性の観点から、C,N,P,S,Oを固定するために必要な元素であり、上記成分との関係から1.5(P+S)+4(C+N+O)以上含有する。また、過剰に含有すると靭性が低下し加工性を低下させるため、0.4%以下とする。
【0031】
N:NはCと同様に含有量が少ないほど耐食性、加工性には好ましいが、0.0005%未満にすることは工業的には困難であり、また0.02%を超えて添加すると加工性、靭性が劣化するために、Nは0.0005〜0.02%の範囲で添加する。
【0032】
O:Oは熱延板の靭性を劣化させたり、鋳造時のノズル詰まりやキズ発生また熱延板の靭性を劣化の原因となるため、本発明では0.01%以下とした。
【0033】
B:Bは粒界に偏析しやすい元素であり、本発明のような加工性を改善するために添加し、特に2次加工割れに対しては有効であり、0.0003%以上で添加する。また0.0020%を超えて添加すると、熱間圧延時や冷延焼鈍後の再結晶を遅延させ加工性、耐リジング性を劣化させるため、0.0003〜0.0020%で添加する。
【0034】
Mg:Mgは凝固組織微細化に有効であり、0.0005%以上添加する。また、0.0050%を超えて添加してもその効果は飽和するため、0.0005〜0.0050%で添加する。
【0035】
本発明ではさらに選択元素としてMo,Nb,Zr,W,Vのいずれか1種以上を添加することができる。
Mo:Moは耐食性の点や、また排気材料として高温での強度を必要とする場合も有効な元素であり、0.05%以上添加できる。また、2.0%を超えて添加してもその効果は飽和し、また高価となるため、0.05〜2.0%とした。
【0036】
Nb:NbはCやNを固定し耐食性の点で好ましい元素であり、また排気材料として高温での強度を必要とする場合も有効な元素であり、0.05%以上で添加できる。また、2.0%を超えて添加してもその効果は飽和し、また高価となるため、0.05〜2.0%とした。
【0037】
Zr:ZrはCやNを固定するため、また、特に溶接部でのCr炭窒化物の析出を抑制して耐食性を向上させ、また排気材料として高温での強度を必要とする場合も有効な元素であり、0.05%以上で添加できる。また、2.0%を超えて添加してもその効果は飽和し、また高価となるため、0.05〜2.0%とした。
【0038】
W:WはCやNを固定するため、また、特に溶接部でのCr炭窒化物の析出を抑制して耐食性を向上させ、また排気材料として高温での強度を必要とする場合も有効な元素であり、0.05%以上で添加できる。また、2.0%を超えて添加してもその効果は飽和し、また高価となるため、0.05〜2.0%とした。
【0039】
V:VはCやNを固定するため、また、特に溶接部でのCr炭窒化物の析出を抑制して耐食性を向上させ、また排気材料として高温での強度を必要とする場合も有効な元素であり、0.05%以上で添加できる。また、2.0%を超えて添加してもその効果は飽和し、また高価となるため、0.05〜2.0%とした。
【0040】
また、本発明では脱酸元素として通常使用されるSi,Mn,Alを使用する。この場合本発明の特性に影響しない範囲として下記の成分範囲とする
Si:0.01〜1.0%、 Mn:0.01〜1.0%、
Al:0.005〜0.05%。
【0041】
Si:Siは脱酸剤として0.01%未満では十分な効果がなく、また1%を超えて添加すると本発明の加工性を劣化させるため、0.01〜1.0%が望ましい。
Mn:Mnは脱酸元素として、0.01%未満では効果が十分ではなく、1%を超えて添加してもその効果が飽和するため、0.01〜1.0%が望ましい。Al:Alは脱酸元素として0.005%以上で効果があり、0.05%を超えても脱酸程度も飽和するため、0.005%〜0.05%が望ましい。
【0042】
【実施例】
次に、本発明の実施例を説明する。表1の成分を有する厚み250mmのフェライト系ステンレス鋼スラブを用いて、表2に示す条件で加熱、熱延後、熱間圧延を行い、3〜5mmの熱延板を製造した。
この後、熱延板焼鈍を実施したNo.B以外は、熱延板焼鈍を省略して酸洗、冷延を行い、加工性及びリジング特性を評価した。熱延板焼鈍実施材No.Bの熱延板焼鈍条件は820℃×6hとして箱焼鈍にて実施した。また冷延圧下率は80%とし、仕上焼鈍は800℃〜1070℃で30〜60秒とした。
【0043】
得られた製品から、r値、異方性△r及びリジング高さを下記の方法で測定した。
r値及び異方性の尺度である△rは、圧延方向に対して0゜方向、45゜方向、90゜方向からJIS5号試験試験片を採取し、15%引張試験を行い、次式で求めた。
r値=(rL +2rD +rC )/4
△r=(rL −2rD +rC )/2
ここで、rL :圧延方向のr値、rD :圧延方向に対して45゜方向の
r値、rC :圧延方向に対して90゜方向のr値である。
r値としては1.5以上、また△rは0.3以下であれば、45゜方向のr値不足による加工性低下は問題とならない。
【0044】
リジング特性は、製品板の圧延方向からJIS5号引張試験片を採取し、16%引張試験を行い、圧延方向に対して直角方向に粗度計を用いて凹凸を測定した。
【0045】
リジングの評価は、A:7μm未満、B:7μm以上〜15μm未満、C:15μm以上〜30μm未満、D:30μm以上とした。実用上はA,Bランクは問題ない。
【0046】
その結果、本発明鋼は加工性もr値は1.5以上であり、異方性を示す△rも0.3以下と熱延板焼鈍プロセス材や本発明の条件を満たさないものに比べて極めて良好であり、またリジング特性も良好であることが示された。
【0047】
【表1】

Figure 0003857807
【0048】
【表2】
Figure 0003857807
【0049】
【発明の効果】
上記のように、本発明は熱延板焼鈍を省略した簡略なプロセスで成分制御と熱延条件を一貫で制御することにより、フェライト系ステンレス鋼の課題である加工性の異方性を改善し、かつリジング特性を改善したフェライト系ステンレス鋼を製造することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a ferritic stainless steel having excellent surface characteristics and low anisotropy.
[0002]
[Prior art]
Since ferritic stainless steel has a lower Ni content and is lower in price than austenitic stainless steel, it is widely used for kitchen appliances and automobile exhaust system parts.
[0003]
Properties required for processing into such products include press workability and surface properties after processing, but ferritic stainless steels are more workable and surface properties than austenitic stainless steels. The actual situation is inferior.
[0004]
In the case of ferritic stainless steel, an r value is given as a characteristic value indicating press workability. The deep drawing characteristics improve as the r value increases. However, in ferritic stainless steel, the in-plane anisotropy is large. In particular, the r value in the 45 ° direction with respect to the rolling direction is the r value perpendicular to the rolling direction or the rolling direction. Usually lower.
[0005]
For this reason, increasing the overall r value has been studied from the viewpoint of improving workability. However, if the r value in the 45 ° direction is low, the workability is affected by the r value in the 45 ° direction, so that a steel sheet with rather small in-plane anisotropy is desirable from the viewpoint of workability.
[0006]
Further, as surface characteristics, it is known that surface irregularities called ridging are generated when processed. Since this ridging becomes larger in proportion to the degree of processing, the aesthetics are remarkably impaired when strongly processed. In addition, once subjected to secondary processing after forming, the processing conditions may locally change due to the unevenness, which may cause cracking, and a steel plate with good ridging resistance is desired.
[0007]
Many studies have been made on the above. That is, from the viewpoint of improving workability, Japanese Patent Application Laid-Open No. 4-99151 discloses that rolling reduction at 900 ° C. or lower is 50% or higher, rolling is performed at a finishing temperature of 800 ° C. or lower, and scraping is performed at 600 ° C. or higher. A method of performing hot-rolled sheet annealing is disclosed. Similarly, Japanese Patent Laid-Open No. 5-98352 discloses a method of annealing a hot rolled sheet with a finish rolling temperature of 800 ° C. or lower. Furthermore, Japanese Patent Application Laid-Open No. 9-235621 discloses a method for prescribing ingredients and scoring at 600 ° C. or higher.
[0008]
As a countermeasure against ridging, JP-A-9-53155 discloses an alloy having good ridging resistance. However, as shown in the examples, hot rolling is performed after hot rolling. This causes an increase in cost due to hot-rolled sheet annealing and an increase in pickling cost due to an increase in scale due to annealing.
[0009]
Therefore, adding a new process to the conventional process to reduce ridging is likely to lose the merit of inexpensive ferritic stainless steel, and hot-rolling ferritic stainless steel with good ridging resistance and workability. If it can be manufactured by a so-called ordinary steel process in which annealing is omitted, ferritic stainless steel can be provided at a lower cost.
[0010]
[Problems to be solved by the invention]
Accordingly, an object of the present invention is to provide a method for producing a ferritic stainless steel that can improve the anisotropy of ferritic stainless steel and improve ridging resistance.
[0011]
[Means for Solving the Problems]
The inventors have achieved ridging resistance and workability without using hot-rolled sheet annealing, which is performed in a conventional process, or intermediate annealing between cold-rolling and so-called cold rolling. The method that can be improved was examined. As a result, it was found that ridging resistance and workability can be improved at the same time by consistently optimizing the rolling conditions during hot rolling and the milling conditions after hot rolling by defining trace components, and completed the present invention. .
[0012]
That is, the gist of the present invention is as follows.
(1) By mass % C: 0.0005 to 0.010%, Si: 0.01 to 1.0%,
Mn: 0.01 to 1.0%, S: 0.0010 to 0.040%,
P: 0.025% or less, Cr: 10.0-20.0%,
Ti: 0.4% or less, Al: 0.005 to 0.05%,
N: 0.0005 to 0.020%, O: 0.01% or less, consisting of the balance Fe and inevitable impurities, 2 ≦ S / C ≦ 4 and 1.5 (P + S) +4 (C + N + O) ≦ When hot rolling ferritic stainless steel satisfying Ti, the heating temperature is 1250 ° C. or less, the total rolling reduction of rough rolling is 80% or more, and the final three passes of rough rolling are cumulative rolling reduction of 60% or more. After finishing rough rolling at 1000 ° C. or higher, finish rolling is performed so that the total strain of the rough rolling (logarithmic strain: εr) and the total strain of the finish rolling (logarithmic strain: εf) are εr ≦ εf, and then 600 A method for producing a ferritic stainless steel having excellent surface characteristics and low anisotropy, characterized by pickling at less than 0 ° C., pickling without performing hot-rolled sheet annealing, and performing cold-rolling and annealing.
[0013]
(2) The method for producing a ferritic stainless steel having excellent surface characteristics and low anisotropy according to item (1), further comprising B: 0.0003 to 0.0020% by mass % .
[0014]
(3) Ferritic stainless steel having excellent surface characteristics and low anisotropy as described in (1) or (2) above, further containing Mg: 0.0005 to 0.0050% by mass % Steel manufacturing method.
[0015]
(4) Furthermore, in mass %,
Mo: 0.05-2.0%, Nb: 0.05-2.0%,
Zr: 0.05 to 2.0%, W: 0.05 to 2.0%,
V: 0.05-2.0%
The method for producing a ferritic stainless steel having excellent surface characteristics and low anisotropy according to any one of (1) to (3), wherein the ferritic stainless steel has one or more of the following.
[0016]
(5) In hot rolling, lubrication is performed so that an average friction coefficient between a roll and a rolled plate in finish rolling is 0.2 or less. Any one of (1) to (4) above Of ferritic stainless steel with excellent surface properties and low anisotropy.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
The inventors melted a 50 kg ingot of ferritic stainless steel containing 11Cr-0.002-0.007C-0.004-0.015N-Ti added steel as a basic component in a laboratory, Experiments were conducted to produce hot rolled sheets of 3 to 5 mm, and pickling, cold rolling and annealing were performed. The r value was measured after a JIS No. 5 test specimen was taken from the direction of 0, 45, 90 ° C. from the product plate in the rolling direction and a 15% tensile test was performed. Further, the ridging characteristics were obtained by collecting JIS No. 5 test specimens from the rolling direction of the product plate, performing a 16% tensile test, and then measuring irregularities in a direction perpendicular to the rolling direction with a roughness meter. It became possible to improve the surface characteristics and workability by investigating the influence of the components and hot rolling conditions on both of these characteristic values and controlling the components and hot rolling consistently.
[0018]
The present invention is described in detail below.
In the component, P is 0.025% or less from the viewpoint of improving ridging resistance and workability, and ridging satisfying the relationship between S and C and P, S, C, N, O and Ti represented by the following formulas: It was found that the r value was improved.
2 ≦ S / C ≦ 4 and 1.5 (P + S) +4 (C + N + O) ≦ Ti
When this formula is satisfied, the precipitates during heating to hot rolling can be stabilized, grain growth during heating can be prevented, and recrystallization during rough rolling can be promoted. Can push the destruction of.
[0019]
In the present invention, the heating temperature is set to 1250 ° C. or less because the particle size becomes coarse at high temperature heating exceeding 1250 ° C., even if recrystallization during hot rolling is delayed or the component control of the present invention is performed. The precipitate is dissolved at the time of heating, and is re-precipitated during hot rolling, at the time of cutting, or at the time of annealing after cold rolling.
[0020]
The lower limit of the heating temperature is not particularly defined. However, if the temperature is lower than 1000 ° C., recrystallization during rolling cannot be utilized, and the rolling temperature is lowered, so that seizure due to seizure is likely to occur. It is considered the lower limit of the heating temperature.
[0021]
In rough rolling, it is important to destroy the cast structure and make it a recrystallized structure before finish rolling. For this purpose, in rough rolling, a rolling reduction of 80% or more of the initial sheet thickness is taken. In order to sufficiently promote recrystallization during the finishing rolling, a cumulative rolling reduction ratio of the final three passes of rough rolling (a rolling reduction ratio with respect to the plate thickness before the final three passes) is secured to 60% or more, and the rough rolling finish temperature is 1000 When the temperature is higher than or equal to ° C., structural anisotropy such as a mixed grain structure can be eliminated as a structure before finish rolling.
[0022]
Regarding finish rolling, finish rolling may be performed so that the above-mentioned rough rolling conditions are satisfied and the total strain of the rough rolling (logarithmic strain εr) and the total strain of the finish rolling (logarithmic strain εf) are εr ≦ εf. It is effective for reducing the anisotropy of the r value and improving ridging.
[0023]
Moreover, since there exists an effect which prevents the shear deformation of a hot-rolled sheet surface layer by application of lubrication rolling, workability improvement will be attained if it implements for finish rolling. At this time, it is important to carry out lubrication rolling in which the average friction coefficient between the roll and the rolled sheet is 0.2 or less as finish rolling. Here, the reason why the friction coefficient between the roll and the rolled sheet is set to 0.2 or less is that it is possible to reduce the influence of the shear strain due to the frictional force. The smaller the friction coefficient, the greater the effect of improving the r value. Become.
[0024]
It is desirable that the cooling after hot rolling is as rapid as possible, and the scraping is performed at a temperature lower than 600 ° C. When the cutting temperature is 600 ° C. or higher, recovery and recrystallization occur during cooling after cutting, the r value in the 45 ° direction of the product plate becomes smaller and the anisotropy becomes larger, and when the coil is cooled This is because the thermal history changes in the longitudinal direction, resulting in variations in workability, and in the present invention, the variation in characteristics in the coil can be prevented by winding at a temperature lower than 600 ° C.
[0025]
As a result of expanding the component range for the above relationship, it was found that the present invention is composed of the following component systems. That is, the ferritic stainless steel of the present invention is in mass %,
C: 0.0005 to 0.010%, Si: 0.01 to 1.0%,
Mn: 0.01 to 1.0%, S: 0.0010 to 0.040%,
P: 0.025% or less, Cr: 10.0-20.0%,
Ti: 0.4% or less, Al: 0.005 to 0.05%,
N: 0.0005 to 0.020%, O: 0.01% or less,
If necessary,
One or two of B: 0.0020% or less, Mg: 0.0005 to 0.0050%, and one or more of the following elements can be added as selective elements.
Mo: 0.05-2.0%, Nb: 0.05-2.0%,
Zr: 0.05 to 2.0%, W: 0.05 to 2.0%,
V: 0.05-2.0%
[0026]
The reasons for limiting the components in the present invention will be described below.
C: C is harmful in terms of workability and corrosion resistance, and particularly adversely affects the corrosion resistance of welds. At present, if it is less than 0.0005%, the production cost becomes high, and if added over 0.010%, workability, toughness and corrosion resistance deteriorate, so C is 0.0005 to 0.01%. did.
[0027]
S: S is an element important for improving workability and ridging characteristics in the present invention, and is regulated by the relationship with C. Therefore, the lower limit is 0.0010%, and the upper limit is 0.04%. Even if it is added in excess of this, the effect of improving the characteristics is small, the yield strength is increased and the workability is deteriorated.
[0028]
P: P is also harmful to ridging resistance and processability in the present invention, and its content is preferably as small as possible, and is 0.025% or less.
[0029]
Cr: Cr is a main element of the ferritic stainless steel of the present invention, and it is necessary to add 10% or more from the viewpoint of corrosion resistance. However, even if added over 20%, the corrosion resistance is improved, but the cost increases greatly, and the workability and toughness deteriorate, so the upper limit of Cr was made 20%.
[0030]
Ti: In the present invention, from the viewpoint of ridging resistance and processability, it is an element necessary for fixing C, N, P, S, O, and 1.5 (P + S) +4 ( C + N + O) or more. Moreover, since it will reduce toughness and workability when it contains excessively, it is 0.4% or less.
[0031]
N: N, like C, the smaller the content, the better for corrosion resistance and workability, but it is industrially difficult to make it less than 0.0005%, and if it is added over 0.02%, it is processed. N is added in the range of 0.0005 to 0.02% in order to deteriorate the properties and toughness.
[0032]
O: O deteriorates the toughness of the hot-rolled sheet, causes nozzle clogging and scratching during casting, and causes the deterioration of the toughness of the hot-rolled sheet.
[0033]
B: B is an element that easily segregates at grain boundaries, and is added to improve workability as in the present invention, and is particularly effective for secondary processing cracks, and is added at 0.0003% or more. . Further, if added over 0.0020%, recrystallization at the time of hot rolling or after cold rolling annealing is delayed to deteriorate workability and ridging resistance, so 0.0003 to 0.0020% is added.
[0034]
Mg: Mg is effective for refining the solidified structure, and is added in an amount of 0.0005% or more. Moreover, since the effect will be saturated even if it adds exceeding 0.0050%, it adds at 0.0005 to 0.0050%.
[0035]
In the present invention, any one or more of Mo, Nb, Zr, W, and V can be added as a selective element.
Mo: Mo is an effective element even in the case of requiring corrosion resistance and high-temperature strength as an exhaust material, and can be added by 0.05% or more. Moreover, even if added over 2.0%, the effect is saturated and expensive, so the content was made 0.05 to 2.0%.
[0036]
Nb: Nb is an element that fixes C and N and is preferable in terms of corrosion resistance, and is also an effective element when high-temperature strength is required as an exhaust material, and can be added at 0.05% or more. Moreover, even if added over 2.0%, the effect is saturated and expensive, so the content was made 0.05 to 2.0%.
[0037]
Zr: Zr is effective for fixing C and N, and particularly for suppressing corrosion of Cr carbonitride in the weld zone to improve corrosion resistance, and also requiring high-temperature strength as an exhaust material. It is an element and can be added at 0.05% or more. Moreover, even if added over 2.0%, the effect is saturated and expensive, so the content was made 0.05 to 2.0%.
[0038]
W: W is effective for fixing C and N, and in particular, suppressing the precipitation of Cr carbonitride in the welded portion to improve corrosion resistance, and is also effective when high temperature strength is required as an exhaust material. It is an element and can be added at 0.05% or more. Moreover, even if added over 2.0%, the effect is saturated and expensive, so the content was made 0.05 to 2.0%.
[0039]
V: V is effective for fixing C and N, and particularly for suppressing the precipitation of Cr carbonitride in the weld zone to improve corrosion resistance, and also requiring high-temperature strength as an exhaust material. It is an element and can be added at 0.05% or more. Moreover, even if added over 2.0%, the effect is saturated and expensive, so the content was made 0.05 to 2.0%.
[0040]
Also, Si in the present invention is usually used as a deoxidizing element, Mn, to use Al. In this case , the following component ranges are used as ranges that do not affect the characteristics of the present invention.
Si: 0.01-1.0%, Mn: 0.01-1.0%,
Al: 0.005 to 0.05%.
[0041]
Si: Si is not sufficiently effective as a deoxidizer if less than 0.01%, and if added over 1%, the workability of the present invention is deteriorated, so 0.01 to 1.0% is desirable.
Mn: Mn is a deoxidizing element, and if less than 0.01%, the effect is not sufficient, and even if added over 1%, the effect is saturated, so 0.01 to 1.0% is desirable. Al: Al is effective as a deoxidizing element at 0.005% or more, and even if it exceeds 0.05%, the degree of deoxidation is saturated, so 0.005% to 0.05% is desirable.
[0042]
【Example】
Next, examples of the present invention will be described. Using a ferritic stainless steel slab having a thickness of 250 mm having the components of Table 1, heating and hot rolling were performed under the conditions shown in Table 2, followed by hot rolling to produce 3-5 mm hot rolled sheets.
After this, No. in which hot-rolled sheet annealing was performed. Except for B, hot-rolled sheet annealing was omitted, pickling and cold rolling were performed, and workability and ridging characteristics were evaluated. Hot-rolled sheet annealing material No. The hot-rolled sheet annealing condition for B was 820 ° C. × 6 h, and was performed by box annealing. The cold rolling reduction was 80%, and the finish annealing was 800 ° C. to 1070 ° C. for 30 to 60 seconds.
[0043]
From the obtained product, r value, anisotropy Δr, and ridging height were measured by the following methods.
Δr, which is a measure of r value and anisotropy, is obtained by taking a JIS No. 5 test specimen from 0 ° direction, 45 ° direction and 90 ° direction with respect to the rolling direction, and performing a 15% tensile test. Asked.
r value = (rL + 2rD + rC) / 4
Δr = (rL -2rD + rC) / 2
Here, rL: r value in the rolling direction, rD: r value in the 45 ° direction with respect to the rolling direction, and rC: r value in the 90 ° direction with respect to the rolling direction.
If the r value is 1.5 or more and Δr is 0.3 or less, there is no problem of deterioration of workability due to the lack of r value in the 45 ° direction.
[0044]
For ridging characteristics, a JIS No. 5 tensile test piece was taken from the rolling direction of the product plate, a 16% tensile test was performed, and unevenness was measured using a roughness meter in a direction perpendicular to the rolling direction.
[0045]
The evaluation of ridging was A: less than 7 μm, B: 7 μm to less than 15 μm, C: 15 μm to less than 30 μm, and D: 30 μm or more. In practice, the A and B ranks are not a problem.
[0046]
As a result, the steel of the present invention has a workability and an r value of 1.5 or more, and Δr indicating anisotropy is also 0.3 or less, compared with the hot-rolled sheet annealing process material and those not satisfying the conditions of the present invention. The ridging properties were also very good.
[0047]
[Table 1]
Figure 0003857807
[0048]
[Table 2]
Figure 0003857807
[0049]
【The invention's effect】
As described above, the present invention improves the workability anisotropy, which is a problem of ferritic stainless steel, by consistently controlling the component control and hot rolling conditions by a simple process that omits hot rolling sheet annealing. In addition, ferritic stainless steel having improved ridging characteristics can be produced.

Claims (5)

質量%で、
C :0.0005〜0.010%、
Si:0.01〜1.0%、
Mn:0.01〜1.0%、
S :0.0010〜0.040%、
P :0.025%以下、
Cr:10.0〜20.0%、
Ti:0.4%以下、
Al:0.005〜0.05%、
N :0.0005〜0.020%、
O :0.01%以下
を含有し、残部Feおよび不可避的不純物からなり、2≦S/C≦4及び1.5(P+S)+4(C+N+O)≦Tiを満足するフェライト系ステンレス鋼を熱間圧延するに際し、加熱温度を1250℃以下とし、粗圧延の全圧下率が80%以上で、かつ粗圧延の最終3パスを累積圧下率60%以上として1000℃以上で粗圧延を終了した後、粗圧延の全歪(対数歪:εr )と仕上圧延の全歪(対数歪:εf )をεr ≦εf となるように仕上圧延を行った後、600℃未満で捲取り、熱延板焼鈍を実施することなく酸洗し、冷延、焼鈍を実施することを特徴とする表面特性が優れ、異方性が小さいフェライト系ステンレス鋼の製造方法。
% By mass
C: 0.0005 to 0.010%,
Si: 0.01 to 1.0%,
Mn: 0.01 to 1.0%
S: 0.0010 to 0.040%,
P: 0.025% or less,
Cr: 10.0-20.0%,
Ti: 0.4% or less,
Al: 0.005 to 0.05%,
N: 0.0005 to 0.020%,
O 2: Hot containing ferritic stainless steel containing 0.01% or less, balance Fe and inevitable impurities, and satisfying 2 ≦ S / C ≦ 4 and 1.5 (P + S) +4 (C + N + O) ≦ Ti When rolling, the heating temperature is 1250 ° C. or less, the total rolling reduction of rough rolling is 80% or more, and the final three passes of rough rolling are cumulative rolling reduction of 60% or more and finish rough rolling at 1000 ° C. or more. After finishing rolling so that the total strain of the rough rolling (logarithmic strain: εr) and the final strain of the finish rolling (logarithmic strain: εf) are εr ≤εf, it is picked at less than 600 ° C. A method for producing a ferritic stainless steel having excellent surface characteristics and low anisotropy, characterized by pickling without performing, cold rolling, and annealing.
さらに質量%で、B:0.0003〜0.0020%を含有することを特徴とする請求項1に記載の表面特性が優れ、異方性が小さいフェライト系ステンレス鋼の製造方法。The method for producing a ferritic stainless steel having excellent surface characteristics and low anisotropy according to claim 1, further comprising B: 0.0003 to 0.0020% by mass %. さらに質量%で、Mg:0.0005〜0.0050%を含有することを特徴とする請求項1または2に記載の表面特性が優れ、異方性が小さいフェライト系ステンレス鋼の製造方法。The method for producing a ferritic stainless steel having excellent surface characteristics and low anisotropy according to claim 1 or 2, further comprising Mg: 0.0005 to 0.0050% in mass %. さらに質量%で、
Mo:0.05〜2.0%、
Nb:0.05〜2.0%、
Zr:0.05〜2.0%、
W :0.05〜2.0%、
V :0.05〜2.0%
の1種以上を含有することを特徴とする請求項1乃至3の何れか1項に記載の表面特性が優れ、異方性が小さいフェライト系ステンレス鋼の製造方法。
Furthermore in mass%,
Mo: 0.05-2.0%,
Nb: 0.05 to 2.0%,
Zr: 0.05 to 2.0%,
W: 0.05-2.0%,
V: 0.05-2.0%
The method for producing a ferritic stainless steel having excellent surface characteristics and low anisotropy according to any one of claims 1 to 3, wherein the ferritic stainless steel has one or more of the following.
熱間圧延に際し、仕上圧延におけるロールと圧延板の平均摩擦係数を0.2以下となるように潤滑することを特徴とする請求項1乃至4の何れか1項に記載の表面特性が優れ、異方性が小さいフェライト系ステンレス鋼の製造方法。  In the hot rolling, the surface characteristics according to any one of claims 1 to 4 are excellent so that the average friction coefficient between the roll and the rolled sheet in the finish rolling is 0.2 or less. A method for producing ferritic stainless steel with low anisotropy.
JP11391098A 1998-04-23 1998-04-23 Method for producing ferritic stainless steel with excellent surface properties and low anisotropy Expired - Fee Related JP3857807B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11391098A JP3857807B2 (en) 1998-04-23 1998-04-23 Method for producing ferritic stainless steel with excellent surface properties and low anisotropy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11391098A JP3857807B2 (en) 1998-04-23 1998-04-23 Method for producing ferritic stainless steel with excellent surface properties and low anisotropy

Publications (2)

Publication Number Publication Date
JPH11302739A JPH11302739A (en) 1999-11-02
JP3857807B2 true JP3857807B2 (en) 2006-12-13

Family

ID=14624258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11391098A Expired - Fee Related JP3857807B2 (en) 1998-04-23 1998-04-23 Method for producing ferritic stainless steel with excellent surface properties and low anisotropy

Country Status (1)

Country Link
JP (1) JP3857807B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4562280B2 (en) * 2000-12-25 2010-10-13 日新製鋼株式会社 Ferritic stainless steel with excellent workability and small in-plane anisotropy and method for producing the same
JP2002322544A (en) * 2001-04-24 2002-11-08 Nippon Steel Corp Ferritic stainless steel having excellent oxidation resistance and scale adhesion
JP3504655B2 (en) * 2001-12-06 2004-03-08 新日本製鐵株式会社 Ferritic stainless steel sheet excellent in press formability and workability and manufacturing method thereof
CA2488351A1 (en) * 2002-06-03 2003-12-11 Xinhui Rixing Stainless Steel Product Company Limited Application of an alloy in kitchen utensil products
JP4518834B2 (en) * 2004-05-12 2010-08-04 新日鐵住金ステンレス株式会社 Manufacturing method of heat-resistant ferritic stainless steel sheet with excellent workability
JP4498950B2 (en) * 2005-02-25 2010-07-07 新日鐵住金ステンレス株式会社 Ferritic stainless steel sheet for exhaust parts with excellent workability and manufacturing method thereof

Also Published As

Publication number Publication date
JPH11302739A (en) 1999-11-02

Similar Documents

Publication Publication Date Title
WO2016068139A1 (en) Ferrite-based stainless steel plate, steel pipe, and production method therefor
EP0765941B1 (en) Ferritic stainless steel sheet having less planar anisotropy and excellent anti-ridging characteristics and process for producing same
WO2013146815A1 (en) Heat-resistant cold rolled ferritic stainless steel sheet, hot rolled ferritic stainless steel sheet for cold rolling raw material, and methods for producing same
JP2000169943A (en) Ferritic stainless steel excellent in high temperature strength and its production
US6500280B2 (en) Ferritic Cr-containing steel sheet having excellent ductility, formability, and anti-ridging properties
JP4390961B2 (en) Ferritic stainless steel with excellent surface properties and corrosion resistance
JP3904683B2 (en) Ferritic stainless steel with excellent surface properties and method for producing the same
JP4390962B2 (en) High purity ferritic stainless steel with excellent surface properties and corrosion resistance
JP4065579B2 (en) Ferritic stainless steel sheet with small in-plane anisotropy and excellent ridging resistance and method for producing the same
JP2010514928A (en) Ferritic stainless steel with excellent corrosion resistance and stretch formability and method for producing the same
KR20220073804A (en) Ferritic stainless steel sheet, manufacturing method thereof, and ferritic stainless steel member
WO2018198834A1 (en) Ferritic stainless steel sheet, and production method therefor
JP4622171B2 (en) Ferritic stainless steel sheet excellent in room temperature workability and mechanical properties at high temperature and method for producing the same
JP4428550B2 (en) Ferritic stainless steel sheet excellent in ridging resistance and deep drawability and method for producing the same
JP6411881B2 (en) Ferritic stainless steel and manufacturing method thereof
JP3857807B2 (en) Method for producing ferritic stainless steel with excellent surface properties and low anisotropy
JP3241114B2 (en) Method for producing ferritic stainless steel sheet excellent in ridging property and workability
JPH1072644A (en) Cold rolled austenitic stainless steel sheet reduced in amount of springback, and its production
JP3806186B2 (en) Method for producing ferritic stainless steel with excellent anti-roping properties
WO2009066868A1 (en) Low chrome ferritic stainless steel with high corrosion resistance and stretchability and method of manufacturing the same
JP3941363B2 (en) Ferritic stainless cold-rolled steel sheet excellent in ductility, workability and ridging resistance, and method for producing the same
JP2001271143A (en) Ferritic stainless steel excellent in ridging resistance and its production method
JP3455047B2 (en) Ferritic stainless steel sheet excellent in workability and roping properties and method for producing the same
JPH0741854A (en) Production of ferrite single phase stainless hot rolled steel sheet excellent in toughness
JP3779784B2 (en) Method for producing ferritic stainless steel with excellent surface properties

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060801

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060915

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130922

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130922

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130922

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130922

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees