JP4388205B2 - Stereo microscope - Google Patents

Stereo microscope Download PDF

Info

Publication number
JP4388205B2
JP4388205B2 JP2000192690A JP2000192690A JP4388205B2 JP 4388205 B2 JP4388205 B2 JP 4388205B2 JP 2000192690 A JP2000192690 A JP 2000192690A JP 2000192690 A JP2000192690 A JP 2000192690A JP 4388205 B2 JP4388205 B2 JP 4388205B2
Authority
JP
Japan
Prior art keywords
optical system
image
microscope
display means
stereomicroscope
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000192690A
Other languages
Japanese (ja)
Other versions
JP2002006229A5 (en
JP2002006229A (en
Inventor
和雄 森田
昌章 植田
孝 深谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2000192690A priority Critical patent/JP4388205B2/en
Priority to US09/732,751 priority patent/US6333813B1/en
Publication of JP2002006229A publication Critical patent/JP2002006229A/en
Publication of JP2002006229A5 publication Critical patent/JP2002006229A5/ja
Application granted granted Critical
Publication of JP4388205B2 publication Critical patent/JP4388205B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Microscoopes, Condenser (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、顕微鏡観察像と画像表示手段に表示した画像とを同時に観察することが出来るようにした手術用顕微鏡などの実体顕微鏡に関する。
【0002】
【従来の技術】
従来より、手術用顕微鏡等の実体顕微鏡は、脳神経外科、耳鼻咽喉科、眼科等の外科手術において術者に術部の拡大観察像を提供し、手術の効率向上に重要な役割を果たしている。近年では、実体顕微鏡による術部の拡大観察像だけでなく、術部周辺のCT・MR・超音波による断層画像や内視鏡観察像など手術に有効な医用画像を術前及び術中に得られようになった。これらの画像は、顕微鏡観察像も含め各々単独で見ても手術に有効な情報となるが、互いの画像を見比べ考察することにより一層多くの情報を術者に提供できる。
【0003】
そこで、術中に実体顕微鏡を覗いたままで顕微鏡観察像とCT・MR画像や内視鏡観察像を同時に観察できることが望まれるが、従来、このような顕微鏡を覗いたままで他の画像も同時に観察出来るようにした実体顕微鏡は、特開昭62−166310号公報や特開平10−333047号公報に開示されている。
特開昭62−166310号公報に記載の実体顕微鏡では、画像を映し出すための画像表示手段と接眼光学系を共用して、実体顕微鏡観察像と画像との同時観察を行えるようにしている。しかし、この公報に記載の技術は、実体顕微鏡の眼幅調整に伴う接眼光学系の移動に対する課題に関して全く触れられておらず、現実的な実体顕微鏡への採用手段がない。
眼幅調整とは、実体顕微鏡の左右接眼光学系を互いに移動させ、観察者の左右瞳間隔に、実体顕微鏡の左右アイポイント間隔を合わせる調整機構であり、全ての実体顕微鏡が搭載している調整機構である。
【0004】
特開昭62−166310号公報に記載の範囲内の技術のみで実際に眼幅調整を行うとすると、眼幅調整に伴う接眼光学系の移動に追従して前記画像表示手段上の画像を投影させるため、画像表示手段と画像投影光学系を接眼光学系と一体に移動させなければならない。このことは、実体顕微鏡ハウジング内にこれら移動する光学系や各素子の移動分のスペースまで必要となるため、実体顕微鏡ハウジングは非常に大型化してしまう。手術用顕微鏡等の実体顕微鏡においては、作業性向上のため顕微鏡全体としての小型化は必須であり、特開昭62−166301号公報に記載の技術での小型化は不可能であった。
【0005】
また、特開平10−333047号公報に記載の実体顕微鏡では、画像投影光学系をコリメート光学系と結像光学系とに分け、結像光学系のみを眼幅調整に伴い移動させる接眼光学系と一体に移動させつつ常にコリメート光学系から射出する画像光束を受けられるように配置することにより、画像表示手段は眼幅調整に対して不動のまま、移動する接眼光学系に画像を追従投影して実体顕微鏡像と画像との同時観察を行えるようにしている。
しかし、この特開平10−333047号公報に記載の技術でも、画像投影光学系の一部ではあるが眼幅調整のために移動させており、この画像投影光学系の一部を構成する光学系などの移動分のスペースが実体顕微鏡ハウジング内に必要となり、この分の実体顕微鏡ハウジングの大型化を伴うため、更なる小型化は不可能であった。
【0006】
【発明が解決しようとする課題】
本発明は、従来の技術の有するこのような問題点に鑑みてなされたものであり、その目的とするところは、実体顕微鏡観察像と画像表示手段に表示された画像との同時観察が可能で、且つ眼幅調整に伴う接眼光学系の移動にかかわらず、画像表示手段や画像投影光学系を固定にし、一層の小型化を図った作業性の良い小型実体顕微鏡を提供することにある。
【0007】
【課題を解決するための手段】
上記の目的を達成するために、本発明による実体顕微鏡は、顕微鏡観察像と、画像表示手段に表示した画像とを、顕微鏡視野内で同時に観察できる実体顕微鏡において、眼幅調整により移動する可動鏡筒部と眼幅調整により移動しない固定鏡筒部とから成る双眼鏡筒部と、物体側から順に前記固定鏡筒部に保持されている結像光学系と前記可動鏡筒部に保持されているリレー光学系と前記可動鏡筒部に保持されている接眼光学系とを含む双眼鏡筒光学系と、前記固定鏡筒部に保持されており前記画像表示手段に表示した画像を投影する画像投影光学系とを備え前記双眼鏡筒光学系は、前記固定鏡筒部内部に前記結像光学系により前記顕微鏡画像が形成される第1の顕微鏡光束結像面と、前記可動鏡筒部の内部に前記リレー光学系により前記第1の顕微鏡光束結像面がリレーされて形成された第2の顕微鏡光束結像面とを有していて、前記画像投影光学系は、前記第1の顕微鏡光束結像面上に前記画像表示手段に表示した画像を投影するようにしたことを特徴としている。
この構成によれば、接眼光学系が眼幅調整により移動しても、画像を投影する第1の顕微鏡光束結像面は移動しないため、画像表示手段及び画像投影光学系も移動する必要が無く、この分の移動スペースを実体顕微鏡ハウジング内に用意する必要が無いため、作業性の良い小型実体顕微鏡で、観察者に実体顕微鏡観察像と画像表示手段に表示された画像との同時観察を提供することができる。また、この構成によれば、眼幅調整の際に、リレーされた第2の顕微鏡光束結像面は接眼光学系と共に移動するため、観察者は容易に拡大観察をすることができる。
【0008】
また、本発明の実体顕微鏡においては、前記画像投影光学系は、画像投影位置を移動できるようになっていることが好ましい
画像投影位置を移動させるためには、画像投影光学系を移動させる移動機構を必要とするが、従来技術のように眼幅調整によって動く顕微鏡光束結像面に対して画像投影位置を移動させる場合、画像投影光学系の移動機構ごと眼幅調整によって動く顕微鏡光束結像面に追従して移動させる必要があり、装置の複雑化、大型化を招くことになるが、この構成によれば、画像投影光学系は、眼幅調整によって動かない顕微鏡光束結像面に対し画像投影位置を移動させれば良く、装置の簡素化、小型化が可能となり、よって安価で作業性の良い小型実体顕微鏡で、観察者に実体顕微鏡観察像と表示場所を任意に変更できる画像との同時観察を提供することができる。
【0009】
また、本発明の実体顕微鏡においては、さらに、前記第1の顕微鏡光束結像面の一部を遮光する遮光部材を含んでいて、前記画像投影光学系は、前記第1の顕微鏡光束結像面中の遮光された範囲内に前記画像表示手段に表示した画像を投影することが好ましい。
この構成によれば、顕微鏡観察像と画像とが重なり合って見えることが無く、観察者にクリアな両像の観察を提供することができる。
また、本発明の実体顕微鏡においては、前記遮光部材は、前記画像投影光学系からの光束を反射して前記第1の顕微鏡光束結像面に結像する反射部材を兼ねていることが好ましい。
この構成によれば、遮光部材と反射部材とを一つの部品で共用できるため、その分、顕微鏡の小型化を図ることができる。
また、本発明の実体顕微鏡においては、反射部材を兼ねた遮光部材は、無色透明で光が透過する部材に保持されていることが好ましい。
この構成によれば、反射部材を兼ねた遮光部材を保持する部材が、顕微鏡観察像にかぶさってしまうことで発生する顕微鏡観察像のケラレが無いため、顕微鏡観察像が持つ情報の損失を防ぐことが出来る。
更に、本発明の実体顕微鏡においては、前記固定鏡筒部のうち、画像表示手段と、該画像表示手段に表示された画像を顕微鏡視野内に投影する画像投影光学系を内蔵する部分は、観察者が双眼鏡筒を覗き観察する際に丁度観察者のおでこが来る方向に設け、且つ、Lを接眼光学系の光線射出面から画像表示手段や画像投影光学系を内蔵する部分までの接眼光学系の射出光軸方向の距離としたとき、30mm≦L≦100mmなる条件を満たすことが好ましい。
双眼鏡筒部内に画像表示手段や画像投影光学系を内蔵すると、どうしても通常の双眼鏡筒部より大型化してしまうが、この構成によれば、画像表示手段や画像投影光学系を内蔵することによる大型化を、観察者が双眼鏡筒部を覗き観察する際に丁度観察者のおでこが来る方向に集中させることが出来、手術等の作業の邪魔になることを避けることが可能となり、作業性の低下を防ぐことが出来る。即ち、この構成によれば、双眼鏡筒部が左右方向に出っ張っていないから術部を直接覗き込む際に邪魔になることは無く、また、双眼鏡筒部ハウジングが下方に出っ張っていないから手元の作業の邪魔になるようなことも無い。また、この構成によれば、観察者のおでこと、画像表示手段及び画像投影光学系を内蔵するハウジング部との距離を確保できるので、観察者のおでこが双眼鏡筒部に触れてしまうことを防ぐことが出来る。
【0010】
【発明の実施の形態】
以下、本発明の実施の形態を図示した各実施例に基づき説明する。
実施例1
第1図、第2図は本発明の第1実施例を示しており、第1図は本実施例による実体顕微鏡の概観図であり、第2図は第1図に示された実体顕微鏡の双眼鏡筒部光学系の概略構成を示す断面図である。第1図中、1は被観察物体、2は実体顕微鏡本体部、3は実体顕微鏡双眼鏡筒部、4はジーテントップ式眼幅調整機構、5は接眼光学系、5.1は観察者、5.2は観察者が観察している観察像、5.3は顕微鏡観察像、5.4は画像表示手段に表示された画像である。なお、ジーテントップ式眼幅調整機構とは、双眼鏡筒光学系内部の接眼光学系の直前に、左右一対で平行四辺形プリズム等の、互いの反射面が平行で且つ入射光軸と射出光軸をオフッセトさせる2回反射光学系を配置し、この2回反射光学系の入射光軸を中心に左右互いに反対方向に回転することにより、左右互いの2回反射光学系の射出光軸上に配置した左右の接眼光学系間の距離を変更できる機構をいう。
【0011】
第2図中、6は実体顕微鏡本体部、7は双眼鏡筒部ハウジング、8は双眼鏡筒光学系の結像レンズ、9は光路偏向プリズム、10は顕微鏡光束結像面、11はジーテントップ式眼幅調整機構を構成する平行四辺形プリズム、12は接眼光学系、13は射出瞳位置、14は画像表示手段としての小型LCD、15は画像投影光学系、16は画像光束結像位置である。顕微鏡光束結像面10は、眼幅調整によって移動しない位置つまり平行四辺形プリズム11よりも前に配置されており、画像投影光学系15は小型LCD14に表示された画像を顕微鏡光束結像面10上に導き投影している。
【0012】
第1実施例はこのように構成されているから、接眼光学系12が眼幅調整により移動しても、画像を投影する顕微鏡光束結像面10は移動しないため、画像表示手段14及び画像投影光学系15も眼幅調整に伴い移動する必要は無く、この分の移動スペースを実体顕微鏡ハウジング内に用意する必要が無いため、作業性の良い小型実体顕微鏡で、観察者に実体顕微鏡観察像と画像表示手段に表示された画像との同時観察を提供することができる。
【0013】
実施例2
図3は本発明の第2実施例を示しており、実体顕微鏡双眼鏡筒光学系の概略構成を示す断面図である。図中、17は実体顕微鏡本体部、18は双眼鏡筒部ハウジング、19は双眼鏡筒光学系の結像レンズ、20は光路偏向プリズム、21は第1の顕微鏡光束結像面、22はリレー光学系、23はリレー光学系22による第2の顕微鏡光束結像面、24は接眼光学系、25は画像表示手段としての小型LCD、26は画像投影光学系、27は画像光束結像位置、28は小型LCD25と画像投影光学系とを保持する保持部材、29はモーター、30は射出瞳位置である。
【0014】
この実施例においては、双眼鏡筒光学系の結像レンズ19による第1の顕微鏡光束結像面21は、眼幅調整によって移動しない位置に配置してあり、この第1の顕微鏡光束結像面21をリレー光学系22によってリレーし、第2の顕微鏡光束結像面23を接眼光学系24の直前に配置するようにしている。眼幅調整の際には、この第2の顕微鏡光束結像面23は接眼光学系24と共に移動し、観察者により拡大観察される。また、画像投影光学系26は、小型LCD25に表示された画像を前記第1の顕微鏡光束結像面21上に導き投影しており、更に、小型LCD25と画像投影光学系26を保持している保持部材28をモーター29により移動させることにより、画像を投影する位置を移動させることができる。この構成によれば、画像投影光学系26は、眼幅調整によって動かない顕微鏡光束結像面23に対して画像投影位置を移動させれば良く、装置の簡素化と小型化とが可能となる。その結果、安価で作業性の良い小型実体顕微鏡で、観察者に、実体顕微鏡観察像と表示場所を任意に変更できる画像との同時観察を提供することができる。
【0015】
実施例3
第4図は本発明の第3実施例を示しており、第3図で示した実体顕微鏡双眼鏡筒部光学系の、第1の顕微鏡光束結像面周辺部分の詳細構成を示す図である。図中、31は第1の顕微鏡光束結像位置、32は遮光部材、33は遮光部材32により遮光された範囲、34は画像表示手段としての小型LCD、35は画像投影光学系、36は前記遮光部材32により遮光された範囲内に画像投影光学系により導かれ投影された画像である。この構成によれば、顕微鏡観察像と画像とが重なり合って見えることが無く、観察者にクリアな両像の同時観察を提供することができる。
【0016】
実施例4
第5図は本発明の第4実施例を示しており、第3図で示した実体顕微鏡双眼鏡筒光学系の、第1の顕微鏡光束結像面周辺部分の詳細構成を示す図である。図中、37は第1の顕微鏡光束結像位置、38は反射面にアルミコートを施しているプリズムで、顕微鏡光束にとっては遮光部材となり、画像光束にとっては反射部材となる遮光部材と反射部材を兼ねたプリズム、39は前記プリズム38により遮光された範囲、40は画像表示手段としての小型LCD、41は画像投影光学系、42は前記プリズム38により遮光された範囲に画像投影光学系41により導かれ投影された画像である。この構成によれば、遮光部材と反射部材とを一つの部品で共用できるため、その分顕微鏡の小型化を図ることができる。
【0017】
実施例5
図6は本発明の第5実施例を示しており、第3図で示した実体顕微鏡双眼鏡筒部光学系の、第1の顕微鏡光束結像面周辺部分の詳細構成を示す図である。図中、43は第1の顕微鏡光束結像面位置、44は反射面にアルミコートを施したプリズムで、顕微鏡光束にとっては遮光部材となり、画像光束にとっては反射部材となる遮光部材と反射部材を兼ねたプリズム、45は無色透明のガラスの平行平板、46は前記プリズム44を前記平行平板45上に固定するためのプリズム、47は前記プリズム44により遮光された範囲、48は画像表示手段としての小型LCD、49は画像投影光学系、50は前記プリズム44により遮光された範囲内に画像投影光学系により導かれ投影された画像である。
この構成によれば、遮光部材と反射部材を兼ねたプリズム44を保持する部材が無色透明であるため、顕微鏡観察像に保持部材が重なってしまうことにより発生する顕微鏡観察像のケラレをなくす事ができ、顕微鏡観察像が持つ情報の損失を防ぐことが出来る。
【0018】
実施例6
第7図は本発明の第6実施例を示しており、本実施例に係る実体顕微鏡の概観図である。図中、51は実体顕微鏡本体部ハウジング、52は実体顕微鏡双眼鏡筒部ハウジング、53は画像表示手段としての小型LCDと画像投影光学系とを内蔵するハウジング、54は接眼光学系の射出光軸、55は観察者、56は接眼光学系の光線射出面である。前記ハウジング53は、観察者55が双眼鏡筒部を覗いて観察する際に丁度観察者のおでこが来る方向に配置されており、且つ接眼光学系の光線射出面56から前記ハウジング53までの、接眼光学系の射出光軸54に沿う距離を65mmにとってある。
【0019】
実体顕微鏡の双眼鏡筒部ハウジング内に小型LCDや画像投影光学系を内蔵すると、どうしても通常の双眼鏡筒部より大型化してしまうが、この構成によれば、画像表示手段や画像投影光学系を内蔵することによる大型化を、観察者が双眼鏡筒部を覗き観察する際に丁度観察者のおでこが来る方向に集中させることができ、手術等の作業の邪魔になることを避けることが可能となり、作業性の低下を防ぐことが出来る。即ち、この実施例によれば、双眼鏡筒部ハウジングが左右方向に出っ張っていないから術部を直接覗き込む際に邪魔になることは無く、また、双眼鏡筒部ハウジングが下方に出っ張ってもいないから手元の作業の邪魔になるようなことも無い。
また、観察者のおでこと、画像表示手段及び画像投影光学系を内蔵するハウジング部との距離を確保できるので、観察者のおでこが双眼鏡筒部ハウジングに触れてしまうことを防ぐことが出来る。
【0023】
【発明の効果】
上述の如く本発明によれば、小型で作業性の良い、実体顕微鏡観察像と画像表示手段に表示された画像との同時観察が可能な実体顕微鏡を提供することが出来る。
【図面の簡単な説明】
【図1】本発明の第1実施例の外観図である。
【図2】第1実施例における双眼鏡筒部光学系の概略構成を示す断面図である。
【図3】本発明の第2実施例における双眼鏡筒部光学系の概略構成を示す断面図である。
【図4】本発明の第3実施例における双眼鏡筒部光学系の顕微鏡光束結像面周辺部分の詳細構成を示す図である。
【図5】本発明の第4実施例における双眼鏡筒部光学系の顕微鏡光束結像面周辺部分の詳細構成を示す図である。
【図6】本発明の第5実施例における双眼鏡筒部光学系の顕微鏡光束結像面周辺部分の詳細構成を示す図である。
【図7】本発明の第7実施例の外観図である。
【符号の説明】
1 被観察物体
2,6,17 実体顕微鏡本体部
3 実体顕微鏡双眼鏡筒部
4 ジーテントップ式眼幅調整機構
5,12,24 接眼光学系
5.1,55 観察者
5.3 顕微鏡観察像
5.4 画像
7,18 双眼鏡筒ハウジング
8,19 双眼鏡筒光学系の結像レンズ
9,20 光路偏向プリズム
10 顕微鏡光束結像面
11 平行四辺形プリズム
13,30 射出瞳位置
14,25,34,40,48,53 小型LCD
15,26,35,41,49 画像投影光学系
16,27 画像光束結像位置
21,31,37,43 第1の顕微鏡光束結像面
22 リレー光学系
23 第2の顕微鏡光束結像面
28 小型LCDと画像投影光学系を保持する保持部材
29 モーター
32 遮光部材
33 遮光部材により遮光された範囲
36,42,50 画像投影光学系により導かれ投影された画像
38,44 遮光部材と反射部材を兼ねたプリズム
39,47 遮光部材と反射部材を兼ねたプリズムにより遮光された範囲
45 ガラスの平行平板
46 車庫部材と反射部材を兼ねたプリズムをガラスの平行平板上に固定するプリズム
51 実体顕微鏡本体部ハウジング
52 実体顕微鏡双眼鏡筒部ハウジング
54 接眼光学系の射出光軸
56 接眼光学系の光線射出面
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a stereomicroscope such as a surgical microscope capable of simultaneously observing a microscope observation image and an image displayed on an image display means.
[0002]
[Prior art]
Conventionally, stereoscopic microscopes such as a surgical microscope have provided an operator with a magnified observation image of the surgical site in surgical operations such as neurosurgery, otolaryngology, and ophthalmology, and have played an important role in improving the efficiency of surgery. In recent years, medical images effective for surgery such as tomographic images and endoscopic observation images of CT, MR, and ultrasound around the surgical site as well as magnified images of the surgical site with a stereomicroscope have been obtained before and during surgery. It became so. These images become effective information for surgery even when viewed individually including a microscopic observation image, but more information can be provided to the surgeon by comparing and considering each other's images.
[0003]
Therefore, it is desirable to be able to observe a microscope observation image and a CT / MR image or an endoscope observation image at the same time while looking into the stereomicroscope during the operation. Conventionally, it is possible to observe other images at the same time while looking through such a microscope. Such a stereomicroscope is disclosed in Japanese Patent Application Laid-Open Nos. 62-166310 and 10-333047.
In the stereomicroscope described in Japanese Patent Application Laid-Open No. 62-166310, an image display means for projecting an image and an eyepiece optical system are shared so that a stereomicroscope observation image and an image can be observed simultaneously. However, the technique described in this publication does not mention at all the problems regarding the movement of the eyepiece optical system accompanying the eye width adjustment of the stereomicroscope, and there is no practical means for adopting the stereomicroscope.
Eye width adjustment is an adjustment mechanism that moves the left and right eyepiece optical systems of the stereomicroscope relative to each other and aligns the left and right eyepoint intervals of the stereomicroscope with the left and right pupil interval of the observer. Mechanism.
[0004]
If the eye width adjustment is actually performed only with the technique within the range described in JP-A-62-166310, the image on the image display means is projected following the movement of the eyepiece optical system accompanying the eye width adjustment. Therefore, the image display means and the image projection optical system must be moved together with the eyepiece optical system. This requires a space corresponding to the movement of the moving optical system and each element in the stereomicroscope housing, so that the stereomicroscope housing becomes very large. In a stereoscopic microscope such as a surgical microscope, downsizing of the microscope as a whole is indispensable for improving workability, and downsizing with the technique described in Japanese Patent Application Laid-Open No. 62-166301 has been impossible.
[0005]
In the stereomicroscope described in Japanese Patent Laid-Open No. 10-333047, an image projection optical system is divided into a collimating optical system and an imaging optical system, and only an imaging optical system is moved in accordance with eye width adjustment. By arranging to be able to receive the image light beam emitted from the collimating optical system at all times while moving integrally, the image display means projects the image onto the moving eyepiece optical system without moving with respect to the eye width adjustment. A stereomicroscopic image and an image can be observed simultaneously.
However, even the technique described in Japanese Patent Laid-Open No. 10-333047 is moved for eye width adjustment, although it is a part of the image projection optical system, and an optical system constituting a part of this image projection optical system A space for such movement is required in the stereomicroscope housing, and the size of the stereomicroscope housing is increased accordingly, so that further miniaturization is impossible.
[0006]
[Problems to be solved by the invention]
The present invention has been made in view of such problems of the prior art, and an object of the present invention is to enable simultaneous observation of a stereoscopic microscope observation image and an image displayed on the image display means. An object of the present invention is to provide a compact stereomicroscope with good workability in which the image display means and the image projection optical system are fixed and the size is further reduced regardless of the movement of the eyepiece optical system accompanying the eye width adjustment.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, a stereomicroscope according to the present invention is a movable mirror that moves by adjusting the eye width in a stereomicroscope that can simultaneously observe a microscope observation image and an image displayed on the image display means within a microscope field of view. A binocular tube portion that includes a tube portion and a fixed lens barrel portion that does not move by eye width adjustment, an imaging optical system that is held by the fixed lens barrel portion in order from the object side , and a movable lens barrel portion. image projection for projecting shadows and binocular tube optical system, an image displayed on the image display means are held in said fixed barrel portion comprising an eyepiece optical system held in said movable barrel and the relay optical system and an optical system, the binocular optical system includes a first microscopic optical Tabayui image surface on which the microscopic image by the imaging optical system inside the fixed barrel is formed, of the movable barrel Inside by the relay optical system Have a second microscopic optical Tabayui image plane first microscopic optical Tabayui image surface is formed by a relay, the image projection optical system, SL before the first microscopic optical Tabayui image plane the image displayed on the image display unit is characterized in that so as to throw a shadow.
According to this configuration, even if the eyepiece optical system is moved by adjusting the eye width, the first microscope light beam imaging surface for projecting the image does not move, so that it is not necessary to move the image display means and the image projection optical system. Because there is no need to provide this amount of movement space in the stereomicroscope housing, a compact stereomicroscope with good workability provides the observer with simultaneous observation of the stereomicroscope image and the image displayed on the image display means. can do. Further, according to this configuration, when adjusting the eye width, the relayed second microscope light beam imaging surface moves together with the eyepiece optical system, so that the observer can easily perform magnified observation.
[0008]
In the stereomicroscope of the present invention, the image projection optical system is preferably adapted to be movable image projection position.
In order to move the image projection position, a moving mechanism for moving the image projection optical system is required. However, as in the prior art, the image projection position is moved with respect to the microscope light beam imaging plane that moves by eye width adjustment. The moving mechanism of the image projection optical system needs to be moved following the microscope light beam imaging surface that moves by adjusting the eye width, resulting in an increase in complexity and size of the apparatus. The projection optical system only needs to move the image projection position with respect to the microscope light beam imaging plane that does not move by adjusting the eye width, and the apparatus can be simplified and downsized. It is possible to provide the observer with simultaneous observation of a stereoscopic microscope observation image and an image whose display location can be arbitrarily changed.
[0009]
The stereomicroscope of the present invention further includes a light shielding member that shields a part of the first microscope light beam imaging surface, and the image projection optical system includes the first microscope light beam imaging surface. It is preferable to project the image displayed on the image display means within a light-shielded range.
According to this configuration, the microscope observation image and the image do not appear to overlap each other, and clear observation of both images can be provided to the observer.
In the stereomicroscope of the present invention, it is preferable that the light shielding member also serves as a reflecting member that reflects the light beam from the image projection optical system and forms an image on the first microscope light beam imaging surface.
According to this configuration, since the light shielding member and the reflection member can be shared by one component, the microscope can be downsized accordingly.
Moreover, in the stereomicroscope of this invention, it is preferable that the light-shielding member which serves as the reflecting member is held by a member that is colorless and transparent and transmits light.
According to this configuration, since the member that holds the light shielding member that also serves as the reflecting member is not covered with the microscope observation image, the loss of information held by the microscope observation image is prevented. I can do it.
Furthermore, in the stereomicroscope according to the present invention, the portion of the fixed barrel portion that includes the image display means and an image projection optical system that projects the image displayed on the image display means into the microscope field of view is An eyepiece optical system that is provided in the direction in which the observer's forehead comes when the person peeks through the binocular tube, and L is from the light exit surface of the eyepiece optical system to the part containing the image display means and the image projection optical system It is preferable that the condition of 30 mm ≦ L ≦ 100 mm is satisfied when the distance in the direction of the emission optical axis is set.
If the image display means and the image projection optical system are built in the binocular tube portion, the size will inevitably be larger than that of the normal binocular tube portion, but according to this configuration, the image display means and the image projection optical system are enlarged by incorporating the image display means and the image projection optical system. Can be concentrated in the direction of the observer's forehead when the observer peeks into the binocular tube, and it is possible to avoid interfering with operations such as surgery. Can be prevented. That is, according to this configuration, since the binocular tube part does not protrude in the left-right direction, there is no hindrance when looking directly into the operation part, and the binocular tube part housing does not protrude downward, so that the work at hand There is no such thing as getting in the way. Further, according to this configuration, the distance between the observer's forehead and the housing part containing the image display means and the image projection optical system can be secured, so that the observer's forehead touches the binocular tube part. Can be prevented.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described based on the illustrated examples.
Example 1
FIGS. 1 and 2 show a first embodiment of the present invention. FIG. 1 is a schematic view of a stereomicroscope according to this embodiment. FIG. 2 is a perspective view of the stereomicroscope shown in FIG. It is sectional drawing which shows schematic structure of a binoculars cylinder part optical system. In FIG. 1, 1 is an object to be observed, 2 is a stereomicroscope main body part, 3 is a stereomicroscope binocular tube part, 4 is a Ghiten top type eye width adjustment mechanism, 5 is an eyepiece optical system, 5.1 is an observer, 5 .2 is an observation image observed by the observer, 5.3 is a microscope observation image, and 5.4 is an image displayed on the image display means. Note that the G-Tentop eye width adjustment mechanism is a pair of left and right parallel prisms such as parallelogram prisms that are parallel to each other and have an incident optical axis and an outgoing optical axis immediately before the eyepiece optical system inside the binocular tube optical system. Is arranged on the emission optical axis of the left and right reflection optical system by rotating in the opposite direction to the left and right around the incident optical axis of the two reflection optical system. A mechanism that can change the distance between the left and right eyepiece optical systems.
[0011]
In FIG. 2, 6 is a stereomicroscope main body, 7 is a binocular tube housing, 8 is an image forming lens of a binocular tube optical system, 9 is an optical path deflecting prism, 10 is a microscope light beam image forming surface, and 11 is a Zeeten top eye. A parallelogram prism constituting the width adjusting mechanism, 12 is an eyepiece optical system, 13 is an exit pupil position, 14 is a small LCD as an image display means, 15 is an image projection optical system, and 16 is an image light beam imaging position. The microscope light beam imaging surface 10 is disposed at a position that does not move by eye width adjustment, that is, before the parallelogram prism 11, and the image projection optical system 15 converts the image displayed on the small LCD 14 into the microscope light beam imaging surface 10. Projected to the top.
[0012]
Since the first embodiment is configured as described above, the microscope light beam imaging surface 10 for projecting the image does not move even when the eyepiece optical system 12 is moved by adjusting the eye width. The optical system 15 does not need to be moved in accordance with the eye width adjustment, and it is not necessary to prepare a moving space for this amount in the stereomicroscope housing. Simultaneous observation with the image displayed on the image display means can be provided.
[0013]
Example 2
FIG. 3 shows a second embodiment of the present invention and is a cross-sectional view showing a schematic configuration of a stereoscopic microscope binocular tube optical system. In the figure, 17 is a stereomicroscope main body, 18 is a binocular tube housing, 19 is an imaging lens of a binocular tube optical system, 20 is an optical path deflecting prism, 21 is a first microscope light beam imaging surface, and 22 is a relay optical system. , 23 is a second microscope light beam imaging surface by the relay optical system 22, 24 is an eyepiece optical system, 25 is a small LCD as an image display means, 26 is an image projection optical system, 27 is an image light beam imaging position, 28 is A holding member that holds the small LCD 25 and the image projection optical system, 29 is a motor, and 30 is an exit pupil position.
[0014]
In this embodiment, the first microscope light beam imaging surface 21 by the imaging lens 19 of the binocular tube optical system is arranged at a position where it does not move by eye width adjustment. Is relayed by the relay optical system 22, and the second microscope light beam imaging plane 23 is arranged immediately before the eyepiece optical system 24. At the time of eye width adjustment, the second microscope light beam imaging surface 23 moves together with the eyepiece optical system 24 and is enlarged and observed by the observer. The image projection optical system 26 guides and projects the image displayed on the small LCD 25 onto the first microscope light beam imaging surface 21, and further holds the small LCD 25 and the image projection optical system 26. The position where the image is projected can be moved by moving the holding member 28 by the motor 29. According to this configuration, the image projection optical system 26 only has to move the image projection position with respect to the microscope light beam imaging surface 23 that does not move by eye width adjustment, and the apparatus can be simplified and miniaturized. . As a result, it is possible to provide an observer with simultaneous observation of a stereoscopic microscope observation image and an image whose display location can be arbitrarily changed with a small stereoscopic microscope that is inexpensive and has good workability.
[0015]
Example 3
FIG. 4 shows a third embodiment of the present invention, and is a diagram showing a detailed configuration of a portion around the first microscope light beam imaging surface of the stereomicroscope binocular tube optical system shown in FIG. In the figure, 31 is a first microscope light beam imaging position, 32 is a light shielding member, 33 is a range shielded by the light shielding member 32, 34 is a small LCD as an image display means, 35 is an image projection optical system, and 36 is the above-mentioned This is an image guided and projected by the image projection optical system within a range shielded by the light shielding member 32. According to this configuration, the microscope observation image and the image do not appear to overlap each other, and the clear simultaneous observation of both images can be provided to the observer.
[0016]
Example 4
FIG. 5 shows a fourth embodiment of the present invention, and is a diagram showing a detailed configuration of a portion around the first microscope light beam imaging surface of the stereoscopic microscope binocular tube optical system shown in FIG. In the figure, 37 is a first microscope light beam imaging position, 38 is a prism having an aluminum coating on the reflection surface, and serves as a light shielding member for the microscope light beam and a light shielding member and a reflection member as a reflection member for the image light beam. Also included is a prism 39, a range shielded by the prism 38, 40 a small LCD as an image display means, 41 an image projection optical system, and 42 guided by the image projection optical system 41 to a range shielded by the prism 38. This is a projected image. According to this configuration, since the light shielding member and the reflection member can be shared by one component, the microscope can be reduced in size accordingly.
[0017]
Example 5
FIG. 6 shows a fifth embodiment of the present invention, and is a diagram showing a detailed configuration of a portion around the first microscope light beam imaging surface of the stereomicroscope binocular tube optical system shown in FIG. In the figure, 43 is the position of the first microscope light beam imaging surface, 44 is a prism with an aluminum coating on the reflection surface, and serves as a light shielding member for the microscope light beam and a light shielding member and a reflection member as a reflection member for the image light beam. Also serving as a prism, 45 is a parallel plate of colorless and transparent glass, 46 is a prism for fixing the prism 44 on the parallel plate 45, 47 is a range shielded by the prism 44, and 48 is an image display means. A small LCD 49 is an image projection optical system, and 50 is an image guided and projected by the image projection optical system within a range shielded by the prism 44.
According to this configuration, since the member that holds the prism 44 that serves as the light shielding member and the reflection member is colorless and transparent, vignetting of the microscope observation image that occurs when the holding member overlaps the microscope observation image can be eliminated. And loss of information held in the microscope image can be prevented.
[0018]
Example 6
FIG. 7 shows a sixth embodiment of the present invention, and is a schematic view of a stereomicroscope according to the present embodiment. In the figure, 51 is a stereomicroscope main body housing, 52 is a stereomicroscope binocular tube housing, 53 is a housing containing a small LCD as an image display means and an image projection optical system, 54 is an emission optical axis of an eyepiece optical system, 55 is an observer and 56 is a light exit surface of the eyepiece optical system. The housing 53 is arranged in the direction in which the observer's forehead comes when the observer 55 looks through the binocular tube portion and observes the eyepiece from the light exit surface 56 of the eyepiece optical system to the housing 53. The distance along the emission optical axis 54 of the optical system is 65 mm.
[0019]
If a small LCD or image projection optical system is built in the binocular tube housing of a stereomicroscope, it will inevitably be larger than a normal binocular tube unit, but according to this configuration, an image display means and an image projection optical system are built in. It is possible to concentrate the enlargement due to the fact that the observer sees the binocular tube part in the direction where the observer's forehead comes, and it is possible to avoid obstructing operations such as surgery. It is possible to prevent a decrease in sex. That is, according to this embodiment, since the binocular tube housing does not protrude in the left-right direction, there is no hindrance when looking directly into the operation part, and the binocular tube housing does not protrude downward. There will be no obstacle to the work at hand.
Further, since the distance from the observer's forehead and the housing part containing the image display means and the image projection optical system can be secured, it is possible to prevent the observer's forehead from touching the binocular tube part housing.
[0023]
【The invention's effect】
As described above, according to the present invention, it is possible to provide a stereomicroscope that is small in size and has good workability and can simultaneously observe a stereomicroscope observation image and an image displayed on the image display means.
[Brief description of the drawings]
FIG. 1 is an external view of a first embodiment of the present invention.
FIG. 2 is a cross-sectional view showing a schematic configuration of a binocular tube optical system in the first embodiment.
FIG. 3 is a cross-sectional view showing a schematic configuration of a binocular barrel optical system in a second embodiment of the present invention.
FIG. 4 is a diagram showing a detailed configuration of a portion around a microscope light beam imaging surface of a binocular tube optical system according to a third embodiment of the present invention.
FIG. 5 is a diagram illustrating a detailed configuration of a portion around a microscope light beam imaging surface of a binocular tube optical system according to a fourth embodiment of the present invention.
FIG. 6 is a diagram showing a detailed configuration of a portion around a microscope light beam imaging surface of a binocular tube optical system in a fifth embodiment of the present invention.
FIG. 7 is an external view of a seventh embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Object to be observed 2, 6, 17 Stereomicroscope main-body part 3 Stereomicroscope binoculars cylinder part 4 Giten top type eye width adjustment mechanism 5, 12, 24 Eyepiece optical system 5.1, 55 Observer 5.3 Microscope observation image 5. 4 Images 7 and 18 Binocular tube housings 8 and 19 Imaging lenses 9 and 20 of the binocular tube optical system Optical path deflection prism 10 Microscope light beam imaging surface 11 Parallelogram prisms 13 and 30 Exit pupil positions 14, 25, 34, and 40 48, 53 Small LCD
15, 26, 35, 41, 49 Image projection optical system 16, 27 Image beam imaging position 21, 31, 37, 43 First microscope beam imaging surface 22 Relay optical system 23 Second microscope beam imaging surface 28 Holding member 29 for holding small LCD and image projection optical system Motor 32 Light shielding member 33 Areas 36, 42 and 50 shielded by light shielding member Images 38 and 44 guided and projected by image projection optical system Light shielding member and reflecting member Prism 39, 47 also serving as a light shielding member and a range shielded by a prism serving as a reflecting member 45 Glass parallel plate 46 Prism 51 for fixing a prism serving as a garage member and a reflecting member on a glass parallel plate 51 Stereo microscope main body Housing 52 Stereomicroscope binocular tube housing 54 Emission optical axis 56 of the eyepiece optical system Beam exit surface of the eyepiece optical system

Claims (6)

顕微鏡観察像と、画像表示手段に表示した画像とを、顕微鏡視野内で同時に観察できる実体顕微鏡において、
眼幅調整により移動する可動鏡筒部と眼幅調整により移動しない固定鏡筒部とから成る双眼鏡筒部と、物体側から順に前記固定鏡筒部に保持されている結像光学系と前記可動鏡筒部に保持されているリレー光学系と前記可動鏡筒部に保持されている接眼光学系とを含む双眼鏡筒光学系と、前記固定鏡筒部に保持されており前記画像表示手段に表示した画像を投影する画像投影光学系とを備え
前記双眼鏡筒光学系は、前記固定鏡筒部内部に前記結像光学系により前記顕微鏡画像が形成される第1の顕微鏡光束結像面と、前記可動鏡筒部の内部に前記リレー光学系により前記第1の顕微鏡光束結像面がリレーされて形成された第2の顕微鏡光束結像面とを有していて、
前記画像投影光学系は、前記第1の顕微鏡光束結像面上に前記画像表示手段に表示した画像を投影するようにしたことを特徴とする実体顕微鏡。
In a stereomicroscope that can observe the microscope observation image and the image displayed on the image display means simultaneously in the microscope field of view,
A binocular tube portion that includes a movable lens barrel portion that moves by eye width adjustment and a fixed lens tube portion that does not move by eye width adjustment, an imaging optical system that is held by the fixed lens barrel portion in order from the object side , and the movable A binocular tube optical system including a relay optical system held in the lens barrel and an eyepiece optical system held in the movable lens barrel, and displayed on the image display means held in the fixed lens barrel the image and an image projecting optical system for projecting the shadow,
The binocular tube optical system includes a first microscope light beam imaging surface on which the microscope image is formed by the imaging optical system inside the fixed lens barrel portion , and the relay optical system inside the movable lens barrel portion. And the second microscope light beam imaging surface formed by relaying the first microscope light beam imaging surface ,
It said image projection optical system, stereomicroscope, characterized in that the image displayed before Symbol image display means to said first microscope light Tabayui image plane so as to throw a shadow.
前記画像投影光学系は、画像投影位置を移動できるようになっていることを特徴とする請求項1に記載の実体顕微鏡。  The stereomicroscope according to claim 1, wherein the image projection optical system is configured to move an image projection position. さらに、前記第1の顕微鏡光束結像面の一部を遮光する遮光部材を含んでいて、
前記画像投影光学系は、前記第1の顕微鏡光束結像面中の遮光された範囲内に前記画像表示手段に表示した画像を投影するようにしたことを特徴とする請求項1に記載の実体顕微鏡。
And a light shielding member for shielding a part of the first microscope light beam imaging surface.
2. The entity according to claim 1, wherein the image projection optical system projects an image displayed on the image display means within a light-shielded range in the first microscope light beam imaging plane. microscope.
前記遮光部材は、前記画像投影光学系からの光束反射前記第1の顕微鏡光束結像面に結像する反射部材を兼ねていることを特徴とする請求項3に記載の実体顕微鏡。The light shielding member is stereomicroscope according to claim 3, characterized in that also serves as a reflecting member which forms an image on the first microscopic optical Tabayui image surface reflects the light beam of the image projection optical system or al . 反射部材を兼ねた遮光部材は、無色透明で光が透過する部材に保持されていることを特徴とする請求項4に記載の実体顕微鏡。  5. The stereomicroscope according to claim 4, wherein the light shielding member serving also as the reflecting member is held by a member that is colorless and transparent and transmits light. 前記固定鏡筒部のうち、画像表示手段と、該画像表示手段に表示された画像を顕微鏡視野内に投影する画像投影光学系を内蔵する部分は、観察者が双眼鏡筒を覗き観察する際に丁度観察者のおでこが来る方向に設け、且つLを接眼光学系の光線射出面から画像表示手段や画像投影光学系を内蔵する部分までの接眼光学系の射出光軸方向の距離としたとき、30mm≦L≦100mmなる条件を満たすようにしたことを特徴とする請求項1に記載の実体顕微鏡。Of the fixed barrel section , the image display means and the part that incorporates the image projection optical system that projects the image displayed on the image display means into the microscope field of view are provided when the observer looks into the binocular tube and observes it. just provided in the direction of the observer's forehead comes, and the distance of the exit optical axis of the eyepiece optical system of the L to the part which incorporates a light exit surface or al picture image display means and the image projection optical system of the ocular optical system The stereomicroscope according to claim 1, wherein a condition of 30 mm ≦ L ≦ 100 mm is satisfied.
JP2000192690A 2000-06-06 2000-06-22 Stereo microscope Expired - Fee Related JP4388205B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2000192690A JP4388205B2 (en) 2000-06-22 2000-06-22 Stereo microscope
US09/732,751 US6333813B1 (en) 2000-06-06 2000-12-11 Stereomicroscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000192690A JP4388205B2 (en) 2000-06-22 2000-06-22 Stereo microscope

Publications (3)

Publication Number Publication Date
JP2002006229A JP2002006229A (en) 2002-01-09
JP2002006229A5 JP2002006229A5 (en) 2006-08-03
JP4388205B2 true JP4388205B2 (en) 2009-12-24

Family

ID=18691793

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000192690A Expired - Fee Related JP4388205B2 (en) 2000-06-06 2000-06-22 Stereo microscope

Country Status (1)

Country Link
JP (1) JP4388205B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10309971A1 (en) * 2003-03-07 2004-09-16 Leica Microsystems (Schweiz) Ag Surgical microscope with object field illumination
JP4847095B2 (en) * 2005-10-24 2011-12-28 オリンパス株式会社 Stereo microscope binocular tube

Also Published As

Publication number Publication date
JP2002006229A (en) 2002-01-09

Similar Documents

Publication Publication Date Title
JP3827429B2 (en) Surgical microscope
US10531985B2 (en) Device for machining an object by application of laser radiation
JP2999206B2 (en) Two surgical microscopes optically and mechanically coupled
US8284482B2 (en) Stereoscopic microscope
JP2001208979A (en) Stereoscopic microscope
US7050225B2 (en) Superimposing microscope having image pickup
US10481376B2 (en) Surgical microscope having optical interfaces
US20090116102A1 (en) Stereomicroscope
JPH085923A (en) Stereomicroscope
JP3534733B2 (en) Fixed high magnification switching microscope
JP3701331B2 (en) Stereo microscope
JP3891663B2 (en) Stereo microscope
JP2000089123A (en) Microscope for operation
US6333813B1 (en) Stereomicroscope
JP4388205B2 (en) Stereo microscope
US7423807B2 (en) Ophthalmoscopic stereomicroscope with correction component
JP2001075011A (en) Stereoscopic microscope
JPS63167318A (en) Stereoscopic microscope
JP2000352671A (en) Stereomicroscope
JP2000214388A (en) Stereomicroscope
JP3590425B2 (en) Stereoscopic rigid endoscope
JP2000338416A (en) Stereoscopic view microscope
JPS63143519A (en) Stereoscopic microscope
JP2005070809A (en) Stereoscopic microscope
JP4398069B2 (en) Surgical microscope

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060616

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090407

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090605

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090630

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090908

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091002

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131009

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees