JP4387641B2 - Anti-shake zoom lens - Google Patents

Anti-shake zoom lens Download PDF

Info

Publication number
JP4387641B2
JP4387641B2 JP2002217414A JP2002217414A JP4387641B2 JP 4387641 B2 JP4387641 B2 JP 4387641B2 JP 2002217414 A JP2002217414 A JP 2002217414A JP 2002217414 A JP2002217414 A JP 2002217414A JP 4387641 B2 JP4387641 B2 JP 4387641B2
Authority
JP
Japan
Prior art keywords
lens group
lens
refractive power
telephoto
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002217414A
Other languages
Japanese (ja)
Other versions
JP2004061679A (en
Inventor
誠 三坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2002217414A priority Critical patent/JP4387641B2/en
Publication of JP2004061679A publication Critical patent/JP2004061679A/en
Application granted granted Critical
Publication of JP4387641B2 publication Critical patent/JP4387641B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/64Imaging systems using optical elements for stabilisation of the lateral and angular position of the image
    • G02B27/646Imaging systems using optical elements for stabilisation of the lateral and angular position of the image compensating for small deviations, e.g. due to vibration or shake
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/146Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having more than five groups
    • G02B15/1465Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having more than five groups the first group being negative

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、振動による撮影画像のぶれを補正する機能を有する防振ズームレンズに関する。
【0002】
【従来の技術】
一眼レフカメラ用のズームレンズとして、物体側から順に負レンズ群、正レンズ群を有する光学系が知られている。負レンズ群が先行する所謂ネガティブリードタイプの光学系は、広角端においてレトロフォーカスのパワー配置となるため、広画角化に適している。
【0003】
本出願人は、上記ネガティブリードタイプの光学系を特開平2−201310号公報、特開平2−296208号公報、特開平4−29109号公報、特開平4−29110号公報、特開平7−261084号公報等に開示している。
【0004】
また、特開昭57−11315号公報、特開昭58−95315号公報、特開昭61−62013号公報、特開平5−173071号公報にも同様の光学系が開示されている。
【0005】
一方、ネガティブリードタイプのズームレンズにおいて、撮影画像の変位を補正する機能を有した光学系が、特開平6−337374号公報、特開平7−152002号公報、特開平9−230242号公報、特開平10−39210号公報、特開平10−161023号公報、特開平10−161024号公報等に開示されており、本出願人も特開平2−035406に開示している
【0006】
【発明が解決しようとする課題】
一般に、撮影画像の変位を補正する機能を有する光学系を構成する際、まず変位補正時の画質の劣化を十分に少なくするように構成することが必要とされる。また使用時の操作性を鑑みれば、装置全体の小型化が必要であり、画像変位補正光学系の駆動装置の簡素化や小型化のために、画像変位補正光学系の偏心量を十分に少なくすることや、画像変位補正光学系の小型化、軽量化が必要となる。そして上記を満足しつつも、変倍比やFナンバー等の光学仕様及び良好なる光学性能も満足しなければならない。
【0007】
しかしながら、特開平2−035406号公報、特開平6−337374号公報、特開平10−161023号公報は画像変位補正光学系が最も像面側に配置されているために、光学設計を行う上で、画像変位補正光学系の最大偏心量のコントロールが困難であった。
【0008】
特開平10−161024号公報は望遠端のFナンバーが5.6程度と暗く、大口径を要求される光学系には不向きであった。
【0009】
特開平9−230242号公報は画像変位補正光学系が大型であり、画像変位補正光学系の駆動装置の小型化が困難であり、装置全体の大型化を引き起こしやすかった。
【0010】
特開平7−152002号公報、特開平10−39210号公報は、変倍比が2倍以下であったり、望遠端のFナンバーが4.5程度であったりと、近年要望されている大口径高倍ズームの仕様を満足できるものではなかった。
【0011】
本発明は上記課題を解決するためになされたもので、広角域を含み、変倍比2.5倍以上、FNo約2.8程度を達成し、かつ良好なる光学性能を有した広角大口径ズームレンズを提供することを目的とする。
【0012】
【課題を解決するための手段】
本発明にかかる防振ズームレンズは、物体側より負の屈折力の第1レンズ群、正の屈折力の第2レンズ群、負の屈折力の第3レンズ群、正の屈折力の第4レンズ群、負の屈折力の第5レンズ群、正の屈折力の第6レンズ群より構成され、広角から望遠への変倍の際、前記第1レンズ群と前記第2レンズ群の間隔が小さくなる光学系であって、前記第5レンズ群を光軸方向と略垂直に移動することによって撮影画像のぶれを補正し、β5tを第5レンズ群の望遠端における横倍率、β6tを第6レンズ群の望遠端における横倍率、fiを第iレンズ群の焦点距離、fwを広角端における光学系全体の焦点距離、ftを望遠端における光学系全体の焦点距離としたとき、
0.61≦|(1−β5t)×β6t|≦1.37
0.6 <|f1/fw|< 2.5
0.2 < f2/ft < 0.8
0.8 <|f3/fw|< 2.5
0.2 < f4/ft < 1.7
0.49≦|f5/ft|≦1.16
1.0 < f6/fw < 6.0
なる条件を満足することを特徴としている。
【0013】
【発明の実施の形態】
図1〜図5は各々後述する数値実施例1〜5のズームレンズのレンズ断面図、図6〜図10は各々後述する数値実施例1〜5のズームレンズの物体距離が無限遠の状態での諸収差図である。
【0014】
図1は第1の実施例を示した図面であり、Iは負の屈折力の第1レンズ群、IIは正の屈折力の第2レンズ群、IIIは負の屈折力の第3レンズ群、IVは正の屈折力の第4レンズ群、Vは負の屈折力の第5レンズ群、VIは正の屈折力の第6レンズ群、SPは絞り、SSPは開放Fナンバー絞り、IPは像面である。
【0015】
広角から望遠への変倍の際、Iは像側へ移動し、IIは物体側へ移動し、III物体側に凸に軌跡で移動し、IVはIIと一体に物体側へ移動し、は物体側へ移動し、VIは像面に対して固定であり、SPとSSPはIIIと一体で移動している。振動による撮影画像のぶれの補正は、を光軸方向と略垂直に移動することによって行う。また、近距離へのフォーカシングは図1のようにIの一部を物体側に移動させて行っている
【0016】
図2は第2の実施例を示した図面であり、Iは負の屈折力の第1レンズ群、IIは正の屈折力の第2レンズ群、IIIは負の屈折力の第3レンズ群、IVは正の屈折力の第4レンズ群、Vは負の屈折力の第5レンズ群、VIは正の屈折力の第6レンズ群、SPは絞り、SSPは開放Fナンバー絞り、IPは像面である。
【0017】
広角から望遠への変倍の際、Iは像側へ移動し、IIは物体側へ移動し、III物体側に凸に軌跡で移動し、IVはIIと一体に物体側へ移動し、は物体側へ移動し、VIは像面に対して固定であり、SPとSSPはIIIと一体で移動している。振動による撮影画像のぶれの補正は、を光軸方向と略垂直に移動することによって行う。また、近距離へのフォーカシングは図2のようにIIの一部を像側に移動させて行っている
【0018】
図3は第3の実施例を示した図面であり、Iは負の屈折力の第1レンズ群、IIは正の屈折力の第2レンズ群、IIIは負の屈折力の第3レンズ群、IVは正の屈折力の第4レンズ群、Vは負の屈折力の第5レンズ群、VIは正の屈折力の第6レンズ群、SPは絞り、SSPは開放Fナンバー絞り、IPは像面である。
【0019】
広角から望遠への変倍の際、Iは像側へ移動し、IIは物体側へ移動し、III物体側に凸に軌跡で移動し、IVはIIと一体に物体側へ移動し、VとVIは像面に対して固定であり、SPとSSPはIIIと一体で移動している。振動による撮影画像のぶれの補正は、を光軸方向と略垂直に移動することによって行う。また、近距離へのフォーカシングは図3のようにIの一部を物体側に移動させて行っている
【0020】
図4は第4の実施例を示した図面であり、Iは負の屈折力の第1レンズ群、IIは正の屈折力の第2レンズ群、IIIは負の屈折力の第3レンズ群、IVは正の屈折力の第4レンズ群、Vは負の屈折力の第5レンズ群、VIは正の屈折力の第6レンズ群、SPは絞り、SSPは開放Fナンバー絞り、IPは像面である。
【0021】
広角から望遠への変倍の際、Iは像側へ移動し、IIは物体側へ移動し、III物体側に凸に軌跡で移動し、IVはIIと一体に物体側へ移動し、VとVIは像面に対して固定であり、SPとSSPはIIIと一体で移動している。振動による撮影画像のぶれの補正は、を光軸方向と略垂直に移動することによって行う。また、近距離へのフォーカシングは図4のようにIIの一部を像側に移動させて行っている
【0022】
図5は第5の実施例を示した図面であり、Iは負の屈折力の第1レンズ群、IIは正の屈折力の第2レンズ群、IIIは負の屈折力の第3レンズ群、IVは正の屈折力の第4レンズ群、Vは負の屈折力の第5レンズ群、VIは正の屈折力の第6レンズ群、SPは絞り、SSPは開放Fナンバー絞り、IPは像面である。
【0023】
広角から望遠への変倍の際、Iは像側へ移動し、IIは物体側へ移動し、III物体側に凸に軌跡で移動し、IVはIIと一体に物体側へ移動し、は物体側へ移動し、VIは像面に対して固定であり、SPとSSPはIIIと一体で移動している。振動による撮影画像のぶれの補正は、を光軸方向と略垂直に移動することによって行う。また、近距離へのフォーカシングは図5のようにIを物体側に移動させて行っている
【0024】
また、本発明の光学系の非球面のうち、最も物体側の面と最も像側の面以外に配置された非球面であれば、球面レンズの表面に樹脂等による非球面層を形成しても良い。
【0025】
本発明のズームレンズは、広角端において、負の屈折力の第1レンズ群が負の前群、第2レンズ群以降が正の後群となり、レトロフォーカスタイプのパワー配置をとっており、広角端の広画角化を達成し易くしている。
【0026】
本発明のズームレンズは、正の屈折力の第4レンズ群、負の屈折力の第5レンズ群、正の屈折力の第6レンズ群を有しており、負の屈折力の第3レンズ群を射出した軸外光束は第4レンズ群によって光軸と成す角度が小さくなる方向に屈折されるために、画像変位補正光学系である第5レンズ群の光線有効径を小さくしやすい。その結果、画像変位補正光学系の駆動装置の小型化が容易となり、装置全体の小型化も容易となっている。さらに、画像変位補正光学系である第5レンズ群の像側に第6レンズ群を配置することで、画像変位補正光学系である第5レンズ群の最大偏心量のコントロールをしやすくしている。
【0027】
さらに本発明では、第5レンズ群を画像変位補正光学系として好適にするため、β5tを第5レンズ群の望遠端における横倍率、β6tを第6レンズ群の望遠端における横倍率としたとき、
0.61≦|(1−β5t)×β6t|≦1.37 ・・・(1)
なる条件を満足することを特徴としている。
この条件を満足すれば、望遠端において第5レンズ群の像変位敏感度(画像変位補正光学系の偏心量あたりの像位置変位量)を確保することができるので、第5レンズ群の画像変位補正光学系の偏心量を小さくすることができ、装置全体の小型化を達成できる。
【0029】
これによれば、望遠端では、負の屈折力の第1レンズ群と正の屈折力の第2レンズ群が全体として正の屈折力の前群、第3レンズ群以降が負の屈折力の後群となり、望遠レンズに好適なテレフォトタイプのパワー配置とできるので望遠側において明るいFナンバーを確保しやくなる。
【0030】
さらに望ましくは、広角から望遠への変倍の際、前記第2レンズ群と前記第4レンズ群が物体側へ移動するのが良い
【0031】
広角から望遠への変倍の際、第2レンズ群を物体側に移動させることで、望遠端でのテレ比を適切に設定しやすくなるので、望遠端における球面収差と像面湾曲の補正が容易となる。また、第4レンズ群を物体側に移動することで、第4レンズ群の倍率を大きくすることができるので、光学系全系で各レンズ群の変倍分担のバランスを良好にしやすくなり、変倍にともなう、像面湾曲の変動を補正しやすくなる。
【0032】
望ましくは、変倍の際、第2レンズ群と第4レンズ群を一体として移動させると鏡筒構造が簡素化されるので良い。
【0033】
さらに望ましくは、広角から望遠への変倍の際、第4レンズ群と第5レンズ群の間隔は大きくなるのが良い。
広角から望遠への変倍の際、第4レンズ群と第5レンズ群の間隔を大とすれば、望遠端において第5レンズ群を通過する軸上光束径を小とすることができるので、第5レンズ群が画像変位補正のために変位したときの、偏心収差を補正しやすくなる。
【0034】
さらに望ましくは、fiを第iレンズ群の焦点距離、fwを広角端における光学系全体の焦点距離、ftを望遠端における光学系全体の焦点距離とするとき、以下の条件式を満足するのが良い。
0.6 <|f1/fw|< 2.5 ・・・(
0.2 < f2/ft < 0.8 ・・・(
0.8 <|f3/fw|< 2.5 ・・・(
0.2 < f4/ft < 1.7 ・・・(
0.49≦|f5/ft|≦1.16 ・・・(
1.0 < f6/fw < 6.0 ・・・(
条件式()は、第1レンズ群の焦点距離を適切に設定するものであり、条件を満足すれば、広角端における負の歪曲収差の補正と前玉径の小型化を両立しやすくなる。
【0035】
条件式()は、第2レンズ群の焦点距離を適切に設定するものであり、条件を満足すれば、望遠端における球面収差の補正と明るいFナンバーの確保を両立しやすくなる。
【0036】
条件式()は、第3レンズ群の焦点距離を適切に設定するものであり、条件を満足すれば、望遠端における明るいFナンバーの確保と焦点距離全域にわたって特にコマ収差と歪曲収差の補正を両立しやすくなる。
【0037】
条件式()は、第4レンズ群の焦点距離を適切に設定するものであり、条件を満足すれば変倍比の確保と広角端における負の歪曲収差の補正を両立しやすくなる。
【0038】
条件式()は、第5レンズ群の焦点距離を適切に設定するものであり、変倍に伴う歪曲収差の変動を抑制しやすくなる。
【0039】
条件式()は、第6レンズ群の焦点距離を適切に設定するものであり、広角端におけるバックフォーカスの確保と、後玉径の小型化が両立しやすくなる。
【0040】
さらに望ましくは、条件式(2)〜(5)および条件式(7)を以下の範囲とすると良い。
1.0 <|f1/fw|< 2.0 ・・・(
0.3 < f2/ft < 0.7 ・・・(
1.0 <|f3/fw|< 1.9 ・・・(10
0.3 < f4/ft < 1.1 ・・・(11
1.2 < f6/fw < 4.5 ・・・(12
望ましくは、第5レンズ群に、少なくとも正レンズと負レンズを配置し、条件式(13)を満足するのが良い。
νn−νp > 0 ・・・(13
ただし、νnは第5レンズ群中の負レンズのアッベ数の平均、νpは第5レンズ群中の正レンズのアッベ数の平均である。これにより、第5レンズ群が画像変位補正のために変位したときの、倍率色収差を補正しやすくなって良い。
【0041】
望ましくは条件式(13)を以下の範囲とすると良い。
νn−νp > 3.0 ・・・(14
【0042】
(数値実施例)
次に数値実施例1〜5のズームレンズの数値データを示す。各数値実施例においてRiは物体側より順に第i番目の面の曲率半径、Diは物体側より第i番目の光学部材厚又は空気間隔、Niとνiは各々物体側より順に第i番目の光学部材の材質の屈折率とアッベ数である。又、前述の各条件式と数値実施例における諸数値との関係を表−1に示す。
【0043】
非球面形状は光軸方向にX軸、光軸と垂直方向にh軸、光の進行方向を正としRを近軸曲率半径、A,B,C,D,E,Fを各々非球面係数としたとき、
x=(h/R)/[1+[1−(h/R)1/2]+Ah+Bh+Ch
+Dh+Eh10+Fh12
なる式で表している。[e−x]は「10−x」を意味している。
【0044】
【外1】

Figure 0004387641
【0045】
【外2】
Figure 0004387641
【0046】
【外3】
Figure 0004387641
【0047】
【外4】
Figure 0004387641
【0048】
【外5】
Figure 0004387641
【0049】
【表1】
Figure 0004387641
【0050】
【発明の効果】
以上説明したように本発明によれば、広角域を含みかつ約2.5倍以上の変倍比であり、Fナンバー2.8程度と大口径でありながらも、良好なる光学性能を有した広角ズームレンズを提供できる。
【図面の簡単な説明】
【図1】 本発明の実施形態1のレンズ断面図
【図2】 本発明の実施形態2のレンズ断面図
【図3】 本発明の実施形態3のレンズ断面図
【図4】 本発明の実施形態4のレンズ断面図
【図5】 本発明の実施形態5のレンズ断面図
【図6A】 本発明の実施形態1の広角端での基準状態の縦収差図
【図6B】 本発明の実施形態1の中間焦点距離での基準状態の縦収差図
【図6C】 本発明の実施形態1の望遠端での基準状態の縦収差図
【図6D】 本発明の実施形態1の広角端での基準状態の横収差図
【図6E】 本発明の実施形態1の中間焦点距離での基準状態の横収差図
【図6F】 本発明の実施形態1の望遠端での基準状態の横収差図
【図6G】 本発明の実施形態1の広角端での画角0.5°のぶれを補正したときの横収差図
【図6H】 本発明の実施形態1の中間焦点距離での画角0.5°のぶれを補正したときの横収差図
【図6I】 本発明の実施形態1の望遠端での画角0.5°のぶれを補正したときの横収差図
【図7A】 本発明の実施形態2の広角端での基準状態の縦収差図
【図7B】 本発明の実施形態2の中間焦点距離での基準状態の縦収差図
【図7C】 本発明の実施形態2の望遠端での基準状態の縦収差図
【図7D】 本発明の実施形態2の広角端での基準状態の横収差図
【図7E】 本発明の実施形態2の中間焦点距離での基準状態の横収差図
【図7F】 本発明の実施形態2の望遠端での基準状態の横収差図
【図7G】 本発明の実施形態2の広角端での画角0.5°のぶれを補正したときの横収差図
【図7H】本発明の実施形態2の中間焦点距離での画角0.5°のぶれを補正したときの横収差図
【図7I】 本発明の実施形態2の望遠端での画角0.5°のぶれを補正したときの横収差図
【図8A】 本発明の実施形態3の広角端での基準状態の縦収差図
【図8B】 本発明の実施形態3の中間焦点距離での基準状態の縦収差図
【図8C】 本発明の実施形態3の望遠端での基準状態の縦収差図
【図8D】 本発明の実施形態3の広角端での基準状態の横収差図
【図8E】 本発明の実施形態3の中間焦点距離での基準状態の横収差図
【図8F】 本発明の実施形態3の望遠端での基準状態の横収差図
【図8G】 本発明の実施形態3の広角端での画角0.5°のぶれを補正したときの横収差図
【図8H】 本発明の実施形態3の中間焦点距離での画角0.5°のぶれを補正したときの横収差図
【図8I】 本発明の実施形態3の望遠端での画角0.5°のぶれを補正したときの横収差図
【図9A】 本発明の実施形態4の広角端での基準状態の縦収差図
【図9B】 本発明の実施形態4の中間焦点距離での基準状態の縦収差図
【図9C】 本発明の実施形態4の望遠端での基準状態の縦収差図
【図9D】 本発明の実施形態4の広角端での基準状態の横収差図
【図9E】 本発明の実施形態4の中間焦点距離での基準状態の横収差図
【図9F】 本発明の実施形態4の望遠端での基準状態の横収差図
【図9G】 本発明の実施形態4の広角端での画角0.5°のぶれを補正したときの横収差図
【図9H】 本発明の実施形態4の中間焦点距離での画角0.5°のぶれを補正したときの横収差図
【図9I】 本発明の実施形態4の望遠端での画角0.5°のぶれを補正したときの横収差図
【図10A】 本発明の実施形態5の広角端での基準状態の縦収差図
【図10B】 本発明の実施形態5の中間焦点距離での基準状態の縦収差図
【図10C】 本発明の実施形態5の望遠端での基準状態の縦収差図
【図10D】 本発明の実施形態5の広角端での基準状態の横収差図
【図10E】 本発明の実施形態5の中間焦点距離での基準状態の横収差図
【図10F】 本発明の実施形態5の望遠端での基準状態の横収差図
【図10G】 本発明の実施形態5の広角端での画角0.5°のぶれを補正したときの横収差図
【図10H】 本発明の実施形態5の中間焦点距離での画角0.5°のぶれを補正したときの横収差図
【図10I】 本発明の実施形態5の望遠端での画角0.5°のぶれを補正したときの横収差図
【符号の説明】
I,II,III,IV,V,VI 第1,2,3,4,5,6レンズ群
SP 絞り
SSP 開放FNo絞り
IP 像面
d d線
g g線
ΔS サジタル像面、
ΔM メリジオナル像面[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an anti-vibration zoom lens having a function of correcting shake of a captured image due to vibration.
[0002]
[Prior art]
As a zoom lens for a single-lens reflex camera, an optical system having a negative lens group and a positive lens group in order from the object side is known. A so-called negative lead type optical system preceded by a negative lens group has a retrofocus power arrangement at the wide-angle end and is suitable for widening the angle of view.
[0003]
The present applicant has disclosed the above-described negative lead type optical system in JP-A-2-201310, JP-A-2-296208, JP-A-4-29109, JP-A-4-29110, and JP-A-7-261084. Disclosed in the Gazettes.
[0004]
Similar optical systems are also disclosed in JP-A-57-11315, JP-A-58-95315, JP-A-61-62013, and JP-A-5-173071.
[0005]
On the other hand, in a negative lead type zoom lens, an optical system having a function of correcting a displacement of a photographed image is disclosed in JP-A-6-337374, JP-A-7-152002, JP-A-9-230242. This is disclosed in Japanese Laid-Open Patent Publication No. 10-39210, Japanese Laid-Open Patent Publication No. 10-161023, Japanese Laid-Open Patent Publication No. 10-161024, and the like .
[0006]
[Problems to be solved by the invention]
In general, when configuring an optical system having a function of correcting the displacement of a captured image, it is first necessary to configure so as to sufficiently reduce the deterioration of image quality when the displacement is corrected. In view of operability during use, it is necessary to reduce the size of the entire apparatus, and the amount of eccentricity of the image displacement correction optical system is sufficiently reduced in order to simplify and reduce the size of the drive device for the image displacement correction optical system. In addition, it is necessary to reduce the size and weight of the image displacement correction optical system. And while satisfying the above, optical specifications such as a zoom ratio and F number and good optical performance must be satisfied.
[0007]
However, JP-A-2-035406, JP-A No. 6-337374 and JP Hei 10-161023 is for image displacement correction optical system is disposed on the most image side, in performing an optical design Therefore, it has been difficult to control the maximum eccentricity of the image displacement correction optical system.
[0008]
Japanese Patent Application Laid-Open No. 10-161024 is not suitable for an optical system that requires a large aperture because the F number at the telephoto end is as dark as about 5.6.
[0009]
In Japanese Patent Laid-Open No. 9-230242, the image displacement correction optical system is large, and it is difficult to reduce the size of the drive device for the image displacement correction optical system.
[0010]
Japanese Patent Application Laid-Open Nos. 7-152002 and 10-39210 disclose a large aperture which has recently been requested such as a zoom ratio of 2 times or less or an F number at the telephoto end of about 4.5. It was not possible to satisfy the specifications for high-magnification zoom.
[0011]
The present invention has been made to solve the above problems, includes a wide-angle range, zoom ratio 2.5 times or more, to achieve about 2.8 degree FNo, and wide-angle large having a good optical performance An object of the present invention is to provide an aperture zoom lens.
[0012]
[Means for Solving the Problems]
The anti-vibration zoom lens according to the present invention includes a first lens group having a negative refractive power, a second lens group having a positive refractive power, a third lens group having a negative refractive power, and a fourth lens having a positive refractive power from the object side. A lens group, a fifth lens group having a negative refractive power, and a sixth lens group having a positive refractive power. When zooming from wide angle to telephoto, the distance between the first lens group and the second lens group is The optical system is a small optical system, and the blur of the photographed image is corrected by moving the fifth lens group substantially perpendicular to the optical axis direction, β5t is the lateral magnification at the telephoto end of the fifth lens group, and β6t is the sixth. When the lateral magnification at the telephoto end of the lens group , fi is the focal length of the i-th lens group, fw is the focal length of the entire optical system at the wide-angle end, and ft is the focal length of the entire optical system at the telephoto end,
0.61 ≦ | (1-β5t) × β6t | ≦ 1.37
0.6 <| f1 / fw | <2.5
0.2 <f2 / ft <0.8
0.8 <| f3 / fw | <2.5
0.2 <f4 / ft <1.7
0.49 ≦ | f5 / ft | ≦ 1.16
1.0 <f6 / fw <6.0
It is characterized by satisfying the following conditions.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
FIGS. 1 to 5 are sectional views of zoom lenses according to Numerical Examples 1 to 5 described later, respectively, and FIGS. 6 to 10 are states where the object distance of the zoom lenses according to Numerical Examples 1 to 5 described below is infinite. FIG.
[0014]
FIG. 1 is a view showing a first embodiment, where I is a first lens group having a negative refractive power , II is a second lens group having a positive refractive power , and III is a third lens group having a negative refractive power . , IV is a fourth lens group having a positive refractive power , V is a fifth lens group having a negative refractive power, VI is a sixth lens group having a positive refractive power , SP is an aperture, SSP is an open F-number aperture, and IP is It is an image plane.
[0015]
When the wide-angle zooming to the telephoto, I is moved to the image side, II moves toward the object side, III moves with locus convex to the object side, IV moves toward the object side in the II integral, V moves to the object side, VI is fixed with respect to the image plane, and SP and SSP move together with III. The correction of the shake of the photographed image due to the vibration is performed by moving V substantially perpendicular to the optical axis direction. Further, focusing to a short distance is performed by moving a part of I to the object side as shown in FIG .
[0016]
FIG. 2 is a diagram showing a second embodiment, where I is a first lens group having a negative refractive power , II is a second lens group having a positive refractive power , and III is a third lens group having a negative refractive power . , IV is a fourth lens group having a positive refractive power , V is a fifth lens group having a negative refractive power, VI is a sixth lens group having a positive refractive power , SP is an aperture, SSP is an open F-number aperture, and IP is It is an image plane.
[0017]
When zooming from wide angle to telephoto, I moves to the image side, II moves to the object side, III moves to the object side in a convex locus, IV moves to the object side integrally with II, V Moves to the object side, VI is fixed with respect to the image plane, and SP and SSP move together with III. The correction of the shake of the photographed image due to the vibration is performed by moving V substantially perpendicular to the optical axis direction. Further, focusing to a short distance is performed by moving a part of II to the image side as shown in FIG .
[0018]
FIG. 3 shows a third embodiment, where I is a first lens group having a negative refractive power , II is a second lens group having a positive refractive power , and III is a third lens group having a negative refractive power . , IV is a fourth lens group having a positive refractive power , V is a fifth lens group having a negative refractive power, VI is a sixth lens group having a positive refractive power , SP is an aperture, SSP is an open F-number aperture, and IP is It is an image plane.
[0019]
When zooming from wide angle to telephoto, I moves to the image side, II moves to the object side, III moves to the object side in a convex locus, IV moves to the object side integrally with II, V And VI are fixed with respect to the image plane, and SP and SSP move together with III. The correction of the shake of the photographed image due to the vibration is performed by moving V substantially perpendicular to the optical axis direction. Further, focusing to a short distance is performed by moving a part of I to the object side as shown in FIG .
[0020]
FIG. 4 shows a fourth embodiment, where I is a first lens group having a negative refractive power , II is a second lens group having a positive refractive power , and III is a third lens group having a negative refractive power . , IV is a fourth lens group having a positive refractive power , V is a fifth lens group having a negative refractive power, VI is a sixth lens group having a positive refractive power , SP is an aperture, SSP is an open F-number aperture, and IP is It is an image plane.
[0021]
When zooming from wide angle to telephoto, I moves to the image side, II moves to the object side, III moves to the object side in a convex locus, IV moves to the object side integrally with II, V And VI are fixed with respect to the image plane, and SP and SSP move together with III. The correction of the shake of the photographed image due to the vibration is performed by moving V substantially perpendicular to the optical axis direction. Further, focusing to a short distance is performed by moving a part of II to the image side as shown in FIG .
[0022]
FIG. 5 is a view showing a fifth embodiment, wherein I is a first lens group having a negative refractive power , II is a second lens group having a positive refractive power , and III is a third lens group having a negative refractive power . , IV is a fourth lens group having a positive refractive power , V is a fifth lens group having a negative refractive power, VI is a sixth lens group having a positive refractive power , SP is an aperture, SSP is an open F-number aperture, and IP is It is an image plane.
[0023]
When zooming from wide angle to telephoto, I moves to the image side, II moves to the object side, III moves to the object side in a convex locus, IV moves to the object side integrally with II, V Moves to the object side, VI is fixed with respect to the image plane, and SP and SSP move together with III. The correction of the shake of the photographed image due to the vibration is performed by moving V substantially perpendicular to the optical axis direction. Further, focusing to a short distance is performed by moving I to the object side as shown in FIG.
[0024]
Further, among the aspheric surfaces of the optical system of the present invention, an aspheric layer made of resin or the like is formed on the surface of the spherical lens if it is an aspheric surface arranged on a surface other than the most object side surface and the most image side surface. Also good.
[0025]
In the zoom lens of the present invention, at the wide angle end, the first lens group having a negative refractive power is a negative front group, and the second lens group and the subsequent lenses are a positive rear group. It is easy to achieve a wide angle of view at the edge.
[0026]
The zoom lens of the present invention includes a fourth lens group having a positive refractive power, a fifth lens group having a negative refractive power, and a sixth lens group having a positive refractive power, and a third lens having a negative refractive power. Since the off-axis light beam emitted from the group is refracted by the fourth lens group in a direction in which the angle formed with the optical axis decreases, it is easy to reduce the effective beam diameter of the fifth lens group that is an image displacement correction optical system. As a result, it is easy to reduce the size of the drive device for the image displacement correction optical system, and the size of the entire device is also reduced. Further, the sixth lens group is arranged on the image side of the fifth lens group that is the image displacement correction optical system, thereby making it easy to control the maximum decentering amount of the fifth lens group that is the image displacement correction optical system. .
[0027]
Further, in the present invention, in order to make the fifth lens group suitable as an image displacement correction optical system, when β5t is a lateral magnification at the telephoto end of the fifth lens group, and β6t is a lateral magnification at the telephoto end of the sixth lens group,
0.61 ≦ | (1-β5t) × β6t | ≦ 1.37 (1)
It is characterized by satisfying the following conditions.
If this condition is satisfied, the image displacement sensitivity of the fifth lens group (image position displacement amount per eccentricity of the image displacement correction optical system) can be ensured at the telephoto end. The amount of decentration of the correction optical system can be reduced, and downsizing of the entire apparatus can be achieved.
[0029]
According to this, in the telephoto end, the negative refractive power first lens group and positive refractive power second lens group as a whole a positive refractive power of the front group of, after the third lens group has a negative refractive power The rear group is a telephoto type power arrangement suitable for a telephoto lens, so that it is easy to secure a bright F number on the telephoto side.
[0030]
More preferably, at the time of zooming from wide angle to telephoto, the second lens group and the fourth lens group may move toward the object side .
[0031]
When zooming from wide angle to telephoto, moving the second lens group to the object side makes it easy to set the tele ratio at the telephoto end appropriately, so that spherical aberration and field curvature can be corrected at the telephoto end. It becomes easy. Further, since the magnification of the fourth lens group can be increased by moving the fourth lens group to the object side, it becomes easy to improve the balance of the variable magnification sharing of each lens group in the entire optical system. It becomes easy to correct fluctuations in field curvature due to doubling.
[0032]
Desirably, the lens barrel structure can be simplified by moving the second lens group and the fourth lens group together during zooming.
[0033]
More preferably, the distance between the fourth lens group and the fifth lens group is increased when zooming from wide angle to telephoto.
When zooming from wide angle to telephoto, if the distance between the fourth lens group and the fifth lens group is increased, the axial beam diameter passing through the fifth lens group at the telephoto end can be reduced. It becomes easy to correct decentration aberration when the fifth lens group is displaced for image displacement correction.
[0034]
More preferably, when fi is the focal length of the i-th lens group, fw is the focal length of the entire optical system at the wide angle end, and ft is the focal length of the entire optical system at the telephoto end, the following conditional expression is satisfied. good.
0.6 <| f1 / fw | <2.5 ( 2 )
0.2 <f2 / ft <0.8 ( 3 )
0.8 <| f3 / fw | <2.5 ( 4 )
0.2 <f4 / ft <1.7 ( 5 )
0.49 ≦ | f5 / ft | ≦ 1.16 ( 6 )
1.0 <f6 / fw <6.0 ( 7 )
Conditional expression ( 2 ) is for appropriately setting the focal length of the first lens group. If the condition is satisfied, it becomes easy to achieve both correction of negative distortion at the wide-angle end and reduction of the front lens diameter. .
[0035]
Conditional expression ( 3 ) appropriately sets the focal length of the second lens group. If the condition is satisfied, it becomes easy to achieve both correction of spherical aberration at the telephoto end and securing a bright F number.
[0036]
Conditional expression ( 4 ) is for appropriately setting the focal length of the third lens group. If the condition is satisfied, a bright F number is secured at the telephoto end and correction of coma and distortion aberrations in particular over the entire focal length. It becomes easy to balance.
[0037]
Conditional expression ( 5 ) is for appropriately setting the focal length of the fourth lens group. If the condition is satisfied, it is easy to ensure both the zoom ratio and the correction of the negative distortion at the wide angle end.
[0038]
Conditional expression ( 6 ) is for appropriately setting the focal length of the fifth lens group, and it is easy to suppress fluctuations in distortion due to zooming.
[0039]
Conditional expression ( 7 ) sets the focal length of the sixth lens group appropriately, and it is easy to achieve both ensuring the back focus at the wide-angle end and reducing the rear lens diameter.
[0040]
More desirably, the conditional expressions (2) to (5) and the conditional expression (7) should be in the following ranges.
1.0 <| f1 / fw | <2.0 ( 8 )
0.3 <f2 / ft <0.7 ( 9 )
1.0 <| f3 / fw | <1.9 ( 10 )
0.3 <f4 / ft <1.1 ( 11 )
1.2 <f6 / fw <4.5 ( 12 )
Desirably, at least a positive lens and a negative lens are disposed in the fifth lens group, and the conditional expression ( 13 ) is satisfied.
νn−νp> 0 ( 13 )
Where νn is the average Abbe number of the negative lens in the fifth lens group, and νp is the average Abbe number of the positive lens in the fifth lens group. Accordingly, it is possible to easily correct the lateral chromatic aberration when the fifth lens group is displaced for image displacement correction.
[0041]
Desirably, conditional expression ( 13 ) should be in the following range.
νn−νp> 3.0 ( 14 )
[0042]
(Numerical example)
Next, numerical data of the zoom lenses of Numerical Examples 1 to 5 are shown. In each numerical example, Ri is the radius of curvature of the i-th surface in order from the object side, Di is the i-th optical member thickness or air spacing from the object side, and Ni and νi are the i-th optical in order from the object side. The refractive index and Abbe number of the material of the member. Table 1 shows the relationship between the above-described conditional expressions and numerical values in the numerical examples.
[0043]
The aspheric shape is the X axis in the optical axis direction, the h axis in the direction perpendicular to the optical axis, the light traveling direction is positive, R is the paraxial radius of curvature, and A, B, C, D, E, and F are the aspheric coefficients. When
x = (h 2 / R) / [1+ [1- (h / R) 2 ] 1/2 ] + Ah 2 + Bh 4 + Ch 6
+ Dh 8 + Eh 10 + Fh 12
It is expressed by the following formula. [E−x] means “10 −x ”.
[0044]
[Outside 1]
Figure 0004387641
[0045]
[Outside 2]
Figure 0004387641
[0046]
[Outside 3]
Figure 0004387641
[0047]
[Outside 4]
Figure 0004387641
[0048]
[Outside 5]
Figure 0004387641
[0049]
[Table 1]
Figure 0004387641
[0050]
【The invention's effect】
As described above, according to the present invention, the zoom ratio includes a wide-angle region and a zoom ratio of about 2.5 times or more, and has a large aperture of about F number 2.8 but has good optical performance. Wide-angle zoom lens can be provided.
[Brief description of the drawings]
1 is a lens sectional view of Embodiment 1 of the present invention. FIG. 2 is a lens sectional view of Embodiment 2 of the present invention. FIG. 3 is a lens sectional view of Embodiment 3 of the present invention. Cross-sectional view of lens of form 4 [FIG. 5] Cross-sectional view of lens of embodiment 5 of the present invention [FIG. 6A] Longitudinal aberration diagram at the wide angle end of Embodiment 1 of the present invention [FIG. 6B] Embodiment of the present invention FIG. 6C is a diagram showing longitudinal aberrations in the reference state at the telephoto end according to the first embodiment of the present invention. FIG. 6D is a reference diagram at the wide-angle end according to the first embodiment in the present invention. Fig. 6E is a lateral aberration diagram in the reference state at the intermediate focal length according to the first embodiment of the present invention. Fig. 6F is a lateral aberration diagram in the reference state at the telephoto end according to the first embodiment of the present invention. 6G] Lateral aberration diagram when correcting a blur of an angle of view of 0.5 ° at the wide angle end according to the first embodiment of the present invention. FIG. 6H FIG. 6I is a lateral aberration diagram when correcting a blur of an angle of view of 0.5 ° at the intermediate focal length of Embodiment 1. FIG. 6I corrects a blur of an angle of view of 0.5 ° at the telephoto end of Embodiment 1 of the present invention. Fig. 7A is a longitudinal aberration diagram in the reference state at the wide-angle end of Embodiment 2 of the present invention. Fig. 7B is a longitudinal aberration diagram in the reference state at the intermediate focal length of Embodiment 2 of the present invention. FIG. 7C is a longitudinal aberration diagram in the reference state at the telephoto end according to the second embodiment of the present invention. FIG. 7D is a transverse aberration diagram in the reference state at the wide-angle end according to the second embodiment of the present invention. FIG. 7F is a lateral aberration diagram in the reference state at the telephoto end according to the second embodiment of the present invention. FIG. 7G is an image at the wide angle end in the second embodiment according to the present invention. Fig. 7H is a lateral aberration diagram when correcting a shake of an angle of 0.5 °. Fig. 7H compensates for a shake of an angle of view of 0.5 ° at an intermediate focal length according to Embodiment 2 of the present invention. Fig. 7I is a lateral aberration diagram when correcting a blur of an angle of view of 0.5 ° at the telephoto end of Embodiment 2 of the present invention. Fig. 8A is a wide angle end of Embodiment 3 of the present invention. Fig. 8B is a longitudinal aberration diagram in the reference state at the intermediate focal length of Embodiment 3 of the present invention. Fig. 8C is a longitudinal aberration in the reference state at the telephoto end according to Embodiment 3 of the present invention. FIG. 8D is a lateral aberration diagram in the reference state at the wide-angle end according to Embodiment 3 of the present invention. FIG. 8E is a lateral aberration diagram in the reference state at the intermediate focal length according to Embodiment 3 of the present invention. Fig. 8G is a lateral aberration diagram in the reference state at the telephoto end according to Embodiment 3 of the present invention. Fig. 8G is a lateral aberration diagram when correcting blur of an angle of view of 0.5 ° at the wide angle end according to Embodiment 3 of the present invention. FIG. 8I is a lateral aberration diagram when correcting a blur of an angle of view of 0.5 ° at the intermediate focal length according to the third embodiment of the present invention. Fig. 9A is a lateral aberration diagram when correcting a blur of a field angle of 0.5 ° at the far end. Fig. 9A is a longitudinal aberration diagram in a reference state at the wide angle end according to Embodiment 4 of the present invention. FIG. 9C is a longitudinal aberration diagram in the reference state at the telephoto end according to the fourth embodiment of the present invention. FIG. 9D is a reference at the wide angle end in the fourth embodiment of the present invention. Fig. 9E is a lateral aberration diagram in the reference state at the intermediate focal length according to Embodiment 4 of the present invention. Fig. 9F is a lateral aberration diagram in the reference state at the telephoto end according to Embodiment 4 of the present invention. FIG. 9H is a lateral aberration diagram when correcting blur of an angle of view of 0.5 ° at the wide angle end according to Embodiment 4 of the present invention. FIG. 9H is an angle of view of 0.5 at an intermediate focal length according to Embodiment 4 of the present invention. Fig. 9I is a lateral aberration diagram when correcting a blur of an angle of view of 0.5 ° at the telephoto end according to Embodiment 4 of the present invention. FIG. 10A is a longitudinal aberration diagram in the reference state at the wide-angle end according to Embodiment 5 of the present invention. FIG. 10B is a longitudinal aberration diagram in the reference state at the intermediate focal length according to Embodiment 5 of the present invention. FIG. 10D is a diagram showing longitudinal aberrations in the reference state at the telephoto end according to the fifth embodiment. FIG. 10D is a transverse aberration diagram in the reference state at the wide-angle end according to the fifth embodiment of the present invention. FIG. 10F is a lateral aberration diagram in the reference state at the telephoto end according to Embodiment 5 of the present invention. FIG. 10G is an angle of view of 0.5 ° at the wide angle end according to Embodiment 5 of the present invention. FIG. 10H is a lateral aberration diagram when correcting a blur of an angle of view of 0.5 ° at the intermediate focal length of Embodiment 5 of the present invention. FIG. 10I is an embodiment of the present invention. Fig. 5 Transverse aberration diagram when correcting a blur of 5 ° angle of view at telephoto end 5
I, II, III, IV, V, VI 1st , 2nd , 3rd, 4th , 5th , 6th lens groups SP stop SSP wide open FNo stop IP image plane dd line g g line ΔS sagittal image plane,
ΔM Meridional image plane

Claims (5)

物体側より負の屈折力の第1レンズ群、正の屈折力の第2レンズ群、負の屈折力の第3レンズ群、正の屈折力の第4レンズ群、負の屈折力の第5レンズ群、正の屈折力の第6レンズ群より構成され、広角から望遠への変倍の際、前記第1レンズ群と前記第2レンズ群の間隔が小さくなる光学系であって、前記第5レンズ群を光軸方向と略垂直に移動することによって撮影画像のぶれを補正し、β5tを第5レンズ群の望遠端における横倍率、β6tを第6レンズ群の望遠端における横倍率、fiを第iレンズ群の焦点距離、fwを広角端における光学系全体の焦点距離、ftを望遠端における光学系全体の焦点距離としたとき、
0.61≦|(1−β5t)×β6t|≦1.37
0.6 <|f1/fw|< 2.5
0.2 < f2/ft < 0.8
0.8 <|f3/fw|< 2.5
0.2 < f4/ft < 1.7
0.49≦|f5/ft|≦1.16
1.0 < f6/fw < 6.0
なる条件を満足することを特徴とする防振ズームレンズ。
A first lens group having a negative refractive power, a second lens group having a positive refractive power, a third lens group having a negative refractive power, a fourth lens group having a positive refractive power, and a fifth lens having a negative refractive power from the object side. An optical system comprising a lens group and a sixth lens group having a positive refractive power, wherein the distance between the first lens group and the second lens group is reduced upon zooming from wide angle to telephoto; The fifth lens group is moved substantially perpendicular to the optical axis direction to correct the blur of the captured image, β5t is the lateral magnification at the telephoto end of the fifth lens group, β6t is the lateral magnification at the telephoto end of the sixth lens group, fi Is the focal length of the i-th lens group, fw is the focal length of the entire optical system at the wide angle end, and ft is the focal length of the entire optical system at the telephoto end,
0.61 ≦ | (1-β5t) × β6t | ≦ 1.37
0.6 <| f1 / fw | <2.5
0.2 <f2 / ft <0.8
0.8 <| f3 / fw | <2.5
0.2 <f4 / ft <1.7
0.49 ≦ | f5 / ft | ≦ 1.16
1.0 <f6 / fw <6.0
An anti-vibration zoom lens characterized by satisfying the following conditions:
広角から望遠への変倍の際、前記第2レンズ群と前記第3レンズ群の間隔は大きくなり、前記第3レンズ群と前記第4レンズ群の間隔は小さくなることを特徴とする請求項1記載の防振ズームレンズ。  The distance between the second lens group and the third lens group is increased and the distance between the third lens group and the fourth lens group is decreased during zooming from wide angle to telephoto. 1. An anti-vibration zoom lens according to 1. 広角から望遠への変倍の際、前記第2レンズ群と前記第4レンズ群は物体側へ移動することを特徴とする請求項1又は2記載の防振ズームレンズ。  3. The image stabilizing zoom lens according to claim 1, wherein the second lens group and the fourth lens group move toward the object side during zooming from wide angle to telephoto. 広角から望遠への変倍の際、前記第4レンズ群と前記第5レンズ群の間隔は大きくなることを特徴とする請求項1、2又は3記載の防振ズームレンズ。  4. The image stabilizing zoom lens according to claim 1, wherein an interval between the fourth lens group and the fifth lens group is increased during zooming from wide angle to telephoto. 前記第5レンズ群は少なくとも正レンズと負レンズを有し、νnを第5レンズ群中の負レンズのアッベ数の平均、νpを第5レンズ群中の正レンズのアッベ数の平均とするとき、
νn−νp > 0
なる条件を満足することを特徴とする請求項1乃至のいずれか1項に記載の防振ズームレンズ。
The fifth lens group has at least a positive lens and a negative lens, and νn is an average Abbe number of negative lenses in the fifth lens group, and νp is an average Abbe number of positive lenses in the fifth lens group. ,
νn−νp> 0
Vibration-proof zoom lens according to any one of claims 1 to 4, characterized by satisfying the following condition.
JP2002217414A 2002-07-26 2002-07-26 Anti-shake zoom lens Expired - Fee Related JP4387641B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002217414A JP4387641B2 (en) 2002-07-26 2002-07-26 Anti-shake zoom lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002217414A JP4387641B2 (en) 2002-07-26 2002-07-26 Anti-shake zoom lens

Publications (2)

Publication Number Publication Date
JP2004061679A JP2004061679A (en) 2004-02-26
JP4387641B2 true JP4387641B2 (en) 2009-12-16

Family

ID=31938859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002217414A Expired - Fee Related JP4387641B2 (en) 2002-07-26 2002-07-26 Anti-shake zoom lens

Country Status (1)

Country Link
JP (1) JP4387641B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4700957B2 (en) * 2004-12-02 2011-06-15 日東光学株式会社 Zoom lens system
JP4673088B2 (en) * 2005-02-28 2011-04-20 リコー光学株式会社 Projection lens and projection-type image display device
JP2007279147A (en) 2006-04-03 2007-10-25 Konica Minolta Opto Inc Variable power optical system and imaging apparatus
JP4898410B2 (en) 2006-12-14 2012-03-14 キヤノン株式会社 Zoom lens and imaging apparatus having the same
JP5045266B2 (en) * 2007-06-27 2012-10-10 コニカミノルタアドバンストレイヤー株式会社 Zoom lens and imaging device
KR101436328B1 (en) 2008-08-06 2014-09-01 삼성전자주식회사 Telesphoto zoon lens
US8503097B2 (en) 2009-05-27 2013-08-06 Nikon Corporation Lens system, optical apparatus and manufacturing method
JP5606201B2 (en) * 2010-07-24 2014-10-15 キヤノン株式会社 Zoom lens and imaging apparatus having the same
US8503102B2 (en) 2011-04-19 2013-08-06 Panavision International, L.P. Wide angle zoom lens
EP3252519B1 (en) 2015-01-30 2020-11-04 Nikon Corporation Zoom lens, optical apparatus, and zoom lens production method
CN111458855B (en) 2015-01-30 2022-06-03 株式会社尼康 Variable magnification optical system and optical apparatus
EP3812820A4 (en) 2018-06-19 2022-03-16 Nittoh Inc. Lens system and imaging device
JP2021152559A (en) * 2018-06-19 2021-09-30 株式会社nittoh Lens system and image capturing device

Also Published As

Publication number Publication date
JP2004061679A (en) 2004-02-26

Similar Documents

Publication Publication Date Title
JP5498259B2 (en) High magnification zoom lens
JP3584107B2 (en) Zoom lens
JP2778232B2 (en) Wide-angle zoom lens
JP5202022B2 (en) Zoom lens and imaging apparatus having the same
JP5749629B2 (en) Inner focus telephoto lens
JP3147167B2 (en) Zoom lens
JP4976867B2 (en) Zoom lens and imaging apparatus having the same
JP5344549B2 (en) Zoom lens and imaging apparatus having the same
JP5492658B2 (en) High magnification zoom lens
US20150146085A1 (en) Optical system and image pickup apparatus including the same
US8896930B2 (en) Zoom lens and image pickup apparatus equipped with zoom lens
JP4356040B2 (en) Long zoom lens with anti-vibration function
JP5498260B2 (en) Zoom lens unit
JP4289958B2 (en) Zoom lens and imaging apparatus having the same
JPH1152245A (en) Zoom lens having vibration compensating function
JP4146134B2 (en) Zoom lens
JP4387641B2 (en) Anti-shake zoom lens
JP5430130B2 (en) Zoom lens and imaging apparatus having the same
JPH10104520A (en) Wide angle zoom lens
JPH1164733A (en) Zoom lens long in back focus
JP4401469B2 (en) Zoom lens
JP4323584B2 (en) Variable magnification optical system with anti-vibration function
JP3880125B2 (en) Zoom lens with vibration compensation function
JP3826061B2 (en) Zoom lens and optical apparatus having the same
JP2015072499A (en) High magnification zoom lens

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050525

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080722

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090721

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090903

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090929

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091001

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131009

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees