JP4384626B2 - Endoscope device - Google Patents

Endoscope device Download PDF

Info

Publication number
JP4384626B2
JP4384626B2 JP2005244083A JP2005244083A JP4384626B2 JP 4384626 B2 JP4384626 B2 JP 4384626B2 JP 2005244083 A JP2005244083 A JP 2005244083A JP 2005244083 A JP2005244083 A JP 2005244083A JP 4384626 B2 JP4384626 B2 JP 4384626B2
Authority
JP
Japan
Prior art keywords
light
band
filter
narrow
image data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005244083A
Other languages
Japanese (ja)
Other versions
JP2006218283A (en
Inventor
和弘 後野
睦巳 大島
健二 山▲崎▼
正一 天野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Olympus Medical Systems Corp
Original Assignee
Olympus Corp
Olympus Medical Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2005244083A priority Critical patent/JP4384626B2/en
Application filed by Olympus Corp, Olympus Medical Systems Corp filed Critical Olympus Corp
Priority to CN2010101170887A priority patent/CN101822525B/en
Priority to KR1020077004702A priority patent/KR100895160B1/en
Priority to EP05775099A priority patent/EP1787577B1/en
Priority to KR1020087028399A priority patent/KR100961591B1/en
Priority to DE602005026825T priority patent/DE602005026825D1/en
Priority to PCT/JP2005/015671 priority patent/WO2006025334A1/en
Priority to CN2005800290535A priority patent/CN101010029B/en
Publication of JP2006218283A publication Critical patent/JP2006218283A/en
Priority to US11/711,846 priority patent/US8531512B2/en
Application granted granted Critical
Publication of JP4384626B2 publication Critical patent/JP4384626B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、生体組織の像を撮像し信号処理する内視鏡装置に関する。   The present invention relates to an endoscope apparatus that captures an image of a living tissue and performs signal processing.

従来より、照明光を照射し体腔内の内視鏡画像を得る内視鏡装置が広く用いられている。この種の内視鏡装置では、光源装置からの照明光を体腔内にライトガイド等を用い導光しその戻り光により被写体を撮像する撮像手段を有する電子内視鏡が用いられ、ビデオプロセッサにより撮像手段からの撮像信号を信号処理することにより観察モニタに内視鏡画像を表示し患部等の観察部位を観察するようになっている。   2. Description of the Related Art Conventionally, endoscope apparatuses that irradiate illumination light and obtain an endoscopic image in a body cavity have been widely used. In this type of endoscope apparatus, an electronic endoscope having an image pickup unit that guides illumination light from a light source device into a body cavity using a light guide or the like and picks up an image of a subject using the return light is used. An image signal from the imaging means is signal-processed to display an endoscopic image on an observation monitor and observe an observation site such as an affected area.

内視鏡装置において通常の生体組織観察を行う場合は、光源装置で可視光領域の白色光を発光し、例えばRGB等の回転フィルタを介することで面順次光を被写体に照射し、この面順次光による戻り光をビデオプロセッサで同時化し画像処理することでカラー画像を得たり、内視鏡の撮像手段の撮像面の前面にカラーチップを配し白色光による戻り光をカラーチップにて各色成分毎に分離することで撮像しビデオプロセッサで画像処理することでカラー画像を得ている。   When performing normal biological tissue observation in an endoscopic device, the light source device emits white light in the visible light region, and irradiates the subject with surface sequential light through a rotating filter such as RGB, for example. A color image is obtained by synchronizing the return light from the light with a video processor and processing the image, or a color chip is arranged in front of the imaging surface of the imaging means of the endoscope, and the return light from the white light is used for each color component by the color chip. A color image is obtained by taking an image by separating each image and processing the image with a video processor.

一方、生体組織では、照射される光の波長により光の吸収特性及び散乱特性が異なるため、例えば特開2002−95635号公報では、可視光領域の照明光を離散的な分光特性の狭帯域なRGB面順次光を生体組織に照射し、生体組織の所望の深部の組織情報を得る狭帯域光内視鏡装置が提案されている。
特開2002−95635号公報
On the other hand, in a living tissue, the light absorption characteristics and the scattering characteristics differ depending on the wavelength of the irradiated light. For example, in Japanese Patent Application Laid-Open No. 2002-95635, illumination light in the visible light region has a narrow spectral bandwidth. A narrow-band optical endoscope apparatus that irradiates a living tissue with RGB sequential light and obtains tissue information of a desired deep portion of the living tissue has been proposed.
JP 2002-95635 A

カラーチップのCCD、特に補色フィルタのCCDでは、R狭帯域成分の光は、複数のカラーフィルタを透過して画像情報として抽出されるため、R狭帯域成分の光による画像情報をG狭帯域成分及びB狭帯域成分の画像情報から分離するためには、画像情報処理系の構成が複雑になるといった問題がある。   In a color chip CCD, particularly a complementary color filter CCD, R narrow band component light passes through a plurality of color filters and is extracted as image information. Therefore, image information by R narrow band component light is converted to G narrow band component light. In order to separate the image information from the B and B narrowband components, there is a problem that the configuration of the image information processing system becomes complicated.

また、R狭帯域、G狭帯域、B狭帯域の3つのバンドの狭帯域面順次光を生成する光学フィルタの構成も複雑化する。   In addition, the configuration of the optical filter that generates the narrow band surface sequential light of the three bands of the R narrow band, the G narrow band, and the B narrow band is complicated.

本発明は、上記事情に鑑みてなされたものであり、安価かつ簡単な構成により粘膜表層付近の所望の深部の組織情報を得ることのできる内視鏡装置を提供することを目的としている。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an endoscope apparatus that can obtain tissue information of a desired deep part near the mucous membrane surface layer with an inexpensive and simple configuration.

本発明の内視鏡装置は、白色光を供給する照明光供給手段と、前記白色光の光路上に配置され、前記白色光を、各々離散的な分光特性を具備する青色狭帯域の光及び分光積が前記青色狭帯域の光の分光積よりも小さい緑色狭帯域の光のみに制限して照射する帯域制限手段と、前記青色狭帯域の光が被写体に照射された際の戻り光、及び、前記緑色狭帯域の光が該被写体に照射された際の戻り光により該被写体を撮像する撮像手段から出力される撮像信号に対して信号処理を施すことにより、前記青色狭帯域の光の戻り光に応じた第1のバンド域画像データ、及び、前記緑色狭帯域の光の戻り光に応じた第2のバンド域画像データのみを生成する信号処理手段と、前記被写体の像が表示される表示手段における緑色に相当する第1の色画像データを、前記第1のバンド域画像データと第1の係数との積により算出し、該表示手段における青色に相当する第2の色画像データを、前記第1のバンド域画像データと第2の係数との積により算出し、該表示手段における赤色に相当する第3の色画像データを、前記第2のバンド域画像データと第3の係数との積により算出する演算手段と、を有することを特徴とする。 An endoscope apparatus according to the present invention includes illumination light supply means for supplying white light, and blue narrow-band light that is disposed on an optical path of the white light, each having discrete spectral characteristics, and Band limiting means for limiting and irradiating only green narrow band light having a spectral product smaller than that of the blue narrow band light, return light when the subject is irradiated with the blue narrow band light, and Returning the blue narrow-band light by performing signal processing on an imaging signal output from an imaging unit that captures the subject with return light when the green narrow-band light is applied to the subject. Signal processing means for generating only the first band image data corresponding to the light and the second band image data corresponding to the return light of the green narrow band light, and the image of the subject are displayed. First color image data corresponding to green in the display means Is calculated by the product of the first band area image data and the first coefficient, and the second color image data corresponding to the blue color in the display means is determined as the first band area image data and the second coefficient. Calculating means for calculating the third color image data corresponding to red in the display means by the product of the second band area image data and the third coefficient. It is characterized by.

本発明によれば、安価かつ簡単な構成により粘膜表層付近の所望の深部の組織情報を得ることができるという効果がある。   According to the present invention, there is an effect that tissue information of a desired deep portion near the mucosal surface layer can be obtained with an inexpensive and simple configuration.

以下、図面を参照しながら本発明の実施例について述べる。   Embodiments of the present invention will be described below with reference to the drawings.

図1ないし図27は本発明の実施例1に係わり、図1は内視鏡装置の構成を示す構成図、図2は図1の回転フィルタの構成を示す構成図、図3は図2の回転フィルタの第1のフィルタ組の分光特性を示す図、図4は図2の回転フィルタの第2のフィルタ組の分光特性を示す図、図5は図1の内視鏡装置により観察する生体組織の層方向構造を示す図、図6は図1の内視鏡装置からの照明光の生体組織の層方向への到達状態を説明する図、図7は図3の第1のフィルタ組を透過した面順次光による各バンド画像を示す第1の図、図8は図3の第1のフィルタ組を透過した面順次光による各バンド画像を示す第2の図、図9は図3の第1のフィルタ組を透過した面順次光による各バンド画像を示す第3の図、図10は図4の第2のフィルタ組を透過した面順次光による各バンド画像を示す第1の図、図11は図4の第2のフィルタ組を透過した面順次光による各バンド画像を示す第2の図、図12は図4の第2のフィルタ組の製作方法を説明する第1の図、図13は図4の第2のフィルタ組の製作方法を説明する第2の図、図14は図4の第2のフィルタ組の製作方法を説明する第3の図、図15は図4の第2のフィルタ組の製作方法を説明する第4の図、図16は図4の第2のフィルタ組の製作方法を説明する第5の図、図17は図4の第2のフィルタ組の製作方法を説明する第6の図、図18は図4の第2のフィルタ組の製作方法を説明する第7の図、図19は図1の内視鏡装置の変形例の構成を示す構成図、図20は図19の狭帯域制限フィルタの分光透過特性を示す図、図21は図19の狭帯域制限フィルタを実現する第1の干渉膜フィルタの分光透過特性を示す図、図22は図19の狭帯域制限フィルタを実現する第2の干渉膜フィルタの分光透過特性を示す図、図23は図19の狭帯域制限フィルタを実現する第3の干渉膜フィルタの分光透過特性を示す図、図24は図20の狭帯域制限フィルタの変形例の分光透過特性を示す図、図25は図1の回転フィルタの第1の変形例の構成を示す構成図、図26は図1の回転フィルタの第2の変形例の構成を示す構成図、図27は図26の回転フィルタを用いた際の内視鏡装置の構成を示す図である。   1 to 27 relate to the first embodiment of the present invention, FIG. 1 is a configuration diagram showing the configuration of the endoscope apparatus, FIG. 2 is a configuration diagram showing the configuration of the rotary filter of FIG. 1, and FIG. FIG. 4 is a diagram showing the spectral characteristics of the second filter set of the rotary filter of FIG. 2, FIG. 5 is a diagram showing the spectral characteristics of the first filter set of the rotary filter, and FIG. 5 is a living body observed by the endoscope apparatus of FIG. FIG. 6 is a diagram illustrating a layer direction structure of a tissue, FIG. 6 is a diagram illustrating a state in which illumination light from the endoscope apparatus of FIG. 1 reaches a biological tissue in a layer direction, and FIG. 7 is a diagram illustrating a first filter set of FIG. FIG. 8 is a second diagram showing each band image by the surface sequential light transmitted through the first filter set in FIG. 3, and FIG. 9 is a diagram in FIG. FIG. 10 is a third view showing each band image by the surface sequential light that has passed through the first filter set, and FIG. 10 shows the second filter set in FIG. FIG. 11 is a second diagram showing each band image by plane sequential light transmitted through the second filter set of FIG. 4, and FIG. 12 is a diagram of FIG. FIG. 13 is a second diagram illustrating a method for manufacturing the second filter set in FIG. 4, and FIG. 14 is a second diagram illustrating a method for manufacturing the second filter set in FIG. FIG. 15 is a fourth diagram illustrating a method of manufacturing the second filter set of FIG. 4, and FIG. 16 is a fifth diagram illustrating a method of manufacturing the second filter set of FIG. FIG. 17 is a sixth diagram illustrating a method of manufacturing the second filter set of FIG. 4, FIG. 18 is a seventh diagram illustrating a method of manufacturing the second filter set of FIG. 4, and FIG. FIG. 20 is a diagram showing a configuration of a modification of the endoscope apparatus of FIG. 1, FIG. 20 is a diagram showing spectral transmission characteristics of the narrowband limiting filter of FIG. 19, and FIG. FIG. 22 is a diagram showing the spectral transmission characteristics of the first interference film filter realizing the narrow band limiting filter of FIG. 19, and FIG. 22 is a diagram showing the spectral transmission characteristics of the second interference film filter realizing the narrow band limiting filter of FIG. FIG. 23 is a diagram showing the spectral transmission characteristics of the third interference film filter realizing the narrow band limiting filter of FIG. 19, and FIG. 24 is a diagram showing the spectral transmission characteristics of a modification of the narrow band limiting filter of FIG. 25 is a block diagram showing the configuration of the first modification of the rotary filter of FIG. 1, FIG. 26 is a block diagram showing the configuration of the second modification of the rotary filter of FIG. 1, and FIG. 27 is a block diagram of the rotary filter of FIG. It is a figure which shows the structure of the endoscope apparatus at the time of using.

図1に示すように、本実施の形態の内視鏡装置1は、体腔内に挿入し体腔内組織を撮像する撮像手段としてCCD2を有する電子内視鏡3と、電子内視鏡3に照明光を供給する光源装置4と、電子内視鏡3のCCD2からの撮像信号を信号処理して内視鏡画像を観察モニタ5に表示したり内視鏡画像を符号化して圧縮画像として画像ファイリング装置6に出力するビデオプロセッサ7とから構成される。   As shown in FIG. 1, an endoscope apparatus 1 according to the present embodiment includes an electronic endoscope 3 having a CCD 2 as an imaging unit that is inserted into a body cavity and images tissue in the body cavity, and illuminates the electronic endoscope 3. Signal processing is performed on the image pickup signal from the light source device 4 that supplies light and the CCD 2 of the electronic endoscope 3 to display an endoscopic image on the observation monitor 5, or the endoscopic image is encoded and image filing as a compressed image. And a video processor 7 for outputting to the apparatus 6.

光源装置4は、照明光を発光するキセノンランプ11と、白色光の熱線を遮断する熱線カットフィルタ12と、熱線カットフィルタ12を介した白色光の光量を制御する絞り装置13と、照明光を面順次光にする回転フィルタ14と、電子内視鏡3内に配設されたライトガイド15の入射面に回転フィルタ14を介した面順次光を集光させる集光レンズ16と、回転フィルタ14の回転を制御する制御回路17とを備えて構成される。   The light source device 4 includes a xenon lamp 11 that emits illumination light, a heat ray cut filter 12 that blocks heat rays of white light, a diaphragm device 13 that controls the amount of white light that passes through the heat ray cut filter 12, and illumination light. A rotation filter 14 for converting the surface sequential light, a condensing lens 16 for condensing the surface sequential light via the rotation filter 14 on the incident surface of the light guide 15 disposed in the electronic endoscope 3, and the rotation filter 14. And a control circuit 17 for controlling the rotation of the motor.

回転フィルタ14は、図2に示すように、円盤状に構成され中心を回転軸とした2重構造となっており、外側の径部分には図3に示すような色再現に適したオーバーラップした分光特性の面順次光を出力するための第1のフィルタ組を構成するR1フィルタ部14r1,G1フィルタ部14g1,B1フィルタ部14b1が配置され、内側の径部分には図4に示すような所望の層組織情報が抽出可能な離散的な分光特性の2バンドの狭帯域な面順次光を出力するための第2のフィルタ組を構成するG2フィルタ部14g2,B2フィルタ部14b2、遮光フィルタ部14Cutが配置されている。   As shown in FIG. 2, the rotary filter 14 is formed in a disk shape and has a double structure with the center as a rotation axis, and the outer diameter portion has an overlap suitable for color reproduction as shown in FIG. An R1 filter unit 14r1, a G1 filter unit 14g1, and a B1 filter unit 14b1 constituting a first filter set for outputting the surface sequential light having the spectral characteristics are arranged, and the inner diameter portion is as shown in FIG. G2 filter unit 14g2, B2 filter unit 14b2, and light shielding filter unit constituting a second filter set for outputting two-band narrow-band surface-sequential light having discrete spectral characteristics from which desired layer texture information can be extracted 14 Cut is arranged.

なお、例えばB2フィルタ部14b2の波長域λ11〜λ12は405〜425nm,G2フィルタ部14g2の波長域λ21〜λ22は530〜550nmとしている。   For example, the wavelength region λ11 to λ12 of the B2 filter unit 14b2 is 405 to 425 nm, and the wavelength region λ21 to λ22 of the G2 filter unit 14g2 is 530 to 550 nm.

なお、波長域λ11〜λ12を400〜440nmに、波長域λ21〜λ22を530〜550nmにしてもよい。   The wavelength regions λ11 to λ12 may be set to 400 to 440 nm, and the wavelength regions λ21 to λ22 may be set to 530 to 550 nm.

そして、回転フィルタ14は、図1に示すように、制御回路17により回転フィルタモータ18の駆動制御がなされ回転され、また径方向の移動(回転フィルタ14の光路に垂直な移動であって、回転フィルタ14の第1のフィルタ組あるいは第2のフィルタ組を選択的に光路上に移動)が後述するビデオプロセッサの7内のモード切替回路42からの制御信号によりモード切替モータ19によって行われる。   As shown in FIG. 1, the rotary filter 14 is rotated by the drive control of the rotary filter motor 18 by the control circuit 17, and is rotated in the radial direction (the movement perpendicular to the optical path of the rotary filter 14 is rotated. The first filter group or the second filter group of the filter 14 is selectively moved on the optical path) by the mode switching motor 19 by a control signal from the mode switching circuit 42 in the video processor 7 described later.

なお、キセノンランプ11、絞り装置13、回転フィルタモータ18及びモード切替モータ19には電源部10より電力が供給される。   Note that power is supplied from the power supply unit 10 to the xenon lamp 11, the diaphragm device 13, the rotary filter motor 18, and the mode switching motor 19.

ビデオプロセッサ7は、CCD2を駆動するCCD駆動回路20と、対物光学系21を介してCCD2により体腔内組織を撮像した撮像信号を増幅するアンプ22と、アンプ22を介した撮像信号に対して相関2重サンプリング及びノイズ除去等を行うプロセス回路23と、プロセス回路23を経た撮像信号をデジタル信号の画像データに変換するA/D変換器24と、A/D変換器24からの画像データにホワイトバランス処理を施すホワイトバランス回路(W.B.)25と、回転フィルタ14による面順次光を同時化するためのセレクタ26及び同時化メモリ27、28,29と、同時化メモリ27、28,29に格納された面順次光の各画像データを読み出しガンマ補正処理、輪郭強調処理、色処理等を行う画像処理回路30と、画像処理回路30からの画像データをアナログ信号に変換するD/A回路31,32,33と、画像処理回路30からの画像データを符号化する符号化回路34と、光源装置4の制御回路17からの回転フィルタ14の回転に同期した同期信号を入力し各種タイミング信号を上記各回路に出力するタイミングジェネレータ(T.G.)35とを備えて構成される。   The video processor 7 correlates with a CCD driving circuit 20 that drives the CCD 2, an amplifier 22 that amplifies an imaging signal obtained by imaging the body cavity tissue with the CCD 2 via the objective optical system 21, and an imaging signal that passes through the amplifier 22. A process circuit 23 that performs double sampling, noise removal, and the like, an A / D converter 24 that converts an imaging signal that has passed through the process circuit 23 into image data of a digital signal, and image data from the A / D converter 24 is white. A white balance circuit (WB) 25 that performs balance processing, a selector 26 and synchronization memories 27, 28, and 29 for synchronizing frame sequential light by the rotary filter 14, and synchronization memories 27, 28, and 29 An image processing circuit 30 that reads out each image data of the frame sequential light stored in the image processing unit and performs gamma correction processing, contour enhancement processing, color processing, and the like; From the D / A circuits 31, 32, 33 for converting the image data from the processing circuit 30 into analog signals, the encoding circuit 34 for encoding the image data from the image processing circuit 30, and the control circuit 17 of the light source device 4 And a timing generator (TG) 35 that inputs a synchronization signal synchronized with the rotation of the rotation filter 14 and outputs various timing signals to the circuits.

また、電子内視鏡2には、モード切替スイッチ41が設けられており、このモード切替スイッチ41の出力がビデオプロセッサ7内のモード切替回路42に出力されるようになっている。ビデオプロセッサ7のモード切替回路42は、制御信号を調光回路43,調光制御パラメータ切替回路44及び光源装置4のモード切替モータ19に出力するようになっている。調光制御パラメータ切替回路44は、回転フィルタ14の第1のフィルタ組あるいは第2のフィルタ組に応じた調光制御パラメータを調光回路43に出力し、調光回路43はモード切替回路42からの制御信号及び調光制御パラメータ切替回路44からの調光制御パラメータに基づき光源装置4の絞り装置13を制御し適正な明るさ制御を行うようになっている。   Further, the electronic endoscope 2 is provided with a mode change switch 41, and an output of the mode change switch 41 is output to a mode change circuit 42 in the video processor 7. The mode switching circuit 42 of the video processor 7 outputs a control signal to the dimming circuit 43, the dimming control parameter switching circuit 44, and the mode switching motor 19 of the light source device 4. The dimming control parameter switching circuit 44 outputs a dimming control parameter corresponding to the first filter group or the second filter group of the rotary filter 14 to the dimming circuit 43, and the dimming circuit 43 is output from the mode switching circuit 42. Based on the control signal and the dimming control parameter from the dimming control parameter switching circuit 44, the diaphragm device 13 of the light source device 4 is controlled to perform appropriate brightness control.

次に、このように構成された本実施の形態の内視鏡装置の作用について説明する。   Next, the operation of the endoscope apparatus of the present embodiment configured as described above will be described.

図5に示すように、体腔内組織51は、例えば深さ方向に異なった血管等の吸収体分布構造を持つ場合が多い。粘膜表層付近には主に毛細血管52が多く分布し、またこの層より深い中層には毛細血管の他に毛細血管より太い血管53が分布し、さらに深層にはさらに太い血管54が分布するようになる。   As shown in FIG. 5, the body cavity tissue 51 often has an absorber distribution structure such as blood vessels that differ in the depth direction. A large number of capillaries 52 are mainly distributed near the surface of the mucosa, and blood vessels 53 that are thicker than capillaries are distributed in the middle layer deeper than this layer, and thicker blood vessels 54 are further distributed in the deep layers. become.

一方、光は体腔内組織51に対する光の深さ方向の深達度は、光の波長に依存しており、可視域を含む照明光は、図6に示すように、青(B)色のような波長が短い光の場合、生体組織での吸収特性及び散乱特性により表層付近までしか光は深達せず、そこまでの深さの範囲で吸収、散乱を受け、表面から出た光が観測される。また、青(B)色光より波長が長い、緑(G)色光の場合、青(B)色光が深達する範囲よりさらに深い所まで深達し、その範囲で吸収、散乱を受け、表面から出た光が観測される。さらにまた、緑(G)色光より波長が長い、赤(R)色光は、さらに深い範囲まで光が到達する。   On the other hand, the depth of light in the depth direction with respect to the tissue 51 in the body cavity depends on the wavelength of the light, and the illumination light including the visible range is blue (B) as shown in FIG. In the case of light with such a short wavelength, the light reaches the surface layer only due to the absorption and scattering characteristics in the living tissue, and the light emitted from the surface is observed by being absorbed and scattered in the depth range up to that. Is done. In the case of green (G) light, which has a wavelength longer than that of blue (B) light, it reaches deeper than the range where blue (B) light deepens, absorbs and scatters within that range, and exits from the surface. Light is observed. Still further, red (R) light having a wavelength longer than that of green (G) light reaches a deeper range.

通常観察時には、照明光の光路上に回転フィルタ14の第1のフィルタ組であるR1フィルタ14r1,G1フィルタ14g1,B1フィルタ14b1に位置するようにビデオプロセッサ7の内のモード切替回路が制御信号によりモード切替モータ19を制御する。   During normal observation, the mode switching circuit in the video processor 7 is controlled by a control signal so that it is located on the optical path of the illumination light in the R1 filter 14r1, G1 filter 14g1, and B1 filter 14b1 as the first filter set of the rotary filter 14. The mode switching motor 19 is controlled.

体腔内組織51の通常観察時におけるR1フィルタ部14r1,G1フィルタ部14g1,B1フィルタ14部b1は、図3に示したように各波長域がオーバーラップしているために、
(1)B1フィルタ部14b1によるCCD4で撮像される撮像信号には図7に示すような浅層での組織情報を多く含む浅層及び中層組織情報を有するバンド画像が撮像され、
(2)また、G1フィルタ14g1によるCCD4で撮像される撮像信号には図8に示すような中層での組織情報を多く含む浅層及び中層組織情報を有するバンド画像が撮像され、
(3)さらにR1フィルタ14r1によるCCD4で撮像される撮像信号には図9に示すような深層での組織情報を多く含む中層及び深層組織情報を有するバンド画像が撮像される。
Since the R1 filter unit 14r1, the G1 filter unit 14g1, and the B1 filter unit 14b1 during normal observation of the tissue 51 in the body cavity overlap each other as shown in FIG.
(1) A band image having shallow layer and middle layer tissue information including a lot of tissue information in the shallow layer as shown in FIG. 7 is captured in the image signal captured by the CCD 4 by the B1 filter unit 14b1.
(2) Further, the image signal picked up by the CCD 4 by the G1 filter 14g1 is picked up by a band image having a shallow layer and medium layer tissue information including a lot of tissue information in the middle layer as shown in FIG.
(3) Further, the image signal picked up by the CCD 4 by the R1 filter 14r1 picks up a band image having middle layer and deep layer tissue information including a lot of deep layer tissue information as shown in FIG.

そしてビデオプロセッサ7により、これらRGB撮像信号を同時化して信号処理することで、内視鏡画像としては所望あるいは自然な色再現の内視鏡画像を得ることが可能となる。   Then, the video processor 7 synchronizes these RGB image signals and performs signal processing, so that an endoscopic image having a desired or natural color reproduction can be obtained as an endoscopic image.

一方、電子内視鏡3のモード切替スイッチ41が押されると、その信号がビデオプロセッサ7のモード切替回路42に入力される。モード切替回路42は、光源装置4のモード切替モータ19に制御信号を出力することで、通常観察時に光路上にあった回転フィルタ14の第1のフィルタ組を移動させ第2のフィルタ組を光路上に配置するように回転フィルタ14を光路に対して駆動する。   On the other hand, when the mode switching switch 41 of the electronic endoscope 3 is pressed, the signal is input to the mode switching circuit 42 of the video processor 7. The mode switching circuit 42 outputs a control signal to the mode switching motor 19 of the light source device 4, thereby moving the first filter set of the rotary filter 14 that was on the optical path during normal observation to light the second filter set. The rotary filter 14 is driven with respect to the optical path so as to be disposed on the path.

第2のフィルタ組による体腔内組織51の狭帯域光観察時におけるG2フィルタ部14g2,B2フィルタ部14b2、遮光フィルタ部14Cutは、照明光を図4に示したように離散的な分光特性の2バンドの狭帯域な面順次光とし各波長域がオーバーラップしていないために、
(4)B2フィルタ部14b2によるCCD4で撮像される撮像信号には図10に示すような浅層での組織情報を有するバンド画像が撮像され、
(5)また、G2フィルタ部14g2によるCCD4で撮像される撮像信号には図11に示すような中層での組織情報を有するバンド画像が撮像される。
The G2 filter unit 14g2, the B2 filter unit 14b2, and the light-shielding filter unit 14Cut at the time of narrow band light observation of the body cavity tissue 51 by the second filter set have a discrete spectral characteristic of 2 as shown in FIG. Because each wavelength region does not overlap with the narrow-band field sequential light,
(4) A band image having tissue information in a shallow layer as shown in FIG. 10 is captured in the imaging signal captured by the CCD 4 by the B2 filter unit 14b2,
(5) In addition, a band image having tissue information in the middle layer as shown in FIG. 11 is picked up on the image pickup signal picked up by the CCD 4 by the G2 filter unit 14g2.

この時、図3及び図4から明らかなように、第1のフィルタ組による透過光量に対して第2のフィルタ組による透過光量は、その帯域が狭くなるため減少するため、調光制御パラメータ切替回路44は、回転フィルタ14の第1のフィルタ組あるいは第2のフィルタ組に応じた調光制御パラメータを調光回路43に出力することで、調光回路43は絞り装置13を制御するので、狭帯域光観察時においても十分 な明るさの画像データが得られる。   At this time, as apparent from FIG. 3 and FIG. 4, the transmitted light amount by the second filter set is decreased with respect to the transmitted light amount by the first filter set, because the band is narrowed. Since the circuit 44 outputs the dimming control parameter corresponding to the first filter set or the second filter set of the rotary filter 14 to the dimming circuit 43, the dimming circuit 43 controls the diaphragm device 13. Image data with sufficient brightness can be obtained even during narrow-band light observation.

また、画像処理回路30は、狭帯域光観察時での画像のカラー化において、Rチャンネル←G狭帯域画像データ、Gチャンネル←B狭帯域画像データ、Bチャンネル←B狭帯域画像データとして、RGB3チャンネルのカラー画像を生成する。   In addition, the image processing circuit 30 uses RGB3 as R channel ← G narrowband image data, G channel ← B narrowband image data, and B channel ← B narrowband image data in colorizing the image during narrowband light observation. Generate a color image of the channel.

すなわち、G狭帯域画像データ(G)及びB狭帯域画像データ(B)に対して、画像処理回路30は以下の式(1)によりRGB3チャンネルのカラー画像(R’,G’,B’)を生成する。

Figure 0004384626
That is, for the G narrowband image data (G) and the B narrowband image data (B), the image processing circuit 30 uses the following equation (1) to calculate the RGB three-channel color image (R ′, G ′, B ′). Is generated.
Figure 0004384626

例えば、h11=1、h12=0、h21=0、h22=1.2、h31=0、h32=0.8とする。   For example, h11 = 1, h12 = 0, h21 = 0, h22 = 1.2, h31 = 0, h32 = 0.8.

図12に示すような従来の3バンドの狭帯域な面順次光を得るためには、B狭帯域光用に図13及び図14に示すような分光透過率特性を有する干渉膜フィルタの蒸着、G狭帯域光用に図15及び図16に示すような分光透過率特性を有する干渉膜フィルタの蒸着、R狭帯域光用に図17及び図18に示すような分光透過率特性を有する干渉膜フィルタの蒸着が必要となるが、本実施例においては、B2フィルタ部14b2は、図13及び図14に示すような分光透過率特性を有する干渉膜フィルタの蒸着により製作され、G2フィルタ部14g2は、図15及び図16に示すような分光透過率特性を有する干渉膜フィルタの蒸着により製作される。   In order to obtain a conventional three-band narrow-band surface-sequential light as shown in FIG. 12, vapor deposition of an interference film filter having spectral transmittance characteristics as shown in FIGS. 13 and 14 for B narrow-band light, Deposition of interference filter having spectral transmittance characteristics as shown in FIGS. 15 and 16 for G narrowband light, and interference film having spectral transmittance characteristics as shown in FIGS. 17 and 18 for R narrowband light In this embodiment, the B2 filter portion 14b2 is manufactured by vapor deposition of an interference film filter having spectral transmittance characteristics as shown in FIGS. 13 and 14, and the G2 filter portion 14g2 is 15 and 16 are manufactured by vapor deposition of an interference film filter having spectral transmittance characteristics as shown in FIGS.

このように光学フィルタを製作する場合、通常は多層干渉膜フィルタの蒸着による場合が多く、その製造方法ではその分光透過率特性を狭帯域化するのに、何層もの膜を蒸着せねばならず、そのためコスト増やフィルタの厚みが増すという問題があるが、本実施例では、必要最小限度の多層干渉膜フィルタの蒸着により、粘膜表層付近の所望の深部の組織情報を得ることができ、例えば早期ガンなど粘膜表層付近の細胞配列の乱れを伴う疾患の識別診断に利用することができる。   When manufacturing an optical filter in this way, it is often the case that a multilayer interference film filter is usually deposited. In the manufacturing method, it is necessary to deposit multiple layers of films to narrow the spectral transmittance characteristics. Therefore, although there is a problem that the cost increases and the thickness of the filter increases, in this embodiment, it is possible to obtain tissue information of a desired deep part near the mucosal surface layer by vapor deposition of the minimum necessary multilayer interference filter, for example, It can be used for identification and diagnosis of diseases such as early cancer that involve disturbance of the cell arrangement near the surface of the mucosa.

なお、上記実施例の内視鏡装置1では、光源装置4が面順次光を供給し、ビデオプロセッサ7で面順次画像情報を同時化して画像化する面順次式内視鏡装置を例として説明したが、これに限らず、同時式内視鏡装置にも適用可能である。   Note that, in the endoscope apparatus 1 of the above-described embodiment, an explanation will be given by taking as an example a frame sequential endoscope apparatus in which the light source device 4 supplies the frame sequential light and the video processor 7 synchronizes the plane sequential image information to form an image. However, the present invention is not limited to this, and can also be applied to a simultaneous endoscope apparatus.

すなわち、図19に示すように、白色光を供給する光源装置4aと、CCD2の撮像面の前面にカラーチップ100を備えた電子内視鏡3aと、電子内視鏡3aから撮像信号を信号処理するビデオプロセッサ7aとからなる同時式内視鏡装置1aにも本実施例を適用することができる。   That is, as shown in FIG. 19, a light source device 4a for supplying white light, an electronic endoscope 3a having a color chip 100 on the front surface of the imaging surface of the CCD 2, and an image pickup signal from the electronic endoscope 3a are processed. The present embodiment can also be applied to the simultaneous endoscope apparatus 1a including the video processor 7a.

光源装置4aでは、熱線カットフィルタ12を介したキセノンランプ11からの白色光が絞り装置13により光量が制御され電子内視鏡3a内に配設されたライトガイド15の入射面に出射される。この白色光の光路上に図20に示すような離散的な分光特性の2バンドの狭帯域光A1,A2に変換する狭帯域制限フィルタ14aが挿脱可能に設けられている。   In the light source device 4a, the amount of white light from the xenon lamp 11 via the heat ray cut filter 12 is controlled by the diaphragm device 13 and emitted to the incident surface of the light guide 15 disposed in the electronic endoscope 3a. A narrowband limiting filter 14a for converting into two-band narrowband lights A1 and A2 having discrete spectral characteristics as shown in FIG. 20 is detachably provided on the white light path.

なお、狭帯域制限フィルタ14aの狭帯域光A1及び狭帯域光A2は、図21ないし図23に示すような分光透過率特性を有する複数の干渉膜フィルタの蒸着により実現できる。ここで、狭帯域光A1の波長域及び狭帯域光A2の波長域として、
狭帯域光A1=405〜425nm,狭帯域光A2=530〜550nm
狭帯域光A1=405〜425nm,狭帯域光A2=490〜510nm
狭帯域光A1=405〜425nm,狭帯域光A2=440〜460nm
狭帯域光A1=440〜460nm,狭帯域光A2=530〜550nm
の各組み合わせを想定しているが、近紫外域あるいは近赤外域を含んでもよい。
The narrow band light A1 and the narrow band light A2 of the narrow band limiting filter 14a can be realized by vapor deposition of a plurality of interference film filters having spectral transmittance characteristics as shown in FIGS. Here, as the wavelength range of the narrowband light A1 and the wavelength range of the narrowband light A2,
Narrow band light A1 = 405 to 425 nm, Narrow band light A2 = 530 to 550 nm
Narrow band light A1 = 405 to 425 nm, Narrow band light A2 = 490 to 510 nm
Narrow band light A1 = 405 to 425 nm, Narrow band light A2 = 440 to 460 nm
Narrow band light A1 = 440 to 460 nm, Narrow band light A2 = 530 to 550 nm
Although each combination of is assumed, the near ultraviolet region or the near infrared region may be included.

電子内視鏡3aでは、体腔内組織51の像がカラーチップ100を介してCCD2で撮像される。   In the electronic endoscope 3 a, an image of the body cavity tissue 51 is captured by the CCD 2 via the color chip 100.

ビデオプロセッサ7aでは、A/D変換器24からの画像データがY/C分離回路101により輝度信号Yと色差信号Cr、Cbに分離され、RGBマトリックス回路102によりRGB信号に変換され、ホワイトバランス回路25に出力される。その他の構成及び作用は図1の内視鏡装置と同じである。   In the video processor 7a, the image data from the A / D converter 24 is separated into the luminance signal Y and the color difference signals Cr and Cb by the Y / C separation circuit 101, converted into RGB signals by the RGB matrix circuit 102, and the white balance circuit. 25 is output. Other configurations and operations are the same as those of the endoscope apparatus of FIG.

また、R狭帯域成分の光が体腔内組織51が照射されないので、狭帯域光観察時に得られる情報にはR狭帯域光による組織情報は含まれず、R狭帯域成分の光による画像情報を分離することなく粘膜表層付近の所望の深部の組織情報を得ることができ、情報処理が容易になるといった効果を有する。   In addition, since the tissue 51 in the body cavity is not irradiated with the light of the R narrowband component, the information obtained at the time of the narrowband light observation does not include the tissue information by the R narrowband light, and the image information by the light of the R narrowband component is separated. Therefore, it is possible to obtain tissue information of a desired deep portion near the surface of the mucosa without facilitating information processing.

なお、回転フィルタ14の第2のフィルタ組におけるB2フィルタ部14b2及びG2フィルタ部14g2の分光透過特性を図24に示すようにして、G狭帯域での分光積をB狭帯域光での分光積よりも小さくしても良い。狭帯域制限フィルタ14aの狭帯域光A1(B狭帯域光に相当)及び狭帯域光A2(G狭帯域光に相当)についても同様である。   Note that the spectral transmission characteristics of the B2 filter unit 14b2 and the G2 filter unit 14g2 in the second filter set of the rotary filter 14 are shown in FIG. 24, and the spectral product in the G narrow band is changed to the spectral product in the B narrow band light. May be smaller. The same applies to the narrowband light A1 (corresponding to B narrowband light) and the narrowband light A2 (corresponding to G narrowband light) of the narrowband limiting filter 14a.

あるいは、CCD2への入射光における、G帯域光の分光積SGをB帯域光での分光積SBよりも小さくする。例えば、0.10≦SG/SB≦0.35とする。   Alternatively, the spectral product SG of the G band light in the incident light to the CCD 2 is made smaller than the spectral product SB of the B band light. For example, 0.10 ≦ SG / SB ≦ 0.35.

SG=∫GS(λ)dλ
SB=∫BS(λ)dλ
S(λ)=Lamp(λ)×LIRCut(λ)×NBIFilter(λ)
×LG(λ)×IRCut(λ)×YagCut(λ)
Lamp(λ):ランプの分光特性
LIRCut(λ):光源装置内の熱線カットフィルタの分光特性
NBIFilter(λ):狭帯域制限フィルタ(NBIフィルタ)の分光特性
LG(λ):ライトガイドの分光特性
IRCut(λ):内視鏡内赤外光カットフィルタの分光特性
YagCut(λ):内視鏡内レーザ光カットフィルタの分光特性
ここで、∫G、∫Bは各々G狭帯域光、B狭帯域光での波長域における積分演算を示す。
SG = ∫ G S (λ) dλ
SB = ∫ B S (λ) dλ
S (λ) = Lamp (λ) × LIRCut (λ) × NBIFilter (λ)
× LG (λ) × IRCut (λ) × YagCut (λ)
Lamp (λ): Spectral characteristics of the lamp
LIRCut (λ): Spectral characteristics of the heat ray cut filter in the light source device
NBIFilter (λ): Spectral characteristics of narrowband limiting filter (NBI filter)
LG (λ): Spectral characteristics of light guide
IRCut (λ): Spectral characteristics of endoscopic infrared light cut filter
YagCut (λ): Spectral Characteristics of Endoscope Laser Light Cut Filter Here, ∫ G and ∫ B denote integration operations in the wavelength range of G narrow band light and B narrow band light, respectively.

従来、狭帯域制限フィルタ(NBIフィルタ)の透過率の設計は、ホワイトキャップ(標準白色板)撮影時のR、B信号におけるノイズを抑制するため、ホワイトバランスの補正値がRGBでほぼ等しくなるようにしていた。   Conventionally, the transmittance design of a narrow band limiting filter (NBI filter) has been designed so that the white balance correction value is almost equal in RGB in order to suppress noise in the R and B signals when shooting with a white cap (standard white plate). I was doing.

しかしながら、生体粘膜観察時にはHb(ヘモグロビン)による吸光度がG帯域光よりもB帯域光で高いため、B信号が相対的に暗くなる。色変換処理によりNBIの粘膜情報の視認性を向上させるためには、G、B信号の明るさをほぼ等しくする必要があるが、B信号をゲインアップする必要があるため、B信号のノイズが目立ってしまうという問題があった。さらに補色フィルタのCCDでは、透過率調整が適切でないと、Y/Cr/Cbの飽和点が各信号毎に異なり、YCrCb信号から線形演算により変換したRGB信号において、色再現性が悪化してしまう。   However, during biological mucosal observation, the absorbance of Hb (hemoglobin) is higher in B-band light than in G-band light, so the B signal becomes relatively dark. In order to improve the visibility of the NBI mucosa information by color conversion processing, it is necessary to make the brightness of the G and B signals almost equal, but the B signal needs to be gained up, so the noise of the B signal There was a problem of being noticeable. Furthermore, in the case of a complementary color filter CCD, if the transmittance adjustment is not appropriate, the saturation point of Y / Cr / Cb differs for each signal, and color reproducibility deteriorates in RGB signals converted from YCrCb signals by linear calculation. .

そこで、G狭帯域での分光積をB狭帯域光での分光積よりも小さくすることで、NBIによる良好な画質を得ることが可能となる。   Therefore, by making the spectral product in the G narrow band smaller than the spectral product in the B narrow band light, it is possible to obtain a good image quality by NBI.

すなわち、G帯域の透過率をB帯域よりも下げることにより、生体粘膜観察時のG、B信号出力の差を少なくすることが可能となり、その結果、B信号のゲインを小さくできるため、ノイズを抑制することができる。   That is, by lowering the transmittance of the G band below that of the B band, it becomes possible to reduce the difference between the G and B signal outputs when observing the living mucous membrane. As a result, the gain of the B signal can be reduced, so noise can be reduced. Can be suppressed.

また、生体粘膜観察時に、Y/Cr/Cbの飽和点の差を縮めることができるため、変換後のRGB信号において、明るさ対して信号出力がリニアに変化する範囲(レンジ)を広げることが可能となり、この結果、色再現性のレンジも広がる。   In addition, the difference between the saturation points of Y / Cr / Cb can be reduced when observing biological mucous membranes, so that the range in which the signal output changes linearly with respect to brightness can be expanded in the converted RGB signal. As a result, the range of color reproducibility is expanded.

なお、図1において、回転フィルタ14の第2のフィルタ組をG2フィルタ部14g2,B2フィルタ部14b2、遮光フィルタ部14Cutにより構成するとしたが(図2参照)、図25に示すように、遮光フィルタ部14Cut部分にさらにB2フィルタ部14b2を配置し、第2のフィルタ組をB2フィルタ部14b2、G2フィルタ部14g2,B2フィルタ部14b2により構成してもよく、このように構成することで、B2フィルタ部14b2によるCCD4での撮像が1フィールド期間に2度実施され、この撮像信号を演算処理し、例えばB加算処理することで狭帯域B画像の明るさの改善や、平均処理することによりSN向上が可能となる。   In FIG. 1, the second filter set of the rotary filter 14 is composed of the G2 filter part 14g2, the B2 filter part 14b2, and the light shielding filter part 14Cut (see FIG. 2). However, as shown in FIG. The B2 filter section 14b2 may be further arranged in the section 14Cut, and the second filter set may be configured by the B2 filter section 14b2, the G2 filter section 14g2, and the B2 filter section 14b2. By configuring in this way, the B2 filter The image pickup by the CCD 4 by the unit 14b2 is performed twice in one field period, and this image pickup signal is subjected to arithmetic processing, for example, B addition processing to improve the brightness of the narrowband B image and improve the SN by averaging processing. Is possible.

また、図1における2重構造の回転フィルタ14を、図26に示す1重構造のR1フィルタ部14r1,G1フィルタ部14g1,B1フィルタ部14b1からなる第1のフィルタ組のみで回転フィルタ140を構成すると共に、図27に示すように、この回転フィルタ140の入射光軸前段に図19で示した狭帯域制限フィルタ14aを光軸上に挿脱可能に配置して光源装置4を構成してもよく、この場合、CCD2の前面にカラーチップ100を設ける必要がなく、図1に示した構成のビデオプロセッサ7により、通常面順次光による観察と狭帯域面順次光による観察が可能となる。   Further, the rotary filter 140 of the double structure in FIG. 1 is constituted by only the first filter set including the R1 filter section 14r1, the G1 filter section 14g1, and the B1 filter section 14b1 of the single structure shown in FIG. In addition, as shown in FIG. 27, the light source device 4 may be configured by arranging the narrow band limiting filter 14a shown in FIG. In this case, it is not necessary to provide the color chip 100 on the front surface of the CCD 2, and the video processor 7 having the configuration shown in FIG. 1 enables observation with normal surface sequential light and observation with narrow band surface sequential light.

本発明は、上述した実施例に限定されるものではなく、本発明の要旨を変えない範囲において、種々の変更、改変等が可能である。   The present invention is not limited to the above-described embodiments, and various changes and modifications can be made without departing from the scope of the present invention.

本発明の第1の実施の形態に係る内視鏡装置の構成を示す構成図The block diagram which shows the structure of the endoscope apparatus which concerns on the 1st Embodiment of this invention. 図1の回転フィルタの構成を示す構成図The block diagram which shows the structure of the rotation filter of FIG. 図2の回転フィルタの第1のフィルタ組の分光特性を示す図The figure which shows the spectral characteristics of the 1st filter set of the rotation filter of FIG. 図2の回転フィルタの第2のフィルタ組の分光特性を示す図The figure which shows the spectral characteristic of the 2nd filter set of the rotation filter of FIG. 図1の内視鏡装置により観察する生体組織の層方向構造を示す図The figure which shows the layer direction structure of the biological tissue observed with the endoscope apparatus of FIG. 図1の内視鏡装置からの照明光の生体組織の層方向への到達状態を説明する図The figure explaining the arrival state to the layer direction of the biological tissue of the illumination light from the endoscope apparatus of FIG. 図3の第1のフィルタ組を透過した面順次光による各バンド画像を示す第1の図FIG. 3 is a first diagram showing each band image by frame sequential light transmitted through the first filter set of FIG. 図3の第1のフィルタ組を透過した面順次光による各バンド画像を示す第2の図2nd figure which shows each band image by the field sequential light which permeate | transmitted the 1st filter set of FIG. 図3の第1のフィルタ組を透過した面順次光による各バンド画像を示す第3の図3rd figure which shows each band image by the field sequential light which permeate | transmitted the 1st filter set of FIG. 図4の第2のフィルタ組を透過した面順次光による各バンド画像を示す第1の図1st figure which shows each band image by the field sequential light which permeate | transmitted the 2nd filter set of FIG. 図4の第2のフィルタ組を透過した面順次光による各バンド画像を示す第2の図2nd figure which shows each band image by the surface sequential light which permeate | transmitted the 2nd filter set of FIG. 図4の第2のフィルタ組の製作方法を説明する第1の図1st figure explaining the manufacturing method of the 2nd filter set of FIG. 図4の第2のフィルタ組の製作方法を説明する第2の図2nd figure explaining the manufacturing method of the 2nd filter set of FIG. 図4の第2のフィルタ組の製作方法を説明する第3の図3rd figure explaining the manufacturing method of the 2nd filter set of FIG. 図4の第2のフィルタ組の製作方法を説明する第4の図FIG. 4 is a fourth diagram illustrating a method of manufacturing the second filter set in FIG. 図4の第2のフィルタ組の製作方法を説明する第5の図The 5th figure explaining the manufacturing method of the 2nd filter set of FIG. 図4の第2のフィルタ組の製作方法を説明する第6の図The 6th figure explaining the manufacturing method of the 2nd filter set of FIG. 図4の第2のフィルタ組の製作方法を説明する第7の図FIG. 7 is a seventh diagram illustrating a method of manufacturing the second filter set in FIG. 図1の内視鏡装置の変型例の構成を示す構成図The block diagram which shows the structure of the modification of the endoscope apparatus of FIG. 図19の狭帯域制限フィルタの分光透過特性を示す図The figure which shows the spectral transmission characteristic of the narrow-band limiting filter of FIG. 図19の狭帯域制限フィルタを実現する第1の干渉膜フィルタの分光透過特性を示す図The figure which shows the spectral transmission characteristic of the 1st interference film filter which implement | achieves the narrow-band limiting filter of FIG. 図19の狭帯域制限フィルタを実現する第2の干渉膜フィルタの分光透過特性を示す図The figure which shows the spectral transmission characteristic of the 2nd interference filter which implement | achieves the narrow-band limiting filter of FIG. 図19の狭帯域制限フィルタを実現する第3の干渉膜フィルタの分光透過特性を示す図The figure which shows the spectral transmission characteristic of the 3rd interference film filter which implement | achieves the narrow-band limiting filter of FIG. 図20の狭帯域制限フィルタの変型例の分光透過特性を示す図The figure which shows the spectral transmission characteristic of the modification of the narrow-band limiting filter of FIG. 図1の回転フィルタの第1の変形例の構成を示す構成図The block diagram which shows the structure of the 1st modification of the rotary filter of FIG. 図1の回転フィルタの第2の変形例の構成を示す構成図The block diagram which shows the structure of the 2nd modification of the rotation filter of FIG. 図26の回転フィルタを用いた際の内視鏡装置の構成を示す図The figure which shows the structure of the endoscope apparatus at the time of using the rotation filter of FIG.

符号の説明Explanation of symbols

1…内視鏡装置
2…CCD
3…電子内視鏡
4…光源装置
5…観察モニタ
6…画像ファイリング装置
7…ビデオプロセッサ
10…電源部
11…キセノンランプ
12…熱線カットフィルタ
13…絞り装置
14…回転フィルタ
14r1…R1フィルタ部
14g1…G1フィルタ部
14b1…B1フィルタ部
14g2…G2フィルタ部
14b2…B2フィルタ部
14Cut…遮光フィルタ部
15…ライトガイド
16…集光レンズ
17…制御回路
18…回転フィルタモータ
19…モード切替モータ19
20…CCD駆動回路
21…対物光学系
22…アンプ
23…プロセス回路
24…A/D変換器
25…ホワイトバランス回路
26…セレクタ
27、28,29…同時化メモリ
30…画像処理回路
31,32,33…D/A回路
34…符号化回路
35…タイミングジェネレータ
41…モード切替スイッチ
42…モード切替回路
43…調光回路
44…調光制御パラメータ切替回路
代理人 弁理士 伊藤 進
1 ... Endoscope device 2 ... CCD
DESCRIPTION OF SYMBOLS 3 ... Electronic endoscope 4 ... Light source device 5 ... Observation monitor 6 ... Image filing device 7 ... Video processor 10 ... Power supply part 11 ... Xenon lamp 12 ... Heat ray cut filter 13 ... Diaphragm device 14 ... Rotary filter 14r1 ... R1 filter part 14g1 ... G1 filter part 14b1 ... B1 filter part 14g2 ... G2 filter part 14b2 ... B2 filter part 14Cut ... Shading filter part 15 ... Light guide 16 ... Condensing lens 17 ... Control circuit 18 ... Rotation filter motor 19 ... Mode switching motor 19
DESCRIPTION OF SYMBOLS 20 ... CCD drive circuit 21 ... Objective optical system 22 ... Amplifier 23 ... Process circuit 24 ... A / D converter 25 ... White balance circuit 26 ... Selector 27, 28, 29 ... Synchronization memory 30 ... Image processing circuit 31, 32, 33 ... D / A circuit 34 ... Coding circuit 35 ... Timing generator 41 ... Mode changeover switch 42 ... Mode changeover circuit 43 ... Dimming circuit 44 ... Dimming control parameter switching circuit Agent Patent attorney Susumu Ito

Claims (6)

白色光を供給する照明光供給手段と、
前記白色光の光路上に配置され、前記白色光を、各々離散的な分光特性を具備する青色狭帯域の光及び分光積が前記青色狭帯域の光の分光積よりも小さい緑色狭帯域の光のみに制限して照射する帯域制限手段と、
前記青色狭帯域の光が被写体に照射された際の戻り光、及び、前記緑色狭帯域の光が該被写体に照射された際の戻り光により該被写体を撮像する撮像手段から出力される撮像信号に対して信号処理を施すことにより、前記青色狭帯域の光の戻り光に応じた第1のバンド域画像データ、及び、前記緑色狭帯域の光の戻り光に応じた第2のバンド域画像データのみを生成する信号処理手段と、
前記被写体の像が表示される表示手段における緑色に相当する第1の色画像データを、前記第1のバンド域画像データと第1の係数との積により算出し、該表示手段における青色に相当する第2の色画像データを、前記第1のバンド域画像データと第2の係数との積により算出し、該表示手段における赤色に相当する第3の色画像データを、前記第2のバンド域画像データと第3の係数との積により算出する演算手段と、
を有することを特徴とする内視鏡装置。
Illumination light supply means for supplying white light;
The white light is arranged in the optical path of the white light, and the white light is divided into a blue narrow band light and a spectral product each having discrete spectral characteristics, and the green narrow band light is smaller than the spectral product of the blue narrow band light. Band limiting means for limiting the irradiation to
An imaging signal output from an imaging means for imaging the subject by the return light when the subject is irradiated with the blue narrow-band light and the return light when the subject is irradiated with the green narrow-band light. By performing signal processing on the first band-band image data corresponding to the return light of the blue narrow-band light and the second band-band image corresponding to the return light of the green narrow-band light Signal processing means for generating only data;
First color image data corresponding to green in the display means on which the subject image is displayed is calculated by a product of the first band image data and a first coefficient, and corresponds to blue in the display means. Second color image data to be calculated is calculated by a product of the first band area image data and a second coefficient, and third color image data corresponding to red in the display means is calculated as the second band image data. Computing means for calculating the product of the area image data and the third coefficient;
An endoscope apparatus characterized by comprising:
前記帯域制限手段は、前記白色光のうち前記青色狭帯域の光のみを通過させる第1の透過域と、前記白色光のうち前記緑色狭帯域の光のみを通過させる第2の透過域とを有して構成されるフィルタ部であることを特徴とする請求項1に記載の内視鏡装置。   The band limiting means includes: a first transmission region that allows only the blue narrow-band light in the white light to pass; and a second transmission region that allows only the green narrow-band light in the white light to pass. The endoscope apparatus according to claim 1, wherein the endoscope apparatus includes a filter unit. 前記青色狭帯域の光及び前記緑色狭帯域の光は、前記被写体に対して時系列的に順次照射されることを特徴とする請求項1または2に記載の内視鏡装置。   The endoscope apparatus according to claim 1 or 2, wherein the blue narrow band light and the green narrow band light are sequentially irradiated onto the subject in time series. 前記撮像手段は、撮像面に波長帯域分離手段を有することを特徴とする請求項1または2に記載の内視鏡装置。   The endoscope apparatus according to claim 1, wherein the imaging unit includes a wavelength band separation unit on an imaging surface. 前記第2の係数は、前記第1の係数に比べて小さい値であることを特徴とする請求項1−4のいずれか一項に記載の内視鏡装置。 The endoscope apparatus according to claim 1, wherein the second coefficient is a smaller value than the first coefficient . 前記第3の係数は、1であることを特徴とする請求項5に記載の内視鏡装置。 The endoscope apparatus according to claim 5, wherein the third coefficient is one .
JP2005244083A 2004-08-30 2005-08-25 Endoscope device Active JP4384626B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2005244083A JP4384626B2 (en) 2004-09-02 2005-08-25 Endoscope device
KR1020077004702A KR100895160B1 (en) 2004-08-30 2005-08-29 Endoscope
EP05775099A EP1787577B1 (en) 2004-08-30 2005-08-29 Endoscope
KR1020087028399A KR100961591B1 (en) 2004-08-30 2005-08-29 Endoscope
CN2010101170887A CN101822525B (en) 2004-08-30 2005-08-29 Endoscope
DE602005026825T DE602005026825D1 (en) 2004-08-30 2005-08-29 ENDOSCOPE
PCT/JP2005/015671 WO2006025334A1 (en) 2004-08-30 2005-08-29 Endoscope
CN2005800290535A CN101010029B (en) 2004-08-30 2005-08-29 Endoscope
US11/711,846 US8531512B2 (en) 2004-08-30 2007-02-27 Endoscope apparatus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004256140 2004-09-02
JP2005009477 2005-01-17
JP2005244083A JP4384626B2 (en) 2004-09-02 2005-08-25 Endoscope device

Publications (2)

Publication Number Publication Date
JP2006218283A JP2006218283A (en) 2006-08-24
JP4384626B2 true JP4384626B2 (en) 2009-12-16

Family

ID=36980964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005244083A Active JP4384626B2 (en) 2004-08-30 2005-08-25 Endoscope device

Country Status (1)

Country Link
JP (1) JP4384626B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4709606B2 (en) * 2005-07-28 2011-06-22 オリンパスメディカルシステムズ株式会社 Biological observation device
JP5349899B2 (en) * 2007-11-09 2013-11-20 富士フイルム株式会社 Imaging system and program
JP5242316B2 (en) * 2008-09-26 2013-07-24 富士フイルム株式会社 Method of operating narrowband image acquisition system and narrowband image acquisition system
JP2010104421A (en) * 2008-10-28 2010-05-13 Fujifilm Corp Imaging system and imaging method
JP5460507B2 (en) * 2009-09-24 2014-04-02 富士フイルム株式会社 Endoscope apparatus operating method and endoscope apparatus
JP5460506B2 (en) * 2009-09-24 2014-04-02 富士フイルム株式会社 Endoscope apparatus operating method and endoscope apparatus
JP5431294B2 (en) 2010-11-16 2014-03-05 富士フイルム株式会社 Endoscope device
JP5271364B2 (en) * 2011-01-07 2013-08-21 富士フイルム株式会社 Endoscope system
JP5198694B2 (en) 2011-02-09 2013-05-15 オリンパスメディカルシステムズ株式会社 Light source device
JP2014128394A (en) 2012-12-28 2014-07-10 Hoya Corp Endoscope device
JP5932748B2 (en) 2013-09-27 2016-06-08 富士フイルム株式会社 Endoscope system
WO2016147435A1 (en) * 2015-03-17 2016-09-22 オリンパス株式会社 Endoscope device
JP5974204B1 (en) * 2015-03-17 2016-08-23 オリンパス株式会社 Endoscope device
JP6175538B2 (en) * 2016-04-27 2017-08-02 富士フイルム株式会社 Endoscope system
JP6379260B2 (en) * 2017-07-04 2018-08-22 富士フイルム株式会社 Endoscope device

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0646811B2 (en) * 1984-08-31 1994-06-15 オリンパス光学工業株式会社 Lighting device for color imaging device
JP3164609B2 (en) * 1990-10-31 2001-05-08 オリンパス光学工業株式会社 Endoscope device
US5590660A (en) * 1994-03-28 1997-01-07 Xillix Technologies Corp. Apparatus and method for imaging diseased tissue using integrated autofluorescence
JPH08186810A (en) * 1995-01-05 1996-07-16 Toshiba Corp Electronic endoscope
JPH10216082A (en) * 1997-02-07 1998-08-18 Terumo Corp Image processing device for endoscope
JPH10248808A (en) * 1997-03-13 1998-09-22 Asahi Optical Co Ltd Light source device for endoscope
JP2001178673A (en) * 1999-12-24 2001-07-03 Fuji Photo Film Co Ltd Fluorescent imaging device
JP3607857B2 (en) * 2000-07-27 2005-01-05 オリンパス株式会社 Endoscope device
JP3559755B2 (en) * 2000-07-27 2004-09-02 オリンパス株式会社 Endoscope device
JP3583731B2 (en) * 2000-07-21 2004-11-04 オリンパス株式会社 Endoscope device and light source device
JP4632645B2 (en) * 2002-12-12 2011-02-16 オリンパス株式会社 Imaging device and processor device

Also Published As

Publication number Publication date
JP2006218283A (en) 2006-08-24

Similar Documents

Publication Publication Date Title
JP4384626B2 (en) Endoscope device
JP3583731B2 (en) Endoscope device and light source device
JP4868976B2 (en) Endoscope device
KR100961591B1 (en) Endoscope
CN101175435B (en) Biological observation apparatus
JP5637834B2 (en) Endoscope device
JP5308815B2 (en) Biological observation system
JP4025764B2 (en) Endoscope device
JP2012135431A (en) Endoscopic diagnostic device
JP5455733B2 (en) Light source device for electronic endoscope
JP4716673B2 (en) Fluorescence endoscope device
JP5041936B2 (en) Biological observation device
JP2012125462A (en) Image processing device
JP3965174B2 (en) Endoscope device
JP2006341075A (en) Signal processor for biological observation system
CN110573056B (en) Endoscope system
JP2011200380A (en) Light source device for electronic endoscope
JP5455734B2 (en) Light source device for electronic endoscope
JP5331863B2 (en) Endoscope device
WO2016203983A1 (en) Endoscopic device
JP2013094489A (en) Endoscope apparatus
JP2005323758A (en) Electronic endoscope apparatus
JP2006341076A (en) Signal processor for biological observation system
JP4643253B2 (en) Fluorescence observation system
CN115209784A (en) Endoscope apparatus, processor, and color emphasis method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070724

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080408

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080729

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080929

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090406

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090901

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090925

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4384626

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131002

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250